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Abstract

I present a generalization of the standard (full-information) model of state-
dependent pricing in which decisions about when to review a firm’s existing
price must be made on the basis of imprecise awareness of current market con-
ditions. The imperfect information is endogenized using a variant of the theory
of “rational inattention” proposed by Sims (1998, 2003, 2006). This results in
a one-parameter family of models, indexed by the cost of information, which
nests both the standard state-dependent pricing model and the Calvo model
of price adjustment as limiting cases (corresponding to a zero information cost
and an unboundedly large information cost respectively). For intermediate lev-
els of the information cost, the model is equivalent to a “generalized Ss model”
with a continuous “adjustment hazard” of the kind proposed by Caballero and
Engel (1993a, 1993b), but provides an economic motivation for the hazard
function and very specific predictions about its form. For moderate levels of
the information cost, the Calvo model of price-setting is found to be a fairly
accurate approximation to the exact equilibrium dynamics, except in the case
of (infrequent) large shocks.
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Models of state-dependent pricing [SDP], in which not only the size of price

changes but also their timing is modeled as a profit-maximizing decision on the part

of firms, have been the subject of an extensive literature.1 For the most part, the

literature dealing with empirical models of inflation dynamics and the evaluation of

alternative monetary policies have been based on models of a simpler sort, in which

the size of price changes is modeled as an outcome of optimization, but the timing

of price changes is taken as given, and hence neither explained nor assumed to be

affected by policy. The popularity of models with exogenous timing [ET] for such pur-

poses stems from their greater tractability, allowing greater realism and complexity

on other dimensions. But there has always been general agreement that an analysis in

which the timing of price changes is also endogenized would be superior in principle.

This raises an obvious question: how much is endogeneity of the timing of price

changes likely to change the conclusions that one obtains about aggregate dynamics?

Results available in special cases have suggested that it may matter a great deal. In a

dramatic early result, Caplin and Spulber (1987) constructed a tractable example of

aggregate dynamics under SDP in which nominal disturbances have no effect what-

soever on aggregate output, despite the fact that individual prices remain constant

for substantial intervals of time; and this result depends crucially on variation in the

number of firms that change their prices in response to a shock, depending on the size

of the shock. The Caplin-Spulber example is obviously extremely special; but Golosov

and Lucas (2007) find, in numerical analysis of an SDP model calibrated to account

for various facts about the probability distribution of individual price changes in U.S.

data, that the predicted aggregate real effects of nominal disturbances are quite small,

relative to what one might expect based on the average interval of time between price

changes. And more recently, Caballero and Engel (2007) consider the real effects of

variation in aggregate nominal expenditure in a fairly general class of “generalized

Ss models,” and show that quite generally, variation in the “extensive margin” of

price adjustment (i.e., , variation in the number of prices that adjust, as opposed to

variation in the amount by which each of these prices changes) implies a smaller real

effect of nominal disturbances than would be predicted in an ET model (and hence

variation only on the “intensive margin”); they argue that the degree of immediate

adjustment of the overall level of prices can easily be several times as large as would

1See, for example, Burstein and Hellwig (2007), Dotsey and King (2005), Gertler and Leahy
(2007), Golosov and Lucas (2007), Midrigan (2006), and Nakamura and Steinsson (2006) for some
recent additions.
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be predicted by an ET model.2

These results suggest that it is of some urgency to incorporate variation in the

extensive margin of price adjustment into models of the real effects of monetary policy,

if one hopes to obtain results of any quantitative realism. Yet there is one respect

in which one may doubt that the results of standard SDP models are themselves

realistic. Such models commonly assume that at each point in time, each supplier

has completely precise information about current demand and cost conditions relating

to its product, and constantly re-calculates the currently optimal price and the precise

gains that would be obtained by changing its price, in order to compare these to the

“menu cost” that must be paid to actually change the price. Most of the time no price

change is justified; but on the first occasion on which the benefit of changing price

becomes as large as the menu cost, a price change will occur. Such an account assumes

that it is only costs associated with actually changing one’s price that are economized

on by firms that change prices only infrequently. Instead, studies such as Zbaracki

et al. (2004) indicate that there are substantial costs associated with information

gathering and decisionmaking that are also reduced by a policy of reviewing prices

only infrequently. If this is true, the canonical SDP model (or “Ss model”), according

to which a price adjustment occurs in any period if and only if a certain adjustment

threshold has been reached, should not yield realistic conclusions. In fact, a model

that takes account of the costs of gathering and processing information is likely to

behave in at least some respects like ET models.3 The question is to what extent

a more realistic model of this kind would yield conclusions about aggregate price

adjustment and the real effects of nominal disturbances that are similar to those of

ET models, similar to those of canonical SDP models, or different from both.

The present paper addresses this question by considering a model in which the

timing of price reviews is determined by optimization subject to an information con-

straint. The model generalizes the canonical SDP model (which appears as a limiting

2An earlier draft of their paper (Caballero and Engel, 2006) proposed as a reasonable “bench-
mark” that the degree of flexibility of the aggregate price level should be expected to be about three
times as great as would be predicted by an ET model calibrated to match the observed average
frequency of price changes.

3Phelps (1990, pp. 61-63) suggests that ET models may be more realistic than SDP models on this
ground. Caballero (1989) presents an early analysis of a way in which costs of information acquisition
can justify “time-dependent” behavior, which is further developed by Bonomo and Carvalho (2004)
and Reis (2006).
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case of the more general model, the case of zero information cost) to allow for costs

of obtaining and/or processing more precise information about the current state of

the economy, between the intermittent occasions on which full reviews of pricing pol-

icy are undertaken. For the sake of simplicity, and to increase the continuity of the

present contribution with prior literature, it is assumed that when a firm decides to

pay the discrete cost required for a full review of its pricing policy, it obtains full

information about the economy’s state at that moment; hence when price changes

occur, they are based on full information, as in canonical SDP models (as well as

canonical ET models).4 However, between the occasions on which such reviews oc-

cur, the firm’s information about current economic conditions is assumed to be much

fuzzier; and in particular, the decision whether to conduct a full review must be made

on the basis of much less precise information than will be available after the review

is conducted. As a consequence, prices do not necessarily adjust at precisely the

moment at which they first become far enough out of line for the profit increase from

a review of pricing policy to justify the cost of such a review.

There are obviously many ways in which one might assume that information is

incomplete, each of which would yield somewhat different conclusions. Here I adopt

a parsimonious specification based on the concept of “rational inattention” proposed

by Sims (1998, 2003, 2006). It is assumed that all information about the state of

the world is equally available to the decisionmaker — one does not assume that

some facts are more easily or more precisely observable than others — but that

there is a limit on the decisionmaker’s ability to process information of any kind, so

that the decision is made on the basis of rather little information. The information

that the decisionmaker obtains and uses in the decision is, however, assumed to

be the information that is most valuable to her, given the decision problem that

she faces, and subject to a constraint on the overall rate of information flow to the

decisionmaker. This requires a quantitative measure of the information content of

any given indicator that the decisionmaker may observe; the one that I use (following

Sims) is based on the information-theoretic measure (entropy measure) proposed by

4The assumption that full information about current conditions can be obtained by paying a
fixed cost also follows the previous contributions of Caballero (1989), Bonomo and Carvalho (2004),
and Reis (2006); I depart from these authors in assuming that partial information about current
conditions is also available between the occasions when the fixed cost is paid. The analysis here also
differs from theirs in assuming that access to memory is costly, as discussed further in section 2.1.
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Claude Shannon (1948).5 The degree of information constraint in the model is then

indexed by a single parameter, the cost per unit of information (or alternatively, the

shadow price associated with the constraint on the rate of information flow). I can

consider the optimal scheduling of price reviews under tighter and looser information

constraints, obtaining both a canonical SDP model and a canonical ET model as

limiting cases; but the more general model treated here introduces only a single

additional free parameter (the information cost) relative to a canonical SDP model,

allowing relatively sharp predictions.

The generalization of the canonical SDP model obtained here has many similar-

ities with the “generalized Ss model” of pricing proposed by Caballero and Engel

(1993a, 2007) and the SDP model with random menu costs of Dotsey, King and

Wolman (1999). Caballero and Engel generalize a canonical Ss model of pricing by

assuming that the probability of price change is a continuous function of the signed

gap between the current log price and the current optimal log price (i.e., the one

that would maximize profits in the absence of any costs of price adjustment), and

estimate the “adjustment hazard function” that best fits US inflation dynamics with

few a priori assumptions about what the function may be like. The model of price-

adjustment dynamics presented in section 2 below is of exactly the form that they

assume. However, the “hazard function” is given an economic interpretation here:

the randomness of the decision whether to review one’s price in a given period is a

property of the optimal information-constrained policy. Moreover, the model here

makes quite specific predictions about the form of the optimal hazard function: given

the specification of preferences, technology and the cost of a review of pricing policy,

there is only a one-parameter family of possible optimal hazard functions, correspond-

ing to alternative values of the information cost. For example, Caballero and Engel

assume that the hazard function may or may not be symmetric and might equally

well be asymmetric in either direction; this is treated as a matter to be determined

empirically. In the model developed here, the hazard function is predicted to be

asymmetric in a particular way, for any assumed value of the information cost.

Caballero and Engel (1999) propose a structural interpretation of generalized Ss

5See, e.g., Cover and Thomas (2006) for further discussion. The appendix of Sims (1998) argues
for the appropriateness of the Shannon entropy measure as a way of modeling limited attention.
As is discussed further in section 2, the informational constraint assumed here differs from the one
proposed by Sims in the way that memory is treated.
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adjustment dynamics (in the context of a model of discrete adjustment of firms’ capi-

tal stocks), in which the cost of adjustment by any given firm is drawn independently

(both across firms and over time) from a continuous distribution of possible costs;

Dotsey, King and Wolman (1999) [DKW] consider the implications for aggregate

price adjustment and the real effects of nominal disturbances of embedding random

menu costs of this kind in a DSGE model with monopolistically competitive pricing.

The predicted dynamics of price adjustment in the model developed here are essen-

tially the same as in a particular case of the DKW model; there exists a particular

distribution for the menu cost under which the DKW model would imply the same

hazard function for price changes as is derived here from optimization subject to an

information constraint.6

However, the present model supplies an alternative interpretation of the random-

ness of adjustment at the microeconomic level that some may find more appealing

than the idea of random menu costs. Moreover, the present model makes much

sharper predictions than the DKW model; there is only a very specific one-parameter

family of menu-cost distributions under which the DKW model makes predictions

consistent with the information-constrained model. Assumptions that appear com-

pletely arbitrary under the random-menu-cost interpretation (why is it natural to

assume that the menu cost should be i.i.d.?) are here derived as a consequence of

optimization. At the same time, assumptions that might appear natural under the

random-menu-cost interpretation (a positive lower bound on menu costs, or a dis-

tribution with no atoms) can here be theoretically excluded: the optimal hazard

function in this model necessarily corresponds to a distribution of menu costs with

an atom at zero. This has important implications: contrary to the typical predic-

tion of parametric versions of the Caballero-Engel or DKW model, the present model

implies that there is always (except in the limit of zero information cost) a positive

adjustment hazard even when a firm’s current price is exactly optimal. This makes

the predicted dynamics of price adjustment under the present model more similar

to those of the Calvo (1983) model than is true of these other well-known gener-

6Like the DKW model, the present model implies in general that the adjustment hazard should
be a monotonic function of the amount by which the firm can increase the value of its continuation
problem by changing its price. Only in special cases will this allow one to express the hazard as
a function of the signed gap between the current log price and the optimal log price, as in the
“generalized Ss” framework of Caballero and Engel (1993a, 1993b). Section 3, however, offers an
example of explicit microfoundations for such a case.
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alizations of the canonical SDP model. It also helps to explain the observation in

microeconomic data sets of a large number of very small price changes, as stressed

by Midrigan (2006),7 and increases the predicted real effects of nominal disturbances

(for a given overall frequency of price change), for reasons explained by Caballero and

Engel (2006).

In fact, the results obtained here suggest that the predictions of ET models may

be more reliable, for many purposes, than results from the study of SDP models

have often suggested. The Calvo (1983) model of staggered price-setting is derived

as a limiting case of the present model (the limit of an unboundedly large informa-

tion cost); hence this model, often regarded as analytically convenient but lacking in

any appealing behavioral foundations, can be given a fully explicit decision-theoretic

justification — the quantitative realism of which, relative to other possible specifica-

tions, then becomes an empirical matter. Moreover, even in the more realistic case

of a positive but finite information cost, the model’s prediction about the effects of

typical disturbances can be quite similar to those of the Calvo model, as is illustrated

numerically below. The present model predicts that the Calvo model will be quite

inaccurate in the case of large enough shocks — large shocks should trigger immedi-

ate adjustment by almost all firms, because even firms that allocate little attention

to monitoring current market conditions between full-scale reviews of pricing policy

should notice when something dramatic occurs — and in this respect it is surely more

realistic than the simple Calvo model. Yet the shocks for which this correction is im-

portant may be so large as to occur only infrequently, in which case the predictions

of the Calvo model can be quite accurate much of the time.

