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Abstract

This paper presents an empirical analysis of the benefits of alternative forms
of investment strategies from an asset-liability management perspective. Using
a vector error correction model (VECM) that explicitly distinguishes between
short-term and long-term dynamics in the joint distribution of asset returns and
inflation, we identify the presence of long-term cointegration relationships be-
tween the return on a typical pension fund liabilities and the return of various
(traditional and) alternative asset classes. Our results suggest that real estate and
commodities have particularly attractive inflation hedging properties over long-
horizons, which justify their introduction in pension funds’ liability-matching
portfolios. We show that novel liability-hedging investment solutions, including
commodities and real estate in addition to inflation-linked securities, can be de-
signed so as to decrease the cost of inflation insurance for long-horizon investors.
These solutions are shown to achieve satisfactory levels of inflation hedging over
the long-term at a lower cost compared to a solution solely based on TIPS or
inflation swaps. Overall our results suggest that alternatives are very useful in-
gredients for institutional investors facing inflation-related liability constraints.
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1 Introduction

A recent surge in worldwide inflation has increased the need for investors to hedge
against unexpected changes in price levels. In the most recent forecasts, global con-
sumer price index (CPI) inflation has been revised up more than a percentage point,
to 5.0%, for calendar 2008, and by 0.7 percentage points, to 3.7%, in 2009, a trend
which is likely to continue for the foreseeable future despite the current crisis, given
the long-term increased demand pressure on food and energy resources. The CPI infla-
tion peak has been forecasted to be 4.1% in the euro area and 5.5% in the US, and the
direct impact of higher food and energy raw material costs is estimated to account for
2.5 percentage points and 3 percentage points, respectively, of these rates.1 Inflation
acceleration in emerging market countries will likely be larger than what is seen in
developed countries, reflecting the much greater importance of food in their economies
and their generally stronger rates of growth. As a result of these trends, inflation hedg-
ing has become a concern of critical importance not only for private investors, who
consider inflation as a direct threat with respect to the protection of their purchasing
power, but also, and perhaps more importantly, for pension funds who face pension
payments that are indexed (conditional or full indexation) with respect to consumer
price or wage level indexes.

This focus on inflation hedging is consistent with the heightened focus on liability-risk
management that has emerged as a consequence of the 2000-2003 pension crisis. A
number of so-called “liability-driven investment” (LDI) techniques have been promoted
over the past few years by a number of investment banks and asset management firms,
which advocate the design of a customized liability-hedging portfolio (LHP), the sole
purpose of which is to hedge away as effectively as possible the impact of unexpected
changes in risk factors affecting liability values, and most notably interest rate and
inflation risks. This LHP complements the traditional performance-seeking portfolio
(PSP), which composition is not impacted by the presence of liabilities. Within the
aforementioned LDI paradigm, a variety of cash instruments (Treasury inflation pro-
tected securities, or TIPS) as well as dedicated OTC derivatives (such as inflation
swaps) are typically used to tailor customized inflation exposures that are suited to
each particular institutional investor liability profile. One outstanding problem, how-
ever, is that such solutions generate very modest performance. In fact, real returns on
inflation-protected securities, negatively impacted by the presence of a significant in-
flation risk premium, are typically very low. In other words, while these solutions offer
very significant risk management benefits, the lack of performance make them rather
costly options for pension funds and their sponsor companies. Beside, the capacity of
the inflation-linked securities market is not sufficient to meet the collective demand of
institutional and private investors, while the OTC inflation derivatives market suffers
from a perceived increase in counterparty risk.

In this context, it has been argued that some other asset classes, such as stocks and

1See Barclay Capital Global Outlook 2008,
Implications for financial markets.
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nominal bonds, but also real estate or commodities, could provide useful, albeit im-
perfect, inflation protection at a lower cost compared to investing in TIPS. On the one
hand, equity investments appear as relatively poor inflation hedging vehicles from a
short-term perspective. Empirical evidence indeed suggests that there is in fact a nega-
tive relationship between expected stock returns and expected inflation (see Fama and
Schwert (1977), Gultekin (1983) and Kaul (1987) among others), which is consistent
with the intuition that higher inflation leads to lower economic activity, thus depressing
stock returns (e.g. Fama (1981)).2 On the other hand, higher future inflation leads
to higher dividends and thus higher returns on stocks (Campbell and Shiller (1988)),
and thus equity investments should offer significant inflation protection over longer
horizons, a fact that has been confirmed by a number of recent empirical academic
studies (Boudoukh and Richardson (1993) or Schotman and Schweitzer (2000)). This
property is particularly appealing for long-term investors such as pension funds, who
need to match increases in price level at the horizon, but not necessarily on a monthly
basis. Obviously, different kinds of stocks offer contrasted inflation-hedging benefits,
and it is in fact possible to select stocks or sectors on the basis of their ability to hedge
against inflation (hedging demand), as opposed to selecting them as a function of their
outperformance potential (speculative demand). For example, utilities and infrastruc-
tures companies typically have revenues that are heavily correlated with inflation, and
as a result they tend to provide better-than-average inflation protection. Similar in-
flation hedging properties are expected for bond returns. Indeed, bond yields may be
decomposed into a real yield and an expected inflation components. Since expected
and realized inflation move together on the long-term (see Schotman and Schweitzer
(2000)), we expect a positive long-term correlation between bond returns and changes
in inflation. In the short-term, however, expected inflation may deviate from the ac-
tual realized inflation, leading to low or negative correlations. There again, an investor
willing and able to relax short-term constraints to focus on long-term inflation hedg-
ing properties will find that investing in nominal bonds can provide a cost-efficient
alternative to (or complement to) investing in inflation-linked securities.

Moving beyond traditional investment vehicles such as stocks and bonds, recent aca-
demic research has also suggested that alternative forms of investments offer attractive
inflation-hedging benefits. Commodity prices, in particular, have been found to be lead-
ing indicators of inflation in that they are quick to respond to economy-wide shocks

2This finding is also consistent with the so-called ”Fed model”, which is used by many investment
professionals to generate signals about the relative attractiveness of stock prices relative to bond
prices. The model assumes that bonds and equities compete for space in investment portfolios; if
bond yields increase, then stock yields must also rise in order to remain competitive. Thus, the Fed
model relates the yield on stocks (as measured by the ratio of dividends or earnings to stock prices) to
the yield on Treasury bonds and to the relative risk premium of stocks versus bonds. In the long-run,
the Fed model posits that the actual yield on stocks will revert to a normal yield level given by the
bond yield plus the risk premium. Historically, the rate of inflation has been a major influence on
nominal bond yields. Therefore, the Fed model implies that stock yields and inflation must be highly
correlated. Campbell and Vuolteenaho (2004) review stock market performance between 1927 and
2002, examining the impact of risk premiums and inflation on stock yields and find strong support for
the Fed model.
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to demand. Commodity prices generally are set in highly competitive auction markets
and consequently tend to be more flexible than prices overall. Beside, recent inflation
is heavily driven by the increase in commodity prices, in particular in the domain of
agriculture, minerals and energy. Consistent with these theoretical arguments, a re-
cent study by Gorton and Rouwenhorst (2006) find that, over the 1959-2004 period,
commodity futures were positively correlated with inflation, unexpected inflation, and
changes in expected inflation. They also find that inflation correlations tend to increase
with the holding period and are larger at return intervals of 1 and 5 years than at the
monthly or quarterly frequency. In the same spirit, it has also been found that commer-
cial and residential real estate provide at least a partial hedge against inflation, which
implies that portfolios that include real estate allow for enhanced inflation hedging
benefits (see Fama and Schwert (1977), Hartzell et al. (1987) or Rubens et al. (1989)).
This effect seems to be particularly significant over long-horizons. Hence, Anari and
Kolari (2002) examine the long-run impact of inflation on homeowner equity by in-
vestigating the relationship between house prices and the prices of non housing goods
and services, rather than return series and inflation rates, and infer that house prices
are a stable inflation hedge in the long-run. When it comes to securitized forms of
real estate investment, the situation is less clear, even though there is evidence of a
long-term connection that suggest that REITs could neutralize part of the inflation
risk in the long run (Westerheide (2006)).

In order to assess the inflation hedging potential of the various asset classes within a
unified framework, we follow the literature on predictability of asset returns (see e.g.
Kandel and Stambaugh (1996), Campbell and Viceira (1999) and Barberis (2000)). As
such, our analysis is closely related to Hoevenaars et al. (2008) who construct optimal
mean-variance portfolios with respect to inflation-driven liabilities based on model-
implied forward looking variances and expected returns. Their basic finding is that
alternative asset classes add value to the investor’s portfolio and command significant
positive allocation in the optimal mean-variance portfolio. The authors further stress
that the allocations in alternative asset classes are higher within the optimal asset-
liability portfolio as opposed to optimal asset-only portfolio. In what follows, we extend
this existing literature in several directions. First, we note that modeling returns with
a vector auto-regressive (VAR) model on log-returns, as was mostly done in previous
research on the subject, omits any information on price dependencies and long-term
equilibria to purely focus on short-term effects in return series. In order to address this
shortcoming of the VAR model, we include cointegration relationships in the model and
assess sensitivities of model-implied dynamics with respect to these additional factors
that capture price dependencies in addition to return dependencies. The resulting
error correction form of the vector-autoregressive model (VECM), or cointegrated VAR
model, has the striking advantage, as compared to the standard VAR representation,
that it explicitly distinguishes between short-term and long-term dynamics in the joint
distribution of asset returns and inflation. While error correction form of the vector-
autoregressive model have been extensively used in the macroeconomic literature in
order to distinguish between trends and business cycles and thus between stationary
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and non-stationary components in consumption and wealth dynamics (see e.g. Lettau
and Ludvigson (2004) or Beaudry and Portier (2006) for recent studies), this approach
is relatively new in the finance literature. It has been used in modeling price and return
dependencies of financial securities (e.g. Blanco et al. (2005) or Durre and Giot (2007))
and, more recently, in inflation hedging contexts (Westerheide (2006) or Hoesli et al.
(2007)).

To the best of our knowledge, our paper is the first to provide a comprehensive VECM
model for the formal analysis of inflation-hedging properties of various traditional and
alternative classes. We derive econometric forecasts for model-implied volatilities and
correlations, and we find that the results strongly deviate from what is obtained with
a standard VAR model (see Sections 3 and 4). Using the VECM model that explicitly
distinguishes between short-term and long-term dynamics in the joint distribution of
asset returns and inflation, we identify the presence of long-term cointegration rela-
tionships between the return on a typical pension fund liabilities and the return of
various (traditional and) alternative asset classes. Our results suggest that real estate
and commodities have particularly attractive inflation hedging properties over long-
horizons. Subsequently, we use the VECM fitted parameters in order to perform a
simulation-based analysis of the impact on ALM risk budgets of various portfolio allo-
cations. More precisely, the paper suggests a structural form of the model that incor-
porates i.i.d. innovations, which allows for the generation of a stochastic Monte Carlo
analysis in a straightforward manner. The afore-mentioned findings suggest that novel
long-term liability-hedging investment solutions can be designed so as to decrease the
cost of inflation insurance from the investor’s perspective. In particular, it is possible
to construct enhanced versions of inflation-hedging portfolios including inflation-linked
securities, but also, commodities and real estate, so as to achieve satisfactory levels of
inflation hedging over the long-term at a lower cost compared to a solution solely based
on inflation swaps. The intuition behind our results is rather straightforward. The in-
creased expected return potential generated through the introduction of commodities
and real estate in addition to TIPS in the LHP allows for a reduced global allocation
to the PSP while meeting the global performance expectations, which in turn allows
for better risk management properties.

The rest of this paper is organized as follows. In section 2, we present the economet-
ric framework and motivate the introduction on an error correction extension of the
standard VAR model. In Section 3 we describe the data base as well as preliminary
statistical tests that are used for model selection purposes. In section 4, we assess the
inflation hedging potential of various traditional and alternative asset classes, and con-
struct different versions of enhanced liability-hedging portfolios that contain real estate
and commodities in addition to TIPS. Section 5 analyzes the impact in terms of risk
budget improvements of the introduction of such enhanced liability hedging portfolios.
Section 6 concludes the paper.
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2 Modelling return and inflation dynamics

The first key challenge that needs to be met for the analysis of the benefits of al-
ternative investment strategies from an asset-liability perspective is the design of an
appropriate econometric model for the joint distribution of asset returns and inflation.
As recalled in the introduction, the bulk of literature on stock return predictability
and return dynamics modeling (e.g. Campbell and Shiller (1988)) has relied on vector-
autoregressive (VAR) models. The calibration of a VAR model is generally performed
on asset return series corresponding to asset classes of interest and a set of potentially
predictive economic variables that are introduced in order to enhance the explanatory
power of the model. In the context of VAR models, the choice of using return series as
opposed to price series is either non-motivated, or motivated by the stylized fact that
return series are stationary while asset price series are not. The important consequence
of stationarity follows from the Wold’s Decomposition Theorem that states that sta-
tionary processes can be expressed as a moving average process (cf. Hamilton (1994,
pp. 108)), which in turn allows for the derivation of analytical expressions for shock
responses, expected return and forward looking variances. Secondly, non-stationarity
leads to unstable, explosive and unbounded forward-looking variances and covariances,
which makes the model non-tractable and non-suited for portfolio selection purposes
(see Lütkepohl (1993)). As a consequence, most econometric financial applications are
based on return series or log-return series that are proven to be stationary, while price
series tend to be integrated of order 1 at least. More formally, a process yt is integrated
of order d (written: yt ∼ I(d)) if ∆dyt is stationary while ∆d−1 is not stationary (see
Lütkepohl (1993) for example).

One outstanding question, however, is whether taking first differences and removing
information related to price dependencies is too restrictive. The main concept behind
the cointegration framework, introduced by Engle and Granger (1987), is precisely that
integrated variables may exhibit common trends that account for the non-stationary
pattern in the system. Thus, linear combinations of non-stationary variables may turn
out to be stationary. Formally, a process is said to be cointegrated of order (d, i) with
d, i>0, or yt∼CI(d, i), if yt is integrated of order d (yt∼ I(d)) and there exists a linear
combination β′yt such that β′yt∼ I(d− i). In particular, if price series are I(1), we are
interested in linear combinations of these price series that are I(0) and thus stationary.
The next section introduces the error correction version of the VAR model, known as
VECM model, which incorporates both leveled and differences series. In other words,
the model uses systematic relationships of both cross-sectional returns dynamics and
cross-sectional price dynamics.

2.1 The econometric model

Let us first consider the standard vector-autoregressive (VAR) model of order p:

yt = c + A1yt−1 + . . . + Apyt−p + ut (1)
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where yt represents a n×1 vector of endogenous variables, c is a constant, Ai are n×n
coefficient matrices and ε is the innovation process. If the process is stable3, it may be
rewritten as a finite moving average process:

yt =
t∑

k=0

Φkut−k (2)

where Φ0 is the identity matrix and the Φs are recursively given as:

Φs =
s∑

j=1

Φs−jAj (3)

with Aj =0 for all j > p.

Moreover, stability implies stationarity, meaning that expected returns, variances and
covariances are time-invariant. This is a critical point for financial applications where
the econometric model is used for forecasting purposes and for deriving analytical ex-
pressions for expected returns, variances and correlations. In the case of non-stationary
processes, variances would be unbounded and time-variant which in turn leads to un-
bounded confidence intervals of the forecasted variables.

In order to infer whether a time series is stationary or not, various so-called unit root
tests are available. The most commonly used test is the Augmented Dickey-Fuller
(ADF) test (see e.g. Greene (2003)). If the test of unit roots cannot be rejected for all
endogenous variables in y, the VAR process is integrated or cointegrated. As outlined
above, if the variables are I(1), writing the VAR model (1) on first-differenced variables
generates a stationary process:

∆yt = c + Γ1∆yt−1 + . . . + Γp∆yt−p + ut (4)

The unfortunate consequence of using the first-differenced variables is that any informa-
tion regarding price dynamics is lost, which could prove detrimental to the predictive
power of the model. For example, in an early economic study on the relationship
between log consumption and log income, Davidson et al. (1978) have found that infor-
mation on the deviation from a long term equilibrium enhances the explanatory power
of the predictive model. To account for the presence of long-term relationships in price
series, the VAR model can be generalized through the following error correction form
(henceforth, VECM):

∆yt = c + αzt−1 + Γ1∆yt−1 + . . . + Γp∆yt−p + ut (5)

where z represents the deviation from the long term equilibrium. Subsequently, this rep-
resentation has been used to define the cointegration framework. Indeed, if a long-term
equilibrium relationship exists, it implies that z is a stationary variable. Assuming that

3A process yt is stable if its reverse characteristic polynomial has no roots in or on the unit circle:
det (I −A1−. . .−Apz

p) 6= 0 ∀|z|<1.
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the long-term equilibrium can be expressed as a linear combination of the endogenous
variables, we can rewrite (5) as:

∆yt = c + Πyt−1 + Γ1∆yt−1 + . . . + Γp∆yt−p + ut (6)

with the reduced rank matrix Π=αβ′. Its rank r<n determines the number of linear
independent long-term equilibrium relationships and is also called cointegration rank.
In other words, there are r independent linear combinations of the lagged endogenous
variables that define the cointegration relationships constituting r stationary variables
β′y. Accordingly, α and β are n×r matrices and β hosts the cointegrating vectors so that
β′yt is stationary and reflects the long term equilibrium relationships of the variables
while α hosts the corresponding adjustment parameters, that is, the parameters that
determine the reversion speed to this long-term equilibrium. It is important to note
that α and β are not unique due to the reduced rank of Π. Accordingly, additional
restrictions are needed to ensure that α and β are just identified. A set of restrictions
that has been accepted as a standard procedure in the econometric literature is to
define the upper part of β as the r×r identity matrix. Then, it can be shown that the
estimated coefficient matrices are asymptotically unbiased (see e.g. Lütkepohl (1993,
pp. 358)).Two particular cases are worth mentioning. First, if r=0, then there are no
linear combinations of the original variables that form a stationary process, and only
first-differencing may lead to a stationary system. Secondly, if r = n, yt has a stable
VAR(p) representation.

Note that we specify all entries in y as the log of the index level values. This is mainly
done because economic and financial time series are often shown to have exponential
trends. Writing linear regression models such as the VAR or the VECM on the log of
these variables is therefore consistent with the economically assumed dynamics since
taking the log of exponential process linearizes the processes. Log-returns are also
convenient because they directly add up across time-intervals.

2.2 Structural model and impulse-response functions

In the context of cointegrated processes, the dynamics of the underlying variables may
be separated in short-run and long-run dynamics. Short-run dynamics are driven by
the structural responses to lagged innovations captured by Γi in (5). The cointegration
relationship vector β and the reversion speed vector α govern the long-run dynamics.
More precisely, Π=αβ′ induces instantaneous shocks to the system if it deviates from
the long-term equilibrium. As outlined earlier, if the system is cointegrated, cross-
sectional responses to shocks may be non-transitory or persistent as the time-series
”hang together”. This section introduces a modeling approach that uses long-run and
short-run restrictions in order to identify the structural shocks of the system. The
structural form of the model is characterized by i.i.d. innovations εt,i, as opposed to
the correlated original innovation process ut,i. For this, we search for the transformation
matrix B such that:

ut = Bεt (7)
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From the structural assumption we know that the covariance matrix of the i.i.d inno-
vations ε (Σε) is diagonal. Without any loss of generality we postulate Σε to be the
identity matrix. Therefore, the original innovation covariance matrix may be written
as Σu = BB′. The transformation matrix B hosts n×n parameters that need to be
identified. Since Σu is symmetric, only 1

2
n(n + 1) independent equations are available

from Σu =BB′. For the parameters to be just identified we need 1
2
n(n− 1) additional

restrictions. One way to do this is to use the Cholesky decomposition. Then, the
contemporaneous impact matrix B is given as a lower triangular matrix. As a matter
of fact, the matrix B is not unique and the ordering of the variables determines the
dynamics of the structural shocks.

Given the specific context of the VECM and the fact that some shocks are persistent,
we follow Breitung et al. (2004) and impose restrictions on short-run dynamics of the
shocks as well as on the long-run impact matrix. According to Granger’s representation
theorem (see Johansen (1995), Theorem 4.2), this matrix is given by (see Vlaar (2004)
for details):

Ξ = β⊥ [α′⊥ (I − Γ) β⊥]
−1

α′⊥B (8)

with α⊥ and β⊥ such that:

α′⊥α = β′⊥β
!
= 0 (9)

The rank of this matrix is n− r since r cointegrating relationships form stationary
combinations, meaning that r shocks have only transitory impacts and disappear in the
long-run. As can be seen from (3), the long-run impact matrix of the structural shocks is
ΞB. Straightforwardly, this matrix also has reduced rank equal to n−r. Hence, at most
r columns of ΞB can be zero columns since only at most r structural innovation can have
transitory effects and at least n−r shocks must have persistent effects to the system.
Given its reduced rank, each column of zeros in ΞB accounts for n−r restrictions. As
shown in Gonzalo and Ng (2001), the remaining restrictions split up into r(r − 1)/2
restrictions on the transitory shocks (B) and into (n − r)((n − r) − 1)/2 additional
restrictions on the permanent shocks (ΞB). We set the identifying restrictions through:

RΞBvec (ΞB) = rl and RBvec (B) = rs (10)

while we restrict rl and rs to be vectors of zeros. The long-run restrictions may also
be written as Rlvec(B)= rl with Rl =RΞB(In⊗Ξ). The matrix B can accordingly be
estimated by the maximum likelihood method. Following Breitung et al. (2004), the
corresponding log-likelihood function is given by:4

l(B) = const− T

2
log |B|2 − T

2
tr

(
(B′)−1B−1Σu

)
(11)

4More details on distributional assumptions and asymptotic properties of the estimation method
can be found in Lütkepohl (2008).

8



Once the transformation matrix is identified, we can write the Structural VECM(1)
(SVECM(1)) in its reduced form:

∆yt = c + Πyt−1 + Γ∆yt−1 + Bεt (12)

This representation allows us to conduct structural impulse-response analyzes, that is,
to analyze the impact of isolated independent structural shocks εt as opposed to the
correlated innovation process ut in the reduced VECM form (5). To illustrate this, we
write the model in its level variables form:

yt = c + A1yt−1 + A2yt−2 + Bεt (13)

with:
A1 = In + Γ + αβ′ and A2 = −Γ (14)

Accordingly, the VAR model structure allows us to write structural impulse-response
functions as

Ξs = ΦsB (15)

with Φs as in (3). The elements in Ξs illustrate the impacts of unit structural shocks
that occurred at time t on the endogenous variables at time t+s. The kl-th element
of Ξs, for instance, depicts the impact of a unit structural shock to variable l at time t
on variable k at time t+s. As a result, this analysis allows us to measure the impact
of inflation shocks on the various asset classes through time and to analyze short-run
inflation hedging potential, in addition to the long run dynamic analysis captured by the
cointegration relations and the long-run dynamics given by Ξ∞. Confidence intervals for
impulse-response functions are computed based on the bootstrap procedure described in
Brüggemann (2006). In other words, we can assess co- or counter-movements between
the inflation index and asset returns, and subsequently analyse horizon dependent
inflation hedging capacities for the various asset classes. It is further worth mentioning
that the impulse response functions converge towards the long-run impact matrix ΞB.

As a direct application of the structural VECM, section 5 uses the i.i.d. innovation
process property in order to perform a Monte Carlo analysis based on the fitted model.
The generated scenarios will be subsequently exploited in a portfolio construction con-
text.

