Liquidity Hoarding and Interbank Market Spreads: The Role of Counterparty Risk

Florian Heider	Marie Hoerova	Cornelia Holthausen
ECB	ECB	ECB

Conference on "Central Bank Liquidity Tools" NY Fed, February 19, 2009

The views expressed are solely those of the authors.

Interbank market: Some facts

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Interbank market: Some facts

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Interbank market: Some facts

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

What do we do?

Study interbank market in the presence of counterparty risk

Parsimonious model to understand some of the mechanisms

- Parsimonious model to understand some of the mechanisms
- Environment:
 - maturity transformation, tradeoff between liquidity and return

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Parsimonious model to understand some of the mechanisms
- Environment:
 - maturity transformation, tradeoff between liquidity and return

idiosyncratic liquidity risk; no aggregate liquidity shocks

Parsimonious model to understand some of the mechanisms

Environment:

maturity transformation, tradeoff between liquidity and return

- idiosyncratic liquidity risk; no aggregate liquidity shocks
- counterparty risk

Parsimonious model to understand some of the mechanisms

Environment:

- maturity transformation, tradeoff between liquidity and return
- idiosyncratic liquidity risk; no aggregate liquidity shocks
- counterparty risk
- Introduce asymmetric information about counterparty risk:
 privately-observed shocks to asset risk *after* portfolio allocation

Parsimonious model to understand some of the mechanisms

Environment:

- maturity transformation, tradeoff between liquidity and return
- idiosyncratic liquidity risk; no aggregate liquidity shocks
- counterparty risk
- Introduce asymmetric information about counterparty risk:
 privately-observed shocks to asset risk *after* portfolio allocation

Three possible regimes with different market rates (depending on parameters):

Three possible regimes with different market rates (depending on parameters):

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I. full participation of borrowers and lenders

Three possible regimes with different market rates (depending on parameters):

・ロト・日本・モート モー うへぐ

- I. full participation of borrowers and lenders
- \blacksquare II. safe borrowers drop out \rightarrow adverse selection

Three possible regimes with different market rates (depending on parameters):

- I. full participation of borrowers and lenders
- \blacksquare II. safe borrowers drop out \rightarrow adverse selection
- III. market breakdown:
 - \blacksquare all lenders drop out \rightarrow liquidity hoarding
 - all borrowers drop out

Three possible regimes with different market rates (depending on parameters):

- I. full participation of borrowers and lenders
- \blacksquare II. safe borrowers drop out \rightarrow adverse selection
- III. market breakdown:
 - \blacksquare all lenders drop out \rightarrow liquidity hoarding
 - all borrowers drop out
- Framework to examine policy responses:
 - ex ante interventions
 - crisis management

Three possible regimes with different market rates (depending on parameters):

- I. full participation of borrowers and lenders
- \blacksquare II. safe borrowers drop out \rightarrow adverse selection
- III. market breakdown:
 - \blacksquare all lenders drop out \rightarrow liquidity hoarding
 - all borrowers drop out
- Framework to examine policy responses:
 - ex ante interventions
 - crisis management

- Three periods: t = 0, 1, and 2
- Diamond-Dybvig consumers deposit with the bank at t = 0

(ロ)、(型)、(E)、(E)、 E) の(の)

- Three periods: t = 0, 1, and 2
- Diamond-Dybvig consumers deposit with the bank at t = 0

 \blacksquare Deposits fully insured \rightarrow no bank runs

- Three periods: t = 0, 1, and 2
- Diamond-Dybvig consumers deposit with the bank at t = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \blacksquare Deposits fully insured \rightarrow no bank runs
- Competitive, profit-maximizing banks

- Three periods: t = 0, 1, and 2
- Diamond-Dybvig consumers deposit with the bank at t = 0
- Deposits fully insured \rightarrow no bank runs
- Competitive, profit-maximizing banks
- At t = 0, banks can invest deposits in two assets:

Date	t = 0	t = 1	t=2
Short-term liquid asset	-1	1	1
Long-term illiquid asset	-1	l < 1	R with prob. $p, pR > 10 with prob. 1 - p$

- Three periods: t = 0, 1, and 2
- Diamond-Dybvig consumers deposit with the bank at t = 0
- Deposits fully insured \rightarrow no bank runs
- Competitive, profit-maximizing banks
- At t = 0, banks can invest deposits in two assets:

Date	t = 0	t = 1	t=2
Short-term liquid asset	-1	1	1
Long-term illiquid asset	-1	l < 1	R with prob. $p, pR > 10 with prob. 1 - p$

