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Abstract

This paper develops and estimates an equilibrium model of the term structures of nominal

and real interest rates. The term structures are driven by state variables that include the short

term real interest rate, expected inflation, a factor that models the changing level to which

inflation is expected to revert, as well as four volatility factors that follow GARCH processes.

We derive analytical solutions for the prices of nominal bonds, inflation-indexed bonds that have

an indexation lag, the term structure of expected inflation, and inflation swap rates. The model

parameters are estimated using data on nominal Treasury yields, survey forecasts of inflation,

and inflation swap rates. We find that allowing for GARCH effects is particularly important for

real interest rate and expected inflation processes, but that long-horizon real and inflation risk

premia are relatively stable. Comparing our model prices of inflation-indexed bonds to those

of Treasury Inflation Protected Securities (TIPS) suggests that TIPS were underpriced prior to

2004 but subsequently were valued fairly. We find that unexpected increases in both short run

and longer run inflation implied by our model have a negative impact on stock market returns.
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1 Introduction

The Treasury yield curve, by itself, provides a wealth of information. However, for many purposes

it is important to know its key components: real rates, expected inflation, and real and inflation

risk premia. These elements of the term structure are of interest to macroeconomists and to pol-

icymakers such as central bankers who wish to gauge investors’ short- and long-run expectations

of inflation. The characteristics of real and inflation-related components also are important to

financial economists and practitioners interested in accurately pricing inflation-linked securities,

such as inflation-indexed bonds and inflation derivatives. Issuance of inflation-related securities

has grown in recent years, and the current turmoil in financial and commodity markets is likely

to keep inflation volatility high and generate demand for securities that hedge inflation.

In this paper we develop a model of real and nominal yield curves and present an estima-

tion technique that allows us to identify term structure components. The model we propose

characterizes real rates and inflation by multifactor processes with stochastic volatilities. These

volatilities also affect the risk premia associated with shocks to the factors. We are able to

derive analytical solutions for the prices of inflation-indexed (real) bonds that include an in-

dexation lag, a feature found in all inflation-linked securities. Similarly, our model can price

inflation swaps, which we use along with Treasury yields and survey forecasts of inflation to

estimate the model’s parameters. Zero coupon inflation swaps are the most liquid of inflation

derivatives traded in the over-the-counter (OTC) market. Employing data on inflation swaps

helps us identify real interest rate risk premia and inflation risk premia.

Researchers have developed a multitude of models for the term structure of nominal interest

rates.1 Less numerous are models that can determine term structures of real and nominal

interest rates together.2 A satisfactory model of both real and nominal term structures requires

at least two factors: one representing real interest rates and the other representing inflation.

The necessity of several factors is supported by empirical evidence that finds multiple factors

are required to explain the level, slope, and curvature of the nominal term structure (Litterman

and Scheinkman (1991)). Moreover, empirical studies document that there is significant time

variation in the volatility of interest rates.3 The model we develop in this paper possesses these

characteristics.

Specifically, our model of nominal and real yield curves is driven by state variables that

include the short-term real interest rate, the short-term rate of expected inflation, and a third
1Recent surveys of nominal term structure models include Dai and Singleton (2003), Dai and Singleton (2004),

Piazzesi (2005), and Rebonato (2004).
2A discussion of models of both real and nominal term structures can be found in Adrian and Wu (2008), Ang

et al. (2008), Buraschi and Jiltsov (2005), and D’Amico et al. (2008).
3For example, see Ait-Sahalia (1996), Brenner et al. (1996), and Gallant and Tauchen (1998).
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factor that models the changing level to which inflation is expected to revert, referred to as

inflation’s ‘central tendency.’ Moreover, there are four additional stochastic volatility factors

related to these variables and to unanticipated inflation. These volatilities also affect the risk

premia associated with the shocks in the underlying processes. When the stochastic volatilities

are all turned off, our model reduces to a three factor constant volatility model that nests the

two factor central tendency term structure models of Hull and White (1994), Jegadeesh and

Pennacchi (1996), and Balduzzi et al. (1998) as well as the two factor real and nominal term

structure models of Pennacchi (1991) and Jarrow and Yildirim (2003).4

Our modeling of stochastic volatilities extends the work of Heston and Nandi (2003) to a

multivariate setting that can characterize both real and nominal term structures. The Heston

and Nandi model is a discrete time term structure model where the nominal interest rate follows

the nonlinear asymmetric GARCH process of Engle and Ng (1993).5 Extensions of the Hes-

ton and Nandi model have been examined by Cvsa and Ritchken (2001) who allow conditional

distributions of interest rates to be mixtures of normal and chi squared innovations, while main-

taining GARCH volatility as a second state variable. Unlike these previous papers that focus

on pricing nominal derivative contracts, we analyze the real and inflation-related components of

the term structure and consider their implications for pricing inflation-indexed securities.

Modeling stochastic volatilities of term structure factors using multiple GARCH processes

has some advantages relative to alternative methods. If volatilities are modeled as continu-

ous time stochastic processes, the processes’ parameters often are difficult to estimate because

volatilities may not be directly observable. Frequently, estimation must rely on a cross section of

security prices, rather than solely upon a time series. Using discrete time GARCH processes al-

leviates this problem because volatilities are observable functions of the history of the processes’

innovations and can be exactly filtered from discrete observations. Using GARCH models, as

opposed to continuous time stochastic volatility models, comes at almost no cost. Indeed, as

shown by Foster and Nelson (1994), GARCH models can be made to converge to continuous

time stochastic volatility processes as the time increment shrinks. Since our model has a mul-

titude of different volatilities that play important roles not only for capturing the dynamics of

real rates and expected inflation, but also for influencing fluctuations in risk premia, the use of

discrete time GARCH models simplifies estimation with little sacrifice in realism. While the

state variables in our model are conditionally normally distributed over a single period (which

in our empirical work is taken to be a month), they are not normally distributed over multiple

4All of these models are generalizations of the one-factor Gaussian model of Vasicek (1977). A multivariate
extension of the Vasicek model was analyzed by Langetieg (1980).

5Brenner et al. (1996) investigate alternative discrete time GARCH specifications for modeling the dynamics
of the short term interest rate and find strong support for GARCH effects, especially when asymmetric responses
to innovations are permitted.
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periods. This permits multiperiod state variables and yields to have distributions that display

skewness and kurtosis.

Another advantage of term structure modeling with GARCH processes relates to state vari-

able correlations. Our model is an example of an affine term structure model.6 The affine

class is attractive due to the relative ease of computing solutions for bond yields which are

affine (linear) functions of the state variables. However, one limitation of continuous time affine

models is that a general correlation structure between state variables is possible only when they

follow Gaussian (constant volatility) processes.7 This is not the case in our discrete time model:

it allows a general correlation structure between state variables yet permits them to display

stochastic volatility. Moreover, correlations between our model’s state variables can be time-

varying, though in a more limited way than in models by Campbell et al. (2007) and Adrian

and Wu (2008) which focus on stochastic covariation between real and nominal factors.

Regime switching is another approach to modeling stochastic volatility. For example, Ang

et al. (2008) develop a term structure model that incorporates an observed inflation factor that

switches regimes. An attractive feature of regime switching models is that they can be used to

also change the state variables’ conditional means. In our model, we permit changes in the

conditional mean of inflation by introducing a stochastic central tendency. A stochastic central

tendency for inflation, as well as GARCH volatilities for real and inflation factors, allows us to

capture changing monetary and real economic environments. While regime switching models

can provide valuable insights, it is our view that there may be advantages to a model that does

not require discrete regimes. Even where distinct regimes are evident, the behavior of inflation

and interest rates can differ markedly between regimes of the same type (Bordo and Haubrich

(2004)). Furthermore, some variables of crucial interest to us, such as inflationary expectations,

often show smooth transitions between regimes (Haubrich and Ritter (2000)).

We obtain several noteworthy empirical results. First, we find that short term real interest

rates are the most volatile component of the yield curve, and it is especially important to allow

their volatility to display GARCH behavior. Real rates were negative for much of the 2002

to 2005 period, which may have helped inflate a credit bubble. Second, we find that expected

inflation is negatively correlated with real rates, and it also shows statistically significant changes

in volatility. Both real rates and expected inflation display rather strong mean reversion. Third,

6Almost all research that models both real and nominal term structures fall within the affine class. An
exception is Campbell et al. (2007) where nominal bond yields are assumed to be linear-quadratic functions of
state variables but the short term real interest rate is an affine function of a constant volatility state variable. As
will be discussed, our model’s empirical results suggest that permitting stochastic (GARCH) volatility is especially
important for describing the process followed by the real interest rate.

7For state variables to have stochastic volatilities in continuous time affine models, they must follow multivariate
square root processes; that is, a multifactor extension of the model by Cox et al. (1985). However, this requires
that the correlation between the state variables be nonnegative (Dai and Singleton (2000)). For example, D’Amico
et al. (2008) justify their use of a multifactor Gaussian affine term structure model based on its flexible correlation
structure.
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over our sample period of 1982 to 2008, inflation’s central tendency, which can be viewed as

investors’ expectation of longer term inflation, declined substantially. This is consistent with

an increase in credibility regarding the Federal Reserve’s desire to maintain low inflation.