Section 1 analyzes the optimal price-review policy under an information con-

straint. I begin by characterizing optimal policy for a single-period problem, to

show how the information constraint gives rise to a continuous hazard function in

the simplest possible setting. In section 2, this problem is then embedded in an

infinite-horizon dynamic setting. Section 3 illustrates the application of the general

framework to a specific model of monopolistically competitive price-setting. Section

4 concludes.

7Midrigan (2006) proposes an alternative explanation to the one given here for a positive hazard
function when the current price is nearly optimal. The present model achieves a similar effect,
without the complication of assuming interdependence between price changes for different goods.
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1 Rational Inattention and the Optimal Adjust-

ment Hazard

In this section, I consider the decision problem of a firm that chooses when to review

its pricing policy, subject to both a fixed cost of conducting such a review and a unit

cost of information about market conditions during the intervals between full reviews.

In order to show how “rational inattention” of the sort hypothesized by Sims (1998,

2003, 2006) gives rise to a continuous “adjustment hazard” of the kind postulated

by Caballero and Engel (1993a, 1993b), it is useful to first consider the information-

constrained price-review decision in a simple static context. The characterization

given here of the optimal adjustment hazard will then apply directly to the dynamic

setting considered in section 2 as well; in the eventual infinite-horizon model, the firm

has a decision of this kind to make in each period.

1.1 Formulation of the Problem

Let the “normalized price” of a firm i be defined as q(i) ≡ log(p(i)/PY ), where p(i)

is the price charged by firm i for its product, P is an aggregate price index, and Y

is an index of aggregate output (or aggregate real expenditure), and suppose that

the expected payoff8 to the firm of charging normalized price q is given by a function

V (q), which achieves its maximum value at the optimal normalized price

q∗ ≡ arg max
q

V (q).

I shall assume that V (q) is a smooth, strictly quasi-concave function. By strict

quasi-concavity, I mean that not only are the sets {q|V (q) ≥ v} convex for all v,

but in addition the sets {q|V (q) = v} are of (Lebesgue) measure zero. Strict quasi-

concavity implies that there exists a smooth, monotonic transformation q = φ(q̂)

such that the function V̂ (q̂) ≡ V (φ(q̂)) is not only a concave function, but a strictly

concave function of q̂. In this case, under the further assumption that V (q) achieves

a maximum, the maximum q∗ must be unique. Moreover, q∗ is the unique point at

8I need not be specific at this stage about the nature of this payoff. In the eventual dynamic
problem considered below, it includes not only profits in the current period (when the price p(i) is
charged), but also the implications for expected discounted profits in later periods of having chosen
a price p(i) in the current period.
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which V ′(q∗) = 0; and one must have V ′(q) > 0 for all q < q∗, while V ′(q) < 0 for all

q > q∗.

We can then define a “price gap” x(i) ≡ q(i) − q∗, as in Caballero and Engel,

indicating the signed discrepancy between a firm’s actual price and the price that

it would be optimal for it to charge.9 Under full information and in the absence of

any cost of changing its price, a firm should choose to set q(i) = q∗. Let us suppose,

though, that the firm must pay a fixed cost κ > 0 in order to conduct a review of

its pricing policy. I shall suppose, as in canonical menu-cost models, that a firm

that conducts such a review learns the precise value of the current optimal price, and

therefore adjusts its price so that q(i) = q∗. A firm that chooses not to review its

existing policy instead continues to charge the price that it chose on the occasion of

its last review of its pricing policy. The loss from failing to review the policy (or

alternatively, the gain from reviewing it, net of the fixed cost) is then given by

L(x) ≡ V (q∗)− V (q∗ + x)− κ, (1.1)

as a function of the price gap x that exists prior to the review.

If V (q) is a smooth, strictly quasi-concave function, then L(x) is a smooth, strictly

quasi-convex function, with a unique minimum at x = 0. Then in the case of full

information, the optimal price-review policy is to review the price if and only if the

value of x prior to the review is in the range such that L(x) ≥ 0.10 The values of

x such that a price review occurs will consist of all x outside a certain interval, the

“zone of inaction,” which necessarily includes a neighborhood of the point x = 0. The

boundaries of this interval (one negative and one positive, in the case that the interval

is bounded) constitute the two “Ss triggers” of an “Ss model” of price adjustment.

I wish now to consider instead the case in which the firm does not know the value

of x prior to conducting the review of its policy. I shall suppose that the firm does

9It might appear simpler to directly define the normalized price as the price relative to the optimal
price, rather than relative to aggregate nominal expenditure, so that the optimal normalized price
would be zero, by definition. But the optimal value q∗ is something that we need to determine,
rather than something that we know at the time of introducing our notation. (Eventually, the
function V (q) must be endogenously determined, as discussed in section 2 below.)

10The way in which we break ties in the case that L(x) = 0 exactly is arbitrary; here I suppose
that in the case of indifference the firm reviews its price. In the equilibrium eventually characterized
below for the full-information case, values of x for which L(x) = 0 exactly occur with probability
zero, so this arbitrary choice is of no consequence.
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know its existing price, so that it is possible for it to continue to charge that price in

the absence of a review; but it does not know the current value of aggregate nominal

expenditure PY, and so does not know its normalized price, or the gap between its

existing price and the currently optimal price. I shall furthermore allow the firm to

have partial information about the current value of x prior to conducting a review;

this is what I wish to motivate as optimal subject to limits on the attention that the

firm can afford to pay to market conditions between the occasions when the fixed

cost κ is paid for a full review. It is on the basis of this partial information that the

decision whether to conduct a review must be made.

Following Sims, I shall suppose that absolutely any information about current

(or past) market conditions can be available to the firm, as long as the quantity of

information obtained by the firm outside of a full review is within a certain finite

limit, representing the scarcity of attention, or information-processing capacity, that

is deployed for this purpose. The quantity of information obtained by the firm in

a given period is defined as in the information theory of Claude Shannon (1948),

used extensively by communications engineers. In this theory, the quantity of in-

formation contained in a given signal is measured by the reduction in entropy of

the decisionmaker’s posterior over the state space, relative to the prior distribution.

Let us suppose that we are interested simply in information about the current value

of the unknown (random) state x, and that the firm’s prior is given by a density

function f(x) defined on the real line.11 Let f̂(x|s) instead be the firm’s posterior,

conditional upon observing a particular signal s. The entropy associated with a given

density function (a measure of the degree of uncertainty with a number of attractive

11In section 1.2, we consider what this prior should be, if the firm understands the process that
generates the value of x, but has not yet obtained any information about current conditions. For
now, the prior is arbitrarily specified as some pre-existing state of knowledge that does not precisely
identify the state x.
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properties) is equal to12

−
∫

f(x) log f(x)dx,

and as a consequence the entropy reduction when signal s is received is given by

I(s) ≡
∫

f̂(x|s) log f̂(x|s)dx−
∫

f(x) log f(x)dx.

The average information revealed by this kind of signal is therefore

I ≡ EsI(s) (1.2)

where the expected value is taken over the set of possible signals that were possible ex

ante, using the prior probabilities of that each of these signals would be observed.13

It is this total quantity I that determines the bandwidth (in the case of radio signals,

for example), or the channel capacity more generally (an engineering limit of any

communication system), that must be allocated to the transmission of this signal if

the transmission of a signal with a given average information content is to be pos-

sible.14 Sims correspondingly proposes that the limited attention of decisionmakers

be modeled by assuming a constraint on the possible size of the average information

flow I.

I shall suppose, then, that the firm arranges to observe a signal s before deciding

whether to pay the cost κ and conduct a review of its pricing policy. The theory

of rational inattention posits that both the design of this signal (the set of possible

values of s, and the probability that each will be observed conditional upon any given

12In information theory, it is conventional to define entropy using logarithms with a base of two,
so that the quantity I defined in (1.2) measures information in “bits”, or binary digits. (One bit is
the amount of information that can be transmitted by the answer to one optimally chosen yes/no
question, or by revealing whether a single binary digit is 0 or 1.) I shall instead interpret the
logarithm in this and subsequent formulas as a natural logarithm, to allow the elimination of a
constant in various expressions. This is an equivalent measure of information, but with a different
size of unit: one unit of information under the measure used here (sometimes called a “nat”) is
equivalent to 1.44 bits of information.

13The prior over s is the one implied by the decisionmaker’s prior over possible values of x, together
with the known statistical relationship between the state x and the signal s that will be received.

14Shannon’s theorems pertain to the relation between the properties of a given communication
channel and the average rate at which information can be transmitted over time using that channel,
not the amount of information that will be contained in the signal that is sent over any given short
time interval.
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state x) and the decision about whether to conduct a price review conditional upon

the signal observed will be optimal, in the sense of maximizing

L̄ ≡ E[δ(s)L(x)]− θI, (1.3)

where δ(s) is a (possibly random) function of s indicating whether a price review is

undertaken (δ = 1 when a price review occurs, and δ = 0 otherwise); the expectation

operator integrates over possible states x, possible signals s, and possible price-review

decisions, under the firm’s prior; and θ > 0 is a cost per unit of information of being

more informed when making the price-review decision. (This design problem is solved

from an ex ante perspective: one must decide how to allocate one’s attention, which

determines what kind of signal one will observe under various circumstances, before

learning anything about the current state.)

I have here written the problem as if a firm can allocate an arbitrary amount of

attention to tracking market conditions between full price reviews, and hence have

an estimate of x of arbitrary precision prior to its decision about whether to conduct

the review, if it is willing to pay for this superior information. One might alterna-

tively consider the problem of choosing a partial information structure to maximize

E[δ(s)L(x)] subject to an upper bound on I. This will lead to exactly the same one-

parameter family of informationally-efficient policies, indexed by the value of I rather

than by the value of θ. (In the problem with an upper bound on the information

used, there will be a unique value of θ associated with each informationally-efficient

policy, corresponding to the Lagrange multiplier for the constraint on the value of I;

there will be an inverse one-to-one relationship between the value of θ and the value

of I.) I prefer to consider the version of the problem in which θ rather than I is given

as part of the specification of the environment. This is because decisionmakers have

much more attention to allocate than the attention allocated to any one task, and

could certainly allocate more attention to aspects of market conditions relevant to the

scheduling of reviews of pricing policy, were this of sufficient importance; it makes

more sense to suppose that there is a given shadow price of additional attention,

determined by the opportunity cost of reducing the attention paid to other matters,

rather than a fixed bound on the attention that can be paid to the problem considered

here, even if there is a global bound on the information-processing capacity of the

decisionmaker.
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1.2 Characterization of the Solution

I turn now to the solution of this problem, taking as given the prior f(x), the loss

function L(x), and the information cost θ > 0. A first observation is that an efficient

signal will supply no information other than whether the firm should review its pricing

policy.

Lemma 1 Consider any signalling mechanism, described by a set of possible signals

S and conditional probabilities π(s|x) for each of the possible signals s ∈ S in each of

the possible states x in the support of the prior f , and any decision rule, indicating for

each s ∈ S the probability p(s) with which a review occurs when signal s is observed.

Let L̄ be the value of the objective (1.3) implied by this policy on the part of the

firm. Consider as well the alternative policy, under which the set of possible signals

is {0, 1}, the conditional probability of receiving the signal 1 is

π(1|x) =

∫

s∈S

p(s)π(s|x)ds

for each state x in the support of f , and the decision rule is to conduct a review with

probability one if and only if the signal 1 is observed; and let L̄∗ be the value of (1.3)

implied by this alternative policy. Then L̄∗ ≥ L̄.

Moreover, the inequality is strict, except if the first policy is one under which

either (i) π(s|x) is independent of x (almost surely), so that the signals convey no

information about the state x; or (ii) p(s) is equal to either zero or one for all signals

that occur with positive probability, and the conditional probabilities are of the form

π(s|x) = π(s|p(s)) · π(p(s)|x),

where the conditional probability π(s|p(s)) of a given signal s being received, given that

the signal will be one of those for which p(s) takes a certain value, is independent of x

(almost surely). That is, either the original signals are completely uninformative; or

the original decision rule is deterministic (so that the signal includes a definite rec-

ommendation as to whether a price review should be undertaken) and any additional

information contained in the signal, besides the implied recommendation regarding the

price-review decision, is completely uninformative.
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A proof is given in Appendix A. Note that this result implies that we may assume,

without loss of generality, that an optimal policy involves only two possible signals,

{0, 1}, and a decision rule under which a review is scheduled if and only if the signal

1 is received. That is, the only signal received is an indication whether it is time to

review the firm’s existing price or not. (If the firm arranges to receive any more infor-

mation than this, it is wasting its scarce information-processing capacity.) A policy

of this form is completely described by specifying the hazard function Λ(x) ≡ π(1|x),

indicating the probability that a price review occurs, in the case of any underlying

state x in the support of f .

It follows from Lemma 1 that any randomization that is desired in the price-review

decision should be achieved by arranging for the signal about market conditions to

be random, rather than through any randomization by the firm after receiving the

signal. This does not, however, imply in itself that the signal that determines the

timing of price reviews should be random, as in the Calvo model (or the “generalized

Ss model” of Caballero and Engel). But in fact one can show that it is optimal for

the signal to be random, under extremely weak conditions.