After investment is made, privately-observed shock to illiquid asset risk:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

After investment is made, privately-observed shock to illiquid asset risk:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- with prob. q, safer than expected $\rightarrow p_s > p$
- with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$P = qp_s + (1-q)p_r$$

After investment is made, privately-observed shock to illiquid asset risk:

- with prob. q, safer than expected $\rightarrow p_s > p$
- with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$\bullet p = qp_s + (1-q)p_r$$

• pR > 1, but can be that $p_rR < 1$

- After investment is made, privately-observed shock to illiquid asset risk:
 - with prob. q, safer than expected $\rightarrow p_s > p$
 - with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$\bullet p = qp_s + (1-q)p_r$$

• pR > 1, but can be that $p_rR < 1$

Assume: riskier assets have lower liquidation value, $l_s > l_r$

- After investment is made, privately-observed shock to illiquid asset risk:
 - with prob. q, safer than expected $\rightarrow p_s > p$
 - with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$p = qp_s + (1-q)p_r$$

• pR > 1, but can be that $p_rR < 1$

Assume: riskier assets have lower liquidation value, $l_s > l_r$

isomorphic to $R_s < R < R_r$ (riskier asset has a higher return)

- After investment is made, privately-observed shock to illiquid asset risk:
 - with prob. q, safer than expected $\rightarrow p_s > p$
 - with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$p = qp_s + (1-q)p_r$$

• pR > 1, but can be that $p_rR < 1$

Assume: riskier assets have lower liquidation value, $l_s > l_r$

- isomorphic to $R_s < R < R_r$ (riskier asset has a higher return)
- only need type-specific $\frac{R}{T}$ (opportunity cost of liquidation)

- After investment is made, privately-observed shock to illiquid asset risk:
 - with prob. q, safer than expected $\rightarrow p_s > p$
 - with prob. 1 q, riskier than expected $\rightarrow p_r < p$

$$p = qp_s + (1-q)p_r$$

• pR > 1, but can be that $p_rR < 1$

Assume: riskier assets have lower liquidation value, $l_s > l_r$

- isomorphic to $R_s < R < R_r$ (riskier asset has a higher return)
- only need type-specific $\frac{R}{T}$ (opportunity cost of liquidation)

• At t = 1, a bank faces uncertainty about the liquidity demand:

(ロ)、(型)、(E)、(E)、 E) の(の)

• At t = 1, a bank faces uncertainty about the liquidity demand:

• fraction π_h of banks: high liquidity demand

- fraction $\pi_l = 1 \pi_h$ of banks: low liquidity demand
- uncorrelated with the shock to the illiquid asset

• At t = 1, a bank faces uncertainty about the liquidity demand:

• fraction π_h of banks: high liquidity demand

- fraction $\pi_l = 1 \pi_h$ of banks: low liquidity demand
- uncorrelated with the shock to the illiquid asset
- Interbank market can develop: banks with excess liquidity lend to those with a shortage

• At t = 1, a bank faces uncertainty about the liquidity demand:

• fraction π_h of banks: high liquidity demand

• fraction $\pi_l = 1 - \pi_h$ of banks: low liquidity demand

uncorrelated with the shock to the illiquid asset

Interbank market can develop: banks with excess liquidity lend to those with a shortage

Assume: Interbank market anonymous and competitive

• At t = 1, a bank faces uncertainty about the liquidity demand:

• fraction π_h of banks: high liquidity demand

• fraction $\pi_l = 1 - \pi_h$ of banks: low liquidity demand

uncorrelated with the shock to the illiquid asset

Interbank market can develop: banks with excess liquidity lend to those with a shortage

Assume: Interbank market anonymous and competitive

Timeline

Banks allocate deposits between liquid and illiquid assets.

and shocks to illiquid asset's long-term asset realizes. risk realized

Banks borrow and lend on an interbank market at an interest rate r.

Additionally, they can liquidate some of their illiquid asset holdings and/or keep cash in re-

serves.

Impatient consumers withdraw deposits.

Interbank loans are repaid.