Fourth, we find a real interest rate risk premium that is substantial and fairly stable, varying

between 150 and 170 basis points for a ten-year maturity bond. The inflation risk premium

on a ten-year bond varied between 38 and 60 basis points during our sample period. Fifth, by

comparing our model’s implied yields for inflation-indexed bonds to actual prices of U.S. Treasury

Inflation-Protected Securities (TIPS), we document evidence that TIPS were underpriced prior

to 2004 but subsequently appeared to be fairly valued. Lastly, we examine the relationship

between our model’s implied term structure components and stock market returns. We find

that our model’s implied shocks to both short run and longer run inflation have a negative

impact on stock returns.

The paper proceeds as follows. Section 2 introduces a model of real interest rates and inflation

that is used to derive the term structures of nominal bonds, inflation forecasts, inflation-indexed

bonds, and inflation swap rates. Section 3 describes the data used to estimate the parameters

of the model, and Section 4 explains the estimation technique. Section 5 describes the results

and Section 6 concludes.

2 A Model of Nominal and Real Term Structures

2.1 Assumptions

Consider a discrete time environment with multiple periods, each of length ∆t measured in

years. Let Mt+∆t

Mt
be the nominal pricing kernel with dynamics:

Mt+∆t

Mt
= e−it∆t− 1

2
4
j=1 φ

2
jh
2
j,t∆t− 4

j=1 φjhj,t
√
∆t�j,t+∆t (1)

Here �j,t+∆t, j = 1, 2, .., 4 are independent standard normal random variables and φjhj,t, j =

1, 2, .., 4 are market prices of risk associated with these four sources of uncertainty.8 hj,t,

j = 1, 2, .., 4 represent four different volatility state variables whose dynamics will be specified

later. Let Et [·] = E [·|Ft] denote the expectations operator conditional on information at date
t, Ft. If we value a one period payoff of $1, then

Et

∙
Mt+∆t

Mt

¸
= e−it∆t (2)

so that it is the annualized, one period nominal interest rate.

8Note that
√
∆t�j,t+∆t, j = 1, ..., 4 are discrete time analogues to Brownian motion processes.
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Let the price index at date t be It. For example, It can denote the date t Consumer Price

Index (CPI). Its dynamics are assumed to satisfy:

It+∆t

It
= eπt∆t− 1

2
h21,t∆t+h1,t

√
∆t�1,t+∆t (3)

where the variable πt = 1
∆t ln (Et [It+∆t/It]) is rate of expected inflation for the period from t

to t+∆t.

Given the processes for the nominal pricing kernel and the price index, we can compute the

real pricing kernel, mt. In particular:

mt+∆t

mt
=

Mt+∆t

Mt

It+∆t

It
(4)

= e(πt−it−
1
2
h21,t)∆t− 1

2
4
j=1 φ

2
jh
2
j,t∆t− 4

j=1 φjhj,t
√
∆t�j,t+∆t+h1,t

√
∆t�1,t+∆t

Taking expectations on the left-hand-side of (4) defines rt, the one period real interest rate:

Et

∙
mt+∆t

mt

¸
= e−rt∆t (5)

Taking expectations on the right-hand-side of (4) and equating to (5), we obtain:

e−rt∆t = e(−it+πt−φ1h
2
1,t)∆t, (6)

from which

it = πt + rt − φ1h
2
1,t (7)

All that remains to complete the model is to specify the dynamics of the state variables. It is

assumed that

πt+∆t − πt = [αt + a1rt + a2πt]∆t+
√
∆tΣ2j=1βjhj,t�j,t+∆t

rt+∆t − rt = [b0 + b1rt + b2πt]∆t+
√
∆tΣ3j=1γjhj,t�j,t+∆t (8)

αt+∆t − αt = [c0 + c1αt]∆t+
√
∆tΣ4j=1ρjhj,t�j,t+∆t

h2j,t+∆t − h2j,t =
h
dj0 + dj1h

2
j,t + dj2 (�j,t+∆t − dj3hj,t)

2
i
∆t, j = 1, ..., 4

where αt is an additional state variable that shifts the future path of the expected inflation rate.

The first three equations in (8) satisfy a first-order vector autoregression. Subject to parameter

stationarity conditions, the constants in these equations can be related to the unconditional

mean (steady-state level) of expected inflation, π, and the unconditional mean of the real rate,
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r. These relationships are

π = − a1b0c1 + b1c0
(a1b2 − a2b1) c1

(9)

r =
a2b0c1 + b2c0
(a1b2 − a2b1) c1

(10)

The unconditional mean of αt is −c0/c1 = −(a1r+ a2π). If a constant is added to αt such thatbαt ≡ αt + a1r + (1 + a2)π, then the unconditional mean of bαt equals π, and bαt is commonly
referred to as the ‘central tendency’ of the expected inflation rate.9 It equals the current mean

reversion level or target level to which the inflation rate is expected to tend. For simplicity,

we shall refer to αt as the central tendency, but it should be understood that it differs from the

true central tendency, bαt, by a constant.
The equations in (3) and (8) specify that actual inflation, expected inflation, the real interest

rate, and inflation’s central tendency follow imperfectly correlated processes having stochastic

volatilities. These correlations depend on the βj, γj , and ρj coefficients multiplying the four

orthogonal shocks, hj,t�j,t+∆t, j = 1, ..., 4, but without loss of generality, we can restrict β2 =

γ3 = ρ4 = 1.
10 From (3), the one-period inflation rate, ln [It+∆t/It], has an annualized standard

deviation,h1,t, that follows a GARCH process driven by the inflation innovation, �1,t. The first

equation in (8) permits the rate of expected inflation, πt, to follow a mean reverting process that

tends toward a central tendency, αt, which itself follows a mean reverting process. The change

in expected inflation, πt+∆t−πt, depends on the surprise to actual inflation, h1,t�1,t+∆t, as well

as an orthogonal shock, h2,t�2,t+∆t, where h2,t also follows a second GARCH process driven by

�2,t.

The real interest rate mean reverts to r, and its change, rt+∆t − rt, is influenced by the

innovations in actual inflation, expected inflation, as well as a third shock, h3,t�3,t+∆t. Here,

h3,t follows a third GARCH process dependent on the innovation �3,t. Finally, the process

for inflation’s central tendency, αt, is correlated with actual inflation, expected inflation, and

real rates, but also has its unique shock, h4,t�4,t+∆t, that satisfies a fourth GARCH process

determined by �4,t. Note from the pricing kernel equation (1), each of the four shocks h1,t�1,t+∆t,

h2,t�2,t+∆t, h3,t�3,t+∆t, and h4,t�4,t+∆t commands a risk premium of φ1h1,t, φ2h2,t, φ3h3,t, and

φ4h4,t, respectively.

The dynamics of the hj,t, j = 1, ..., 4, follow the Nonlinear Asymmetric GARCH model

of Engle and Ng (1993). Subject to stationarity conditions, the steady-state levels of these

9Term structure models specifying a central tendency include Hull and White (1994), Jegadeesh and Pennacchi
(1996), and Balduzzi et al. (1998).
10These three restrictions permit the identification of the levels of the stochastic volatilities h2,t, h3,t, and h4,t.
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processes are

h
2
j = −

dj0 + dj2
dj1 + dj2d2j3

, j = 1, ..., 4 (11)

This model extends a GARCH(1,1) to allow for asymmetric responses to the innovations when

the parameters dj3, j = 1, ..., 4 are non-zero. When dj3 is positive (negative), negative values

of �j,t have a larger (smaller) impact on h2j,t+∆t than do positive values. Collectively, the hj,t
act as scaling factors that determine the local volatilities for inflation, expected inflation, real

rates, and the central tendency. Of course, if all these GARCH effects are shut down, then

there will be no stochastic volatility, and the model will reduce to a Markovian model with

three state variables.11 With stochastic volatility, our model has four stochastic drivers and

seven state variables. While the one period distribution of the state variables πt, rt, and αt are

conditionally normal, over multiple periods, the distribution will not be normal. The parameters

dj2 and dj3, j = 1, ..., 4 heavily influence the skewness and kurtosis in the distribution of yields

to maturity over multiple periods.

With these model assumptions, we can now derive the values of nominal bonds, inflation

expectations, and inflation-linked securities.

2.2 Prices of Nominal Bonds

Let P (t, t+ n∆t) be the date t price of a nominal bond that pays $1 at date t+ n∆t, where n

is a non-negative integer. We have:

P (t, t+ n∆t) = Et

∙
Mt+∆t

Mt
P (t+∆t, t+ n∆t)

¸
(12)

Proposition 1 below provides the expressions for the term structure of nominal interest rates.