Let us consider the problem of choosing a measurable function Λ(x), taking values

on the interval [0, 1], so as to minimize (1.3). One must first be able to evaluate (1.3)

in the case of a given hazard function. This is trivial when Λ(x) is (almost surely)

equal to either 0 or 1 for all x, as in either case the information content of the signal

is zero. Hence L̄ = E[L(x)] if Λ(x) = 1 (a.s), and L̄ = 0 if Λ(x) = 0 (a.s.). After

disposing of these trivial cases, we turn to the case in which the prior probability of

a price review

Λ̄ ≡
∫

Λ(x)f(x)dx (1.4)

takes an interior value, 0 < Λ̄ < 1. As there are only two possible signals, there are

two possible posteriors, given by

f̂(x|0) =
f(x)(1− Λ(x))

1− Λ̄
, f̂(x|1) =

f(x)Λ(x)

Λ̄

using Bayes’ Law. The information measure I is then equal to

I = Λ̄I(1) + (1− Λ̄)I(0)

= Λ̄

∫
f̂(x|1) log f̂(x|1)dx + (1− Λ̄)

∫
f̂(x|0) log f̂(x|0)dx−

∫
f(x) log f(x)dx

=

∫
ϕ(Λ(x))f(x)dx− ϕ(Λ̄), (1.5)
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where

ϕ(Λ) ≡ Λ log Λ + (1− Λ) log(1− Λ) (1.6)

in the case of any 0 < Λ < 1, and we furthermore define15

ϕ(0) = ϕ(1) = 0.

We can therefore rewrite the objective (1.3) in this case as

L̄ =

∫
[L(x)Λ(x)− θϕ(Λ(x))]f(x)dx + θϕ(

∫
Λ(x)f(x)dx). (1.7)

Given the observation above about the trivial cases, the same formula applies as well

when Λ̄ is equal to 0 or 1. Hence (1.7) applies in the case of any measurable function

Λ(x) taking values in [0, 1], and our problem reduces to the choice of Λ(x) to maximize

(1.7).

This is a problem in the calculus of variations. Suppose that we start with a

function Λ(x) such that 0 < Λ̄ < 1, and let us consider the effects of an infinitesimal

variation in this function, replacing Λ(x) by Λ(x)+ δΛ(x), where δΛ(x) is a bounded,

measurable function indicating the variation. We observe that

δL̄ =

∫
∂(x) · δΛ(x) f(x)dx

where

∂(x) ≡ L(x)− θϕ′(Λ(x)) + θϕ′(Λ̄).

A first-order condition for (local) optimality of the policy is then at each point x

(almost surely16), one of the following conditions holds: either Λ(x) = 0 and ∂(x) ≤ 0;

Λ(x) = 1 and ∂(x) ≥ 0; or 0 < Λ(x) < 1 and ∂(x) = 0. We can furthermore observe

from the behavior of the function ϕ′(Λ) = log(Λ/1 − Λ) near the boundaries of the

domain that

lim
Λ(x)→0

∂(x) = +∞, lim
Λ(x)→1

∂(x) = −∞,

15This definition follows Shannon (1948); our ϕ(Λ) is the negative of his “binary entropy function.”
Note that under this extension of the definition of ϕ(Λ) to the boundaries of its domain, the function
is continuous on the entire interval. Moreover, under this definition, (1.5) is a correct measure of
the information content of the signal (namely, zero) even in the case that one of the signals occurs
with probability zero.

16Note that we can only expect to determine the optimal hazard function Λ(x) up to arbitrary
changes on a set of values of x that occur with probability zero under the prior, as such changes
have no effect on any of the terms in the objective (1.7).
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so that neither of the first two conditions can ever hold. Hence the first-order condi-

tion requires that

∂(x) = 0 (1.8)

almost surely.

This condition implies that

Λ(x)

1− Λ(x)
=

Λ̄

1− Λ̄
exp

{
L(x)

θ

}
(1.9)

for each x. Condition (1.9) implicitly defines a measurable function Λ(x) = Λ∗(x; Λ̄)

taking values in (0, 1).17 It is worth noting that in this solution, for a fixed value of

Λ̄, Λ(x) is monotonically increasing in the value of L(x)/θ, approaching the value 0

for large enough negative values of L(x)/θ, and the value 1 for large enough positive

values; and for given x, Λ∗(x; Λ̄) is an increasing function of Λ̄, approaching 0 for

values of Λ̄ close enough to 0, and 1 for values of Λ̄ close enough to 1. We can extend

the definition of this function to extreme values of Λ̄ by defining

Λ∗(x; 0) = 0, Λ∗(x; 1) = 1

for all values of x; when we do so, Λ∗(x; Λ̄) remains a function that is continuous in

both arguments.

The above calculation implies that in the case of any (locally) optimal policy for

which 0 < Λ̄ < 1, the hazard function must be equal (almost surely) to a member

of the one-parameter family of functions Λ∗(x; Λ̄). It is also evident (from definition

(1.4) and the bounds that Λ(x) must satisfy) that if Λ̄ takes either of the extreme

values 0 or 1, the hazard function must satisfy Λ(x) = Λ̄ almost surely; hence the

hazard function would be equal (almost surely) to a member of the one-parameter

family in these cases as well. We can therefore conclude that the optimal hazard

function must belong to this family; it remains only to determine the optimal value

of Λ̄.

In this discussion, Λ̄ has been used both to refer to the value defined in (1.4) and

to index the members of the family of hazard functions defined by (1.9). In fact, the

same numerical value of Λ̄ must be both things. Hence we must have

J(Λ̄) = Λ̄, (1.10)

17We can easily give a closed-form solution for this function: Λ∗(x; Λ̄) = R/1 + R, where R is the
right-hand side of (1.9).
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where

J(Λ̄) ≡
∫

Λ∗(x; Λ̄)f(x)dx. (1.11)

Condition (1.10) necessarily holds in the case of a locally optimal policy, but it does

not guarantee that Λ∗(x; Λ̄) is even locally optimal. We observe from the definition

that J(0) = 0 and J(1) = 1, so Λ̄ = 0 and Λ̄ = 1 are always at least two solutions to

equation (1.10); yet these need not be even local optima.

We can see this by considering the function L̄(Λ̄), obtained by substituting the

solution Λ∗(x; Λ̄) defined by (1.9) into the definition (1.7). Since any locally optimal

policy must belong to this one-parameter family, an optimal policy corresponds to a

value of Λ̄ that maximizes L̄(Λ̄). Differentiating this function, we obtain

L̄′(Λ̄) =

∫
[L(x)− θϕ′(Λ∗(x))]Λ∗̄Λ(x)f(x)dx + θϕ′(J(Λ̄))

∫
Λ∗̄Λ(x)f(x)dx

= θ[ϕ′(J(Λ̄))− ϕ′(Λ̄)]

∫
Λ∗̄Λ(x)f(x)dx,

at any point 0 < Λ̄ < 1, where Λ∗̄
Λ
(x) > 0 denotes the partial derivative of Λ∗(x; Λ̄)

with respect to Λ̄, and we have used the first-order condition ∂(x) = 0, satisfied by

any hazard function in the family defined by (1.9), to obtain the second line from the

first. Since ∫
Λ∗̄Λ(x)f(x)dx > 0,

it follows that L̄′(Λ̄) has the same sign as ϕ′(J(Λ̄)) − ϕ′(Λ̄), which (because of the

monotonicity of ϕ′(Λ)), has the same sign as J(Λ̄)− Λ̄.

Hence a value of Λ̄ that satisfies (1.10) corresponds to a critical point of L̄(Λ̄),

but not necessarily to a local maximum. The complete set of necessary and sufficient

conditions for a local maximum are instead that Λ(x) be a member of the one-

parameter family of hazard functions defined by (1.9), for a value of Λ̄ satisfying

(1.10), and such that in addition, (i) if Λ̄ > 0, then J(Λ) > Λ for all Λ in a left

neighborhood of Λ̄; and (ii) if Λ̄ < 1, then J(Λ) < Λ for all Λ in a right neighborhood

of Λ̄. The argument just given only implies that there must exist solutions with

this property, and that they correspond to at least locally optimal policies. In fact,

however, there is necessarily a unique solution of this form, and it corresponds to the

global optimum, owing to the following result.
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Lemma 2 Let the loss function L(x), the prior f(x), and the information cost θ > 0

be given, and suppose that L(x) is not equal to zero almost surely [under the measure

defined by f ].18 Then the function J(Λ) has a graph of one of three possible kinds:

(i) if ∫
exp

{
L(x)

θ

}
f(x)dx ≤ 1,

∫
exp

{
−L(x)

θ

}
f(x)dx > 1,

then J(Λ) < Λ for all 0 < Λ < 1 [as in the first panel of Figure 1], and the optimal

policy corresponds to Λ̄ = 0; (ii) if
∫

exp

{
−L(x)

θ

}
f(x)dx ≤ 1,

∫
exp

{
L(x)

θ

}
f(x)dx > 1,

then J(Λ) > Λ for all 0 < Λ < 1 [as in the second panel of Figure 1], and the optimal

policy corresponds to Λ̄ = 1; and (iii) if
∫

exp

{
L(x)

θ

}
f(x)dx > 1,

∫
exp

{
−L(x)

θ

}
f(x)dx > 1,

then there exists a unique interior value 0 < ¯̄Λ < 1 at which J (̄̄Λ) = ¯̄Λ, while

J(Λ) > Λ for all 0 < Λ <¯̄Λ, and J(Λ) < Λ for all ¯̄Λ < Λ < 1 [as in the third panel

of Figure 1], and the optimal policy corresponds to Λ̄ =¯̄Λ.

The proof is again in Appendix A. Note that the three cases considered in the lemma

exhaust all possibilities, as it is not possible for both of the integrals to simultaneously

have a value no greater than 1 (in the case that L(x) is not equal to zero almost

surely), as a consequence of Jensen’s Inequality. Thus we have given a complete

characterization of the optimal policy.

Our results also provide a straightforward approach to computation of the optimal

policy, once the loss function L(x), the prior f(x), and the value of θ are given. Given

L(x) and θ, (1.9) allows us to compute Λ∗(x; Λ̄) for any value of Λ̄; given f(x), it

is then straightforward to evaluate J(Λ) for any 0 < Λ < 1, using (1.11). Finally,

once one plots the function J(Λ), it is easy to determine the optimal value Λ̄; Lemma

2 guarantees that a simple bisection algorithm will necessarily converge to the right

fixed point, as discussed in Appendix B.

18This is a very weak assumption. Note that it would be required by the assumption invoked
earlier, that L(x) is strictly quasi-concave. But in fact, since L(0) = −κ, it suffices that the loss
function be continuous at zero and that f(x) be positive on a neighborhood of zero, though even
these conditions are not necessary.
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Figure 1: The three possible shapes of the function J(Λ), as explained in Lemma 2.

In each case, the optimal value of Λ̄ is indicated by the black square.

1.3 Discussion

We can now see that the optimal signalling mechanism necessarily involves random-

ization, as remarked earlier. In any case in which it is optimal neither to always

review one’s price nor to never review one’s price, so that the average frequency with

which price reviews occur is some 0 < Λ̄ < 1, the optimal hazard function satisfies

0 < Λ(x) < 1, so that a price review may or may not occur, in the case of any current

price gap x.19 This is not simply an assumption. We have allowed for the possibility

of a hazard function which takes the value 0 on some interval (the “zone of inac-

tion”) in which x falls with a probability 1 − Λ̄, and the value 1 everywhere outside

that interval; but this can never be an optimal policy. Hence an optimal signalling

mechanism never provides a signal that is a deterministic function of the true state.

One can also easily show that our assumption that the signal must be a random

function of the current state x alone; that is, the randomness in the relation between

the observed signal and the value of x must be purely uninformative about the state

of the world — it must represent noise in the measurement process itself, rather than

systematic dependence on some other aspect of the current (or past) state of the

world. We could easily consider a mechanism in which the probability of receiving

a given signal s may depend on both x and some other state y. (Statement of the

problem then requires that the prior f(x, y) over the joint distribution of the two

states be specified.) The same argument as above implies that an optimal policy

can be described by a hazard function Λ(x, y), and that the optimal hazard function

will again be of the form (1.9), where one simply replaces the argument x by (x, y)

19As usual, the qualification “almost surely” must be added.
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everywhere. In the case that the value function depends only on the state x, as

assumed above, the loss function will also be a function simply of x; hence (1.9)

implies that the optimal hazard will depend only on x, and that it will be the function

of x characterized above.

Among the consequences of this result is the fact that the random signals received

by different firms, each of which has the same prior f(x) about its current price gap,

will be distributed independently of one another, as assumed in the Calvo model. If

the signals received by firms were instead correlated (for example, if with probability

Λ̄ all firms receive a signal to review their prices, while with probability 1 − Λ̄ none

of them do), then each firm’s signal would convey information about other firms’

signals, and also about their actions. Such signals would therefore convey more

information (and, under our assumption about the cost of information, necessarily be

more costly) than uncorrelated signals, without being any more useful to the firms

in helping them to make profit-maximizing decisions; the correlated signals would

therefore not represent an efficient signalling mechanism.20 Hence the present model

predicts that while the price-review decision is random at the level of an individual

firm, the fraction of such firms that will review their prices in aggregate (assuming a

large enough number of firms for the law of large numbers to apply) will be Λ̄ with

certainty.