Patient consumers withdraw their deposits.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Interbank interest rate *r* is given by no arbitrage:

Interbank interest rate *r* is given by no arbitrage:

$$(\pi_{l}\boldsymbol{p}\boldsymbol{p}+\pi_{h}\boldsymbol{p})(1+\boldsymbol{r})=(\pi_{l}\boldsymbol{p}+\pi_{h}\boldsymbol{p})\,\boldsymbol{R}$$

Interbank interest rate *r* is given by no arbitrage:

$$(\pi_l p p + \pi_h p) (1 + r) = (\pi_l p + \pi_h p) R$$

or
$$1 + r = R \frac{1}{p \pi_l + \pi_h}$$

■ Interbank interest rate *r* is given by no arbitrage:

or
$$(\pi_l p p + \pi_h p) (1 + r) = (\pi_l p + \pi_h p) R$$
$$1 + r = R \frac{1}{p \pi_l + \pi_h}$$

■ Since ¹/_{pπ_l+π_h} > 1, there is a "risk premium" → liquidity costly since lending is risky!

■ Interbank interest rate *r* is given by no arbitrage:

or

$$(\pi_l p p + \pi_h p) (1+r) = (\pi_l p + \pi_h p) R$$

$$1+r = R \frac{1}{p\pi_l + \pi_h}$$

■ Since ¹/_{pπ_l+π_h} > 1, there is a "risk premium" → liquidity costly since lending is risky!

In Regime I:

risk premium < liquidation premium for safer borrowers</p>

■ Interbank interest rate *r* is given by no arbitrage:

or

$$(\pi_l p p + \pi_h p) (1+r) = (\pi_l p + \pi_h p) R$$

$$1+r = R \frac{1}{p\pi_l + \pi_h}$$

■ Since ¹/_{pπ_l+π_h} > 1, there is a "risk premium" → liquidity costly since lending is risky!

In Regime I:

risk premium < liquidation premium for safer borrowers</p>

no impairment to market functioning

■ Interbank interest rate *r* is given by no arbitrage:

or

$$(\pi_l p p + \pi_h p) (1+r) = (\pi_l p + \pi_h p) R$$

$$1+r = R \frac{1}{p\pi_l + \pi_h}$$

■ Since ¹/_{pπ_l+π_h} > 1, there is a "risk premium" → liquidity costly since lending is risky!

In Regime I:

risk premium < liquidation premium for safer borrowers</p>

no impairment to market functioning

■ Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_r = \frac{\pi_I p + \pi_h (1 - q) p_r}{\pi_I p p_r + \pi_h (1 - q) p_r} R$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_{r} = \frac{\pi_{l} p + \pi_{h} (1 - q) p_{r}}{\pi_{l} p p_{r} + \pi_{h} (1 - q) p_{r}} R$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Adverse selection has two effects:

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_r = \frac{\pi_I p + \pi_h (1 - q) p_r}{\pi_I p p_r + \pi_h (1 - q) p_r} R$$

- Adverse selection has two effects:
 - Ienders get repaid less often

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_r = \frac{\pi_I p + \pi_h (1 - q) p_r}{\pi_I p p_r + \pi_h (1 - q) p_r} R$$

- Adverse selection has two effects:
 - Ienders get repaid less often
 - only riskier banks borrow

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_r = \frac{\pi_I p + \pi_h (1 - q) p_r}{\pi_I p p_r + \pi_h (1 - q) p_r} R$$

- Adverse selection has two effects:
 - Ienders get repaid less often
 - only riskier banks borrow
- Implies that $r_r > r$ holds

- Safer borrowers drop out if risk premium too high ↔ interest rate *r* too high
- Only riskier borrowers in the market \rightarrow interest rate r_r :

$$1 + r_r = \frac{\pi_I p + \pi_h (1 - q) p_r}{\pi_I p p_r + \pi_h (1 - q) p_r} R$$

- Adverse selection has two effects:
 - Ienders get repaid less often
 - only riskier banks borrow
- Implies that $r_r > r$ holds

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r...$

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

(ロ)、(型)、(E)、(E)、 E) の(の)

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ienders' outside option: reinvest in liquid asset

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

Ienders' outside option: reinvest in liquid asset

• if $p_r(1+r_r) < 1 \rightarrow$ lenders hoard liquidity

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

Ienders' outside option: reinvest in liquid asset

• if $p_r(1+r_r) < 1 \rightarrow$ lenders hoard liquidity

• necessary that $p_r R < 1 \rightarrow$ return on riskier projects really bad!

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

Ienders' outside option: reinvest in liquid asset

• if $p_r(1+r_r) < 1 \rightarrow$ lenders hoard liquidity

• necessary that $p_r R < 1 \rightarrow$ return on riskier projects really bad!

- Lack of demand: all borrowers drop out
 - if risk premium > liquidation premium for riskier borrowers

Lack of supply: lenders drop out

• interest rate r_r is high: $r_r > r$...but is it high enough?