Proposition 1

Under the above dynamics, nominal bond prices are given by the following recursive equation:

P (t, t+ n∆t) = e−Kn−Anπt−Bnrt−Cnαt− 4
j=1Dj,nh2j,t for n ≥ 1. (13)

11The homoskedastic (constant volatility) case occurs when dj1 = −1/∆t and dj2 = dj3 = 0. This would
correspond to a multivariate Vasicek (1977) model as developed in Langetieg (1980). Pennacchi (1991) derives a
special case of this model from a monetary production economy where expected inflation, πt, and the real interest
rate, rt, are the only two state variables.
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where K1 = 0, A1 = ∆t, B1 = ∆t, C1 = 0, D1,1 = −φ1∆t, Dj,1 = 0 for j = 2, 3, 4, and

Kn+1 = Kn + (b0Bn + c0Cn +Σ
4
j=1dj0Dj,n)∆t+

1

2
Σ4j=1 ln(1 + 2dj2∆tDj,n)

An+1 = ∆t+ (1 + a2∆t)An + b2∆tBn

Bn+1 = ∆t+ a1∆tAn + (1 + b1∆t)Bn

Cn+1 = ∆tAn + (1 + c1∆t)Cn

Dj,n+1 =
£
1 +

¡
dj1 + dj2d

2
j3

¢
∆t
¤
Dj,n +

1

2
φ2j∆t−Qj∆t,

and

Q1 =
(φ1 +Anβ1 +Bnγ1 +Cnρ1 − 2D1,nd12d13

√
∆t)2

2(1 + 2D1,nd12∆t)
+ φ1

Q2 =
(φ2 +Anβ2 +Bnγ2 +Cnρ2 − 2D2,nd22d23

√
∆t)2

2(1 + 2D2,nd22∆t)

Q3 =
(φ3 +Bnγ3 +Cnρ3 − 2D3,nd32d33

√
∆t)2

2(1 + 2D3,nd32∆t)

Q4 =
(φ4 +Cnρ4 − 2D4,nd42d43

√
∆t)2

2(1 + 2D4,nd42∆t)
.

Proof : See the Appendix.

The proposition reveals that nominal bond prices reflect all of the model parameters. How-

ever, these parameters cannot be identified solely by data from a time series of bond prices of

various maturities.12 Intuitively, one needs other information that can separate nominal yields

into their real and inflation-related components. This motivates our desire to use information

from survey data on forecasts of inflation. Hence, we now compute expectations of multiperiod

inflation implied by our model.

2.3 Expectations of Inflation

Define I(t, t + n∆t) ≡ Et [It+n∆t/It] to be the date t forecast of growth in the price level over

the period from date t to date t+ n∆t. This expectation is given by the following proposition.

Proposition 2

The date t expectation of inflation for a horizon of n periods is

I(t, t+ n∆t) = eK̄n+Ānπt+B̄nrt+C̄nαt+
4
j=1 D̄j,nh2j,t for n ≥ 1. (14)

12Dai and Singleton (2000) discus the identification restrictions for affine term structure models.
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where K̄1 = 0, Ā1 = ∆t, B̄1 = 0, C̄1 = 0, D̄j,1 = 0 for j = 1, 2, 3, 4, and

K̄n+1 = K̄n + (b0B̄n + c0C̄n +Σ
4
j=1dj0D̄j,n)∆t− 1

2
Σ4j=1 ln(1− 2dj2∆tD̄j,n)

Ān+1 = ∆t+ (1 + a2∆t)Ān + b2∆tB̄n

B̄n+1 = a1∆tĀn + (1 + b1∆t)B̄n

C̄n+1 = ∆tĀn + (1 + c1∆t)C̄n

D̄j,n+1 = D̄j,n

£
1 +

¡
dj1 + dj2d

2
j3

¢
∆t
¤
+ Q̄j∆t,

and

Q̄1 =
(1 + Ānβ1 + B̄nγ1 + C̄nρ1 − 2D̄1,nd12d13

√
∆t)2

2(1− 2D̄1,nd12∆t) − 1
2

Q̄2 =
(Ānβ2 + B̄nγ2 + C̄nρ2 − 2D̄2,nd22d23

√
∆t)2

2(1− 2D̄2,nd22∆t)

Q̄3 =
(B̄nγ3 + C̄nρ3 − 2D̄3,nd32d33

√
∆t)2

2(1− 2D̄3,nd32∆t)

Q̄4 =
(C̄nρ4 − 2D̄4,nd42d43

√
∆t)2

2(1− 2D̄4,nd42∆t) .

Proof : See the Appendix

Proposition 2 provides the expectation of inflation starting from the current date t. Because

our data also contains survey forecasts of an inflation rate that begins and ends at two future

dates, it is useful to derive an expression for such a forecast. Let t be the current date, t+n1∆t

be the date at which the inflation forecast starts, and t+n2∆t be the date at which the inflation

forecast ends, where n2 > n1. Let m ≡ n2 − n1, for example, m = 3 periods (months) would

occur if the forecast is of an inflation rate over a future quarter of a year. If survey participants

forecast a continuously compounded rate, then their date t forecast is

Et

∙
1

m∆t
ln

µ
It+n2∆t

It+n1∆t

¶¸
=

1

m∆t

µ
Et

∙
ln

µ
It+n2∆t

It

¶¸
−Et

∙
ln

µ
It+n1∆t

It

¶¸¶
(15)

Proposition 3

Et

∙
ln

µ
It+n∆t

It

¶¸
= K∗

n +A∗nπt +B∗nrt +C∗nαt +Σ
4
j=1D

∗
j,nh

2
j,t (16)
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where

K∗
n+1 = K∗

n + (b0B
∗
n + c0C

∗
n +Σ

4
j=1(dj0 + dj2)D

∗
j,n)∆t

A∗n+1 = ∆t+ (1 + a2∆t)A
∗
n + b2∆tB

∗
n

B∗n+1 = a1∆tA
∗
n + (1 + b1∆t)B

∗
n

C∗n+1 = ∆tA∗n + (1 + c1∆t)C
∗
n

D∗j,n+1 = D∗j,n
£
1 + (dj1 + dj2d

2
j3)∆t

¤− 1{j=1} 12∆t,
where 1{j=1} = 1 if j = 1 and 0 otherwise, and K∗

1 = 0, A
∗
1 = ∆t, B

∗
1 = 0, C

∗
1 = 0,D

∗
1,1 = −12∆t,

and D∗j,1 = 0, for j = 2, 3, 4.

Notice from Propositions 2 and 3 that not all of the parameters of the model enter into

expectations of inflation or an inflation rate. In particular, the market prices of risk, φj ,

j = 1, .., 4, are absent. Augmenting nominal yield information with inflation forecasts is helpful

in separating out expected inflation from nominal yields. However, inflation forecasts do little

to distinguish between real and inflation-related risk premia. For this reason, our empirical

work also uses information from securities having real (inflation-linked) payoffs to help identify

risk premia.13 The next subsections consider values for such securities.

2.4 Prices of Inflation-Indexed Bonds

Inflation-indexed (real) bonds are issued by many countries.14 They make payments pro-

portional to an inflation index, thereby protecting investors from the uncertainty of inflation.

Inflation-indexed bonds issued by the U.S. Treasury are called Treasury Inflation-Protected Se-

curities (TIPS), and these bonds pay semi-annual coupons. Since a coupon-bearing TIPS can

be decomposed into a portfolio of zero-coupon TIPS contracts, it is sufficient to value a zero-

coupon TIPS.15 In practice, a TIPS contract does not provide full coverage against inflation.

Rather, the inflation index for a TIPS payment is based on the Consumer Price Index (CPI)

recorded at a date prior to the bond’s date of payment. One reason for this is that the CPI is

not revealed immediately at the date for which it is recorded, but is reported with a lag. In the

13Chernov and Mueller (2008) estimate a nominal and real term structure model based on Ang and Piazzesi
(2003) that uses only Treasury yields and survey forecasts of inflation. However, in order to cope with the
difficulty in estimating risk premia, they add to their likelihood function a ‘penalization term’ that is proportional
to the variation in risk premia. This helps them avoid estimating very large values for risk premia. With our use
of inflation swap rates, we are able to estimate reasonable risk premia without any modification of the likelihood
function.
14These countries include the United States, the United Kingdom, France, Canada, Germany, Greece, Italy,

Japan, and Sweden.
15Like nominal Treasury notes and bonds, TIPS can be stripped; that is, decomposed into separate coupon

and principal payments and traded individually as zero-coupon bonds. However, the amount of TIPS that are
in stripped form is relatively small.
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U.S., for example, a payout for TIPS is based on the CPI recorded at a date three months (14
year) prior to the bond’s payment date.16

Since this indexation lag feature can be important, we define V d(t; ts, te) to be the date t

value of a zero-coupon TIPS contract that pays an amount linked to the price index recorded

at date te which is n periods of length ∆t in the future. Thus, the bond payoff is based on the

price index at date te = t+ n∆t, i.e. It+n∆t, but the actual payment date, tp, is d periods later

at date tp = te + d∆t. Therefore, d is the indexation lag. Following actual practice, the price

index at the initiation date is also lagged by d periods. Let ts represent the date at which the

initial index is recorded. Then, if t is the initiation date, ts = t − d∆t and the TIPS payment

at date tp equals Ite/Its . Now, note that at date te = t+ n∆t we can value the payment to be

made d periods later as:

V d(te; ts, te) =
Ite
Its

P (te, te + d∆t). (17)

and at date t we have:

V d(t; ts, te) = Et

∙
Mt+∆t

Mt
V d(t+∆t; ts, te)

¸
(18)

The following Proposition provides the recursive equation for pricing TIPS with an indexation

lag of d periods.