The present model provides a decision-theoretic justification for the kind of “gen-

eralized Ss” behavior proposed by Caballero and Engel (1993a, 1993b) as an empirical

specification. The interpretation is different from the hypothesis of a random menu

cost in Caballero and Engel (1999) and Dotsey, King and Wolman (1999), but the

present model is observationally equivalent to a random-menu-cost model, in the case

that the distribution of menu costs belongs to a particular one-parameter family. Sup-

pose that firm has perfect information, but that the menu cost κ̃ is drawn from a

distribution with cumulative distribution function G(κ̃), rather than taking a certain

positive value κ with certainty. Then a firm with price gap x should choose to revise

20Of course, this result depends on an assumption that, as in the setup assumed by Caballero and
Engel (1993a, 2007), the payoff to a firm depends only on its own normalized price, and not also on
the relation between its price and the prices of other imperfectly attentive firms; to the extent that
information about others’ actions is payoff-relevant, an optimal signalling mechanism will involve
correlation.
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its price if and only if

V (q∗)− κ̃ ≥ V (q∗ + x),

which occurs with probability

Λ(x) = G(V (q∗)− V (q∗ + x)) = G(L(x) + κ), (1.12)

where once again L(x) is the loss function (1.1) of a firm with constant menu cost κ.

Thus (1.12) is the hazard function implied by a random-menu-cost model; the only

restriction implied by the theory is that Λ(x) must be a non-decreasing function of

the loss L(x). The present theory also implies that Λ(x) should be a non-decreasing

function of L(x), as (1.9) has this property for each value of Λ̄. In fact, the optimal

hazard function under rational inattention is identical to the hazard function of a

random-menu-cost model in which the distribution of possible menu costs is given

by21

G(κ̃) = 1−
[
1 +

(
Λ̄

1− Λ̄

)
exp

{
κ̃− κ

θ

}]−1

. (1.13)

While the present model does not imply behavior inconsistent with a random-

menu-cost model, it makes much sharper predictions. Moreover, not only does the

present model correspond to a single very specific one-parameter family of possible

distributions of menu costs, but these distributions are all fairly different from what

is usually assumed in calibrations of random-menu-cost models. In particular, a dis-

tribution of the form (1.13) necessarily has an atom at zero, so that the hazard is

bounded away from zero even for values of x near zero; it has instead been common

in numerical analyses of generalized Ss models to assume that in a realistic specifi-

cation there should be no atom at zero, so that Λ(0) = 0. The fact that the present

model instead implies that Λ(0) is necessarily positive (if price reviews occur with

any positive frequency) — and indeed, may be a substantial fraction of the average

frequency Λ̄ — is an important difference; under the rule of thumb discussed by Ca-

ballero and Engel (2006), it reduces the importance of the “extensive margin” of price

adjustment, and hence makes the predictions of a generalized Ss model more similar

to those of the Calvo model.

The random-menu-cost model also provides no good reason why, in a dynamic

extension of the model, the adjustment hazard should depend only on the current

21Note that in this formula, κ is a parameter of the distribution, not the size of the menu cost.
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price gap x, and not also on the time elapsed since the last price review. This case is

possible, of course, if one assumes that the menu cost κ̃ is drawn independently each

period from the distribution G. But there is no reason to assume such independence,

and the specification does not seem an especially realistic one (though obviously

convenient from the point of view of empirical tractability), if the model is genuinely

about exogenous time variation in the cost of changing one’s price. The theory of

rational inattention instead requires that the hazard rate depend only on the current

state x, as long as the dynamic decision problem is one in which both the prior and

the value function are stationary over time (rather than being duration-dependent),

as in the dynamic model developed in the next section.

2 A Dynamic Model of the Timing of Discrete Ad-

justments

In the static analysis of section 1, both the prior f(x) and the value function V (q) are

taken as given. In fact, in a dynamic model of price adjustment, a similar decision

about whether to undertake a price review or not must be made each period. But

the prior in a given period will not be independent of the firm’s price-review policies

in previous periods; a past policy of frequently reviewing one’s price would make it

less likely that the current price gap is large. Nor will the value of continuing with a

given normalized price be independent of the firm’s expected future policies; allowing

a larger price gap to remain in the current period will reduce expected discounted

profits less if the firm expects to review its price in the following period regardless

of the size of the price gap at that time than if the current price gap is likely to

persist for many more periods. In the present section, both the prior and the value

function are accordingly endogenized, in an explicit model of the optimal timing

of discrete adjustments over an infinite horizon. The primitives of the model are

instead the function π(q) indicating the firm’s profits in a single period as a function

of that period’s normalized price, and the probability distribution g(ν) of innovations

in aggregate nominal expenditure, which indicate the amount by which each firm’s

normalized price will change if it does not review its price in that period.

The model is one with a countably infinite sequence of discrete dates (indexed by
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integers t) at which the firm’s price may be adjusted (and at which sales occur).22

I shall suppose that each firm seeks to maximize the expected value of a discounted

objective function of the form
∞∑

t=0

βtπ(qt), (2.1)

where single-period profits are assumed to be given by a smooth, quasi-concave func-

tion π(q) that reaches its unique maximum at an interior value that can be normalized

as q = 0. Here the assumption that (real) profits depend on a firm’s normalized price

rather than upon its price and nominal expenditure separately follows from the usual

irrelevance of absolute prices; but the assumption that profits depend only on the

firm’s own normalized price and not the normalized prices of other firms is instead

a highly restrictive one.23 However, the definition given here of a stationary optimal

policy can be extended in a relatively straightforward way to the case in which profits

also depend on aggregate state variables. The notation is simplified in this presenta-

tion by abstracting from such additional state variables, and it allows us to obtain a

model in which the adjustment hazard is a function solely of a “price gap,” as in the

models of Caballero and Engel (1993a, 2007). An application to which the present

simple framework applies is given in section 3.

Uncertainty about the firm’s normalized price results from the random evolution

of aggregate nominal expenditure Yt ≡ PtYt. Again in order to reduce the size of

the state space required to characterize equilibrium dynamics (and again following

Caballero and Engel), I shall assume for the sake of simplicity that this evolves

according to an exogenously given random walk,

Yt = Yt−1 + νt, (2.2)

22The model could be extended in a reasonably straightforward way to the scheduling of reviews
of pricing policy in continuous time, as in Reis (2006). But discrete time is mathematically simpler
and allows more direct comparison with much of the prior literature on state-dependent pricing.

23As is explained further in section 3, even in cases where there are no strategic complementarities
in the firms’ optimal pricing decisions — in the sense that each firm’s optimal price depends only on
aggregate nominal expenditure, regardless of the prices of other firms — it is not generally true in
a model of monopolistic competition that single-period real profits are independent of other firms’
prices. Even when the optimal normalized price is independent of other firms’ prices, the level of
real profit associated with that optimum generally depends on the level of real aggregate demand,
which is to say, on the aggregate normalized price.
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where the innovation νt is drawn independently each period from a probability dis-

tribution with density function g(ν). The innovations νt are assumed to represent

purely monetary disturbances; it is for this reason that they do not affect the profit

function.

It remains to specify the nature of the plan chosen by a firm that reviews its pricing

policy. In section 1, because the model is static, there is simply a decision whether to

change to a different price in the single period; the existing policy is simply a price,

and the new policy in the event of a review will be some other price. In a dynamic

model, in which policy is not reviewed every period, it might seem reasonable to

allow firms to choose pricing plans (to be followed until the next review) that are

more complex than a constant price for the firm’s product; for example, in the model

of Reis (2006), a firm chooses a (potentially different) price for each date until the

next review. Here I simplify the analysis by assuming that in addition to the cost

of price reviews and the cost of interim information (both discussed in the previous

section), there is a restriction on the complexity of the pricing policy that a firm

can implement following a review. Some such restriction is clearly in the spirit of

the assumption of costly information already made; for if there were no restriction

on the informational complexity of the pricing policy that can be followed between

”reviews” of the policy, the fact that it is costly to review policy more frequently

would have no consequences. And, as is made clear below, I assume that a policy

that depends on time (of the kind allowed by Reis) uses costly information, just as a

policy that depends on the current state of aggregate demand does. Nonetheless, an

analysis of the kind of pricing policy that would be chosen by a firm that must pay a

higher cost in order to implement a policy that uses more information is left for future

work; here, to simplify, I assume that only a pricing policy of minimal informational

complexity — one that is neither time-dependent nor state-dependent — is feasible

for the firm.

This means that a firm can change its price only when it pays the fixed cost κ

and reviews its policy. Effectively, the model is one in which there is both a fixed

cost of obtaining full information about current market conditions and a fixed cost of

changing one’s price, which must always be paid together, as in the model of Bonomo

and Carvalho (2004).24 In fact, in the limiting case in which θ = 0, the fixed cost

24I depart from Bonomo and Carvalho, as noted earlier, by assuming that memory is costly —
including memory of the length of time since the last price review, which plays a crucial role in their
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κ corresponds precisely to the “menu cost” of changing prices in a standard SDP

model. Nonetheless, κ also plays the role of the fixed cost of information collection

assumed by Reis (2006); in the limiting case in which θ is made unboundedly large, the

present model model can be viewed as a variant of Reis’s model in which additional

information restrictions are imposed, both on the complexity of the pricing policies

that can be adopted and on the complexity of the policies with regard to the timing

of reviews of pricing policy. I prefer to think of κ as essentially a cost of information

collection and decisionmaking, while the costs of adopting a more complex pricing

policy on the occasion of a price review are of a different sort (not a simple menu

cost).25 This affects the way in which it is reasonable to calibrate the size of the cost

in a model intended to be empirically realistic.26

2.1 Costly Memory and the Invariant Prior

It follows from the assumptions just summarized that the normalized price of firm i

evolves according to

qt+1(i) = qt(i)− νt+1

if there is no review of the firm’s policy in period t, while

qt+1(i) = q∗t − νt+1

if firm i reviews its policy in period t. Here qt(i) is the normalized price of firm i in

period t, after realization of the period t change in aggregate nominal expenditure,

but before the decision about whether to review the firm’s policy in period t, and q∗t is

the normalized price (after the review) that is chosen by a firm that reviews its policy

in period t. The value of q∗t is the same for all firms i because (as is shown below)

the optimal choice for a firm that reviews its policy is independent of the normalized

derivation of a “time-dependent” rule for the timing of price changes — and by allowing partial
information to be obtained between full price reviews by paying the variable cost θ.

25In fact, many retail prices do change between occasions on which pricing policy is reconsidered,
as in the case of temporary “sales” following which the price returns again to an unchanged “regular”
price. This may well reflect the execution of a pricing policy that involves little or no response to
current market conditions. I believe that the form of such policies reflects a cost of complexity, but
it is clearly one that is quite different from a “menu cost”.

26Zbaracki et al. (2004) report that information and decision costs are several times as large as
actual costs of announcing a new price, in the case of the firm that they study.
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price that it has at the time of the review; hence if firms differ only in the periods in

which they happen to have reviewed their prices in the past (despite having followed

identical policies), q∗t will be the same for all i. The aggregate shock νt is similarly

the same for all i.

Given these dynamics for the normalized price of a firm, we can derive the dy-

namics of the firm’s prior regarding its current normalized price. The dynamics of

the prior depend, however, on what we assume about the firm’s memory. In the

theory of rational inattention proposed by Sims (1998, 2003, 2006), memory of the

entire history of past signals is assumed to be perfectly precise (and costless); the

information-flow constraint applies only to the degree of informativeness of new ob-

servations of external reality. Instead, I shall assume that access to one’s own memory

is as costly as access to any other source of information, during the intervals between

full-scale price reviews. For example, one may allow firms to condition their price-

review decision on the number of periods n that have elapsed since the last price

review. In this case, the firm has a prior f(q, n) over the joint distribution of its

current normalized price q and the current value of n for that firm. The firm can

learn the value of n and condition its decision on that value, but this would have an

information cost of

−θ
∑

n

fn log fn,

where fn ≡
∫

f(q, n)dq is the marginal prior distribution over values of n. Assuming

that the cost per nat θ of this kind of information is identical to the cost of information

about the value of q, the firm will optimally choose not to learn the current value

of n; since learning the value of n would be of use to the firm only because this

information would allow it to estimate the current value of q with greater precision,

it would always be more efficient to use any information capacity that it devotes to

this problem to observe the current value of q with greater precision, rather than

bothering to observe the value of n.

In assuming that the cost of information about the firm’s memory of its own past

signals is exactly the same as the cost of information about conditions external to

the firm, I am making an assumption that is fully in the spirit of Sims’ theory of

rational inattention: rather than assuming that some kinds of information are easily

observable while others are hidden, the cost of any kind of information is assumed

to be the same as any other, because the relevant bottleneck is limited attention on
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the part of the decisionmaker, rather than anything about the structure of the world

that obscures the values of certain state variables. This is admittedly a special case,

but it is the assumption that makes Sims’ theory such a parsimonious one. It is also

a convenient case to analyze first, owing to its simplicity.27

In this case, any firm i begins any period t with a prior ft(q) over the possible

values of qt(i). This prior indicates the ex ante distribution of possible values of the

firm’s normalized price in period t, given the policy followed in previous periods, but

not conditioning on any of the signals received in previous periods, or on the timing

of previous price reviews. By “the policy” followed in previous periods, I mean the

design of the signalling mechanism, determining the probabilistic relation between

the state and the signal received each period, and the firm’s intended action in the

event that any given signal is received, but not the history of the signals that were

actually received or the actions that were taken. Following the analysis in section

1, the policy followed in period t can be summarized by a hazard function Λt(q),

indicating the probability of a price review in period t as a function of the normalized

price in that period, and a reset value q∗t , indicating the normalized price that the

firm chooses if it reviews its pricing policy in period t. As a result of this policy,

qt+1(i), the normalized price in period t + 1 (after realization of the period t + 1

innovative in aggregate nominal expenditure) will be equal to q∗t −νt with probability

Λ(qt(i)) and equal to qt(i)− νt with probability 1−Λ(qt(i)), conditional on the value

of qt(i). Integrating over the distribution of possible values of qt(i), one obtains a prior

distribution for period t + 1 equal to

ft+1(q) = g(q∗t − q)

∫
Λt(q̃)ft(q̃)dq̃ +

∫
g(q̃ − q)(1− Λt(q̃))ft(q̃)dq̃. (2.3)

This is the prior at the beginning of period t + 1, regardless of the signal received in

period t (i.e., regardless of whether a price review occurs in period t), because the

27Interestingly, the literature on informational complexity constraints in game theory has more
often made the opposite choice to that of Sims: it is considered more natural to limit the information
content of a decisionmaker’s memory than the information content of her perception of her current
environment. For example, in Rubinstein (1986) and many subsequent papers, it is assumed that a
strategy (in a repeated game) is preferred if it can be implemented by a finite-state automaton with a
smaller number of states; this means, if it requires the decisionmaker to discriminate among a smaller
number of different possible histories of previous play. But while memory is in this sense assumed
to be costly, there is assumed to be no similar advantage of a strategy that reduces the number of
different possible observations of current play among which the decisionmaker must discriminate.
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firm has no costless memory.

The right-hand side of (2.3) defines a linear functional TΠt [ft] that maps any

probability density ft into another probability density ft+1; the subscript indicates

that the mapping depends on the policy Πt ≡ (Λt, q
∗
t ). Given an initial prior f0 and

policies {Πt} for each of the periods t ≥ 0, the law of motion (2.3) implies a sequence

of priors {ft} for all periods t ≥ 1. Note that if for any policy Π, the prior f is such

that

TΠ[f ] = f, (2.4)

it follows that if a firm starts with the prior f0 = f and implements policy Π each

period, the dynamics (2.3) imply that the firm will have prior ft = f in every period.

Thus f is an invariant distribution for the Markov process describing the dynamics of

q under this policy. In such a situation, we can say that the firm’s prior each period

corresponds to the long-run frequency with which different values of its normalized

price occur, under its constant policy Π. When the firm’s prior is unchanging over

time in this way, the constant prior makes it optimal for the firm to choose the same

policy each period, which in turn makes it possible for the prior to remain constant.

In the numerical analysis below, I shall be interested in computing statistics (for

example, the frequency of price changes) for a stationary optimal plan of this kind.

The assumption that memory is (at least) as costly as information about current

conditions external to the firm implies that under an optimal policy, the timing of

price reviews is (stochastically) state-dependent, but not time-dependent, just as

in full-information menu-cost models. When the cost θ of interim information is

sufficiently large, the dependence of the optimal hazard on the current state is also

attenuated, so that in the limit as θ becomes unboundedly large, the model approaches

one with a constant hazard rate as assumed by Calvo (1983). If, instead, memory

were costless, the optimal hazard under a stationary optimal plan would also depend

on the number of periods since the last price review: there would be a different hazard

function Λn(q) for each value of n. In this case, in the limit of unboundedly large

θ, each of the functions Λn(q) would become a constant (there would cease to be

dependence on q); but the constants would depend on n, and in the generic case,

one would have Λn equal to zero for all n below some critical time, and Λn equal to

1 for all n above it. Thus the model would approach one in which prices would be

reviewed at deterministic intervals, as in the analyses of Caballero (1989), Bonomo

and Carvalho (2004), and Reis (2006). The analysis of this alternative case under the
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assumption of a finite positive cost of interim information is left for future work.

2.2 Stationary Optimal Plans

We can now state the firm’s dynamic optimization problem. Its dynamic price-review

scheduling strategy is a sequence of policies {Πt} for each of the periods t ≥ 0; given

the initial prior f0, each such strategy implies a particular sequence of priors {ft}
consistent with (2.3). The strategy is a deterministic sequence, insofar as in each

period, the intended values of Λt(q) and q∗t depend only on t, and not on the signals

received by the firm in any periods prior to t, on the timing of its price reviews prior

to t, or on any information collected in the course of those reviews. This is because

of the assumption that memory is costly; even if we imagine that the firm designs

the signalling mechanism for period t and chooses its intended responses to signals in

period t only when that period is reached, it must solve this design problem — which

allows it to choose how much memory to access in period t in making its price-review

decision — without making use of any memory.28

The firm’s objective when choosing this strategy has three terms: the expected

value of discounted profits (2.1), the expected discounted value of the costs of price

reviews, and the discounted value of the costs of interim information used each period

in that period’s price-review decision. The cost of a price review is assumed to be

κ in each period t in which such a review occurs; the cost of interim information is

assumed to be θIt in each period t (regardless of the signal received in that period),

where It is defined as in (1.2) given the prior ft for that period. In each case, the

information costs are assumed to be in the same units as π(qt), and all costs in period

t are discounted by the discount factor βt.

A firm’s ex ante expected profits in any period t can be written as π̄(Πt; ft), where

Πt = (Λt(q), q
∗
t ) is the policy followed in period t, ft is the firm’s prior in period t

28I assume here that a firm can implement a sequence of policies {Πt} which need not specify the
same policy Π for each period t, without using “memory” of the kind that is costly. I assume that
a firm has no difficulty remembering the strategy that it chose ex ante; what is costly is memory
of things that happen during the execution of the strategy, that were not certain to happen ex

ante. Note also that the firm’s price-review policy fails to be time-dependent, not because it lacks
a “clock” to tell it the current value of t, but because it cannot costlessly remember whether it
reviewed its pricing policy in any given previous period; it knows the value of t but not the value of
n.
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(given its policies in periods prior to t), and

π̄(Π; f) ≡
∫

[Λ(q)π(q∗) + (1− Λ(q))π(q)]f(q)dq.

The ex ante expected cost of price reviews in period t can be written as κλ̄(Πt; ft),

where

λ̄(Π; f) ≡
∫

Λ(q)f(q)dq

indicates the probability of a price review under a policy Π. Finally, the cost of

interim information can be written as θIt = θĪ(Πt; ft), where

Ī(Π; f) ≡
∫

ϕ(Λ(q))f(q)dq − ϕ(λ̄(Π; f)), (2.5)

again defining ϕ(Λ) as in (1.6).

The firm’s problem is then to choose a sequence of policies {Πt} for t ≥ 0 to

maximize ∞∑
t=0

βt[π̄(Πt; ft)− κλ̄(Πt; ft)− θĪ(Πt; ft)], (2.6)

where the prior evolves according to

ft+1 = TΠt [ft] (2.7)

for each t ≥ 0, starting from a given initial prior f0. A stationary optimal policy is a

pair (f, Π) such that if f0 = f, the solution to the above dynamic problem is Πt = Π

for all t ≥ 0, and the implied dynamics of the prior are ft = f for all t ≥ 0. Note

that this definition implies that f satisfies the fixed-point relation (2.4), so that f is

an invariant distribution under the stationary price-review policy Π.

2.3 A Recursive Formulation

The optimization problem stated above can be given a recursive formulation. This is

useful for computational purposes, and also allows us to see how the problem involves

a sequence of single-period price-review decisions of the kind treated in section 1. As

a result, the characterization given there is both useful in computing the stationary

optimal policy, and helpful in characterizing the random timing of price reviews of

under such a policy.
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For any initial prior f0, let J(f0) denote the maximum attainable value of the

objective (2.6) in the problem stated above. Then standard arguments imply that

J(f) must satisfy a Bellman equation of the form

J(ft) = max
Πt

{
π̄(Πt; ft)− κλ̄(Πt; ft)− θĪ(Πt; ft) + βJ(ft+1)

}
, (2.8)

where ft+1 is given by (2.7). If we can find a functional J(f) (defined on the space of

probability measures f) that is a fixed point of the mapping defined in (2.8), then this

is a value function for the optimization problem stated above. Moreover, the dynamic

price-review scheduling problem can then be reduced to a sequence of single-period

problems: in each period t, the policy Πt is chosen to maximize the right-hand side

of (2.8) subject to the constraint (2.7), given the prior ft in the current period. The

policy chosen each period then determines the prior in the next period through the

law of motion (2.7). A stationary optimal policy is then a pair (f, Π) such that (i) if

ft = f, the solution to the problem (2.8) is Πt = Π; and (ii) the distribution f is a

fixed point (2.4) of the mapping defined by the policy Π.

This still does not make it easy to compute a stationary optimal policy, as one must

first compute a functional J(f) that is a fixed point of (2.8), and this is far from trivial,

since (2.8) defines a mapping from a very high-dimensional function space into itself.

Nor is the single-period policy problem defined in (2.8) as simple as the one considered

in section 1. However, we can obtain an even simpler characterization by observing

that J(ft) is necessarily a concave functional, that is furthermore differentiable at

ft = f (the invariant distribution under the stationary optimal policy), so that for

distributions ft close enough to f , the value function can be approximated by a linear

functional

J(ft) ≈ J(f) +

∫
j(q)[ft(q)− f(q)]dq,

where j(q) is an integrable function. (Note that the derivative function j(q) is defined

only up to an arbitrary constant, since J(ft) is not defined for perturbations of the

set-valued function ft that do not integrate to 1.) The concavity of J(ft+1) then

implies that Πt = Π solves the problem (2.8) when ft = f if and only if it solves the

alternative problem

max
Πt

{
π̄(Πt; f)− κλ̄(Πt; f)− θĪ(Πt; f) + β

∫
j(q)[ft+1(q)− f(q)]dq

}
, (2.9)

where ft+1 is again given by (2.7).
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Using (2.7) to substitute for ft+1, the objective in (2.9) can alternatively be ex-

pressed as

(V (q∗t )− κ)

∫
Λt(q)f(q)dq +

∫
V (q)(1− Λt(q))f(q)dq − θĪ(Λt; f), (2.10)

where

V (q) ≡ π(q) + β

∫
j(q̃)g(q − q̃)dq̃, (2.11)

and I have now written simply Ī(Λt; f), to indicate that the function Ī defined in (2.5)

does not depend on the choice of q∗. (Here the variable of integration q in (2.10) is the

normalized price in period t after the period t disturbance to aggregate expenditure,

but before the decision whether to conduct a price review, as in section 1. In (2.11),

q is instead the normalized price that is charged, after any price review has occurred,

while q̃ is the normalized price in the following period, after that period’s disturbance

to aggregate expenditure, but before the decision whether to conduct a price review

in that period.) Maximization of (2.10) is in turn equivalent to maximizing

∫
L(q; q∗t )Λt(q)dq − θĪ(Λt; f), (2.12)

if we define

L(q; q∗) ≡ V (q∗)− V (q)− κ, (2.13)

as in section 1. Hence Πt = Π solves the problem (2.8) when ft = f if and only if it

maximizes (2.12).

This, in turn, is easily seen to be true if and only if (i) q∗ is the value of q that

maximizes V (q), and (ii) given the value of q∗, the hazard function Λ maximizes

(2.12), which is identical to the objective (1.3) or (1.7) considered in section 1. Thus

in a stationary optimal plan, each period a policy Π is chosen that solves a single-

period problem identical to the one considered in section 1. However, the definition

of this problem involves the function j(q); thus it may still seem necessary to solve

the Bellman equation for the function J(f).

In fact, though, we only need to know the derivative function j(q). And an
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envelope-theorem calculation, differentiating (2.8) at ft = f , yields

j(q) = Λt(q)π(q∗t ) + (1− Λt(q))π(q)− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

−κΛt(q) + β

∫
j(q̃)[Λt(q)g(q∗t − q̃) + (1− Λt(q))g(q − q̃)]dq̃

= Λt(q)[V (q∗t )− κ] + (1− Λt(q))V (q)− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

= V (q) + Λt(q)L(q; q∗t )− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

= V (q)− θ[ϕ(Λt(q))− ϕ′(Λt(q))Λt(q)]

= V (q)− θ log(1− Λt(q)).

Here the second line uses the definition (2.11) of V (q); the third line uses the definition

(2.13) of L(q; q∗); the fourth line uses the fact that, as shown in section 1, a solution to

the problem (2.9) — and accordingly, a solution to the problem (2.8) — must satisfy

the first-order condition (1.8) to substitute for L(q; q∗); and the final line uses the

definition (1.6) of the binary entropy function ϕ(Λ). Note also that on each line, I have

suppressed an arbitrary constant term, since j(q) is defined only up to a constant.

Substituting the above expression for j(q) into the right-hand side of (2.11), we

obtain

V (q) ≡ π(q) + β

∫
[V (q̃)− θ log(1− Λ(q̃))] g(q − q̃)dq̃, (2.14)

a fixed-point equation for the function V (q) that makes no further reference to either

the value function J or its derivative. A stationary optimal policy then corresponds

to a triple (f, Π, V ) such that (i) given the policy Π, the function V is a fixed point

of the relation (2.14); given the pseudo-value function V and the prior f , the policy

Π solves the maximization problem treated in section 1; and (iii) given the policy Π,

the distribution f is an invariant distribution, i.e., a fixed point of relation (2.4).