Ienders' outside option: reinvest in liquid asset

• if $p_r(1+r_r) < 1 \rightarrow$ lenders hoard liquidity

• necessary that $p_r R < 1 \rightarrow$ return on riskier projects really bad!

- Lack of demand: all borrowers drop out
 - if risk premium > liquidation premium for riskier borrowers

Comparative statics: Level and dispersion of risk

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q ()

• Liquidity requirements:

Liquidity requirements:

always feasible, prevent liquidation of safer banks

(ロ)、(型)、(E)、(E)、 E) の(の)

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• beneficial if I_s low or $\pi_h q$ high

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- beneficial if I_s low or $\pi_h q$ high
- Market transparency:

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity
- beneficial if I_s low or $\pi_h q$ high
- Market transparency:
 - two markets emerge: one for safer and one for riskier banks

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity
- beneficial if I_s low or $\pi_h q$ high
- Market transparency:
 - two markets emerge: one for safer and one for riskier banks

• lower interest rate for safer borrowers: $r_{tr}^{s} < r < r_{tr}^{r}$

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity
- beneficial if I_s low or $\pi_h q$ high
- Market transparency:
 - two markets emerge: one for safer and one for riskier banks

- lower interest rate for safer borrowers: $r_{tr}^{s} < r < r_{tr}^{r}$
- no distortion but not feasible if risk premia high

Liquidity requirements:

- always feasible, prevent liquidation of safer banks
- but distort: 1) portfolio allocation; 2) price of liquidity
- beneficial if I_s low or $\pi_h q$ high
- Market transparency:
 - two markets emerge: one for safer and one for riskier banks

- lower interest rate for safer borrowers: $r_{tr}^{s} < r < r_{tr}^{r}$
- no distortion but not feasible if risk premia high

• Liquidity provision by the central bank:

• Liquidity provision by the central bank:

• subsidized interest rate: $r_{CB} < r$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation
- Interbank loan guarantees: must be sufficiently comprehensive
Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

• full:
$$1 + r_{FG} = R$$
; cost: $(1 - p) R \pi_h L_h$

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

• full:
$$1 + r_{FG} = R$$
; cost: $(1 - p) R \pi_h L_h$

■ partial: $1 + r_{PG} > R$; cost $(\hat{p} - p) (1 + r_{PG}) \pi_h L_h$

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

- full: $1 + r_{FG} = R$; cost: $(1 p) R \pi_h L_h$
- partial: $1 + r_{PG} > R$; cost $(\hat{p} p) (1 + r_{PG}) \pi_h L_h$
- cost(partial)>cost(full) possible as r_{PG} > r_{FG}

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

• full:
$$1 + r_{FG} = R$$
; cost: $(1 - p) R \pi_h L_h$

■ partial: $1 + r_{PG} > R$; cost $(\hat{p} - p) (1 + r_{PG}) \pi_h L_h$

cost(partial)>cost(full) possible as r_{PG} > r_{FG}

Asset purchases: CB not exposed to liquidity risk

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

• full:
$$1 + r_{FG} = R$$
; cost: $(1 - p) R \pi_h L_h$

- partial: $1 + r_{PG} > R$; cost $(\hat{p} p) (1 + r_{PG}) \pi_h L_h$
- cost(partial)>cost(full) possible as r_{PG} > r_{FG}

Asset purchases: CB not exposed to liquidity risk

• price $P > l_{\theta}$ = "fire-sale", P set only to reflect counterparty risk

Liquidity provision by the central bank:

- subsidized interest rate: $r_{CB} < r$
- but CB still makes profit ← unit cost of (public) liquidity
- \blacksquare CB can take on liquidity from lenders \rightarrow full intermediation

Interbank loan guarantees: must be sufficiently comprehensive

• full:
$$1 + r_{FG} = R$$
; cost: $(1 - p) R \pi_h L_h$

- partial: $1 + r_{PG} > R$; cost $(\hat{p} p) (1 + r_{PG}) \pi_h L_h$
- cost(partial)>cost(full) possible as r_{PG} > r_{FG}

Asset purchases: CB not exposed to liquidity risk

• price $P > l_{\theta}$ = "fire-sale", P set only to reflect counterparty risk

Summary

・ロト ・ 日 ・ モー・ モー・ ・ 日 ・ うへぐ

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Interbank market: Secured vs Unsecured

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Interbank market: Secured vs Unsecured

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで