00000	0000000	

Discussion of "Inflation Risk Premia in the US and Euro Area" by Peter Hördahl and Oreste Tristani

Marc Giannoni

Columbia Business School, NBER, CEPR

FRBNY Conference on "Inflation-Indexed Securities and Inflation Risk Management"

February 10, 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What Does the Paper Do?			
●0000	000	000000	
What is the paper	r about?		

• Determinants of break-even inflation (BE_{π})

 $BE_{\pi} =$ nom. rate - real rate

• At maturity n

$$BE_{\pi,t}^{n} = y_{t}^{n} - y_{t}^{*n}$$

= $\frac{1}{n}E_{t}[\pi_{t+1} + ... + \pi_{t+n}] + IRP_{t}^{n}$

where

$$\pi_t \equiv \ln (P_t / P_{t-1})$$

IRP \equiv infl. risk premium
compensates investors for bearing inflation risk

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• Abstract from liquidity issues (see this morning)

What Does the Paper Do?			
0000	000	0000000	
Paper's objectives	5		

- Estimate inflation risk premia in US and EA
 - Important to disentangle inflation expectations from inflation risk premium
 - Useful to interpret monetary policy, central bank credibility...
- Analyze macroeconomic determinants of inflation risk premia
 - Important to understand their dynamics

 \implies Requires model explaining joint behavior of macro variables, and (real and nominal) term structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What Does the Paper Do?		
00000		
Authors' strategy		

Combine:

- Macro model (explaining behavior of inflation π_t, output gap x_t, and short-term nominal rate r_t)
- No-arbitrage term-structure model (Ang-Piazzesi, 2003; HTV, 2006) to price bonds
 - use dynamics of short-term rate implied by macro model

What Does the Paper Do? ○○○●○	Review 000	Comments 0000000	
Paper's findings			

Inflation risk premium (IRP):

- relatively small, increasing with maturity in US and EA
 - \simeq Durham (06), D'Amico et al. (08), Ravenna-Seppala (07), Pasaogullari-Tsonev (08) \neq large IRP: Ang, Bekaert, Wei (06), Buraschi Jiltsov (05), Chernov-Mueller (08)
- varies with state of econ. (output gap and inflation)
 - low frequencies: broadly moves with output gap
 - higher frequencies: moves with in level of inflation
- responds positively to inflation shocks in US and EA
- responds positively to output shocks in US but negatively in EA.

What Does the Paper Do?	Review	Comments	
	000	0000000	
Outline			

- Review of framework
- A couple of issues (from a macro perspective, not specific to this paper)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Dynamics of market price of risk
- Which inflation rate?
- Estimated macro model
- Conclusion

	Review		
00000	000	0000000	
Review of f	ramework		

$$\pi_{t} = \bar{\pi} + \mu_{\pi} \frac{1}{12} \sum_{i=1}^{12} E_{t} \left[\pi_{t+i} \right] + (1 - \mu_{\pi}) \sum_{i=1}^{2} \delta_{\pi,i} \pi_{t-i} + \delta_{x} x_{t} + \varepsilon_{t}^{\pi}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	Review		
00000	000	0000000	
Review of Macro model	framework		

$$\pi_{t} = \bar{\pi} + \mu_{\pi} \frac{1}{12} \sum_{i=1}^{12} E_{t} \left[\pi_{t+i} \right] + (1 - \mu_{\pi}) \sum_{i=1}^{2} \delta_{\pi,i} \pi_{t-i} + \delta_{x} x_{t} + \varepsilon_{t}^{\pi}$$

• Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} \left[x_{t+i} \right] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} \left(r_{t} - E_{t} \left[\pi_{t+1} \right] \right) + \varepsilon_{t}^{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	Review		
00000	000	0000000	
Review of f	ramework		

$$\pi_{t} = \bar{\pi} + \mu_{\pi} \frac{1}{12} \sum_{i=1}^{12} E_{t} \left[\pi_{t+i} \right] + (1 - \mu_{\pi}) \sum_{i=1}^{2} \delta_{\pi,i} \pi_{t-i} + \delta_{x} x_{t} + \varepsilon_{t}^{\pi}$$

• Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

	Review		
00000	000	0000000	
Review of Macro model	framework		

$$\pi_{t} = \bar{\pi} + \mu_{\pi} \frac{1}{12} \sum_{i=1}^{12} E_{t} \left[\pi_{t+i} \right] + (1 - \mu_{\pi}) \sum_{i=1}^{2} \delta_{\pi,i} \pi_{t-i} + \delta_{x} x_{t} + \varepsilon_{t}^{\pi}$$

• Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

Remarks:

	Review		
00000	000	0000000	
Review of Macro model	framework		

$$\pi_t = \bar{\pi} + \mu_\pi \frac{1}{12} \sum_{i=1}^{12} E_t \left[\pi_{t+i} \right] + (1 - \mu_\pi) \sum_{i=1}^2 \delta_{\pi,i} \pi_{t-i} + \delta_x x_t + \varepsilon_t^{\pi}$$

• Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

- Remarks:
 - AS and IS: more or less consistent with micro foundations (with habit formation, inflation indexing....)

	Review		
00000	000	0000000	
Review of Macro model	framework		

$$\pi_t = \bar{\pi} + \mu_\pi \frac{1}{12} \sum_{i=1}^{12} E_t \left[\pi_{t+i} \right] + (1 - \mu_\pi) \sum_{i=1}^2 \delta_{\pi,i} \pi_{t-i} + \delta_x x_t + \varepsilon_t^{\pi}$$

Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

- Remarks:
 - AS and IS: more or less consistent with micro foundations (with habit formation, inflation indexing....)

• place reasonable restrictions on law of motion of π , x, r

	Review		
00000	000	0000000	
Review of Macro model	framework		

$$\pi_t = \bar{\pi} + \mu_\pi \frac{1}{12} \sum_{i=1}^{12} E_t \left[\pi_{t+i} \right] + (1 - \mu_\pi) \sum_{i=1}^2 \delta_{\pi,i} \pi_{t-i} + \delta_x x_t + \varepsilon_t^{\pi}$$

Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

- Remarks:
 - AS and IS: more or less consistent with micro foundations (with habit formation, inflation indexing....)
 - place reasonable restrictions on law of motion of π , x, r
 - great advantage: forward looking! Monetary policy can affect economy through expectations

	Review		
00000	000	0000000	
Review of fra Macro model	amework		

$$\pi_t = \bar{\pi} + \mu_\pi \frac{1}{12} \sum_{i=1}^{12} E_t \left[\pi_{t+i} \right] + (1 - \mu_\pi) \sum_{i=1}^2 \delta_{\pi,i} \pi_{t-i} + \delta_x x_t + \varepsilon_t^{\pi}$$

Intertemporal IS equation

$$x_{t} = \mu_{x} \frac{1}{12} \sum_{i=1}^{12} E_{t} [x_{t+i}] + (1 - \mu_{x}) \sum_{i=1}^{2} \zeta_{x,i} x_{t-i} - \zeta_{r} (r_{t} - E_{t} [\pi_{t+1}]) + \varepsilon_{t}^{x}$$

Policy rule

$$r_{t} = \bar{r} + (1 - \rho) \left\{ \beta \left(E_{t} \left[\pi_{t+11} \right] - \pi_{t}^{*} \right) + \gamma x_{t} \right\} + \rho r_{t-1} + \eta_{t}$$

- Remarks:
 - AS and IS: more or less consistent with micro foundations (with habit formation, inflation indexing....)
 - place reasonable restrictions on law of motion of π , x, r
 - great advantage: forward looking! Monetary policy can affect economy through expectations
 - Caveat: all persistent deviations from policy rule interpreted as changes in inflation target π_t^*

	Review		
	000		
Review of framew Solution to macro model	<i>v</i> ork		

• All variables depend on state vector

$$r_t = \Delta' X_{1t} X_{1t} + M X_{1,t-1} + \Sigma \xi_{1,t}$$

where state vector

$$X_{1,t} \equiv [x_{t-1}, x_{t-2}, x_{t-3}, \pi_{t-1}, \pi_{t-2}, \pi_{t-3}, r_{t-1}, \varepsilon_t^{\pi}, \varepsilon_t^{x}, \pi_t^{*}, \eta_t]'$$

Remarks:

- If habit in consumption: X_{1t} includes c_{t-1} or x_{t-1}
- shocks = innovations to $\{\varepsilon_t^{\pi}, \varepsilon_t^{x}, \pi_t^{*}, \eta_t\}$
 - Do not include explicitly risk premium shocks, financial intermediation shocks....
- Up to 1st order, no effect of volatility, risk premia on macro dynamics

	Review		
	000		
Review of frame Nominal and real term str	ework ^{Jucture}		

• Assume asset pricing relation

$$p_t^n = E_t \left[m_{t+1} p_{t+1}^{n-1} \right]$$

where

•
$$p_t^n$$
 = price of n - period nominal bond

- m_t = nominal pricing kernel (stochastic disc. factor)
- Assume

$$\ln(m_{t+1}) = -r_t - \frac{1}{2}\lambda'_t\lambda_t - \lambda'_t\xi_{1t+1}$$

where market price of risk λ_t is a 4×1 vector

$$\lambda_t = \lambda_0 + \lambda_1 \begin{bmatrix} x_t \\ r_t \\ \pi_t \\ \pi_t^* \end{bmatrix}$$

• Real pricing kernel

$$\begin{aligned} \ln (m_{t+1}^*) &= \ln (m_{t+1}) + \pi_{t+1} \\ \pi_{t+1} &\equiv \ln (P_{t+1}/P_t) \end{aligned}$$

		Comments	
00000	000	000000	
Issue $\#1^{\circ}$ Marke	t Price	of Risk	

• λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*

- Past variables do not separately affect λ_t
- Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk

		Comments	
00000	000	000000	
Issue $\#1^{\circ}$ Marke	t Price	of Risk	

- λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*
 - $\bullet\,$ Past variables do not separately affect λ_t
 - Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk
 - Pasaogullari-Tsonev (2008): Estimate micro-founded macro model, impose model restrictions on λ_t

		Comments	
00000	000	000000	
Issue $\#1^{\circ}$ Marke	t Price	of Risk	

- λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*
 - Past variables do not separately affect λ_t
 - Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk
 - Pasaogullari-Tsonev (2008): Estimate micro-founded macro model, impose model restrictions on λ_t
 - also generate small IRP (otherwise produce counterfactual results on real term structure)

00000	000	000000	
Issue $\#1^{\circ}$ Market	Price of Ri	sk	

- λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*
 - Past variables do not separately affect λ_t
 - Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk
 - Pasaogullari-Tsonev (2008): Estimate micro-founded macro model, impose model restrictions on λ_t
 - also generate small IRP (otherwise produce counterfactual results on real term structure)

 $\bullet\,$ but for UK, find large inflation compensation: can be explained by regime switching in π^*_t

	Comments	Conclusion

- λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*
 - Past variables do not separately affect λ_t
 - Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk
 - Pasaogullari-Tsonev (2008): Estimate micro-founded macro model, impose model restrictions on λ_t
 - also generate small IRP (otherwise produce counterfactual results on real term structure)

- $\bullet\,$ but for UK, find large inflation compensation: can be explained by regime switching in π^*_t
- Rudebusch-Swanson (2009): Epstein-Zin preferences, long-run nominal and real risks

	Comments	Conclusion

- λ_t : HT assume effect of past variables occurs through x_t , r_t , π_t , π_t^*
 - Past variables do not separately affect λ_t
 - Inconsistent with assumptions underlying macro model
 affects dynamics of inflation risk premium, inflation expectations,
- Alternative: Model-consistent market price of risk
 - Pasaogullari-Tsonev (2008): Estimate micro-founded macro model, impose model restrictions on λ_t
 - also generate small IRP (otherwise produce counterfactual results on real term structure)

- $\bullet\,$ but for UK, find large inflation compensation: can be explained by regime switching in π^*_t
- Rudebusch-Swanson (2009): Epstein-Zin preferences, long-run nominal and real risks
 - success in fitting both macro and asset pricing data

		Comments	
00000	000	000000	
Issue #2: W	hich inflation	rate?	

Inflation

- in macro model
- to compute nominal and real pricing kernels
- is (or should be)

$$\pi_t = \ln\left(P_t/P_{t-1}\right)$$

• However, in estimation assume

$$\pi_t^{obs} = \ln\left(P_t / P_{t-12}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

		Comments	
00000	000	000000	
Issue #2. Whi	ch inflatio	n rate?	

US inflation: CPI, y-o-y

 What Does the Paper Do?
 Review
 Comments
 Conclusion
 Conclusion

 00000
 000
 000
 000
 000

 Issue #2: Which inflation rate?

US inflation: CPI or Core CPI (y-o-y)

 What Does the Paper Do?
 Review
 Comments
 Conclusion

 00000
 0000000

Issue #2: Which inflation rate?

US inflation: Empirically convenient or model consistent? CPI (y-o-y) or Core CPI (m-o-m)

		Comments	
00000	000	0000000	
Issue $#2$: Which	ch inflatio	n rate?	

- m-o-m inflation measure:
 - noisy; poorly predicts future inflation [AR(6): $ho\left(1
 ight)<$ 0.2]
 - yet concept consistent with model
- y-o-y inflation measure:
 - smoother; predicts future inflation well [AR(6): $ho\left(1
 ight)>0.9$]
 - but inconsistent with model
- Alternative: filter noise explicitly!
 - Measurement error (as is done here)
 - Estimate latent inflation using multiple indicators (Boivin-Giannoni, 2006)

$$\begin{bmatrix} \pi_{1t}^{obs} \\ \vdots \\ \pi_{mt}^{obs} \end{bmatrix} = \Lambda \pi_t + \begin{bmatrix} e_{1t} \\ \vdots \\ e_{mt} \end{bmatrix}$$

 What Does the Paper Do?
 Review 0000
 Comments 000
 Conclusion
 Conclusion

 Issue # 3: "Estimated" model parameters

• Estimated parameters of macro model: "model seems empirically plausible, with estimated macro parameters broadly with the range of estimates which can be found in the literature" (p. 17)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Issue # 3: "Estimated" model parameters

- Estimated parameters of macro model: "model seems empirically plausible, with estimated macro parameters broadly with the range of estimates which can be found in the literature" (p. 17)
- Yes, but priors probably play a big role: very tight!

What Does the Paper Do? 00000	Review 000	Comments 0000000	Conclusion	
Conclusion				

- Very nice paper, well done!
- Useful and promising to combine macro model with no-arbitrage term-structure
 - Particularly desirable: forward-looking elements of macro model
 - Monetary policy can have a significant effect on agents' expectations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Nowadays believed to be a key (main (?)) channel through which monetary policy affects economy

			Conclusion
00000	000	000000	
Conclusion			

- A few reservations
 - stochastic discount factor inconsistent with macro dynamics
 - inflation: very different in model and empirical setup
 - tight priors
 - \implies likely to affect results
- Future research: models with significant effect of volatility, risk premia on macro variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@