This characterization of a stationary optimal policy reduces our problem to a

much more mathematically tractable one than solution of (2.8) for the value function

J(f). We need only solve for two real-valued functions of a single real variable, the

functions V (q) and Λ(q); a probability distribution f(q) over values of that same

single real variable; and a real number q∗. These can be solved for using standard

methods of function approximation and simulation of invariant distributions, of the
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kind discussed for example in Miranda and Fackler (2002).29

3 A Model of Monopolistically Competitive Price

Adjustment

Let us now numerically explore the consequences of the model of price adjustment

developed in section 2, in the context of an explicit model of the losses from infre-

quent price adjustment of a kind that is commonly assumed, both in the literature

on canonical (full-information) SDP models and in ET models of inflation dynam-

ics. The economy consists of a continuum of monopolistically competitive producers

of differentiated goods, indexed by i. In the Dixit-Stiglitz model of monopolistic

competition,30 each firm i faces a demand curve of the form

yt(i) = Yt

(
pt(i)

Pt

)−ε

for its good, where pt(i) is the price of good i,

Yt ≡
[∫

yt(i)
ε−1

ε di

] ε
ε−1

(3.1)

is the Dixit-Stiglitz index of aggregate output (or real aggregate demand), ε > 1 is

the constant elasticity of substitution among differentiated goods, and

Pt ≡
[∫

pt(i)
1−εdi

] 1
1−ε

(3.2)

is the corresponding aggregate price index. An individual firm takes as given the

stochastic evolution of the aggregate market conditions {Pt, Yt} in considering the

effects of alternative paths for its own price.

Abstracting from the costs of information and the fixed costs associated with price

reviews, a firm’s objective is to maximize the present value of profits

E
∞∑

t=0

R0,tΠt(i), (3.3)

29The specific approach used to compute the numerical results described in the next section is
discussed further in the Appendix.

30See, for example, Woodford (2003, chap. 3) for details of this model and of the derivation of
the profit function.
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where Πt(i) denotes the real profits (in units of the composite good defined in (3.1)) of

firm i in period t, and R0,t is a stochastic discount factor, discounting real income in

any state of the world in period t back to its equivalent value in terms of real income in

period zero. The expectation operator E indicates an unconditional expectation, i.e.,

an expectation under the firm’s prior about possible evolutions of the economy from

period zero onward, before receiving any information in period zero about the econ-

omy’s state at that time. In the case of a representative-household model, in which we

furthermore assume that aggregate output Yt is also the equilibrium consumption of

the composite good by the representative household, and assume time-separable isoe-

lastic (or CRRA) preferences with a constant intertemporal elasticity of substitution

σ > 0, then the stochastic discount factor is given by

R0,t = βt

(
Y0

Yt

)σ−1

,

where 0 < β < 1 is the representative household’s utility discount factor. We can then

express the objective (3.3) as (a positive multiple of) an objective with an exponential

(non-state-contingent) discount factor,

E
∞∑

t=0

βtΠ̃t(i), (3.4)

as assumed above in (2.1), if we define

Π̃t(i) ≡ Y −σ−1

t Πt(i).

Under the Dixit-Stiglitz model of monopolistic competition, the real revenues of

firm i in period t are equal to

YtP
ε−1
t pt(i)

1−ε.

If we also assume an isoelastic disutility of work effort, sector-specific labor markets,

an isoelastic (or Cobb-Douglas) production function, and efficient labor contracting

(or a competitive spot market for labor in each sector), then the complete expression

for marginal-utility-weighted profits is of the form

Π̃t(i) = Y 1−σ−1

t P ε−1
t pt(i)

1−ε − λ

1 + ω
[YtP

ε
t pt(i)

−ε]1+ω, (3.5)
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where ω ≥ 0 measures the combined curvatures of the production function and the

disutility-of-labor function,31 and λ > 0 is a positive constant. If we define Ȳ > 0 as

the full-information/flexible-price equilibrium level of output — which is to say, the

level of output such that if Yt = Ȳ , profits are maximized by a price pt(i) = Pt —

then we can write

Π̃t(i) = Ȳ 1−σ−1

π̃(Qt(i), Ỹt),

where both the normalized price

Qt(i) ≡ pt(i)Ȳ

PtYt

and the output gap

Ỹt ≡ Yt

Ȳ

are scale-independent quantities that differ from 1 only to the extent that prices fail

to perfectly adjust to current market conditions, and the normalized profit function

is given by

π̃(Q, Ỹ ) ≡ Ỹ 2−ε−σ−1

Q1−ε

[
1− 1

µ(1 + ω)
Ỹ (σ−1+ω)−(1+ωε)Q−(1+ωε)

]
, (3.6)

using µ ≡ ε/(ε− 1) > 1 for the desired markup of price over marginal cost.

In the present paper, I shall restrict attention to a “partial equilibrium” analysis

of price adjustment by a firm, or by a group of firms that comprise only a negligible

fraction of the entire economy, with information costs and menu costs of the kind

discussed in section 2, but in an economy in which measure 1 of all firms are assumed

to immediately adjust their prices fully in response to any variations in aggregate

nominal expenditure, so that for most firms Qt(i) = 1 at all times. (Note that this

last assumption corresponds to optimal behavior under full information and no cost

of changing prices.) As a consequence, it follows that the aggregate price index (3.2)

will equal Yt/Ȳ in each period, where Yt denotes aggregate nominal expenditure, and

31The notation follows Woodford (2003, chap. 3), where the model is further explained. The
allowance for sector-specific labor markets increases the degree of strategic complementarity between
the pricing decisions of firms in different sectors, which allows larger real effects of nominal rigidities
for reasons discussed, for example, in Burstein and Hellwig (2007). If one instead assumes that all
firms hire the same homogeneous labor input in a single competitive spot market, (3.5) still applies,
but in this case ω reflects only the curvature of the production function (i.e., the diminishing marginal
productivity of labor), so that it is harder to justify assigning ω a value that is too large.
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Figure 2: The normalized profit function π(q).

hence that Ỹt = 1 in each period. In fact, for purposes of our characterization of the

pricing decisions of an individual firm, all that matters is the assumption that the

price index Pt perfectly tracks aggregate expenditure, so that Ỹt = 1 at all times; it

does not matter if this is true (as in the model of Caplin and Spulber, 1987) without

individual firms each adjusting their prices to track aggregate expenditure.

The advantage of this simplification is that normalized profits each period depend

only on the individual firm’s normalized price in that period, allowing us to work with

a unidimensional state space (under the further simplifying assumption of a random

walk in aggregate expenditure), as in the “generalized Ss” framework of Caballero

and Engel (1993a, 2007). This is a tremendous computational simplification. Con-

sidering this special case amounts to an investigation of the consequences of costly

information and costs of reviewing prices for price adjustment while abstracting from

the effects of slow adjustment of prices elsewhere in the economy on the adjustment

of an individual firm’s or sector’s prices; essentially, we consider the non-neutrality

of purely nominal disturbances while abstracting from strategic complementarities
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Table 1: Resource expenditure on information, for alternative values of θ. Each share

is measured in percentage points.

θ sκ sθ rθ

0 .006 0 100

.0004 .006 .0023 14.3

.004 .008 .0030 1.3

.04 .012 .0010 .04

.4 .014 .0000 .0000

4 .014 .0000 .0000

40 .014 .0000 .0000

∞ .014 0 0

in the pricing decisions of firms in different sectors. Since it is plausible to assume

that such complementarities are important (Woodford, 2003, chap. 3), we should

expect this analysis to underestimate the quantitative magnitude of the real effects

of nominal disturbances. Nonetheless, analysis of this simple case is useful, because

we can examine the solution in greater detail. And consideration of this case can

already allow us to answer one question about the general equilibrium version of the

model, namely, whether a neutrality result of the kind obtained by Caplin and Spul-

ber (1987) holds. For if such a result did obtain in the general-equilibrium model,

then the assumption made here would be correct (the aggregate price index would

perfectly track aggregate expenditure), and the behavior of each firm in the general-

equilibrium model would be identical to our partial-equilibrium analysis. Thus the

fact that we find substantial non-neutrality even in a partial-equilibrium analysis al-

ready implies that in a general-equilibrium analysis, nominal disturbances will not be

neutral. (I defer a full analysis of the general-equilibrium case to future work.)

In the case that Ỹt = 1 at all times, the normalized profit function can be written

as

π(q) ≡ π̃(eq, 1) = e−(ε−1)q − ε− 1

ε(1 + ω)
e−(1+ω)εq (3.7)

as in (2.1) above, where q ≡ log Q.32 The function is determined by two parameters,

32This definition coincides with the one in sections 1-2 if we adopt units for measuring output in
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ω and ε (or ω and µ). For any values of these parameters, the profit function is

increasing for q < 0, maximized at q = 0, and decreasing for q > 0. Moreover, it

is asymmetric, in that π(q) > π(−q) for any q > 0. (This asymmetry gives rise to

an asymmetry in the optimal hazard function, discussed below.) Figure 2 plots this

function for the illustrative parameter values ε = 6, ω = 0.5.33

Now let us suppose furthermore (again in order to simplify the analysis) that

aggregate nominal expenditure {Yt} evolves according a random walk (2.2), where

the innovation νt is drawn independently each period from a distribution N(π̄, σ2
z).

The shocks indicated by the innovations {νt} are understood to be purely monetary

in character; they result from random variations in monetary policy, not associated

with any changes in preferences or technology. Under this specification (and the

stipulation that Pt perfectly tracks Yt), the current value of Yt completely summarizes

everything about the aggregate state of the economy at date t that is relevant to the

pricing problem of a firm (i.e., all information that is available in principle about the

current values or future evolution of both real aggregate demand and the aggregate

price index). Hence a firm (which is assumed to know its own current price) has

no need of any information about current or past market conditions other than the

current value of Yt, or equivalently, the current value of its normalized price qt(i), as

in the kind of dynamic problem discussed in section 2. In fact, the firm’s decision

problem is of exactly the kind discussed there, where the period profit function π(q)

is given by (3.7), and the shock distribution g(ν) is N(π̄, σ2
z).

3.1 The Stationary Optimal Policy

Given a specification of the profit function π(q), the discount factor 0 < β < 1, the

shock distribution g(ν), and the cost parameters κ, θ > 0, one can solve numerically

for the value function V (q), the target normalized price q∗, the optimal hazard func-

tion Λ(q), and the invariant distribution f(q) that constitute a stationary optimal

which Ȳ = 1. The advantage of the normalization proposed here is that q can now be interpreted
as the gap between the log price and the one that would be chosen under full information and no
costs of price changes; thus the absolute magnitude of q is meaningful, and not just the gap q − q∗.

33This value of ε implies a degree of market power such that the steady-state markup of prices
over marginal cost is 20 percent. The value of ω corresponds to the degree of curvature of the
disutility of output supply that would be implied by a Cobb-Douglas production function with a
labor coefficient of 2/3 and a linear disutility of work effort.
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Table 2: The optimal value of q∗ for alternative values of θ.

θ q∗

0 .00003

.0004 .00003

.004 .00005

.04 .00008

.4 .00009

4 .00009

40 .00009

∞ .00009

policy for a firm in this environment, using an algorithm of the kind discussed in Ap-

pendix B. Here I present illustrative numerical results for the profit function shown

in Figure 2, together with parameter values β = 0.9975 (corresponding to a 3 percent

annual rate of time preference, on the understanding that model “periods” represent

months), κ = .002 (the cost of a price review is 0.2 percent of monthly steady-state

revenue), and a range of possible values for the information cost θ. I assume zero drift

in aggregate nominal expenditure, or alternatively in the general level of prices, so

that π̄ = 0, and an innovation standard deviation σz = .001.34

Table 1 lists the alternative values of θ that are considered,35 and in each case

indicates the implied cost to the firm of inter-review information collection (i.e., the

cost of the information on the basis of which decisions are made about the scheduling

of price reviews), as well as the cost to the firm of price reviews themselves, both

as average shares of the firm’s revenue. (These two shares are denoted sθ and sκ

respectively.) The table also indicates how the assumed information used by the firm

in deciding when to review its prices compares to the amount of information that

would be required in order to schedule price reviews optimally; the information used

is fraction rθ of the information that would be required for a fully optimal decision,

34This corresponds to a standard deviation for quarterly innovations in the (annualized) inflation
rate of approximately 70 basis points.

35The bottom line of the table describes limiting properties of the stationary optimal plan, as the
value of θ is made unboundedly large, i.e., in the “Calvo limit”.
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given the firm’s value function for its continuation problem in each period (which

depends on the fact that, at least in the future, it does not expect to schedule price

reviews on the basis of full information). A value of θ = 0.04, for example, might

seem high, in that it means that the cost per nat of information is 4 percent of the

firm’s monthly steady-state revenues. (Alternatively, the cost per bit of information

is 2.8 percent of monthly revenue.) However, under the stationary optimal policy,

the firm only uses information each month in deciding whether to review its pricing

policy with a cost equivalent to .001 percent of steady-state revenue. And since this

is .04 percent of the information that would be required to make a fully optimal

decision, this specification of the information cost implies that it would only cost

about 2.5 percent of monthly revenue for the firm to make a fully optimal decision.36

Considered in this way, an information cost of θ = 0.04 does not seem especially

high.37 It seems high when expressed as a cost per bit (or cost per nat), because I

allow the signal s to be designed so as to focus on precisely the information needed for

the manager’s decision; once I have done so, one can only explain imprecision in the

decisions that are taken under the hypothesis that the information content of s must

be quite small, or alternatively, that the marginal cost of increasing the information

content of the signal s is quite high.38

The optimal policy of an individual firm is specified by the reset value for the

normalized price, q∗, and the hazard function Λ(q). (An advantage of the univariate

case considered here is that the hazard is a function of a single real variable, and can

easily be plotted.) Table 2 shows the optimal value of q∗ for a range of values for the

information cost θ, and Figure 3 plots the corresponding optimal hazard functions.

36Here I refer to the cost of making a fully optimal decision in one month only, taking for granted
that one’s problem in subsequent months will be the information-constrained problem characterized
here, and not to the cost of making a fully optimal decision each month, forever. In Table 1, the
information cost of a fully optimal decision is computed using the value function V (q) associated
with the stationary optimal policy corresponding to the given value of θ.

37The value θ = 4 would instead imply that the information required for a fully optimal price-
review decision each month would cost about twice steady-state revenue, a prohibitive expense; and
for θ = 40, the cost would be about 20 times steady-state revenue.

38It is important to understand that the parameter θ does not represent a cost-per-letter of having
a staff member read the Wall Street Journal; it is instead intended to represent a cost of getting
the attention of the manager who must make the decision, once the staff have digested whatever
large amount of information may have been involved in the preparation of the signal s that must be
passed on to the manager.
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Figure 3: The optimal hazard function Λ(q), for alternative values of θ.

One observes that q∗ is positive, though quite small.39 The optimal reset value is

slightly positive because of the asymmetry of the profit function seen in Figure 2.

Because the losses associated with a price that is too low are greater than those

associated with a price that is too high by the same number of percentage points, it

is prudent to set one’s price slightly higher than one would if one expected to be able

to adjust the price again in the event of any change in market conditions, in order to

reduce the probability of having a price that is too low. The size of the bias that is

optimal is slightly higher the more costly is interim information; but in no case is it

very large.

In the case that θ = 0, the optimal hazard function has the “square well” shape

associated with standard SDP models: there is probability 0 of adjusting inside the

Ss thresholds, and probability 1 of adjusting outside them. For positive values of θ,

one instead has a continuous function taking values between 0 and 1, with the lowest

values in the case of price gaps near zero, and the highest values for large price gaps

of either sign. When θ is small (though positive), as in the case θ = 0.004 shown in

39A value of .00008, for example, means that when a firm reviews its price, it sets the price 0.008
percent higher than it would in a full-information/flexible-price economy.
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Figure 4: The invariant distribution f(q), for alternative values of θ.

the figure, the hazard function is still barely above 0 for small price gaps, and rises

rapidly to values near 1 for price gaps that are only a small distance outside the “zone

of inaction” under full information. But for larger values of θ, the optimal hazard

function is significantly positive even for price gaps near zero, and increases only

slightly for price gaps far outside the full-information “zone of inaction”. In the case

that θ = 4, the optimal hazard function is essentially constant over the entire interval

for which the function is plotted in Figure 3, though also in this case, the hazard

rate eventually rises to values near 1 for a large enough negative price gap. One also

observes that for any given normalized price q, there is a positive limiting value for

Λ(q) that is approached in the case of any large enough value of θ. For example, one

can see in the figure that for values in the interval −0.01 ≤ q ≤ 0.01, the optimal

hazard rate is essentially the same positive value for all values of θ equal to 0.04 or

higher. This limiting value of the optimal hazard rate is the same positive value for

all values of q, though the convergence can only be observed in the figure for values

of q in an interval around zero; thus one obtains the Calvo model (in which Λ(q) = Λ̄

for all q) as a limiting case of the present model, in which θ is made unboundedly

large.
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Figure 5: The function h(ν), for alternative values of θ. The dashed line on the

diagonal shows the benchmark of perfect neutrality.

The invariant distribution f(q) implied by the optimal policy (Λ(q), q∗) is shown

in Figure 4 for each of these same values of θ. As the value of θ is increased, the

range of variation in the normalized log price in equilibrium falls slightly. This is

because the hazard rate becomes larger near q∗, so that a firm’s normalized log price

is less certain to wander away very far from q∗ before it is reconsidered (and returned

to the value q∗); hence the long-run distribution of normalized log prices is more

concentrated in a neighborhood of q∗. The invariant distribution converges to a well-

defined limiting distribution (the one associated with the limiting Calvo policy) as θ

is made large; in fact, it is evident from the figure that the invariant distribution has

nearly converged once θ is equal to 0.04 or larger. This is not surprising, given that

for values of θ of this magnitude, the optimal hazard function has nearly converged,

for the range of values of q that occur with appreciable probability in the limiting

invariant distribution.

Figures 3 and 4 together imply that the Calvo model should provide a reasonable

approximation to the dynamics of price adjustment as long as θ is on the order of
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0.04 or larger. While the optimal hazard function has not yet converged, when θ is

no larger than 0.04, for large values of q, it is reasonably constant (and close to its

limiting value) on the interval −0.01 ≤ q ≤ 0.01; and in the invariant distribution

implied by this policy, q will remain within that interval most of the time. Hence the

Calvo model should be a good approximation, not only in the case of very large values

of θ, but even in the case of more moderate values — θ need only be large enough

to make the optimal hazard function relatively constant over the range of values of q

that occur with high frequency under the equilibrium dynamics. This only requires

that θ be large relative to κ.40

Figure 3 also indicates that in the case of large enough shocks for the constant-

hazard approximation to be a poor one, the hazard function is not perfectly symmet-

ric. It is particularly clear in the case that θ = 0.04 that the hazard rate rises more

steeply in the case of negative price gaps than in the case of positive price gaps of

the same size. (This in turn is due to the asymmetry of the profit function shown in

Figure 2.) In fact, this asymmetry is of the same sign as has been found to best fit

U.S. data on both aggregate inflation dynamics (Caballero and Engel, 1993a) and on

the distribution of individual price changes (Caballero and Engel, 2006). The present

model provides an economic explanation for asymmetry of that kind.41

3.2 Monetary Non-Neutrality

A key question is to what extent an increase in aggregate nominal expenditure results

in an immediate increase in the general level of prices, or alternatively, in an increase

in aggregate real activity. Here we have assumed that most prices adjust immediately

in full proportion to the increase in nominal expenditure, so that there cannot be any

affect on aggregate real activity; but we can still ask what the effect is on average

prices among those firms (assumed to represent a negligible share of the economy

40Note that since L(0) = −κ, it follows from (1.9) that if e−κ/θ is a small fraction, then Λ̄ must
exceed Λ(0) by a correspondingly small fraction. But this means that Λ(x) cannot rise very much
above its minimum value Λ(0) over the range of x values that occur with any substantial probability.

41I do not attempt here to ask to what extent the model can reproduce the degree of asymmetry
that would best fit the data when a theoretically unconstrained hazard function is estimated. The
“partial equilibrium” case considered here is hardly realistic enough for such an exercise to be
of interest. But the connection between the asymmetry of the profit function and the sign of the
asymmetry in the optimal hazard function seems likely to carry over to more complex environments.
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as a whole) that are subject to the information costs and costs of reviewing their

prices. If we have aggregate neutrality even when individual prices do not all adjust

in response to a shock, as in the model of Caplin and Spulber (1987), then we should

find that the average price of sticky-price firms adjusts exactly in proportion to the

increase in aggregate demand, even though the individual prices of such firms do not.

A quantity of interest is therefore

h(ν) ≡ E[∆pt(i)|νt = ν],

the average price increase (among the sticky-price firms) resulting from an innovation

of size ν in aggregate nominal expenditure. Here the expectation is conditional upon

the value of the most recent shock, but integrating over all possible histories of distur-

bances prior to the current period. Note that the average price change resulting from

a given shock νt depends on the distribution of price gaps that happens to exist at the

time that the shock occurs, as has frequently been stressed by Caballero and Engel;

the average price change is thus a nonlinear function of both the current shock and

the previous history of shocks. But by integrating over the possible previous histories

we obtain an average answer to the question of how much prices change in response

to a given size of shock; this provides a useful measure of monetary non-neutrality

that can be easily plotted, as it is a function of a single real variable.

It follows from our characterization of a stationary optimal policy that

h(ν) = −
∫

[q̃ − q∗ − ν]Λ(q̃ − ν)f̃(q̃)dq̃,

where f̃(q̃) is the invariant distribution of values for q̃t(i), firm i’s normalized log price

before the period t innovation in aggregate nominal expenditure. (After a shock νt,

the normalized log price is qt(i) = q̃t(i) − νt, and if the price is then reviewed, the

resulting price change will be of size −[q̃t(i) − νt − q∗].) The invariant distribution

f̃(q̃) will furthermore consist of a continuous density (1− Λ(q̃))f(q̃) plus an atom of

size Λ̄ at q̃ = q∗.42 Hence we can alternatively write

h(ν) = Λ̄Λ(q∗ − ν)−
∫

[q − q∗ − ν]Λ(q − ν)(1− Λ(q))f(q)dq,

42Since the distribution contains an atom, and is not a continuous density, writing it as a function
f̃(q̃) involves an abuse of notation. But this way of writing an integral with respect to the probability
measure f̃ is used by analogy with the way I have previously written integrals with respect to the
measure f , and should create little confusion.
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Figure 6: A closer view of the function h(ν), for the case θ = 0. The dashed line

shows the prediction of the Calvo model for purposes of comparison.

in terms of the quantities q∗ and the functions Λ(q) and f(q) that are computed in

the solution for the stationary optimal policy. (See Appendix B for further discussion

of the computation of h(ν).)

There are two simple benchmarks with which it is useful to compare the function

h(ν) obtained for the model with information-constrained price review decisions. One

is the benchmark of perfect neutrality. In this case (as, for example, when firms have

full information and no cost of reviewing or changing prices), h(ν) = ν, a straight line

with a slope of 1. Another useful benchmark is the prediction of the Calvo model of

price adjustment, when calibrated so as to imply an average frequency of price change

equal to the one that is actually observed, Λ̄. In this case, h(ν) = Λ̄ν, a straight line

with a slope Λ̄ < 1.43 We wish to consider to what extent either of these simple

43The Calvo model predicts that for each of the fraction Λ̄ of firms that review their price in
the current period, the current log price change is equal to νt plus a sum of past disturbances, the
average value of which, when integrates over the possible past disturbances, is νt. For each of the
remaining fraction 1− Λ̄ of firms, the log price change is zero. Averaging over all firms, one obtains
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theories is similar to the actual shape of the function h(ν).

Figure 5 plots the function h(ν), for each of the several possible values of θ con-

sidered in Table 1. The figure also plots the benchmark of full neutrality (shown

as a dashed line on the diagonal).44 One observes that in all cases, there is less

than full immediate adjustment of prices to a purely monetary shock, in the case of

small shocks (0 < h(ν) < ν for small ν > 0, and similarly ν < h(ν) < 0 for small

ν < 0). However, there is greater proportional adjustment to larger shocks, and in

fact (though this cannot be seen in all cases from the part of the plot shown in the

figure) in each case the graph of h(ν) eventually approaches the diagonal (the bench-

mark of full neutrality) for large enough shocks of either sign. The size of shocks

required for this to occur is greater the larger is θ. In the case that θ = 0, one sees

from the figure that there is essentially full adjustment to shocks larger than .01 in

absolute value.45 When instead θ = 0.004, the convergence to full adustment is still

evident, but has not quite occurred at the boundaries of the figure. For higher values

of θ, nearly full adjustment occurs only for shocks much larger than any shown in the

figure, though one can see from the figure (at least in the case that θ = 0.04) that

h(ν) increases more than proportionally with increases in ν.

Even in the case of small shocks, while there is not full adjustment to monetary

shocks in the month of the shock, the average price increase is many times larger

than would be predicted by the Calvo model, in the case of sufficiently small values

of θ. Figure 6 shows a magnified view of the graph of h(ν) for small values of ν, in the

case θ = 0, with the prediction of the Calvo model also shown by a dashed line. (The

vertical axis has been stretched so as to make the slope of the line representing the

Calvo prediction more visible.) The slope of the curve h(ν) near the origin is several

times greater than Λ̄, the slope predicted by the Calvo model.

However, for larger values of θ, the Calvo model provides quite a good approxima-

tion, in the case of small enough shocks. Figure 7 shows a similarly magnified view of

the graph of h(ν) in the case θ = 0.04. One observes that the prediction of the Calvo

model is quite accurate, except in the case of large shocks, when it under-predicts the

an average log price change of Λ̄νt.
44The Calvo benchmark cannot be plotted as any single line in this figure, as it depends on the

value of Λ̄, and the value of Λ̄ is different for the different values of θ, as shown in Table 3.
45These are still quite large shocks: note that they are more than 10 standard deviations away

from the mean. The range of shocks that are two standard deviations or less from the mean is
indicated by the two vertical lines in the figure.
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Figure 7: A closer view of the function h(ν), for the case θ = 0.04. The dashed line

again shows the prediction of the Calvo model. The two vertical lines indicate shocks

of ±2 standard deviations in magnitude.

average price change. For even larger values of θ (not shown here), the approximation

is even better, and the range over which the approximation is accurate extends to

even larger shock sizes.