3 Data and model specification

Our empirical analysis focuses on a set of traditional and alternative asset classes.
Stock returns are represented by the CRSP value-weighted stock index. Commodi-
ties are proxied by the S&P Goldman Sachs Commodity index (GSCI). Real estate
investments are represented by the FTSE NAREIT real estate index, which is a value-
weighted basket of REITs listed on NYSE, AMEX and NASDAQ. We thus limit the
opportunity set to liquid and publicly traded assets. Finally, we add the Lehman Long
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US Treasury Index, as well as the one-month Treasury bill rate.5 Following the ev-
idence from the extensive literature on return predictability (see Stock and Watson
(1999) among others), we also add potential predictive economic variables to the set of
endogenous variables. We introduce the dividend yield (see e.g. Campbell and Shiller
(1988), Hodrick (1992) or Campbell and Viceira (2002)), the credit spread (computed
as the difference between Moody’s Seasoned Baa Corporate Bond Yield and the 10-
Year Treasury Constant Maturity Rate), as well as the term spread (obtained from the
difference between the 10-Year Treasury Constant Maturity Rate and the 1-month-T-
Bill rate). The dividend yield data is obtained from CRSP and all other economic
figures were obtained from The US Federal Reserve Economic Database.6 Our analysis
is based on quarterly returns from Q1 1973 through Q4 2007.

Regarding the liability side, we include an inflation proxy represented by the consumer
price index (CPI). As in Hoevenaars et al. (2008), we assume that the fund is in a
stationary state as would be the case in a situation where the age cohorts and the
built-up pension rights per cohort are constant through time. Under this assumption,
and further assuming that liability payments exhibit unconditional inflation-indexation,
the return on the liability portfolio can be proxied as the return on a constant maturity
zero-coupon TIPS with a maturity equal to the duration of the liability cash-flows.7 We
construct the time-series for such constant maturity zero-coupon TIPS in accordance
with the methodology described in Kothari and Shanken (2004), which states that
the nominal return on a real bond is given as the sum of a real yield plus realized
inflation. The real yield is in turn obtained as the difference of the nominal yield
and the sum of expected inflation plus the inflation risk premium. As in Kothari and
Shanken (2004), we assume the inflation risk premium to be equal to zero.8 We simplify
the computation of expected inflation by taking it as the 60-months moving average
inflation. As a result, we obtain the returns on liabilities as:

rL,t = yield
(τ)
t − Et(π) (16)

where the upper index τ indicates the duration of the liabilities, which we have arbi-
trarily chosen in what follows to be equal to 20 years.9 In Appendix A.2, we provide a
detailed derivation of the pricing scheme for inflation-indexed liabilities.

5The series is downloadable from Kenneth French’s web site (borrowed from Ibbotson Associates).
6See http://research.stlouisfed.org/fred2.
7Incorporating additional features such as actuarial uncertainty and inflation indexation would not

impact the main message of the paper, which focuses on the inflation-hedging properties of real assets.
8Note, that Kothari and Shanken (2004) also considered the case of a 50bps per annum inflation

premium.
9Hoevenaars et al. (2008) use 17 years as the duration of the liability portfolio. To avoid having to

rely on interpolation, we rather use observable interest rate series from the FED, which are exclusively
available for the maturities 1, 3, 5, 6, 7, 10 and 20 years (see http://research.stlouisfed.org/fred2).
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3.1 Model selection

We begin our empirical analysis with a number of preliminary tests that help us select
the appropriate econometric model. Table 1 presents the results of Augmented Dickey-
Fuller (ADF) tests for level, differenced and twice differenced series. The results clearly
show that all price series (level series) are non-stationary and thus integrated of at least
order 1. The results further indicate that some economic variables are I(1), while other
variables are I(2) as illustrated by the ADF tests on first and second differences. In fact,
for all log asset return series as well as for the credit and term spread series, we reject
the hypothesis of a unit root. The corresponding price series are therefore integrated of
order 1 and denoted by I(1)-variables. Other predictive economic variables (dividend
yield, 10-year yield, CPI) and the T-bill rate exhibit the pattern of I(2) variables since
taking second differences of the original price series is needed to eliminate the non-
stationarity in the variables.

The presence of I(2) integrated variables is a concern since it implies that the coin-
tegrating relations may still exhibit unit roots. As defined in Lütkepohl (1993), the
system is said to be integrated of order 2, which we denote by yt∼I(2), since the highest
order of integration among the set of variables is 2. In order to address I(2) processes,
the VECM model a priori needs to be extended to polynomial- or multi-cointegration
frameworks, meaning that second differences, linear combinations of first differenced
variables and linear combinations of level variables are included in the econometric
model (see Johansen (1995) for more details on the methodology). Two approaches
have been proposed in the econometric literature in order to circumvent the prob-
lem caused by such an increase in the model complexity. A first approach consists
of transforming the I(2) variable into I(1) variables without loss of information. The
idea is to choose a control variable among the I(2) variables that is supposed to move
homogeneously with the remaining I(2) variables. Subtracting this variable from the
others transforms the variables from I(2) into I(1) variables since the common trend is
eliminated. A convenient choice for the control variable in our setup is the price index
since subtracting it to the series means that the remaining I(2) variables will accord-
ingly be transformed from nominal to real variables. Additionally, the control variable
itself, in our case the price index, needs to be replaced by its first difference. This
nominal-to-real transformation has been studied in Juselius (2007) and is inspired by
preceding studies such as Engsted and Haldrup (1999), who consider various settings
where some variables are I(2), and show that adding their first differences as regressors
to the model leads to consistent stationary expressions for the long-run equilibrium.
A drawback of this approach is that it supposes price-homogeneity for the economic
variables and thus a common trend in the price level and the corresponding nominal
variables, a rather strong assumption that needs to be empirically justified. A second
possibility to circumvent the problem of I(2) variables is to find cointegrating rela-
tionships, that is, linear combinations of I(1) and I(2) variables that are stationary.
Then, the system is said to be cointegrated of order (2, 0), yt∼CI(2, 0), meaning that
there exists a cointegration matrix β such that β′yt ∼ I(0). This is also referred to
as direct cointegration (e.g. Haldrup (1998)). This approach is consistent with the
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recommendations in Hansen and Juselius (1995), who argue that ex-ante cointegration
rank tests should be accompanied with ex-post analysis of the cointegrating vectors.
Accordingly, we will first specify the cointegration rank r and than try to find r linear
combinations that form stationary variables. It is important to note that, because of
the normalization in the cointegration matrix β (see section 2.1), different orderings of
the variables lead to different cointegrating relationships.

Table 2 presents the results of the Johansen trace test for the cointegration rank. The
results suggest that the cointegration rank is either 6 or 7. We proceed as follows: for
each permutation of the order of variables, we estimate the reduced form VECM with
cointegration ranks r=6 and r=7 and extract the time-series across the cointegrating
vectors β′yt. Next, we perform ADF unit root tests in order to test for stationarity of
the cointegrating vectors. The ”best” ordering is evaluated as the one that leads to the
smallest p-values associated with the unit root tests. Tables 3-5 yield the estimation
results for the ”best” specification of the model measured by stationarity analyzes on
the cointegrating vectors. The p-values associated with this order of variables range
from 0 to 5.98% for the 6 vectors, which are reasonably low values.

Table 4 presents information regarding the estimated cointegrating vectors. As ev-
idenced by the results, all 6 equilibrium relationships are quite similar with respect
to the relevant, non-normalized parameters. In fact, for each of the 6 first variables
(liabilities, long bond, stocks, CPI, Yield (10Y) and T-Bills) the remaining variables
enter through a similar linear equilibrium relationship. While the loading on commodi-
ties and real estate is negative within the equilibrium relationship, credit spread, term
spread and dividend yield enter the long-term relationship positively. Accordingly, the
interpretation of the impact of the cointegrating relationship on the return dynamics
merely depends on the adjustment speed parameters displayed in Table 5. The next
section presents model-implied volatilities, correlations and impulse-response functions.
In addition to the VECM estimates, we also estimate for comparison purposes the stan-
dard VAR(1) model on quarterly returns. Indeed, our goal is to show that explicitly
accounting for the presence of cointegration relationships leads to significantly differ-
ent results from what is obtained from the standard benchmark VAR model used in
previous literature.

3.2 Model implied variances, correlations and impulse re-
sponses

Based on the estimated structures, we derive for both the VECM and the VAR(1)
model implied properties of the return dynamics. In Figure 1, we plot annualized
volatilities for returns on liabilities and asset classes for different investment horizons
according to the equations derived in appendix A.1. A particular focus of the graphs is
on the difference between VAR-implied volatilities (dashed lines) and VECM-implied
volatilities (solid lines). The differences between the two econometric methodologies
turns out to be rather significant for bonds, stocks and commodities, with VECM-
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implied volatilities proving to be significantly lower than VAR-implied volatilities for
these classes. Liability, T-bill and real estate returns do only show minor differences
between the VAR and the VECM approaches. The difference in implied volatility
estimates is due to the equilibrium reverting character of the additional part αβ′yt−1.
As explained above, while β′yt−1 establishes the equilibrium relationship, α determines
the instantaneous impact of a deviation from this equilibrium on ∆yt. In an attempt to
shed some light into this discrepancy between VAR and VECM implied characteristics
for stocks and commodities, it is worthwhile to refer to the credit spread variable.
First, credit spread is highly significant as a predictive variable for both stocks and
commodities. Secondly, credit spread enters positively into all cointegrating vectors
with t-statistics ranging between 8 and 10. Given that stocks (respectively, commodity)
returns depend positively (respectively, negatively) on changes in credit spread (see
Table 3) and given that (according to Table 5) the highest adjustment parameter values
are negative (respectively, positive) the long-term dynamics partly offsets the short-
term dynamics, which in turns reduces the volatility. For real estate and liabilities,
this offsetting effect is less pronounced, as evidenced by the balanced set of adjustment
parameters in Table 5, meaning that some are positive while other are negative, which
eventually cancels much of the overall long-term impact on the corresponding return
dynamics.

A second remarkable effect is that VAR-implied volatilities seem to indicate that as-
sets become more risky as the investment horizon increases, while VECM volatilities
have contrasted implications for the various assets. Liabilities, T-bills and real estate
investments appear to be more risky in the long run, while bonds, stocks and com-
modities exhibit a downward sloping volatility structure, especially from very short to
medium-term horizons. It should be noted at this stage that a mean-reversion effect
is already present in the VAR model, and is due to a mean-reversion effect induced
by the predictive power of specific lagged variables and negative relationships for in-
stantaneous covariances, as explained in Campbell and Viceira (2005). For instance,
stock returns exhibit some evidence of predictability through lagged dividend yields
as evidenced by positive coefficients in Tables 3 and 9. At the same time, contem-
poraneous innovations are negatively correlated (see Table 6). As a result a positive
shock in t on dividend yields goes (on average) along with a negative shock on stock
returns in t and, through the autoregressive link, a positive shock on stock returns in
t+1. The offsetting effect may be interpreted as mean-reversion, which in turn lowers
the volatility of compounded stock returns. However, our findings suggest that this
predictability-induced mean-reversion effect is small compared to the mean-reversion
effect induced by the long-term co-integration relationships.10

Next, Figure 2 displays horizon-dependent correlation coefficients between liability re-
turns and the return on various asset classes. The plots clearly suggest that bond, stock

10It should be noted that Campbell and Viceira (2005) have found with a VAR model a steeper
downward sloping volatility term structure for stock returns, but their analysis is based on real return
series, while we explicitly analyze on the one hand the nominal returns, and its inflation component
on the other hand.
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and real estate returns are negatively correlated with liabilities in the short run, and
that the correlation coefficient exhibits an upward pattern as the investment horizon
increases. Bond returns and stock returns start to become positively correlated with
liability returns after about 60 quarters (15 years) and end up with a significant positive
correlation of roughly 0.4 with a 30-year investment horizon. Again, the result allows
us to identify significant discrepancies between VAR and VECM models, especially for
commodities and real estate. Commodity returns are positively correlated with liabil-
ity returns in both cases, but the VECM implies a significantly higher and more stable
correlation than the VAR. Model-implied correlations between real estate and liability
returns, on the contrary, are significantly higher in the VAR model when compared to
the VECM. This may be due to the fact that commodities are part of all 6 long term
equilibrium relationships, a result of the normalization process of the matrix β and
the variable order permutation procedure described above. The next section evaluates
the impact of these model-implied moments and co-moments from a liability hedging
portfolio perspective.

Impulse-response functions (Figure 3) indicate that with the mere exception of com-
modities all responses to a structural liability shock are higher when implied by the
VECM. This is mainly intrinsic to the model as by definition some shocks are persistent
which can not be the case in VAR model-implied shocks, an important restriction of
the latter class of models.

4 Inflation hedging properties of various assets and

portfolios

Investment horizon dependent allocation decisions have been widely studied in the liter-
ature over the last decade. Brandt (2005) and Campbell and Viceira (2005) discuss the
differences between short-term or myopic and intertemporal asset allocation decisions.
The term structure of risk, merely driven by the presence of mean-reversion effects,
with different speeds of mean reversion (see Lettau and Wachter (2007)), also plays a
central role in asset allocation decisions in the presence of liabilities (see also Campbell
and Viceira (2005) for the notion of term structure of risk). This section uses VECM
model-implied dynamics in order to assess inflation hedging potential across different
investment horizons.

Consistent with the portfolio separation theorem, we will study the liability hedging
portfolio (LHP) separately from the performance seeking portfolio (PSP). In a frame-
work where liabilities are indexed with respect to inflation, and when short-term liabil-
ity risk hedging is the sole focus, the optimal LHP allocation consists of investing 100%
into the inflation-indexed bond portfolio (TIPS portfolio), which unfortunately leads
to very limited upside potential. Consequently, the investor needs a relatively sizable
significant allocation to the PSP in order to meet the return requirements, which in
turn generates a relatively high funding risk. Intuitively one would expect that re-
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laxing the constraint of a perfect liability fit for the LHP at the short-term horizon
would allow one to include alternative asset classes in the LHP, which in turns leads to
an increased upside potential. Overall, this would allow an investor to reduce his/her
allocation in the PSP, which in turn shall lead to a reduced surplus risk. To formalize
this intuition, we perform a scenario-based analysis in order to derive the funding ratio
distribution at various investment horizons. The data generating process is described
by the vector error correction model (VECM) introduced in section 2.1. We further use
the structural model so as to disentangle the correlated innovation process and trans-
form it into i.i.d. innovations. We draw i.i.d. random variables from the multivariate
standard normal distribution for the structural innovations εs

t (s = 1 . . . S) and obtain
the modeled returns by:

∆ys
t = c + Πys

t−1 + Γ∆ys
t−1 + Bεs

t (17)

for a total of S = 5, 000 simulated paths. The first variable in ys
t represents the lia-

bility return. We evaluate the different portfolios in terms of the funding ratio (FR)
distribution. The funding ratio at t in scenarios s is accordingly given by:

FRs
t = exp ((ω′ − ι)ys

t ) (18)

where ι denotes the n×1 vector containing a 1 in the first position and zeros elsewhere,
and ω is the portfolio vector. We first analyze the potential of stand-alone inflation
hedging portfolios before constructing optimal portfolios.

4.1 Stand-alone hedging potential

This section assesses the inflation hedging potential of the various asset classes on a
stand-alone basis. The analysis follows the methodology previously described, that is,
all conclusions are drawn from the funding ratio distributions over the 5,000 simulated
scenarios based on the fitted VECM dynamics (cf. previous section). We compare in-
vestments in the perfect liability hedging portfolio (TIPS) to investments in traditional
assets (bonds and stocks) and to investments in alternative investments (commodities
and real estate). Various investment horizons from 3 through 30 years are considered.

Table 10 presents the relevant indicators for the funding ratios assuming a 100% in-
vestment in the corresponding traditional or alternative asset class. The first column
of the table refers to the liability hedging portfolio that is obtained by a 100% invest-
ment in an inflation-indexed security that has the same maturity as the liabilities.11 In
this simplified setting, this 100% TIPS liability hedging portfolio in fact proves to be

11Note, that in reality such portfolios may be unavailable as TIPS are issued for a small number
of maturities. For instance, in the US, only TIPS with maturity up to 10 years are available. Note
further that we omitted statistics for T-Bill portfolios from these tables. In fact, even though T-Bills
are well correlated with the liability returns, they exhibit a significant lack of relative performance due
to the term spread risk premia contained in the liability return. As a result, T-Bills under-perform
liabilities significantly and are not a natural candidate for the liability-hedging portfolio.
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a perfect match for the liability, and therefore mean funding ratio are equal to 1 with
a 100% probability for all time-horizons.12 The mean funding ratios for other classes
in Panel A are higher than 1, which indicates that all assets have, on average, higher
returns than the liability stream. This is consistent with the observed historical values
that have been used to calibrate the data generating process described in the previ-
ous section. On the other hand, these asset classes involve the introduction of some
liability risk, as evidenced by the number in Panel B and Panel C. The shortfall prob-
abilities in Panel B illustrate the time-horizon characteristics of the assets with respect
to the liabilities. Indeed, shortfall probabilities systematically decrease as the invest-
ment horizon increases. This is consistent with results obtained for the model-implied
volatilities and correlations with the liabilities (see Figures 1 and 2). The correlation
between bonds, stocks and real estate with the liabilities increases with time-horizon.
Additionally, volatilities decrease with the investment horizon for bonds, stocks and
commodities, and slightly increase, in relative terms, for real estate, while the model-
implied volatilities of liability returns sharply rise as the investment horizon increases.
Furthermore, the superior returns of the assets explain a part of the observed down-
wards sloping shortfall probabilities since they translate into a steeper positive trend
in the numerator than in the denominator of the funding ratio. The strong decrease in
shortfall probability for stocks is also explained by the structural relationship between
liability shocks and aggregated responses to stock returns (see figure 3). Indeed, the
persistence of liability shocks is much more pronounced for stocks than for other assets.
As far as commodities are concerned, the response to liability shocks is immediate but
not persistent which explains why shortfall probabilities decrease less sharply than in
the case of stocks. Real estate on the other hand reacts negatively in the short run
but ”recovers” as the liability shocks leads to persistently positive shocks to future real
estate returns.

Overall, these shortfall probabilities are quite high in the short run, with numbers
ranging from 37% (stocks and real estate) to 47% (long bond) and fall, at least for
stocks and real estate, which suggest that moving away from TIPS, if it allows for a
better performance (mean funding ratios greater than 1), involves significant short-term
liability risk. On the other hand, these values eventually decrease in the long-run for
stocks and real estate (with shortfall probabilities equal to 10% and 15%, respectively),
while they remain at a high level for commodities (25%) and the long bond (38%).

In Panel C we present the probabilities that the asset portfolio value falls ”severely”
short of the liability portfolio value.13 For short investment horizons, these severe
or extreme shortfall probabilities are alarmingly high with numbers higher than 20%.
Additionally, for the long bond, extreme shortfall probabilities do not seem to decrease
in the long run (26% for 3 and for 30 years with even higher numbers in the mid-run).

12In practice, the presence of non-financial sources of risk, e.g., actuarial risk, implies that there is
some remaining funding risk even with a solution invested 100% in inflation-hedging instruments with
maturities matching the maturity dates of the pension payments.

13Throughout this study, severe shortfalls are defined as a situation with a funding ratio is lower
than 90%.
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As far as commodities are concerned, one obtains a modest decrease from 26% (3-7
years) to 20% (30 years). On the other hand, stocks and real estate exhibit similar
significantly downwards sloping patterns as in the case of shortfall probabilities (Panel
B). Across all 4 assets, we observe that the level of severe shortfall probabilities (Panel
C) is only slightly below the level of standard shortfall probabilities (Panel B) which,
obviously, is a great concern for the pension fund.

As a first result, we find that both commodities and real estate exhibit potentially
interesting features in an asset liability management context. Both largely outperform
the liability on average, and exhibit inflation-hedging potentials that increase in the
long-run. In fact real estate exhibits shortfall probability figures that are as competitive
as stocks and that sharply decrease with the investment horizon (from 37% for 3 years
to 15% for 30 years). Commodities substantially outperform bonds in terms of average
funding ratio and shortfall probabilities. Based on these encouraging results, we expect
significant gains from adding commodities and real estate to the pure liability hedging
portfolio invested in TIPS.

4.2 Liability hedging portfolios

The results from the previous section seem to suggest that introducing commodities
and real estate, in addition to TIPS, in a pension fund LHP would allow for upside-
potential while limiting shortfall probabilities to a reasonably low level, at least from a
long-term perspective. In what follows, we quantify the trade-off between a deviation
from the perfect liability match and the resulting return upside potential, which in
turn will have the welcome side effect of decreasing the required contributions. The
consequences in terms of ALM risk budgets of introducing alternative asset classes so
as to design enhanced liability-hedging portfolios with improved performance will be
quantitatively analyzed in section 5.

In order to analyze the characteristics of liability hedging portfolios that are enhanced
by commodities and real estate assets, we proceed in two steps. First, we find the
optimal portfolio mix of commodities and real estate and secondly, this portfolio is
added to TIPS in various proportions so as to form the enhanced liability hedging
portfolio (henceforth enhanced LHP). The first step is addressed by finding the portfolio
of commodities and real estate that minimizes the tracking error volatility with the
TIPS portfolio. Figure 4 shows the resulting portfolios as a function of the investment
horizon. As evidenced by the graph, the portfolio is well-balanced between the two
assets, and the position in commodities increases with the investment horizon.

Table 11 presents funding ratio statistics for the enhanced LHP. Various portfolios,
ranging from 0% to 50% of alternative investments (AI) with the remainder in TIPS, are
studied. The mean funding ratio of the enhanced LHP is a simple linear combination
of the individual mean funding ratios and the interpretation is straightforward. In
particular, Panel A of table 11 shows that the upside potential is an increasing function
of the percentage allocated to alternative assets within the LHP portfolio. On the
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other hand, the more the investor allocates to the alternative assets, the higher is the
risk to fall severely short of the liabilities. However, the results suggest very important
gains when stepping from stand-alone alternative asset classes to alternative investment
portfolios in terms of shortfall probabilities. Indeed, at all investment horizons, the
shortfall probabilities are significantly lower for various versions of the enhanced LHP
compared to the results obtained for the stand-alone assets (Table 10). For instance,
for investment horizons of 10 years (respectively, 20 years), shortfall probabilities are
as low as 17% (respectively, 9%) compared to 27%-35% (respectively, 19%-29%) on the
stand-alone basis.14 More importantly perhaps, Panel C indicates that the decrease
in severe shortfall probability is substantial. Even for a rather important investment
to the AI portfolio of 50%, severe shortfall probabilities are only 6% in the short-run
and 2% for long investment horizons. For modest investments to the AI portfolio (0%-
15%), the severe shortfall probability even decreases to 0% meaning that none of the
5,000 simulated paths yields a funding ratio lower than 90%, whatever the investment
horizon. Overall these results suggest that the introduction of alternative investment
vehicles may lead to increased upside potential for the LHP without severely increasing
the shortfall risk.

5 Implication for risk budgeting in asset-liability

management

This section attempts to study the impact of the introduction of real estate and com-
modities within the liability-hedging portfolio on the level of expected funding ratio
over various time-horizons.

5.1 Risk budgeting with LDI solutions

In terms of risk budgets, the implementation of LDI solutions critically depends on
the attitude towards risk. It is typically understood that high risk aversion levels
leads to a predominant investment in the liability-hedging portfolio, which in turn
implies low extreme funding risk (zero risk in complete market case), as well as low
expected performance and therefore high necessary contributions. On the other hand,
low risk aversion levels lead to a predominant investment in the performance-seeking
portfolio, which implies high funding risk as well as higher expected performance, and
hence lower contributions. To formalize this intuition, one may compare the initial
contribution that is needed to generate a 100% funding ratio at the horizon when the
investor’s portfolio is fully invested in TIPS (the perfect liability-hedging portfolio)
versus the initial contribution needed to generate an average 100% funding ratio at

14Note that shortfall probabilities solely depend on the investment horizon and not on the fraction
allocated to the AI portfolio. This result is intrinsic to the buy-and-hold methodology and the fact
that the TIPS portfolio exhibits non-stochastic funding ratios equal to 1.
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the horizon when risky asset classes such as stocks and bonds are introduced. Figure
6 presents a graphical representation of this effect for different investment horizons.
For instance, for an investment horizon of 20 years, an allocation of 40% to the PSP
(which is so far assumed to contain stocks and bonds in a proportion that generates
the maximum Sharpe ratio - see Figure 5) and 60% in the liability hedging portfolio
fully invested in TIPS allows one to reduce the initial contributions by almost 20%
compared to a 100% investment in TIPS liability-hedging portfolio. Of course, this
contribution saving effect comes at the cost of introducing funding risk at the global
portfolio level. As can be seen from Panel B in Table 12, shortfall probabilities show a
significant increase in the allocation to the PSP, even though it should be noted that
the magnitude of this effect decreases with time-horizon.

5.2 Improving ALM risk budgets through the introduction of
real estate and commodities within the LHP

We now analyze the impact on ALM risk budgets of the introduction of real estate
and commodities within the LHP. We first draw a comparison between the option that
consists of investing 100% in the LHP but enhancing the LHP with the introduction
of real estate and commodities, and the option that consists in leaving the LHP fully
invested in TIPS and seeking to add performance potential through the introduction
of the PSP, as discussed in the previous sub-section. A comparison of the results in
Panels B and C of Table 11 and the results in Panels B and C of Table 12 clearly
indicates that introducing alternatives within the LHP (option 1) systematically leads
to a lower increase in risk indicators compared to the introduction of traditional asset
classes through the PSP (option 2). For example the probability of a shortfall greater
than 90% at the 20 years horizon is 2.1% when the investor’s portfolio is invested 60%
in TIPS and 40% in the combination of real estate and commodities that allows for
the best liability-hedge (see Panel C of Table 11), while it reaches 5.92% when the
investor’s portfolio is invested 60% in TIPS and 40% in the combination of stocks and
bonds that allows for the maximum Sharpe ratio (see Panel C of Table 12).

In the same spirit, Figure 7 shows the relative contribution savings as a function of the
alloation to the PSP when the LHP is enhanced by 10% alternative investments. In
comparison to Figure 6, the graph suggests that for comparable allocations to the PSP,
contribution savings are larger in magnitude when using enhanced LHP instead of the
sole TIPS LHP. Consequently, the target contribution saving can now be reached with a
lower allocation to the PSP portfolio. Figures 8 and 9 illustrate this effect for LHPs that
are enhanced by the introduction of 5%, respectively 10%, of alternative investments
(represented again by the portfolio of real estate and commodities that minimizes the
tracking error with respect to the liability portfolio). For instance, with an LHP that
is composed of 90% TIPS and 10% alternative assets (Figure 9), an allocation of only
27% to the PSP leads to the same mean funding ratio, or, equivalently, to the same
contribution savings, than an investment of 40% in the PSP when the LHP is solely
invested in TIPS.
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Table 13 presents the corresponding ALM risk indicators , with numbers that can be
compared to the results in Table 12. We observe that (for a given allocation to the
PSP) enhanced LHPs do not only lead to higher mean funding ratios, but they also
lead to lower shortfall probabilities (see Panel B of Table 13) compared to the case
of the non-enhanced (i.e., pure TIPS) LHP (Panel B of Table 12). This is obviously
related to portfolio diversification effects between traditional assets within the PSP
and alternative assets within the LHP. Severe shortfall probabilities (see Panel C of
Table 13) also decrease substantially when compared to the case where the LHP was
represented by the TIPS portfolio (see Panel B of Table 12).

Figure 10 combines the risk and return perspectives by plotting the reduction in the
probability of a deficit and probability of a severe deficit indicators when shifting from
the standard LHP (100% TIPS) to the enhanced LHP while maintaining the same
level of mean funding ratio. In this analysis, we consider a base case of 40% invest-
ment to the PSP and 60% to TIPS, and shows the reduction of the required PSP
allocation obtained by an investor willing to substitute the enhanced LHP (when ei-
ther 5% alternative investments or 10% alternative investments are introduced) to the
pure 100% TIPS LHP. For instance, we find that when the investment horizon is 20
years, enhancing the LHP by the introduction of 5% (respectively 10%) of the real
estate + commodities portfolio allows one to reduce the allocation to the PSP by 14%
(respectively, 31%) while maintaining the mean funding ratio at the same level as with
the non-enhanced LHP. The graphs further shows the resulting percentage reduction
in shortfall probability and expected shortfall. Again for an investment horizon of 20
years, the introduction of 5% (respectively 10%) of alternatives (real estate and com-
modities) within the LHP leads to a 19% (respectively, 39%) reduction in shortfall
probability. The reduction in severe shortfall probability is even greater and reaches a
spectacular 42% (respectively, 78%).

6 Conclusions and directions for future research

Based on a suitable econometric framework, we have studied the relationship between
inflation-driven liabilities and asset returns on bonds, stocks, commodities and real
estate at various horizons. We have used the error correction form of the vector au-
toregressive model (VEC model or VECM) that allows for incorporating price and
return dependencies, as opposed to the standard form of VAR models that solely fo-
cuses on the dynamics of returns. As a result, long-term dependencies between asset
and liability values may be better captured, based on a larger fraction of the informa-
tion contained in the data. We have used the VEC model-implied return dynamics in
order to construct horizon-dependant volatilities and asset-liability correlations. Our
empirical analysis suggests that explicitly accounting for long-term cointegration re-
lationships leads to significant differences in forecasted properties of asset returns in
terms of their term structure of risk and correlations with the liabilities. In particular
we have found that VECM-implied volatilities are significantly lower than VAR-implied
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volatilities for stocks, bonds and commodities, an effect with particularly pronounced
in the long-term. This is due to the fact that mean-reverting properties of asset re-
turns are accounted in a more satisfactorily manner when the econometric procedure
explicitly allows for the modeling of long-term dependencies between asset returns and
predictive state variables. We have also found that VECM-implied correlations between
asset returns and liability returns to be significantly different from the VAR-implied
correlations. In particular the liability-hedging potential of commodities seems to be
understated by the VAR estimation procedure compared to the case when the presence
of long-term cointegration relationships is explicitly accounted for.

We have used the structural form of the VEC model to perform a Monte Carlo simula-
tion exercise and generate a large number of simulated scenarios for asset and liability
returns in order to analyze the distribution of funding ratios of various portfolios at
different time-horizons. We have found that various alternative asset classes exhibit
attractive inflation-driven liability hedging properties. For instance, investing in com-
modities leads to very low shortfall probabilities at virtually all investment horizons.
While investing in real estate leads to higher shortfall probabilities in the short and
medium run, significantly lower probabilities are obtained in the very long run (>30
years). These results suggest that novel liability-hedging investment solutions, in-
cluding commodities and real estate in addition to inflation-linked securities, can be
designed so as to decrease the cost of inflation insurance for long-horizon investors.
These solutions are shown to achieve satisfactory levels of inflation hedging over the
long-term at a lower cost compared to a solution solely based on TIPS or inflation
swaps. The increased expected return potential generated through the introduction
of commodities and real estate in addition to TIPS in the LHP allows for a reduced
global allocation to the PSP while meeting the global performance expectations, which
in turn allows for better risk management properties. For example, in the case of a
20 years investment horizon, the introduction of 5% (respectively 10%) of alternatives
(real estate and commodities) within the LHP is found to lead to a 19% (respectively,
39%) reduction in shortfall probability. The reduction in severe shortfall probability
is even greater and reaches a spectacular 42% (respectively, 78%). Overall our results
suggest that alternatives are very useful ingredients for institutional investors facing
inflation-related liability constraints.

Our analysis of the benefits of alternatives in institutional portfolios can be extended in
several directions, and in particular would ideally encompass other forms of alternative
investments. While we have focused on real estate, commodities, institutional investors
have recently shown an increasing interest in other alternatives such as private equity
and infrastructures, for which the intuition suggests that attractive inflation-hedging
properties could also be obtained. The unavailability of time-series for these asset
classes with the sufficient length and frequency is, however, a serious concern from
the econometric perspective. One possible solution would involve the construction of
liquid proxies for the returns on these assets based on publicly traded instruments
with similar characteristics, but the adequacy between the proxy and the actual form
of investment under consideration (private equity or infrastructure) would have to be
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carefully assessed. Other alternative forms of investment that have gained popularity
in institutional portfolios are external hedge funds portfolios, and also internal Global
Tactical Asset Allocation (GTAA) strategies. While hedge funds and GTAA strategies
are not expected to exhibit particularly attractive inflation-hedging properties, they
appear as natural candidates to enter the performance-seeking portfolios because of
their focus on factor-neutral alpha generation. Here again data availability is a serious
concern since we do not have access to a time-series that would represent the perfor-
mance of an index of typical GTAA managers, and given that return data on hedge
fund managers have a rather limited history.
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A Appendix

A.1 Model-implied returns, variances and correlations

As in continuous-time models, our econometric approach allows us to obtain analytical
expressions for time-dependent variances, covariances and expected returns. To see
this, we first write the model-implied forward looking returns for the first 3 dates as
functions of the interim shocks and current values for yt and ∆yt:

15

∆yt+1 = Πyt + Γ∆yt + ut+1

∆yt+2 = Πyt+1 + Γ∆yt+1 + ut+2

= Π (yt + ∆yt+1) + Γ∆yt+1 + ut+2

= Πyt + (Π + Γ) (Πyt + Γ∆yt + ut+1) + ut+2

= Π (I + ΠΓ) yt + (Π + Γ) Γ∆yt + (Π + Γ) ut+1 + ut+2 (A.1)

∆yt+3 = Πyt+2 + Γ∆yt+2 + ut+3

= Π (yt + ∆yt+1 + ∆yt+2) + Γ∆yt+2 + ut+3

=
[
Π + Π2 + (Π + Γ) Π (I + Π + Γ)

]
yt +

[
Γ

(
Π + (Π + Γ)2)] ∆yt

+
[
Π + (Π + Γ)2] ut+1 + (Π + Γ) ut+2 + ut+3.

We subsequently obtain all finite forward looking implied returns through iteration and
denote:

∆yt+k = Ψ
(k)
0 yt + Ψ

(k)
∆ ∆yt +

k−1∑
j=0

Ψ(j)
u ut+k−j. (A.2)

These expressions may then be used to define model-implied expected returns, variances
and covariances. Using yt+k = y0 + ∆yt+1 + . . . + ∆yt+k, it is straightforward to show
that we obtain:

Et (yt+k) =

[
k∑

i=1

Ψ
(i)
0

]
yt +

[
k∑

i=1

Ψ
(i)
∆

]
∆yt (A.3)

Vart (yt+k) =
k∑

i=1

[(
i−1∑
j=0

Ψ(j)
ε

)
Σu

(
i−1∑
j=0

Ψ(j)
u

)′]
(A.4)

where Σu denotes the time-invariant covariance matrix of the innovation process u.
Correlation coefficients may also directly be derived from relation (A.4).16

15We use a model with 1 lag as we will focus on this specification for our later numerical application.
Further, as noted in Campbell and Viceira (2004) each Var(p) model may be transformed into a Var(1)
model by adding lagged version of the vector of endogenous variables as additional state variables.

16Note that similar expressions may be obtained for the VAR(1) model on log returns. In this case,
Ψ(s)

0 is equal to 0 and Ψ(s)
∆ and Ψ(s)

u simplify to Ψ(s)
∆ = Ψ(s)

u = Φs with Φs as in (3). It is obvious
that VAR(1) implied conditional moments are different from VECM(1) implied moments except if
Π = 0 and Γ = A. Note further that the non-stochastic constant term has been introduced as one of
the endogenous variables for tractability of the formulas. Accordingly, assuming the first entry is the
constant term, the first line and the first column of Σ solely contain zeros.
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A.2 TIPS-Pricing

Consider a pension fund that faces inflation-indexed liability payments. Such inflation-
linked cash-flows are formally similar to the payoff of a portfolio of zero-coupon
treasury-inflation-protected securities (TIPS) with the corresponding face values and
maturity dates. In what follows, we provide a closed-form expression for the price of
this liability portfolio. Let us denote by Φ(t) the price index level at t. For each real
dollar payment scheduled for date t, the pension fund will eventually pay Φ(t). Let us
further denote Ψ(t) the stochastic discount factor or, put differently, the risk-neutral
price of a unit real payment scheduled for t.

The current value of the liability (or equivalently TIPS) portfolio may then be written
as:

L0 = E0

[
T∑

t=1

lt
Φ(t)

Ψ(t)

]
(A.5)

with

Φ(t) = exp

(
t∑

i=1

π(i)

)
Ψ(t) = exp

(
t∑

i=1

rL(i)

)
(A.6)

where π(t) denotes expected inflation at t and rL(t) the risk neutral return of the
liability portfolio at date t.17 We obtain:

L0 = E0

[
T∑

t=1

lt exp

(
t∑

i=1

−rL(i) + π(i)

)]
(A.7)

=
T∑

t=1

ltE0

[
exp

(
t∑

i=1

−rL(i) + π(i)

)]
(A.8)

Assuming normally distributed residuals ut in (4) and (6) we use the expected value ex-
pression of log-normally distributed random variables: E(exp(X)) = exp

[
E(X) + 1

2Var(X)
]

to obtain:

L0 =
T∑

t=1

lt exp

(
E0

[
t∑

i=1

−rL(i) + π(i)

]
+

1
2
Var0

[
t∑

i=1

−rL(i) + π(i)

])

Finally, we use (A.3) and (A.4) and write risk-neutral price of the liability stream at initial
date 0 as:

L0 =
T∑

t=1

lt exp
[
−µ(t)

rL
+ µ(t)

π +
1
2

(
Σ(t)

rL,rL
+ Σ(t)

π,π − 2Σ(t)
rL,π

)]
(A.9)

where µ
(t)
i denotes the element in the vector E0(yt) that corresponds to variable i and Σi,j is

the covariance-element in the matrix Var0(yt) that corresponds to variables i and j.

17rL is typically a sum of three components: the real treasury bill rate, realized inflation and a
risk premia that accounts for interest rate risk and (the absence of) inflation risk (see Kothari and
Shanken (2004)).
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Table 1
Unit-root tests (ADF)

Level First differences Second differences

ADF p-value ADF p-value ADF p-value
Liabilities -2.31 0.17 -3.16 0.02 -6.03 0.00
Long Bond -0.29 0.92 -6.17 0.00 -7.90 0.00
Stocks -0.55 0.88 -5.58 0.00 -8.93 0.00
CPI -2.14 0.24 -2.70 0.08 -6.10 0.00
Yield (10Y) -2.70 0.08 -1.39 0.57 -5.85 0.00
T Bills -2.04 0.28 -2.25 0.19 -4.76 0.00
Commodities -0.40 0.91 -5.05 0.00 -6.78 0.00
Real Estate -0.65 0.85 -4.86 0.00 -8.60 0.00
Credit Spread 0.42 0.98 -3.75 0.00 -5.96 0.00
Term Spread -0.62 0.86 -4.19 0.00 -6.43 0.00
Div. Yield 2.93 1.00 -1.68 0.44 -5.11 0.00
Augmented Dickey-Fuller (ADF) tests are run for each time series.
Quarterly price series from Q1 1973 through Q4 2007 are analyzed.
ADF-test statistics and the corresponding p-values are given. The
first two columns correspond to the ADF tests on the original price
series. Column 3-4 yield the ADF test on first differences, that is,
quarterly log returns. The last two columns yield the ADF test
results for log-return differential series. Across all test we have in-
troduced 4 lags which corresponds to 1 year lagged returns.
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Table 2
Johansen’s trace test for cointegration order

r0 LR 90% 95% 99% p-value
0 1799.31 277.38 285.02 299.74 0.00
1 1036.85 232.10 239.12 252.66 0.00
2 626.83 190.83 197.22 209.58 0.00
3 400.91 153.56 159.32 170.50 0.00
4 228.69 120.28 125.42 135.43 0.00
5 124.63 91.01 95.51 104.36 0.00
6 74.72 65.73 69.61 77.29 0.02
7 45.83 44.45 47.71 54.23 0.08
8 22.56 27.16 29.80 35.21 0.28
9 5.39 13.42 15.41 19.62 0.77
The table yields the results of the Johansen’s
trace test. r0 denotes the cointegration rank
under the null hypothesis and LR the corre-
sponding test statistic. The remaining columns
give critical values for rejecting the test for var-
ious confidence levels and, in the last column,
p-values. Quarterly price series from Q1 1973
through Q4 2007 are analyzed.

Table 3
VECM parameter estimates (Γ)

1 2 3 4 5 6 7 8 9 10 11
1 Liabilities 1.01

(1.94)
0.00
(0.17)

−0.00
(−0.06)

−1.10
(−2.04)

−0.63
(−2.57)

0.96
(1.70)

0.02
(2.62)

0.02
(1.94)

−0.56
(−2.64)

0.13
(1.39)

0.01
(2.99)

2 Long Bond −1.75
(−0.39)

0.11
(0.50)

0.01
(0.20)

1.76
(0.38)

−0.15
(−0.07)

2.57
(0.54)

−0.03
(−0.60)

−0.12
(−1.59)

1.84
(1.02)

0.72
(0.94)

−0.08
(−2.07)

3 Stocks 2.56
(0.35)

0.31
(0.85)

−0.12
(−1.09)

−4.65
(−0.61)

−1.33
(−0.38)

2.42
(0.31)

−0.02
(−0.24)

−0.04
(−0.33)

5.36
(1.81)

0.27
(0.21)

0.19
(2.95)

4 CPI 0.16
(0.33)

0.01
(0.37)

−0.00
(−0.30)

−0.25
(−0.52)

−0.66
(−2.97)

0.97
(1.92)

0.01
(2.68)

0.01
(1.82)

−0.57
(−3.00)

0.14
(1.67)

0.01
(2.89)

5 Yield (10Y) 0.33
(1.36)

−0.03
(−2.46)

0.00
(0.84)

−0.38
(−1.51)

0.25
(2.14)

0.28
(1.07)

0.00
(0.86)

0.01
(2.30)

−0.12
(−1.26)

0.01
(0.33)

0.00
(0.43)

6 T Bills −0.04
(−0.26)

−0.01
(−1.78)

0.00
(1.41)

−0.03
(−0.19)

−0.11
(−1.52)

1.38
(8.23)

0.00
(2.40)

0.00
(1.39)

−0.09
(−1.47)

0.16
(6.00)

0.00
(0.66)

7 Commodities 4.07
(0.50)

0.84
(2.06)

0.14
(1.21)

−2.57
(−0.30)

−9.01
(−2.32)

−15.45
(−1.74)

0.04
(0.43)

0.11
(0.83)

−10.75
(−3.23)

−3.51
(−2.47)

0.08
(1.10)

8 Real Estate −0.59
(−0.09)

0.31
(0.92)

−0.07
(−0.75)

0.27
(0.04)

1.33
(0.41)

−4.76
(−0.65)

−0.20
(−2.55)

−0.21
(−1.90)

9.05
(3.30)

−0.22
(−0.19)

−0.02
(−0.34)

9 Credit Spread 1.09
(5.96)

0.03
(2.94)

−0.01
(−3.07)

−1.05
(−5.50)

0.05
(0.57)

−0.62
(−3.10)

−0.00
(−1.64)

−0.01
(−2.76)

0.63
(8.40)

0.02
(0.49)

−0.00
(−1.13)

10 Term Spread −0.31
(−0.53)

0.00
(0.04)

−0.01
(−0.88)

0.37
(0.61)

0.93
(3.38)

−4.16
(−6.64)

0.01
(0.94)

0.00
(0.00)

0.42
(1.77)

−0.57
(−5.69)

0.01
(1.28)

11 Div. Yield 6.41
(0.63)

1.47
(2.89)

0.25
(1.72)

−9.01
(−0.86)

−16.98
(−3.53)

11.60
(1.06)

0.15
(1.27)

−0.12
(−0.74)

−13.06
(−3.17)

2.74
(1.56)

0.02
(0.24)

The table yields the estimated lagged-coefficient matrix Γ of the VEC model. t-stats are given in parentheses. Data is from
Q1 1973 through Q4 2007.
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Table 4
Estimated cointegration relationships (β)

CR1 CR2 CR3 CR4 CR5 CR6
1 Liabilities 1.00

(0.00)
0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

2 Long Bond 0.00
(0.00)

1.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

3 Stocks 0.00
(0.00)

0.00
(0.00)

1.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

4 CPI 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

1.00
(0.00)

0.00
(0.00)

0.00
(0.00)

5 Yield (10Y) 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

1.00
(0.00)

0.00
(0.00)

6 T Bills 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

1.00
(0.00)

7 Commodities −0.55
(−7.50)

−0.40
(−5.74)

−0.93
(−5.83)

−0.42
(−5.96)

−2.33
(−6.87)

−0.56
(−6.93)

8 Real Estate −0.06
(−0.81)

−0.04
(−0.57)

−0.43
(−2.66)

−0.12
(−1.70)

−0.34
(−1.00)

−0.08
(−0.97)

9 Credit Spread 6.60
(10.09)

5.80
(9.28)

11.73
(8.22)

6.33
(9.99)

30.78
(10.10)

7.29
(10.07)

10 Term Spread 0.57
(2.04)

0.45
(1.66)

2.68
(4.37)

0.71
(2.59)

3.08
(2.35)

0.96
(3.07)

11 Div. Yield 0.04
(10.85)

0.03
(10.33)

0.07
(9.13)

0.04
(10.38)

0.17
(10.75)

0.04
(10.73)

The table yields the estimated cointegration relationships (CR), that is the
parameter matrix β of the VEC model. t-stats are given in parentheses.
Data is from Q1 1973 through Q4 2007.
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Table 5
Estimates for adjustment parameters (α)

CR1 CR2 CR3 CR4 CR5 CR6
1 Liabilities 0.12

(2.00)
−0.02
(−0.73)

−0.01
(−1.57)

−0.05
(−1.13)

−0.02
(−0.22)

0.03
(0.08)

2 Long Bond −0.13
(−0.24)

−0.51
(−2.22)

−0.01
(−0.42)

−0.31
(−0.84)

1.94
(2.35)

−7.40
(−2.19)

3 Stocks −1.56
(−1.80)

−0.03
(−0.08)

0.07
(1.32)

0.70
(1.16)

0.47
(0.34)

−1.33
(−0.24)

4 CPI 0.14
(2.56)

−0.03
(−1.09)

−0.01
(−1.89)

−0.06
(−1.41)

0.01
(0.17)

−0.13
(−0.35)

5 Yield (10Y) 0.02
(0.74)

−0.07
(−5.78)

0.00
(0.07)

0.03
(1.56)

−0.04
(−0.97)

0.20
(1.08)

6 T Bills 0.00
(0.01)

−0.00
(−0.42)

0.00
(0.56)

−0.00
(−0.32)

0.01
(0.24)

−0.03
(−0.23)

7 Commodities 2.34
(2.39)

−1.00
(−2.35)

0.00
(0.06)

−0.63
(−0.92)

−3.13
(−2.05)

12.53
(2.01)

8 Real Estate −3.01
(−3.74)

−0.18
(−0.52)

0.11
(2.25)

1.90
(3.39)

0.62
(0.49)

−1.57
(−0.31)

9 Credit Spread −0.01
(−0.65)

0.04
(4.31)

−0.00
(−1.39)

0.05
(3.53)

−0.15
(−4.40)

0.56
(4.06)

10 Term Spread 0.24
(3.46)

−0.04
(−1.48)

0.01
(2.03)

−0.07
(−1.53)

0.26
(2.42)

−1.22
(−2.77)

11 Div. Yield −0.02
(−0.02)

−1.63
(−3.09)

−0.51
(−7.18)

2.34
(2.78)

−0.68
(−0.36)

3.30
(0.43)

The table yields the estimated adjustment parameters (parameter matrix
α of the VEC model) for each cointegration relationship. t-stats are given
in parentheses. Data is from Q1 1973 through Q4 2007.

Table 6
VECM residuals - Correlation coefficients

1 2 3 4 5 6 7 8 9 10 11
1 Liabilities 1 -0.61 -0.35 0.97 0.31 0.47 0.53 -0.40 -0.31 0.06 0.06
2 Long Bond -0.61 1 0.29 -0.42 -0.48 -0.29 -0.12 0.41 0.28 -0.36 -0.07
3 Stocks -0.35 0.29 1 -0.30 -0.22 -0.18 -0.24 0.59 0.10 -0.00 -0.28
4 CPI 0.97 -0.42 -0.30 1 0.19 0.43 0.58 -0.32 -0.25 -0.05 0.03
5 Yield (10Y) 0.31 -0.48 -0.22 0.19 1 0.31 -0.16 -0.27 -0.68 0.44 0.09
6 T Bills 0.47 -0.29 -0.18 0.43 0.31 1 0.19 -0.33 -0.37 -0.32 -0.07
7 Commodities 0.53 -0.12 -0.24 0.58 -0.16 0.19 1 -0.10 0.04 -0.19 -0.04
8 Real Estate -0.40 0.41 0.59 -0.32 -0.27 -0.33 -0.10 1 0.13 -0.06 -0.46
9 Credit Spread -0.31 0.28 0.10 -0.25 -0.68 -0.37 0.04 0.13 1 -0.06 -0.05
10 Term Spread 0.06 -0.36 -0.00 -0.05 0.44 -0.32 -0.19 -0.06 -0.06 1 0.15
11 Div. Yield 0.06 -0.07 -0.28 0.03 0.09 -0.07 -0.04 -0.46 -0.05 0.15 1
The table yields the VECM residual correlation matrix.
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Table 7
Structural VECM - contemporaneous shocks (B)

1 2 3 4 5 6 7 8 9 10 11
1 Liabilities 0.00

(0.78)
−0.00
(−1.72)

−0.00
(−1.03)

0.00
(1.46)

0.00
(1.76)

0.00
(1.58)

0.00
(1.85)

−0.00
(−2.21)

0.00
(0.30)

0.00
(0.61)

0.00
(0.96)

2 Long Bond 0.00
(0.37)

0.02
(2.07)

0.01
(0.83)

−0.03
(−1.28)

−0.02
(−2.15)

0.01
(0.93)

−0.00
(−0.61)

−0.00
(−0.04)

−0.01
(−2.12)

0.00
(0.17)

0.01
(0.72)

3 Stocks −0.03
(−1.32)

0.05
(1.99)

0.01
(1.43)

−0.02
(−0.92)

0.04
(1.78)

0.02
(1.34)

−0.02
(−1.92)

0.02
(1.79)

0.00
(0.15)

−0.00
(−0.35)

−0.00
(−0.25)

4 CPI 0.00
(1.34)

−0.00
(−1.32)

−0.00
(−1.03)

0.00
(0.93)

0.00
(1.61)

0.00
(1.65)

0.00
(1.64)

−0.00
(−2.11)

0.00
(0.05)

0.00
(0.93)

0.00
(0.98)

5 Yield (10Y) 0.00
(0.09)

−0.00
(−1.69)

0.00
(0.63)

0.00
(1.18)

0.00
(1.41)

0.00
(1.12)

0.00
(1.78)

0.00
(1.89)

−0.00
(−1.09)

0.00
(0.83)

0.00
(1.57)

6 T Bills 0.00
(0.73)

0.00
(0.70)

−0.00
(−1.02)

0.00
(1.35)

−0.00
(−0.95)

0.00
(1.97)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

7 Commodities 0.02
(1.21)

−0.00
(−0.08)

−0.06
(−0.95)

−0.02
(−0.71)

0.01
(0.62)

−0.01
(−0.56)

0.05
(5.73)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

8 Real Estate 0.01
(0.57)

0.02
(1.20)

0.00
(0.21)

−0.04
(−1.19)

0.01
(1.24)

0.01
(0.78)

−0.03
(−2.30)

0.04
(3.90)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

9 Credit Spread −0.00
(−1.55)

0.00
(0.41)

−0.00
(−0.33)

−0.00
(−1.24)

−0.00
(−2.04)

−0.00
(−0.35)

−0.00
(−1.03)

−0.00
(−1.09)

0.00
(3.80)

0.00
(0.00)

0.00
(0.00)

10 Term Spread −0.00
(−1.37)

−0.00
(−1.88)

0.00
(0.81)

0.00
(0.10)

0.00
(1.53)

−0.00
(−0.30)

0.00
(0.30)

0.00
(1.26)

−0.00
(−0.74)

0.00
(2.70)

0.00
(0.00)

11 Div. Yield −0.02
(−0.96)

−0.01
(−0.40)

0.00
(0.05)

0.02
(0.78)

−0.01
(−0.42)

−0.06
(−2.09)

0.00
(0.05)

−0.04
(−1.27)

−0.02
(−1.08)

0.01
(0.28)

0.07
(2.44)

The table shows the calibrated B-matrix of the structural VECM (SVECM). t-stats are given in parentheses. A t-stat of
zero indicates that an ex-ante identification restriction of 0 has been set to the parameter. Data is from Q1 1973 through
Q4 2007.

Table 8
Structural VECM - transitory shocks (ΞB)

1 2 3 4 5 6 7 8 9 10 11
1 Liabilities 0.03

(0.61)
0.00
(1.05)

−0.00
(−0.83)

0.00
(0.94)

0.01
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

2 Long Bond 0.02
(0.61)

0.00
(0.71)

0.00
(0.88)

0.00
(1.04)

0.00
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

3 Stocks 0.03
(0.34)

0.04
(1.72)

−0.00
(−0.00)

−0.03
(−1.13)

0.01
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

4 CPI 0.02
(0.51)

0.01
(1.48)

0.00
(0.96)

−0.01
(−1.09)

0.00
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

5 Yield (10Y) 0.12
(0.58)

0.02
(1.51)

0.00
(0.22)

−0.00
(−0.38)

0.02
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

6 T Bills 0.03
(0.58)

0.01
(1.75)

−0.00
(−0.08)

−0.00
(−0.19)

0.01
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

7 Commodities 0.02
(0.36)

−0.00
(−0.14)

−0.06
(−0.95)

0.01
(1.17)

0.01
(2.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

8 Real Estate 0.01
(0.08)

0.02
(0.62)

0.01
(0.17)

−0.10
(−1.15)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

9 Credit Spread −0.01
(−0.62)

0.00
(0.72)

−0.00
(−0.94)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

10 Term Spread 0.01
(0.40)

−0.02
(−2.07)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

11 Div. Yield 1.84
(0.64)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

The table shows the long-run impact matrix ΞB of the structural VECM (SVECM). t-stats are given in parentheses. A
t-stat of zero indicates that an ex-ante identification restriction of 0 has been set to the parameter. Data is from Q1 1973
through Q4 2007.

32



Table 9
VAR parameter estimates (A)

1 2 3 4 5 6 7 8 9 10 11
1 Liabilities 0.07

(0.36)
−0.02
(−1.89)

−0.00
(−0.48)

0.10
(0.63)

−0.17
(−1.65)

0.90
(2.33)

0.01
(1.53)

0.01
(1.05)

−0.16
(−1.43)

0.05
(0.63)

0.01
(2.61)

2 Long Bond 4.01
(2.50)

−0.05
(−0.55)

−0.00
(−0.03)

−2.85
(−2.18)

2.18
(2.63)

−6.51
(−2.05)

−0.04
(−0.75)

−0.10
(−1.29)

−0.48
(−0.52)

−0.19
(−0.26)

−0.06
(−2.53)

3 Stocks −0.16
(−0.06)

0.27
(1.69)

−0.08
(−0.69)

−1.52
(−0.71)

−2.31
(−1.69)

4.84
(0.92)

0.04
(0.48)

0.00
(0.04)

2.25
(1.48)

0.25
(0.21)

0.16
(4.08)

4 CPI −0.82
(−4.55)

−0.02
(−2.01)

−0.01
(−0.81)

1.03
(7.04)

−0.13
(−1.41)

0.76
(2.13)

0.01
(1.23)

0.01
(0.91)

−0.17
(−1.68)

0.05
(0.58)

0.01
(2.32)

5 Yield (10Y) −0.02
(−0.25)

−0.10
(−16.49)

0.00
(1.14)

0.04
(0.52)

0.89
(18.04)

0.38
(2.02)

0.00
(0.74)

0.01
(1.78)

0.10
(1.79)

0.04
(0.85)

0.00
(2.17)

6 T Bills −0.12
(−2.25)

−0.02
(−4.84)

0.00
(1.57)

0.08
(1.81)

−0.08
(−2.68)

1.38
(12.63)

0.00
(2.37)

0.00
(1.07)

−0.09
(−2.99)

0.15
(6.08)

−0.00
(−1.09)

7 Commodities 0.82
(0.26)

−0.18
(−0.93)

0.19
(1.49)

−0.65
(−0.25)

1.64
(1.01)

−9.11
(−1.46)

−0.04
(−0.37)

−0.07
(−0.46)

−2.16
(−1.19)

−2.50
(−1.77)

0.02
(0.46)

8 Real Estate −2.43
(−0.91)

0.10
(0.62)

−0.01
(−0.10)

1.73
(0.79)

−0.10
(−0.07)

0.29
(0.05)

−0.07
(−0.78)

−0.06
(−0.44)

3.42
(2.24)

0.53
(0.45)

0.05
(1.36)

9 Credit Spread 0.09
(1.20)

0.03
(7.03)

−0.01
(−2.96)

−0.01
(−0.09)

−0.03
(−0.69)

0.19
(1.29)

−0.00
(−1.10)

−0.01
(−2.37)

0.88
(20.48)

0.07
(2.04)

−0.00
(−2.53)

10 Term Spread 0.26
(1.20)

−0.02
(−1.27)

−0.00
(−0.49)

−0.08
(−0.45)

1.12
(9.80)

−5.19
(−11.90)

−0.00
(−0.59)

0.01
(0.54)

0.25
(2.01)

−0.61
(−6.14)

0.01
(2.92)

11 Div. Yield −4.18
(−0.93)

−0.19
(−0.68)

−0.06
(−0.32)

5.96
(1.62)

2.13
(0.91)

4.19
(0.47)

0.20
(1.44)

0.11
(0.52)

−1.68
(−0.65)

3.17
(1.57)

0.67
(9.90)

The table yields the estimated lagged-coefficient matrix A of the VAR model on log-returns. t-stats are given in parentheses.
Data is from Q1 1973 through Q4 2007.

33



Table 10
Stand-alone hedgers - ALM indicators

Panel A: Mean funding ratio

Horizon TIPS Bonds Stocks Commodities Real Estate
3 1.00 1.04 1.16 1.08 1.20
7 1.00 1.08 1.37 1.18 1.51
10 1.00 1.10 1.55 1.26 1.82
15 1.00 1.12 1.84 1.40 2.47
20 1.00 1.13 2.15 1.55 3.40
30 1.00 1.16 3.03 1.89 6.59

Panel B: Probability of shortfall (FR<1.0)

Horizon TIPS Bonds Stocks Commodities Real Estate
3 0.00 46.72 37.24 41.96 37.30
7 0.00 45.48 31.22 37.42 30.38
10 0.00 44.96 27.22 34.64 27.48
15 0.00 43.74 21.20 32.70 23.30
20 0.00 42.18 16.02 29.18 19.26
30 0.00 38.04 9.70 25.34 14.86

Panel C: Probability of severe shortfall (FR<0.9)

Horizon TIPS Bonds Stocks Commodities Real Estate
3 0.00 26.30 25.78 26.56 26.48
7 0.00 32.28 23.24 26.20 23.80
10 0.00 33.20 21.20 25.32 22.54
15 0.00 31.38 16.14 25.12 19.04
20 0.00 31.22 12.52 22.38 16.32
30 0.00 26.46 7.40 20.42 12.96

Liability hedging capacity is examined for various assets. Mean
funding ratios and shortfall probabilities (in percent) for various
investment horizons (in years) and based on 5,000 simulated sce-
narios are given.
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Table 11
Enhanced LHP - ALM indicators

Panel A: Mean funding ratio

Allocation to AI (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 1.00 1.01 1.01 1.02 1.02 1.03 1.04 1.04 1.05 1.05 1.06
7 1.00 1.01 1.03 1.04 1.06 1.07 1.09 1.10 1.11 1.13 1.14
10 1.00 1.02 1.04 1.06 1.09 1.11 1.13 1.15 1.17 1.19 1.22
15 1.00 1.04 1.07 1.11 1.14 1.18 1.22 1.25 1.29 1.33 1.36
20 1.00 1.05 1.11 1.16 1.22 1.27 1.33 1.38 1.44 1.49 1.55
30 1.00 1.11 1.22 1.33 1.44 1.55 1.66 1.77 1.88 1.99 2.10

Panel B: Probability of shortfall (FR<1.0)

Allocation to AI (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 0.00 32.78 32.78 32.78 32.78 32.78 32.78 32.78 32.78 32.78 32.78
7 0.00 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30
10 0.00 17.48 17.48 17.48 17.48 17.48 17.48 17.48 17.48 17.48 17.48
15 0.00 12.98 12.98 12.98 12.98 12.98 12.98 12.98 12.98 12.98 12.98
20 0.00 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08
30 0.00 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20

Panel C: Probability of severe shortfall (FR<0.9)

Allocation to AI (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 0.00 0.00 0.00 0.00 0.00 0.10 0.56 1.84 3.28 4.42 5.84
7 0.00 0.00 0.00 0.00 0.08 0.44 1.48 2.68 3.88 5.00 6.06
10 0.00 0.00 0.00 0.00 0.10 0.56 1.58 2.56 3.48 4.32 5.36
15 0.00 0.00 0.00 0.00 0.24 0.78 1.62 2.28 3.10 3.72 4.20
20 0.00 0.00 0.00 0.00 0.16 0.52 0.94 1.56 2.10 2.60 3.10
30 0.00 0.00 0.00 0.00 0.20 0.46 0.76 0.98 1.26 1.64 1.92

Liability hedging capacity is examined for portfolios made up of the LHP (TIPS) and the alternative
investment (AI) portfolio of commodities and real estate that maximizes the correlation with TIPS
(see Figure 4). Mean funding ratios and shortfall probabilities (in percent) for various investment
horizons (in years) and based on 5,000 simulated scenarios are given.
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Table 12
Global portfolio (LHP+PSP) - ALM indicators

Panel A: Mean funding ratio

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 1.00 1.00 1.01 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.05
7 1.00 1.01 1.03 1.04 1.05 1.06 1.08 1.09 1.10 1.12 1.13
10 1.00 1.02 1.04 1.06 1.08 1.09 1.11 1.13 1.15 1.17 1.19
15 1.00 1.03 1.05 1.08 1.10 1.13 1.16 1.18 1.21 1.23 1.26
20 1.00 1.03 1.06 1.10 1.13 1.16 1.19 1.22 1.26 1.29 1.32
30 1.00 1.04 1.08 1.12 1.16 1.21 1.25 1.29 1.33 1.37 1.41

Panel B: Probability of shortfall (FR<1.0)

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 0.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00
7 0.00 32.34 32.34 32.34 32.34 32.34 32.34 32.34 32.34 32.34 32.34
10 0.00 29.38 29.38 29.38 29.38 29.38 29.38 29.38 29.38 29.38 29.38
15 0.00 23.62 23.62 23.62 23.62 23.62 23.62 23.62 23.62 23.62 23.62
20 0.00 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20
30 0.00 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94

Panel C: Probability of severe shortfall (FR<0.9)

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 0.00 0.00 0.00 0.00 0.02 0.22 1.24 3.04 5.14 6.90 8.70
7 0.00 0.00 0.00 0.00 0.66 2.86 4.96 7.76 10.28 12.12 14.04
10 0.00 0.00 0.00 0.06 1.06 3.18 6.40 8.64 10.82 12.66 14.02
15 0.00 0.00 0.00 0.04 1.06 2.92 4.82 6.66 7.88 9.30 10.76
20 0.00 0.00 0.00 0.02 0.38 1.60 3.40 4.62 5.92 6.90 7.88
30 0.00 0.00 0.00 0.00 0.10 0.78 1.70 2.60 3.56 4.34 4.92

Liability hedging capacity is examined for portfolios made up of the LHP (TIPS) and the PSP (stocks
and bonds, according to the allocation that maximizes sharpe ratio (see Figure 5)). Mean funding
ratios and shortfall probabilities (in percent) for various investment horizons (in years) and based on
5,000 simulated scenarios are given.
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Table 13
Global portfolio (enhanced LHP+PSP) - ALM indicators

Panel A: Mean funding ratio

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 1.01 1.02 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.05 1.05
7 1.03 1.04 1.05 1.06 1.07 1.09 1.10 1.11 1.12 1.13 1.14
10 1.04 1.06 1.08 1.09 1.11 1.13 1.14 1.16 1.18 1.19 1.21
15 1.07 1.09 1.12 1.14 1.16 1.18 1.21 1.23 1.25 1.27 1.29
20 1.11 1.14 1.16 1.19 1.22 1.24 1.27 1.30 1.32 1.35 1.37
30 1.22 1.25 1.28 1.31 1.34 1.37 1.40 1.43 1.46 1.49 1.52

Panel B: Probability of shortfall (FR<1.0)

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 32.78 31.70 32.28 33.70 34.60 35.32 36.08 36.32 36.58 36.88 37.04
7 22.30 21.04 22.84 24.66 26.34 27.36 28.44 29.36 29.90 30.28 30.66
10 17.48 16.18 18.20 20.28 21.98 23.14 24.06 25.12 26.04 26.60 27.04
15 12.98 10.80 12.02 13.50 14.98 16.02 17.12 18.00 18.70 19.20 20.02
20 9.08 7.32 7.70 8.82 9.90 11.22 12.28 13.10 13.84 14.54 15.34
30 5.20 3.44 3.64 3.86 4.60 5.30 5.92 6.72 7.34 8.08 8.88

Panel C: Probability of severe shortfall (FR<0.9)

Allocation to PSP (in %)
Horizon 0 5 10 15 20 25 30 35 40 45 50

3 0.00 0.00 0.00 0.02 0.16 0.74 1.98 3.60 5.50 7.30 8.82
7 0.00 0.00 0.02 0.16 1.02 2.72 4.80 7.12 9.52 11.32 13.30
10 0.00 0.00 0.02 0.30 1.46 3.26 5.02 7.22 9.38 10.88 12.56
15 0.00 0.00 0.00 0.32 1.14 2.14 3.40 4.84 6.24 7.74 8.94
20 0.00 0.00 0.02 0.16 0.46 1.00 1.76 2.90 4.10 5.20 6.08
30 0.00 0.00 0.00 0.00 0.14 0.20 0.56 1.18 1.72 2.40 2.92

Liability hedging capacity is examined for portfolios made up of the LHP (TIPS) enhanced by 10%
of alternative investments according to Figure 4 and the PSP (stocks and bonds) according to the
allocation that maximizes sharpe ratio (see Figure 5)). Mean funding ratios and shortfall probabilities
(in percent) for various investment horizons (in years) and based on 5,000 simulated scenarios are
given.
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Figure 1
Annualized volatilities
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Long Bond
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Commodities
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Annualized volatilities for asset and liability returns for various horizons are displayed. Dotted
lines correspond to VAR-implied volatilities and solid lines to VECM-implied volatilities.
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Figure 2
Correlation between liabilities and asset returns
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Correlation coefficients between different asset returns and liability returns for various horizons are
displayed. Dotted lines correspond to VAR-implied correlations and solid lines to VECM-implied
correlations.
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Figure 3
Aggregated responses to a structural liability shock
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Aggregated impulse responses correspond to first column elements of matrices calculated via (15).
Dotted lines correspond to VAR-implied correlations and solid lines to VECM-implied correlations.
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Figure 4
Alternative LHP enhancers
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The allocations correspond to the ones that minimize the tracking error with the TIPS, defined as the
standard deviation between the portfolio and the TIPS return, for a given investment horizon. Optimization
is based on the 5,000 simulated scenarios.
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Figure 5
The PSP - Maximum Sharpe ratio allocation
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The displayed allocations maximize the Sharpe ratio for a given investment horizon with
the investment universe of stocks and bonds. The risk free rate has been modeled through
T-Bills returns. Optimization is based on the 5,000 simulated scenarios.
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Figure 6
Contribution savings through introduction of a PSP
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Contribution saving is defined as the potential reduction of initial investment when deviating
from the perfect liability matching portfolio such that, on average, the pension plan is fully
funded. Numbers are based on 5,000 simulated scenarios. The PSP contains stocks and
bonds in proportions that depend on the investment horizon (see Figure 5).
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Figure 7
Contribution savings through enhanced LHP
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Contribution saving is defined as the potential reduction of initial investment when deviating from the perfect
liability matching portfolio such that, on average, the pension plan is fully funded. Numbers are based on
5,000 simulated scenarios. The alternative investment (AI) portfolio contains commodities and real estate
in proportions that depend on the investment horizon (see Figure 4).
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Figure 8
Return equivalents with 5% AI - PSP allocation reduction
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The graphs shows the impact of enhancing the LHP beyond TIPS. The enhanced LHP consists of 95% TIPS
and 5% alternative investments (see Figure 4). The graph yields the required allocations to the PSP so
as to obtain on average the same amount of return as in the case of the traditional LHP (TIPS). Various
non-enhanced portfolios are taken as benchmarks ((1− ω) · TIPS+ω · PSP, ω∈{20%, 30%, 40%, 50%}).

45



Figure 9
Return equivalents with 10% AI - PSP allocation reduction
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The graphs shows the impact of enhancing the LHP beyond TIPS. The enhanced LHP consists of 90% TIPS
and 10% alternative investments (see Figure 4). The graph yields the required allocations to the PSP so
as to obtain on average the same amount of return as in the case of the traditional LHP (TIPS). Various
non-enhanced portfolios are taken as benchmarks ((1− ω) · TIPS+ω · PSP, ω∈{20%, 30%, 40%, 50%}).
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Figure 10
Risk reduction through LHP enhancements

3 7 10 15 20 30

20%

40%

60%

80%

100%

Investment horizon in years

R
el

at
iv

e 
re

du
ct

io
n 

w
ith

 5
%

 A
I

 

 

3 7 10 15 20 30

20%

40%

60%

80%

100%

Investment horizon in years

R
el

at
iv

e 
re

du
ct

io
n 

w
ith

 1
0%

 A
I

 

 
Required PSP allocation
Probability of shortfall (FR<1.0)
Probability of severe shortfall (FR<0.9)

Required PSP allocation
Probability of shortfall (FR<1.0)
Probability of severe shortfall (FR<0.9)

The graphs shows the impact of enhancing the LHP beyond TIPS on various risk parameters. We considered
the base case of an investment of 40% in the PSP and 60% in the traditional LHP and compared this portfolio
to the case where the LHP is enhanced by 5%, respectively 10% of alternative assets (AI, i.e. estate and
commodities). Enhanced and traditional portfolios are linked such that the portfolios exhibit the same mean
funding ratios.
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