Proposition 4

The date t value of a zero coupon TIPS that is indexed off the start date of ts, has a payout

determined by the index at the end date te, and pays out with a delay of d∆t years at date

te + d∆t, is given by

V d(t = te − n∆t; ts, te) =
It
Its

e−K̃n−Ãnπt−B̃nrt−C̃nαt− 4
j=1 D̃nh2j,t for n ≥ 0, and t ≥ ts+d∆t

(19)

where K̃0 = Kd, Ã0 = Ad, B̃0 = Bd, C̃0 = Cd, D̃j,0 = Dj,d for j = 1, 2, 3, 4, and

K̃n+1 = K̃n + (b0B̃n + c0C̃n +Σ
4
j=1dj,0D̃j,n)∆t+

1

2
Σ4j=1 ln(1 + 2dj2D̃j,n∆t)

Ãn+1 = (1 + a2∆t)Ãn + b2∆tB̃n

B̃n+1 = (1 + a1Ãn)∆t+ (1 + b1∆t)B̃n

C̃n+1 = ∆tÃn + (1 + c1∆t)C̃n

D̃j,n+1 =
1

2
φ2j∆t+ D̃j,n(1 + dj1∆t+ dj2d

2
j3∆t)− Q̃j∆t,

16Most valuation models of inflation-indexed bonds ignore this indexation lag feature. An exception is Risa
(2001) which is a multifactor, essentially affine, Gaussian model.
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and

Q̃1 =
(φ1 + Ãnβ1 + B̃nγ1 + C̃nρ1 − 1− 2D̃1,nd12d13

√
∆t)2

2(1 + 2D̃1,nd12∆t)
+ (φ1 −

1

2
)

Q̃2 =
(φ2 + Ãnβ2 + B̃nγ2 + C̃nρ2 − 2D̃2,nd22d23

√
∆t)2

2(1 + 2D̃2,nd22∆t)

Q̃3 =
(φ3 + B̃nγ3 + C̃nρ3 − 2D̃3,nd32d33

√
∆t)2

2(1 + 2D̃3,nd32∆t)

Q̃4 =
(φ4 + C̃nρ4 − 2D̃4,nd42d43

√
∆t)2

2(1 + 2D̃4,nd42∆t)
.

Proof: See the Appendix

Like nominal bond prices, the prices of inflation-indexed bonds depend on all of the model’s

parameters. In principle, employing both types of bond prices can help distinguish between

real and inflation-related risk premia. What we show next is that Proposition 4 is helpful not

only for pricing indexed bonds, but also for determining inflation swap rates.

2.5 Inflation Swap Rates

Zero coupon inflation swaps are the most liquid of all inflation derivative contracts that trade

in the over-the-counter (OTC) market. They are quoted with maturities ranging from 1 to

30 years. In addition, inflation swaps serve as the basic building blocks for the pricing of the

majority of other inflation-related derivatives.

A zero coupon inflation swap is a contract whereby the inflation buyer pays a predetermined

fixed nominal rate and in return receives from the seller an inflation linked payment. At the

initiation date, t0, the (consumer) price index is initialized to its value at the date d∆t = 1
4

year earlier, say ts = t0 − d∆t. The ending date for the price index is denoted te, and the cash

settlement or payment date is tp where tp = te + d∆t. At this final date a fixed payment is

exchanged for Ite/Its , which is the inflation over the period [ts, te]. The fixed payment is denoted

(1 + k)te−ts where k is the annually-compounded inflation swap rate. Thus, the net fixed for

inflation swap payment is (1 + k)te−ts− Ite/Its .

Viewed from date t0, the value of the fixed (nominal) leg is simply

Vfix(t0) = P (t0, tp)(1 + k)te−ts . (20)

The payout of the inflation leg, Vinf (t0) say, equals the payout of a zero coupon TIPS, with

12



payouts at date tp linked to the index values at dates ts and te:

Vinf (t0) = V d(t0; ts, te) (21)

At the initiation date, t0, the fair inflation swap rate is the value k that equates Vfix(t0) with

Vinf (t0). The resulting value, k∗(t0; ts, te), is given by:

k∗(t0; ts, te) =
µ
V d(t0; ts, te)

P (t0, tp)

¶1/(te−ts)
− 1. (22)

While the typical practice is to quote inflation swap rates as annually-compounded rates, we

can convert this rate to a continously compounded rate, say kc (t0; ts, te) = ln [1 + k∗ (t0; ts, te)].
From (22) we can see that kc (t0; ts, te) is simply the difference between the continuously-

compounded nominal bond yield and the equivalent maturity continously compounded TIPS

yield.

2.6 Prices of European Contingent Claims

In addition to inflation swaps, our model can be used to value other inflation-related derivatives,

including those that have option-like payoffs, such as inflation caps and floors. Here we outline

an approach to valuing a general European contingent claim whose payoff depends on one or

more of our model’s state variables. Let C (t, T ;Ψt) be the date t price of a European contingent

claim that matures in τ periods at date T = t+ τ∆t, where Ψt ≡ (It πt rt αt h2j,t, j = 1, .., 4)

is the vector of the state variables at date t. Then

C (t, T ;Ψt) = Et

∙
MT

Mt
C (T, T ;ΨT )

¸
= bEt

∙
e
−∆t

Pτ−1
j=0

it+j∆tC (T, T ;ΨT )

¸
= bEt

∙
e−∆t

Pτ−1
j=0

πt+j∆t+rt+j∆t−φ1h21,t+j∆tC (T, T ;ΨT )

¸
(23)
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where bEt [·] denotes the risk-neutral expectations operator. Define b�j,t+∆t ≡ �j,t+∆t+
√
∆tφjhj,t,

j = 1, .., 4. Then the state variables’ risk-neutral dynamics are given by

ln It+∆t − ln It = πt∆t−
µ
1

2
+ φ1

¶
h21,t∆t+ h1,t

√
∆tb�1,t+∆t

πt+∆t − πt = [αt + a1rt + a2πt −Σ2j=1φjβjhj,t]∆t+
√
∆tΣ2j=1βjhj,tb�j,t+∆t

rt+∆t − rt = [b0 + b1rt + b2πt −Σ3j=1φjγjhj,t]∆t+
√
∆tΣ3j=1γjhj,tb�j,t+∆t (24)

αt+∆t − αt = [c0 + c1αt −Σ4j=1φjρjhj,t]∆t+
√
∆tΣ4j=1ρjhj,tb�j,t+∆t

h2j,t+∆t − h2j,t = [dj0 + dj1h
2
j,t + dj2

³b�j,t+∆t − (dj3 +
√
∆tφj)dj3hj,t

´2
]∆t, j = 1, ..., 4

The risk-neutral expectation in (23) can be computed byMonte-Carlo simulation of the dynamics

in (24) as in Boyle (1977). This simply involves generating multiple time series of four-element

vectors of standard normal random variables (b�1,t b�2,t b�3,t b�4,t), which in turn generate a time
series of the state variables and produce a risk-neutral distribution of the contingent claim’s

date T payoff.

3 Data Description

Estimation of our model uses monthly data on U.S. Treasury security yields, survey forecasts

of inflation, rates of actual (realized) inflation, and inflation swap rates. Most data series are

available over the period January 1982 to June 2008, though the data on inflation swap rates

starts in only April 2003. Treasury security yields are obtained from three sources. First, we

obtain zero coupon Treasury yields of 1, 2, 3, 5, 7, 10, and 15 years to maturity from daily off-

the-run Treasury yield curves recently constructed by Gurkaynak et al. (2007).17 Second, we

collect daily secondary market yields for 3-month and 6-month Treasury bills from the Federal

Reserve System’s H.15 Release.18 Third, we obtain a one-month (30-day) Treasury bill yield

from the Center for Research in Security Prices (CRSP).19 All of the Treasury yields are taken

as of the first trading day of each month.

Survey forecasts of Consumer Price Index (CPI) inflation come from two different sources.

First, a monthly series beginning in 1982 is obtained from Blue Chip Economic Indicators

(BCEI) which surveys approximately 50 economists employed by financial institutions, non-

financial corporations, and research organizations. At the beginning of each month, participants

17Their daily Treasury yield curves are available from 1961 to the present and can be downloaded from
http://www.federalreserve.gov/econresdata/researchdata.htm. These zero-coupon yields were fitted by the
method of Svensson (1994) using prices of off-the-run Treasury coupon notes and bonds.
18These data series can be obtained at http://research.stlouisfed.org/fred2/categories/116.
19CRSP provides a consistent time series for the one-month Treasury yield over the entire 1982 to 2008 period.

A single time series was not available from Federal Reserve sources.
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in this survey forecast future CPI inflation for quarterly time periods, starting from the current

quarter and going out to at most 8 quarters (2 years) in the future. For January, February,

and March, inflation rate forecasts for 8 future quarters are made. For April, May, and June,

forecasts for 7 future quarters are made. For July, August, and September, forecasts for 6

future quarters are made, while for October, November, and December, forecasts for 5 future

quarters are made. We use BCEI’s reported ‘consensus’ forecast which is the average of the

participants’ forecasts.

Second, we use the median forecast of CPI inflation over the next ten years made by the

approximately 40 participants of the Survey of Professional Forecasters (SPF), currently con-

ducted by the Federal Reserve Bank of Philadelphia.20 This 10-year forecast is at a quarterly

frequency, and starts in December of 1991. Thus, we observe this forecast at the beginning of

March, June, September, and December.21 The analysis of Keane and Runkle (1990) suggests

that SPF forecasts are rational expectations of inflation that incorporate all available public

information. A recent study by Ang et al. (2007) finds that SPF forecasts significantly out-

perform a wide variety of other methods for predicting inflation. Since the participants in the

BCEI survey have qualifications similar to those of the SPF participants, it is likely that the

BCEI forecasts also possess these attractive features.

Our estimation method also uses a quarterly time series of actual (realized) inflation rates.

We constructed this monthly series of actual CPI inflation to correspond with the monthly CPI

inflation forecasts.22

In addition, we obtained inflation swap rates for annual maturities from 2 to 10 years, as

well as 12-, 15-, 20-, and 30-year maturities. All inflation swap rates are for the first trading

day of each month. The 2- to 10-year swap maturities start in April of 2003, the 12-, 15-, and

20-year inflation swap rates start in November 2003, and the 30-year inflation swap rates start

in March 2004.

While not used in the estimation of our model, we will compare our estimated model’s

implied yields for inflation-indexed bonds to the yields on TIPS. Data on zero coupon TIPS

20This survey was originally performed by the American Statistical Association and the National Bureau of
Economic Research. The data is available at http://www.philadelphiafed.org/econ/spf/. See Croushore (1993)
and Stark (2004) for details of this survey.
21SPF participants make forecasts at approximately, the middle of February, May, August, and November of

each year. To align this survey with our other data, we presume these forecasts come at the start of the next
month.
22Since survey participants are asked to forecast the seasonally-adjusted CPI inflation rate, our

monthly time series is also based on the seasonally-adjusted CPI. This data is available at
http://research.stlouisfed.org/fred2/categories/9. However, it should be noted that TIPS and zero-coupon infla-
tion swaps are indexed to the CPI that is not seasonally-adjusted. This difference is unlikely to have much impact
on TIPS prices and swap rates, except perhaps for those with very short times to maturity. The variation in the
CPI due to seasonal adjustments is likely to be small compared to other sources of CPI variation, particularly for
medium term and longer term horizons.
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yields are obtained from Gurkaynak et al. (2008) who have fit zero coupon TIPS yield curves

based on the yields of actual coupon-paying TIPS.23 We will also analyze how our model’s

implied term structure components relate to stock market returns. Monthly returns on the

Standard & Poor’s 500 (S&P500 returns including dividend distributions) are obtained from

CRSP.

4 Estimation Technique

Our empirical technique imposes model restrictions on both the cross-sectional and time-series

properties of bond yields, inflation, inflation forecasts, and inflation swap rates. Given that our

data is observed at a monthly frequency, the model’s period is taken to be ∆t = 1/12th of a

year. This implies that the model’s nominal short rate, it, is the one-month Treasury bill rate.

Similarly, πt is the rate of inflation expected over the next month, and rt is the one-month real

interest rate. Note that while these rates correspond to a one-month horizon, we express them

in annualized terms.

Our method is similar to that used for maximum likelihood estimation of GARCH models,

except that we allow for measurement error in most of the Treasury yields, inflation rate fore-

casts, and inflation swap rates. Denote yt(ni) as the annualized, continuously-compounded yield

observed at date t on a nominal bond maturing in ni months, where i = 1, ..., b. We assume

yt (ni) = − 1

n i∆t
ln [P (t, t+ ni∆t)] + ωt,i (25)

=
1

n i∆t

£
Kn +Anπt +Bnrt +Cnαt +Σ

4
j=1Dj,nh

2
j,t

¤
+ ωt,i

where ωt,i is an independent measurement error distributed N
¡
0, w2

¢
.

Similarly, let st(nbt,i, n
e
t,i) be the annualized, continuously-compounded expected inflation

rate over the period from the beginning date t + nbt,i∆t to the ending date t + net,i∆t reported

from the survey at date t by BCEI or SPF, where i = 1, ..., f .24 It is assumed to take the form

st(n
b
t,i, n

e
t,i) =

1

(net,i − nbt,i)∆t

Ã
Et

∙
ln

µ
It+net,i∆t

It

¶¸
−Et

"
ln

Ã
It+nbt,i∆t

It

!#!
+ υt,i (26)

=
1

∆nt,i∆t

£
∆K∗

t,i +∆A
∗
t,iπt +∆B

∗
t,irt +∆C

∗
t,iαt +Σ

4
j=1∆D

∗
t,j,ih

2
j,t

¤
+ υt,i

where υt,i is an independent measurement error distributed N
¡
0, v2

¢
, ∆nt,i = net,i−nbt,i, ∆K∗

t,i ≡
23Their dataset is available at http://www.federalreserve.gov/econresdata/researchdata.htm.
24We convert the annualized, quarterly-compounded rates reported in the surveys to annualized, continuously-

compounded rates.
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K∗
net,i
−K∗

nbt,i
, ∆A∗t,i ≡ A∗net,i −A∗

nbt,i
, ∆B∗t,i ≡ B∗net,i − B∗

nbt,i
, ∆C∗t,i ≡ C∗net,i − C∗

nbt,i
, and ∆D∗t,j,i ≡

D∗j,net,i − D∗
j,nbt,i

. For the monthly forecasts taken from BCEI, ∆nt,i = 3 months since each

inflation forecast is for a future quarter of a year. However, starting in December of 1991, our

data includes quarterly-frequency predictions by the SPF for the inflation rate over the next 10

years. Thus, for the months of December, March, June, and September, we have an additional

forecast where ∆nt,i = 120 - 0 =120 months.

Furthermore, let kct (ni)≡ ln [1 + k∗ (t; t− d∆t, t+ (ni − d)∆t)] be the continuously-compounded

inflation swap rate whose payment date, tp, is ni periods in the future (at date tp = t+ ni∆t),

where i = 1, ..., p. Since ni∆t = te − ts, based on (22) it is assumed to take the form

kct (ni) =
1

ni∆t
ln

µ
V d (t, t− d∆t, t+ (ni − d)∆t)

P (t, t+ ni∆t)

¶
+ μt,i

= yt (ni)− yrt (ni) + μt,i (27)

where μt,i is an independent measurement error distributed N
¡
0, u2

¢
and where yt (ni) and

yrt (ni) are the continuously-compounded yields on zero-coupon nominal bonds and real bonds

(TIPS), respectively, that make their payments at date tp = t+ni∆t. Substituting in from (12)

and (19), (27) can be re-written as

kct (ni) =
1

ni∆t

h
∆K†

i +∆A
†
iπt +∆B

†
i rt +∆C

†
i αt +Σ

4
j=1∆D

†
j,ih

2
j,t

i
+ ut,i (28)

where ∆K†
i ≡ ln (It/It−d∆t) +Kni − K̃ni−d, ∆A

†
i ≡ Ani − Ãni−d, ∆B

†
i ≡ Bni − B̃ni−d, ∆C

†
i ≡

Cni − C̃ni−d, and ∆D
†
j,i ≡ Dj,ni − D̃j,ni−d.

While most bond yields and inflation forecasts are assumed to be observed with error, we need

to assume perfect observation of the short term (one-month maturity) nominal rate, it = yt (1)

= − 1
∆t ln [P (t, t+∆t)] = πt + rt − φ1h

2
1,t, and the survey inflation forecast at the one-month

horizon, I (t, t+∆t) = 1
∆tEt [It+∆t/It] = exp (πt∆t). These assumptions allow us to recover

the exact one period real rate, rt = it − πt + φ1h
2
1,t, given that h

2
1,t is observed. Unfortunately,

knowledge of the exact values of the it, πt, and rt by themselves, is not sufficient to update all

of the volatility factors hi,t, i = 1, ..., 4, because we also need to observe the central tendency,

αt. Therefore, we also assume that another particular maturity nominal bond yield is measured

without error. For, example, if this particular yield has maturity nx, then with ωt,x = 0 we

have:

yt (nx) = − 1

n x∆t
ln [P (t, t+ nx∆t)] (29)

=
1

n x∆t

¡
Knx +Anxπt +Bnxrt +Cnxαt +Σ

4
j=1Dj,nxh

2
j,t

¢

17



which implies:

αt =
1

Cnx

¡
nx∆tyt (nx)−Knx −Anxπt −Bnxrt −Σ4j=1Dj,nxh

2
j,t

¢
(30)

In principle, the perfectly observed yield yt (nx) could be chosen from any one of the available

yields in our data sample. However, because this yield is used to identify the central tendency,

αt, which largely determines the slope of the term structure, it would be reasonable to select

a moderately long maturity bond yield. But since liquidity decreases as maturity expands,

making the assumption of zero measurement error less plausible, as a compromise we select the

five-year maturity (nx = 60) as the bond maturity having no measurement error.

These assumptions allow us to observe πt, rt, and αt and recover the �j,t+∆t, j = 1, ..., 4 in

equations (3) and (8). In turn, this allows us to update each of the volatility factors, hj,t, j =

1, ..., 4. Given the state variables, (πt, rt, αt, h2j,t, j = 1, .., 4) at date t, all of the theoretical zero

coupon bond yields, inflation forecasts, and inflation swap rates can be computed. The difference

between these theoretical quantities and their actual counterparts determine the measurement

errors for bond yields, inflation forecasts, and inflation swap rates. The likelihood function can

then be calculated recursively.

Let n1, ..., nb be the maturities of the b different bonds whose yields are assumed to be

measured with error, let (nbt,1, n
e
t,1),..., (n

b
t,f , n

e
t,f ) be the horizons of the f different inflation

rate forecasts that are assumed to be measured with error at date t, and let n1, ..., np be the

maturities of the p different swap rates that are assumed to be measured with error. Note that

at each monthly observation date, the bond yield maturities measured with error n1, ..., nb are

the same, equal to 3, 6, 12, 24, 36, 84, 120, and 180 months. However, due to the nature of the

inflation survey data, the number of inflation forecasts, f , and their horizons vary over different

observation months. Similarly, the number of inflation swap rates, p, (but not their horizons)

vary over different observation months. However, for a given observation month and number of

inflation forecasts, f , and swap rates, p, define
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Yt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln
³
It+∆t
It

´
πt+∆t

rt+∆t

αt+∆t

yt(n1)
...

yt(nb)

st
¡
nbt,1, n

e
t,1

¢
...

st
³
nbt,f , n

e
t,f

´
kct (n1)
...

kct (np)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

At =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

b0∆t

c0∆t
Kn1
n1∆t
...

Knb
nk∆t
∆K∗t,1
∆nt,1∆t
...

∆K∗t,f
∆nt,f∆t

∆K†
n1

n1∆t
...

∆K†
np

np∆t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

Xt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆t 0 0 −12∆t 0 0 0

1+a2∆t a1∆t ∆t 0 0 0 0

b2∆t 1+b1∆t 0 0 0 0 0

0 0 1+c1∆t 0 0 0 0
An1
n1∆t

Bn1
n1∆t

Cn1
n1∆t

D1,n1
n1∆t

D2,n1
n1∆t

D3,n1
n1∆t

D4,n1
n1∆t

...
...

...
...

...
...

...
Anb
nb∆t

Bnb
nb∆t

Cnb
nb∆t

D1,nb
nb∆t

D2,nb
nb∆t

D3,nb
nb∆t

D4,nb
nb∆t

∆A∗t,1
∆nt,1∆t

∆B∗t,1
∆nt,1∆t

∆C∗t,1
∆nt,1∆t

∆D∗t,1,1
∆nt,1∆t

∆D∗t,2,1
∆nt,1∆t

∆D∗t,3,1
∆nt,1∆t

∆D∗t,4,1
∆nt,1∆t
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(32)

Then, our system of equations to be estimated can be written

Yt = At +XtBt +Υt (33)
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where

Bt =
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,Υt =
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

The ωt,i for i = 1, .., b, the υt,i for i = 1, .., f , and the μt,i for i = 1, ..., p are a sequence of

independent normally distributed measurement errors.

Let Σt represent the variance covariance matrix of Υt. It has the block diagonal form:

Σt =

⎛⎜⎜⎜⎜⎝
∆tHt 0 0 0

0 W 0 0

0 0 V 0

0 0 0 U

⎞⎟⎟⎟⎟⎠ (35)

where
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⎞⎟⎟⎟⎟⎠ (36)

and where W = w2Ib, V = v2If , U = u2Ip, and Ib, If , and Ip are b× b, f × f , p× p identity

matrices, respectively.

In principle, the model’s 36 parameters can be estimated in one step using equation (33).

However, note that the first element of Yt is the process for the log of actual inflation, ln (It+∆t/It)

= πt∆t − 1
2∆th

2
1,t +

√
∆th1,t�1,t+∆t. By estimating this equation alone using data only on It

and πt, we can recover estimates of the four parameters of the h1,t GARCH process, namely

d10 (equivalently, h1), d11, d12, and d13. Therefore, to make overall parameter estimation more

manageable, we implement a two-step procedure where we first estimate the parameters of the

h1,t process using data on only It and πt. The 32 other parameters are estimated in a second
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step using equation (33) but with the parameters of the h1,t process fixed at those estimated in

the first step. This two-step procedure would be equivalent to a one step weighted maximum

likelihood procedure where the observations on the log of actual inflation, ln (It+∆t/It), are given

much larger weights relative to those of the other observations.

5 Empirical Results

In this section, we first present estimates of the model’s parameters and discuss their implications

for state variable dynamics. Second, we consider the estimated model’s implications for nominal

and real yield curves as well as for real interest rate risk premia and inflation risk premia. Third,

we compare our model’s implied inflation-indexed bond yields to the yields on TIPS. Last, we

explore movements in the model’s term structure components to stock market returns.

5.1 Parameter Estimates and State Variable Dynamics

Table 1 presents results of the first step estimation of the parameters of the inflation volatility

process, h1,t, using data on the CPI (It) and the one-month forecast of inflation (πt) derived

from BCEI surveys over the period January 1982 to June 2008. The annualized, conditional

standard deviation for inflation over a one-month horizon has a steady-state value of h1 = 0.0083;

that is, 83 basis points.25 The volatility of inflation displays significant GARCH effects: the

estimated coefficient on the shock to inflation in the GARCH updating, d12, is significantly

positive. However, since d13 is insignificantly different from zero, there is no evidence that

inflation’s volatility responds asymmetrically to surprises.

Table 2 reports second step estimates of the model’s other parameters. To gauge the

statistical significance of permitting GARCH behavior, we estimated the unrestricted model as

well as restricted models that assume some of the volatilities are constant; that is, hj,t = hj. An

assumption of constant volatility for a process hj,t entails the restrictions dj1 = −1/∆t = −12
and dj2 = dj3 = 0. The first column of Table 2 reports estimates assuming no GARCH behavior

(hj,t = hj , for j = 2, 3, and 4); the second column assumes GARCH behavior for only h2,t; the

third column assumes GARCH behavior only for h3,t; and the fourth column assumes GARCH

behavior for only h4,t. Finally, the last column of Table 2 is the unrestricted model that permits

GARCH behavior for h2,t, h3,t, and h4,t.

Inspection of the log likelihood values for the different models at the bottom of Table 2

indicates that one can reject at the 1% level of significance the hypothesis of no GARCH behavior

25This is comparable to the annualized volatility of 87 basis points for inflation at a one-month horizon estimated
by Jarrow and Yildirim (2003).
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for all but one of the less restricted cases. Relative to the model with no GARCH behavior, the

largest increase in likelihood value from permitting GARCH behavior for any single volatility

process occurs with h3,t, the volatility process for the independent component of the real interest

rate, rt. The second largest increase occurs when h2,t is able to display GARCH, which is the

independent volatility component for expected inflation, πt. The only instance where GARCH

effects are not significant is for the independent volatility component of the central tendency.

However, as indicated in the last column of Table 2, when h2,t, h3,t, and h4,t all are allowed to

follow GARCH processes, one can reject the no GARCH restriction and each of the GARCH

parameters (d22, d32, and d42) are significantly positive. Based on these unrestricted model

estimates and those for the inflation GARCH process in Table 1, measures of persistence for

h2j,t, j = 1, ..., 4 can be computed. The half-life for a shock in h
2
j,t to revert to its steady-state of

h
2
j is 5.4 months, 3.8 months, 1.4 months, and 6.1 months for j = 1, 2, 3, and 4, respectively.

26

It is noteworthy that we obtain reasonable estimates for the unconditional means of inflation

and the real interest rate. For example, estimates using the unrestricted model give a value for

π of 3.22% and for r of 1.57%. Allowing a central tendency for inflation also is important. In

each of the estimations the estimate of the mean reversion parameter for c1 is approximately

-0.05 with a small standard error that makes it statistically different from zero. A model with

no central tendency (αt having a constant mean) would imply c1 = −1/∆t = −12, so that a
model lacking a central tendency is easily rejected by the data. In terms of the model’s overall

fit to the data, the estimated standard deviations of measurement errors for Treasury yields,

survey forecasts of inflation rates, and inflation swap rates (w, v, and u) are 35 basis points, 39

basis points, and 27 basis points, respectively.

Given the unrestricted model’s parameter estimates, we can also calculate the model’s im-

plied standard deviations and correlations for inflation, expected inflation, the real rate, and

the central tendency. The values for these standard deviations and correlations come from the

variables’ covariance matrix, Ht, given in equation (36). Statistics for these values are given in

Table 3.

The first column in Table 3 calculates the state variables’ annualized standard deviations

and correlations over a one-month horizon assuming that each of the GARCH processes are

equal to their steady state values; that is, hj,t = hj , j = 1, ..., 4. The real interest rate, rt, and

expected inflation, πt, have the highest unconditional standard deviations of 3.18% and 2.66%,

respectively. Conditional on its mean of πt, the steady state one-month standard deviation

of log inflation is 0.83% while the steady state standard deviation of the central tendency is

1.04%. One also sees that an innovation in actual inflation (It+∆t) has a 0.33 correlation

with an innovation in expected inflation (πt+∆t) and a 0.16 correlation with an innovation in

26Note from (8) that Et h2j,t+∆t = (h2j,t +(dj0 + dj2)∆t, where ( ≡ 1+ dj1 + dj2d
2
j3 ∆t. Thus, the half-life

in periods (months) of length ∆t is ln 1
2

/ ln (().
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the central tendency (αt). This suggests that when investors experience a positive inflation

surprise, their one-month expectation of inflation is partially updated and, to a lesser degree, so

is their longer-horizon expectation of inflation via the central tendency.

We also see that when starting from a steady-state, the one-month expected inflation and

real rate are strongly negatively correlated at -0.844. This finding is consistent with Benninga

and Protopapadakis (1983), Summers (1983), and Pennacchi (1991) who find that short run

nominal interest rates do not adjust one-for-one with changes in real interest rates or expected

inflation. Given that the Federal Reserve tends to keep short-maturity nominal interest rates

stable by pegging the federal funds rate, this result might be expected. Controlling the short

run nominal interest rate implies that any change in short run inflation expectations must result

in an offsetting change in the short run real interest rate. Corroborating evidence that short

term real interest rates are quite variable is found by Ang et al. (2008).

Of course, due to GARCH behavior, the standard deviations and correlations of the state

variables are not constant. Columns two, three, and four of Table 3 calculate the model-implied

average, minimum, and maximum of the state variables’ standard deviations and correlations

over the 1982 to 2008 sample period. As one might expect, the sample averages for standard

deviations and correlations tend to be relatively close to their steady-state values. However,

based on the minimum and maximum values, we see that standard deviations and correlations

can vary significantly for most variables.

To illustrate this variation, Figure 1 displays the time series of the standard deviations of

ln (It+∆t/It), πt, rt, and αt. As one would expect, the standard deviations of expected inflation

and the real interest rate were especially high during the early 1980s, a time when the Federal

Reserve was battling to lower inflation expectations. Confirming the estimation results in Table

2, this figure also shows that there is little evidence of GARCH behavior for the central tendency.

Rather than their standard deviations, Figure 2 plots the model-implied levels of the state

variables over the 1982 to 2008 period. The first panel in the figure indicates that the Federal

Reserve was successful in lowering expected inflation. It shows that early in the period the

central tendency for inflation was above short run expected inflation as investors apparently

thought longer term inflation was likely to remain high. However, the Federal Reserve appears

to have built credibility in lowering inflation, since the central tendency later declined to equal

approximately the average of expected inflation. Early in 2008, the model is predicting that

both expected inflation and its central tendency are on the rise.

The second panel in Figure 2 displays the one-month real interest rate, rt, implied by our

model estimates. Note that there was an unusually long period from 2002 to 2005 when it

was negative. This finding supports the belief that a credit bubble may have been inflated by

a policy of maintaining interest rates too low for too long. The figure also shows that at the
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beginning of 2008, the short run real interest rate is quite negative.

Figures 3 and 4 characterize the speeds of mean reversion for the state variables πt, rt, and αt.

Figure 3 presents impulse response functions that assume when there is a positive one standard

deviation shock to a state variable, there is no instantaneous shock to the other state variables.

It shows that there is somewhat stronger mean reversion for expected inflation compared to the

real interest rate. A shock to the central tendency displays very weak reversion to its mean.

Figure 4 differs from Figure 3 in that when there is a positive one standard deviation shock

to a state variable, the other state variables also suffer a shock commensurate with the esti-

mated correlations given in Table 3. Under this scenario, mean reversion for expected inflation

and the real interest rate becomes somewhat stronger than before. However, allowing for con-

temporaneous state variable shocks has little effect on the weak mean reversion of the central

tendency.

5.2 Estimated Term Structures and Risk Premia

A basic question is whether our estimated model produces sensible-looking nominal and real

(inflation-indexed) yield curves. The top panel in Figure 5 shows the unrestricted model’s

implied yield curves and expected inflation when each of the state variables is initially at its

steady state level (πt = bαt = π, rt = r, hj,t = hj, j = 1, ..., 4). Indeed, the term structures do

appear reasonable, even for maturities out to 30 years, a horizon where little data was used in

the model’s estimation. The slopes of the steady-state nominal yield curve (difference between

yields and the one-month nominal rate it) equal 137, 192, 236, and 245 basis points at the

5-, 10-, 20-, and 30-year maturities, respectively. Similarly, the slopes of the real yield curve

(difference between the yields and the one-month real rate rt) equal 109, 150, 192, and 213 basis

points at the 5-, 10-, 20-, and 30-year maturities, respectively. The substantial slope of the

real yield curve contrasts with some other studies that find it to be relatively flat.27 However,

our model’s real yield curve slopes are not that much larger than the average TIPS yield curve

slopes over the January 1999 to June 2008 period. If we calculate the difference between average

zero-coupon TIPS yields computed by Gurkaynak et al. (2008) and our one-month steady state

real rate of r = 1.57%, then the 5-, 10-, and 20-year TIPS slopes average 76, 111, and 125 basis

points, respectively.

The model’s real (inflation-indexed) yields curves also look reasonable when plotted for each

month in our sample period. Figure 6 shows the time-series of real yield curves. It indicates

that real yields were high during the early 1980s, consistent with a tighter monetary policy

whose goal was to bring down inflation expectations. In contrast, real yields have recently been

27For example, Ang et al. (2008) find an unconditional real yield curve that is slightly humped, peaking at a
one year maturity before converging to 1.3% at a five-year maturity.
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much lower. Figure 6 also confirms the earlier reported evidence that the volatility of short

term real rates is high, though real yield volatilities lessen as maturities increase.

A component of the nominal term structure that has interested policymakers and academics

is the term structure of inflation risk premia. There are at least two motivations for wanting to

know this quantity. First, saving the cost of an inflation risk premium has been used to justify a

government’s issuance of inflation-indexed bonds. Second, one needs to subtract an inflation risk

premium from the “break-even inflation rate” (difference between equivalent maturity nominal

and inflation-indexed bonds) in order to construct a measure of inflation expectations.

We quantify the term structure of inflation risk premia, as well as the term structure of

real interest rate risk premia, in the following manner. First, we compute nominal and real

yield curves under the assumption that all of the market prices of risk equal zero; that is,

φ ≡ (φ1 φ2 φ3 φ4) = 0. Recall that the yields on nominal and inflation-indexed bonds maturing
in ni periods are denoted as yt (ni) and yrt (ni), respectively, so let their zero-risk premium

counterparts be yt (ni;φ = 0) and yrt (ni;φ = 0). As an illustration, the zero-risk premia nominal

and real yield curves when all of the state variables are initially at their steady states are plotted

in the bottom panel of Figure 5.

Second, define the date t nominal risk premium, Φnt (ni), and the real risk premium, Φ
r
t (ni),

for bonds maturing in ni periods as:

Φnt (ni) = yt (ni)− yt (ni;φ = 0)

Φrt (ni) = yrt (ni)− yrt (ni;φ = 0) (37)

Finally, the inflation risk premium, Φinft (ni) is defined as the difference between the nominal

risk premium and the real risk premium for the same maturity:

Φinft (ni) = Φ
n
t (ni)−Φrt (ni) (38)

The term structures of nominal, real, and inflation risk premia when all of the state variables

are initially at their steady states are plotted in Figure 7. Here, the term structure of nominal

risk premia is simply the difference between the nominal yield curves in the top and bottom

panels of Figure 5, while the term structure of real risk premia is the difference between the

real yield curves in these same panels. The term structure of inflation risk premia in Figure

7 is then the difference between the nominal and real term structures of risk premia. When

each of the state variables are initially at their steady states, we see that the real risk premia

equal 111, 156, 212, and 250 basis points at the 5-, 10-, 20-, and 30-year maturities, respectively.

The inflation risk premia equal 27, 51, 82, and 101 basis points at the 5-, 10-, 20-, and 30-year

maturities, respectively.
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We can also examine how these risk premia varied over time during our sample period.

Figure 8 plots expected inflation, the real risk premium, and the inflation risk premium for a

10-year maturity during the 1982 to 2008 period. Interestingly, while inflation expected over

10 years varied substantially, the levels of the real and inflation risk premia did not. The real

risk premium for a 10-year maturity bond varied from 150 to 170 basis points, averaging 157

basis points. This real risk premium is consistent with the substantial slope of the real yield

curve discussed earlier. The inflation risk premium for a 10-year maturity bond varied from 38

to 60 basis points and averaged 51 basis points. These estimates of the 10-year inflation risk

premium fall within the range of those estimated by other studies.28

Figure 9 plots the model’s implied entire term structure of inflation expectations for each

month of our sample period. Consistent with the earlier evidence in Figure 2 of a falling

central tendency, one sees that inflation expectations generally have declined at all maturities.

However, the term structure was often upward sloping during the mid-1980s, indicating that

investors were not yet convinced that inflation would remain lower in the longer run. The figure

also illustrates that expected inflation can be volatile at short maturities, but changes more

smoothly at longer horizons.

5.3 Comparison to TIPS Yields

In the spirit of an out-of-sample test, we relate our model’s implied yields for zero coupon

inflation-indexed bonds to yields of actual zero coupon TIPS. We use zero coupon TIPS yields

from Gurkaynak et al. (2008), which are available for the period January 1999 to June 2008.