Even for information costs of this magnitude, of course, the Calvo model becomes

quite a poor approximation in the case of very large shocks. Figure 8 shows the

graph of h(ν) in the case that θ = 0.04 again, but now for a larger range of values

for ν. Both of the two simple baselines, the full-neutrality prediction and the Calvo

prediction, are shown by dashed lines. One observes that the Calvo model is a good

approximation to the actual shape of h(ν) in the case of small enough shocks, while

the full-neutrality benchmark is a good approximation in the case of large enough

shocks of either sign.

While the Calvo model remains a poor approximation in the case of large shocks,

when θ takes an intermediate value, it may nonetheless be a good approximation

most of the time. The vertical lines in Figures 7 and 8 indicate shock sizes that are
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Figure 8: The function h(ν) for the case θ = 0.04 again, but for a larger range of

shock sizes. The dashed lines indicate the full-neutrality benchmark (the steeper line)

and the Calvo benchmark (the flatter line).

plus or minus two standard deviations in magnitude; thus under the assumed shock

process, shocks should fall within this range about 95 percent of the time. Within

this range (as can be seen most clearly in Figure 7), the Calvo model is quite a good

approximation. The same is true for even larger values of θ; shocks of the size required

for the Calvo approximation to become inaccurate become progressively less likely,

the larger is θ.

One way of measuring the extent to which the inaccuracy of the Calvo approxi-

mation matters in general is by considering the slope of a linear regression of the log

price change on the size of the current aggregate shock. Suppose that we approximate

the function h(ν) by a linear equation,

∆pt(i) = α + βνt + εt(i),

where the residual is assumed to have mean zero and to be orthogonal to the aggregate

shock, and estimate the coefficients α and β by ordinary least squares. Under the
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Table 3: The coefficient β from a regression of log price changes on the current

monetary shock, for alternative values of θ. The value of Λ̄ implied by the stationary

optimal policy in each case is shown for purposes of comparison. (Both quantities

reported in percentage points.)

θ Λ̄ β

0 2.8 31.0

.004 4.0 8.2

.04 6.2 6.8

.4 6.87 6.94

4 6.93 6.94

40 6.97 6.97

∞ 6.98 6.98

full neutrality benchmark, β would equal 1; the Calvo model predicts that β should

equal Λ̄.

The values of β obtained from simulations of the stationary optimal policies cor-

responding to the different values of θ are given in Table 3, which also reports the

values of Λ̄ implied by each of these policies. One observes that the Calvo model

under-predicts the flexibility of prices very substantially in the full-information case

(θ = 0), which is to say, in a standard SDP model of the kind studied by Golosov

and Lucas (2007). For the parameter values assumed here, I find that the correct

linear response coefficient is more than 10 times as large as the one predicted by the

Calvo model. In the case of only small positive information costs, θ = 0.004, the

Calvo model also under-predicts, but only by a factor of 2. If θ = 0.04, the correct

coefficient is only about 10 percent larger than the prediction of the Calvo model.

The Calvo model is even more accurate if information costs are larger; for example,

if theta = 0.4, it under-predicts the immediate price response by only 1 percent. In

the limiting case of unboundedly large θ, the Calvo model is perfectly accurate.

For shocks that are large, but not large enough for nearly full adjustment to occur

immediately, the average response of the price level to a monetary shock falls some-

where between the predictions of the Calvo model and the full-neutrality benchmark.

It is interesting to note that while each of these benchmarks is completely antisym-
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metric (the effect of a negative shock is precisely the effect, with the sign reversed, of

a positive shock of the same size), the effects of shocks of an intermediate magnitude

are asymmetric. A positive shock results in more nearly complete price adjustment,

on average, than does a negative shock of the same size. (Compare, for example, the

effects of shocks of size ±0.1 in Figure 8: there is nearly complete adjustment of the

average price in the case of the positive shock, but much less than complete adjust-

ment to the negative shock.) This is a direct result of the asymmetry of the optimal

hazard function, already observed in Figure 3. (Because firms with prices that are too

low are more likely to immediately adjust their prices than firms with prices that are

too high, more adjustment occurs immediately in response to a positive shock than

to a negative shock.) The result implies, in turn, that the effects of a contraction

of nominal aggregate demand on real activity will be greater than the effects of an

expansion of nominal aggregate demand by the same number of percentage points; for

more of the positive demand disturbance will be dissipated in an immediate increase

in prices than occurs in the case of a negative disturbance. This conclusion, of course,

echoes a feature often found in old-fashioned Keynesian models, which assumed that

prices (or wages) were “downwardly rigid” but not upwardly rigid to the same extent.

The present model justifies similar behavior as a consequence of optimization; but the

reason here is not any resistance to price declines — instead, firms are more worried

about allowing their prices to remain too low than they are about allowing them to

remain too high.

3.3 The Distribution of Price Changes

The model makes predictions, of course, about the complete distribution of individual

price changes, and not only the mean response of prices to a shock. These are of

interest, among other reasons, because they can be compared with evidence from

micro data sets to compare the degree of empirical realism of alternative models. It

does not make sense to attempt any detailed comparison of the predictions of this

“partial equilibrium” model to the properties of actual price distributions, because

the maintained hypothesis — that the general price level perfectly tracks variations

in aggregate nominal spending — is plainly false in the settings from which the actual

price data have been collected. Nonetheless, a brief consideration of the way in which

alternative values of θ affect the distribution of price changes in this model may be
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Figure 9: The (unconditional) distribution of individual price changes, for alternative

values of θ.

useful in judging the likely importance of the proposed information friction.

For each of the stationary optimal policies discussed above corresponding to al-

ternative values of θ, we can plot a long-run frequency distribution of individual

price changes, obtained by stochastic simulation.46 These distributions are shown

in Figure 9 for the same six values of θ as are compared in Figure 5. For the case

θ = 0, we obtain the kind of distribution familiar from previous studies of standard

(full-information) SDP models (see, e.g., Midrigan, 2006): the distribution is largely

concentrated around two spikes (one positive and one negative), corresponding to the

size of price changes that occur when one just reaches the upper and lower Ss triggers

respectively.47

This prediction is dramatically changed by the introduction of limited attention.

Even when the information costs remain relatively small (the case θ = 0.004), the

implied distribution of price changes is now unimodal, with a peak near zero. How-

ever, in this case, there remains a relatively large amount of the probability mass far

46Of course, this is to be interpreted as only the distribution of price changes by the small number
of firms subject to the information costs; under the “partial equilibrium” assumption, in the economy
as a whole the distribution of price changes is identical to the distribution g(ν), regardless of the
value of θ.

47The distribution of price changes does not consist of two atoms at those exact numerical values
because of the assumption of discrete time, which does not allow all firms to change price when their
normalized price is just crossing one of the trigger points.
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from zero relative to the variance; that is, the distribution is platykurtic. For values

of θ equal to 0.04 or higher, instead, the distribution remains fairly similar; that is,

even for the value θ = 0.04, the distribution is not too different from the limiting

distribution as θ becomes unboundedly large. For each of these values (as for the

Calvo model), the distribution is leptokurtic. That is, there are a larger number of

cases in which the price changes are either small (relative to the standard deviation)

or large, than would be the case under a normal distribution. As Midrigan (2006)

notes, a number of data sets on individual price changes have this property, which

poses a problem for standard SDP models.

This observation allows us a conjecture about which of the alternative values

of θ considered in the previous tables and figures are more likely to be empirically

realistic. In order for the model to generate a leptokurtic distribution of price changes,

the information cost θ must not be too small; in the calibrated example considered

here, one needs to have a value on the order of θ = 0.04 or higher. But these are

exactly the cases in which we have concluded that, most of the time, the Calvo model

will provide a fairly accurate approximation. This is not accidental, as the Calvo

model generates a leptokurtic distribution of price changes (in the case of normally

distributed innovations in the profit-maximizing price), while any case in which the

hazard function remains substantially smaller for price gaps near zero than it is on

average will tend instead to generate a platykurtic distribution, if not a bimodal one.

A serious effort to determine the most realistic parameterization of the model by

seeking to match properties of empirical distributions of price changes will depend

upon extending the analysis to more complex cases than the one considered here.

Here it has only been possible to present a “partial equilibrium” analysis: the dy-

namics of the average price of firms subject to menu costs and information costs,

as well as the distribution of individual price changes by such firms, have been con-

sidered in a setting in which it is assumed that the aggregate price level adjusts

immediately in proportion to any change in aggregate nominal expenditure. This

simple case is convenient to analyze because individual firms’ decisions depend on

no aggregate state variables (under the assumption that aggregate nominal expen-

diture is a random walk), so that the adjustment hazard is a function of a single

real variable, the individual firm’s “price gap,” as in the generalized Ss framework of

Caballero and Engel (1993a, 2007). Analysis of this case has sufficed to show that

in the present model, random variations in aggregate nominal expenditure will affect
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aggregate real activity, rather than being neutral as in Caplin and Spulber (1987).

It is also relatively easy to see, in this case, in what ways the Calvo model is and

is not an accurate approximation to the dynamics of price adjustment in a model of

information-constrained state-dependent pricing.

But realistic predictions about the overall distribution of price changes would

require us to solve for the “general equilibrium” dynamics of prices when all firms are

subject to menu costs and information costs, and the response of the aggregate price

level to aggregate shocks is determined by aggregating the decisions of the population

of such firms. While the extension of the model equations in section 2 to this case

is mathematically straightforward, the “general equilibrium” case is computationally

much more challenging. In an exact solution, the state space of the model will be

infinite-dimensional, even when the dynamics of aggregate nominal expenditure are

as simple as those assumed here (as is true of full-information SDP models except in

extremely special cases). Hence a solution for the approximate equilibrium dynamics

is likely to be possible only under an assumption of “bounded rationality” in the

spirit of Krusell and Smith (1998), as for example in the work of Midrigan (2006).

This is an important topic for future work.

4 Conclusion

I have presented a model in the timing of price changes results from optimizing be-

havior on the part of firms subject to a fixed cost of conducting a review of existing

pricing policy. Standard models of state-dependent pricing, however, are generalized

by assuming that a firm’s policy with regard to the timing of price reviews is designed

to economize on the cost of being continuously informed about market conditions dur-

ing the intervals between full-scale reviews. The introduction of interim information

costs softens the distinction, emphasized in prior contributions, between the dynamics

of price adjustment in models with exogenous timing of price adjustments and models

with state-dependent pricing, by attenuating both the “selection effect” emphasized

by Golosov and Lucas (2007) and the relative importance of the “extensive margin

of price adjustment” emphasized by Caballero and Engel (2007). In the limiting

case of sufficiently large interim information costs, the predicted dynamics of price

adjustment are identical to those of the Calvo (1983) model of staggered price-setting.

At a minimum, this result means that there is no reason to regard the predictions
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of (full-information) “menu cost” models as more likely to be accurate than the

predictions of the Calvo model, simply on the ground that the former models have

firmer foundations in optimizing behavior. Both models appear as nested (extreme)

cases of the more general model presented here, so that the question of which special

case is more reliable as an approximation is a quantitative matter, rather than one

that can be settled simply on the basis of the appeal of optimizing models.

The illustrative calculations presented in section 3 furthermore suggest that a

model with interim information costs of moderate size may imply aggregate behavior

fairly similar to that predicted by the Calvo model, and quite different from that pre-

dicted by a full-information menu-cost model. Further work is needed to investigate

to what extent this conclusion obtains in the case of empirically realistic parameter-

izations. But these calculations show that it is possible for predictions of the Calvo

model to be fairly accurate for many purposes — predicting the aggregate responses

to disturbances of the magnitude that occur at most times — in a model that does not

possess certain features of the Calvo model that are often argued to be implausible.

In particular, the model with a finite positive interim cost of information does not

imply that prices are equally unlikely to be adjusted even when a given firm’s price

happens over time to have become far out of line with profit maximization, or even

when very large disturbances affect the economy. However, because firms are in these

situations only very infrequently, the predictions of the Calvo model may nonetheless

be relatively accurate much of the time.

It is important to note, however, that the implications of the present model are

likely to differ from those of the Calvo model in important respects, even if a rela-

tively large value of θ is judged to be empirically realistic. First, even if the price

adjustments predicted by this model are similar to those of the Calvo model under

all but extreme circumstances, the model’s predictions under extreme circumstances

may be of disproportionate importance for calculations of the welfare consequences

of alternative stabilization policies, as argued by Kiley (2002) and Paustian (2005).

And second, even in the limit of an unboundedly large value of θ (so that no interim

information is available at all), the present model’s predictions differ from those of

the Calvo model in at least one important respect: the equilibrium frequency of price

review Λ̄ is endogenously determined, rather than being given exogenously. In partic-

ular, the value of Λ̄ is unlikely to be policy-invariant; for example, one would expect it

to be higher in the case of a higher average inflation rate, as in the generalized Calvo
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model of Levin and Yun (2007). For this reason as well, the present model may well

have different implications than the Calvo model for the welfare ranking of alternative

policy rules, as in the analysis of Levin and Yun. This is another important topic for

further study.
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