Taking their 5- and 10-year zero-coupon TIPS yields, we compare them to our unrestricted

model’s implied 5- and 10-year zero coupon yields for inflation-indexed bonds. The results of

this exercise are given in Figure 10. This figure shows that our model significantly overvalues

both the 5- and 10-year TIPS until about 2004. However, during the last four years, our model’s

yields and the TIPS yields appear to be tightly linked. One interpretation of this comparison

is that our model performs poorly in pricing inflation-indexed bonds during the 1999 to 2004

period.

However, based on prior studies such as Sack and Elsasser (2004), Shen (2006), and D’Amico

et al. (2008), a more likely interpretation is that TIPS were significantly undervalued prior to

2004. For example, D’Amico et al. (2008) find a large “liquidity premium” during the early

years of TIPS’s existence, especially before 2004. They conclude that until more recently,

TIPS yields were difficult to account for within a rational pricing framework. Shen (2006) also

finds evidence of a drop in the liquidity premium on TIPS around 2004. He notes that this

28For example, a 10-year inflation risk premium averaging 70 basis points and ranging from 20 to 140 basis
points is found by Buraschi and Jiltsov (2005). Using data on TIPS, Adrian and Wu (2008) find a smaller
10-year inflation risk premium varying between -20 and 20 basis points.
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may have been due to the U.S. Treasury’s greater issuance of TIPS around this time, as well

as the beginning of exchange traded funds that purchased TIPS. Another contemporaneous

development that may have led to more fairly priced TIPS was the establishment of the U.S.

inflation swap market beginning around 2003. Investors may have arbitraged the underpriced

TIPS by purchasing them while simultaneously selling inflation payments via inflation swap

contracts. In summary, the overall evidence supports the notion that our model can generate

fair prices for inflation-indexed bonds.

5.4 Term Structure Shocks and Stock Returns

This section explores how our model’s estimated shocks to the components of nominal and real

term structures are related to stock market returns. In order to adequately describe stock return

dynamics, we need to model a source of uncertainty that affects only stock returns that is in

addition to those that affect nominal and real term structures. Toward this end, we incorporate

a fifth stochastic shock, �5,t, in the nominal pricing kernel:

Mt+∆t

Mt
= e−it∆t− 1

2
5
j=1 φ

2
jh
2
j,t∆t− 5

j=1 φjhj,t
√
∆t�j,t+∆t (39)

where φ5h5,t is the market price of risk for �5,t and where

h25,t+∆t − h25,t =
h
d50 + d51h

2
5,t + d52 (�5,t+∆t − d53h5,t)

2
i
∆t. (40)

We maintain all previous assumptions regarding It, πt, rt, αt, and h2j,t, j = 1, .., 4; that is,

their dynamics do not depend on �5,t. Since this fifth shock, �5,t, is orthogonal to the state

variables’ dynamics, using the nominal pricing kernel in equation (39) will lead to exactly the

same nominal and inflation-indexed security formulas as were derived using the nominal pricing

kernel in equation (1). Hence, equation (39) is fully consistent with our previous model and

empirical results.

Let us now assume that a stock portfolio with date t value St follows the process:

St+∆t

St
= eμs,t∆t− 1

2
5
j=1 h

2
j,t∆t+ 5

j=1 δjhj,t
√
∆t�j,t+∆t (41)

where, without loss of generality, it is assumed that δ5 = 1. One can solve for the stock

portfolio’s equilibrium expected rate of return, μs,t, since

Et

∙
Mt+∆t

Mt

St+∆t

St

¸
= 1 (42)
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Substituting equation (39) and equation (41) into equation (42) implies

μs,t = it +
P5

j=1 δjφjh
2
j,t (43)

so that
P5

j=1 δjφjh
2
j,t is the stock portfolio’s equity premium. Thus, the (continuously-compounded)

rate of return on the stock portfolio follows the process

ln (St+∆t/St) =
£
it +Σ

5
j=1δjφjh

2
j,t

¤
∆t+Σ5j=1δjhj,t

√
∆t�j,t+∆t (44)

Given our prior empirical estimates, we have recovered �j,t+∆t, hj,t, and φj , j = 1, .., 4, so that

these values as well as it (the one-month Treasury yield) are known in equation (44). We need

to estimate only the parameters δj, j = 1, .., 5, φ5, and the parameters of the fifth GARCH

process in equation (40). This is done using monthly returns data on the S&P500 portfolio of

stocks (including dividends) over the 1982 to 2008 sample period. The maximum likelihood

estimates are given in Table 4.

Table 4 indicates that all of the parameters of h5,t, the GARCH process that is unique to

stocks, are statistically significant. The steady state standard deviation of this volatility process,

h5 =
q
(d50 + d52) /

¡
d51 + d52d253

¢
, is 15.45%. It is noteworthy that since d53 is positive,

negative values of �5,t have a larger impact on increasing stock market volatility compared to

similar-sized positive values of �5,t.

Inspecting the estimated parameters determining the volatility of stock returns, one sees

from the (marginally significantly) negative value of δ1 that stock returns react negatively to

surprises in the one-month actual inflation rate. Based on the small and insignificant values for

δ2 and δ3, there does not appear to be much reaction by stocks to shocks from the independent

components driving the one-month rate of expected inflation and the one-month real interest

rate. However, based on the statistically significant negative value for δ4, one sees that stock

returns tend to fall when there is an unexpected rise in the independent component affecting

inflation’s central tendency.

One interpretation of these findings is that unexpectedly higher inflation, both in the short

run and in the longer run, hurts stock returns. The economic channel through which this works

might be tax distortions that are exacerbated by inflation.29 Stock market returns appear to

react little to changes in the one-month real rate and rate of expected inflation. As noted

earlier, short run real rates and short run expected inflation are the most volatile of the model’s

29As discussed by Feldstein (1980b) and Feldstein (1980a), the real value of a corporation’s income tax deduction
for depreciation expenses, which are based on historical cost, declines as inflation rises, leading to a higher real
value of corporate taxation. In addition, the real value of personal taxes on nominal capital gains also rises as
inflation increases. Thus, if the real after-tax returns on corporate cashflows received by investors declines with
inflation, stock valuations will decline with unexpected rises in inflation.
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state variables. However, recalling the results from our impulse response analysis, they both

display strong mean reversion (while the central tendency does not). Since stocks are long-dated

securities, it is not surprising that their values react minimally to short run shocks to expected

inflation and real rates that do not persist. In contrast, since inflation’s central tendency affects

longer run inflation, and shocks to it are very persistent, it makes sense that it would have a

significant impact on stock returns.

The net effect of term structure shocks on overall stock market volatility is relatively small,

at least when volatilities are at their steady states. The total steady state stock return volatility

equals
qP5

j=1 δ
2
jh
2
j = 15.59%, which is fourteen basis points higher than the volatility deriving

from the independent component of stocks. The net effect of term structure variables on the

steady state equity premium is slightly negative. This steady state equity premium equalsP5
j=1 δjφjh

2
j = 6.97%, which is nineteen basis points lower than the component of the equity

premium deriving from the orthogonal shock, φ5h
2
5 = 7.16%. Stock returns’ negative exposure

to inflation shocks (�1,t), which carry a positive risk premium, and their positive exposure to the

real rate innovation (�3,t), which has a negative risk premium, enables term structure uncertainty

to reduce equity’s risk premium.

6 Conclusion

This paper presents an equilibrium model of the term structures of nominal and real interest

rates. Its factors include the short term real interest rate, the short term expected inflation

rate, and the inflation rate’s central tendency. Along with actual inflation, these factors are

assumed to be driven by four volatility processes that follow the nonlinear asymmetric GARCH

model of Engle and Ng (1993). By allowing for a changing central tendency for inflation and

for changing volatilities for real rates and inflation, our model is able to account for changing

monetary and real economic conditions.

Although our model permits state variables to have a general correlation structure with

stochastic volatilities, it still leads to analytical solutions for the prices of nominal bonds and

inflation-indexed bonds that have an indexation lag, such as TIPS. Closed-form solutions for

expected inflation rates and equilibrium rates on inflation swaps also can be derived.

The model’s parameters were estimated using data on nominal Treasury yields, survey fore-

casts of inflation, and inflation swap rates. We found that allowing for GARCH effects is par-

ticularly important for real interest rate and expected inflation processes, but that long-horizon

real and inflation risk premia are relatively stable. Our estimate for the 10-year inflation risk

premium averaged 51 basis points and varied between 38 and 60 basis points during the 1982

to 2008 sample period. Somewhat different from prior studies, we find a sizeable real interest
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rate risk premium at the 10-year maturity, averaging 157 basis points and varying between 150

and 170 basis points.

Comparing our model’s implied yields for inflation-indexed bonds to those of TIPS suggests

that TIPS were underpriced prior to 2004 but more recently are fairly priced. Hence, the

‘liquidity premium’ in TIPS yields appears to have dissipated. The recent introduction of

inflation derivatives, such as zero coupon inflation swaps, may have eliminated this mispricing

by creating a more complete market for inflation-linked securities.

Our estimated model also suggests that shocks to both short run and longer run inflation

coincide with negative stock returns. An implication is that stocks are, at best, an imperfect

hedge against inflation. This underscores the importance of inflation-linked securities as a

means for safeguarding the real value of investments.

30



Appendix

Lemma 1

Let X be a standard normal random variable. Then for Q2 > −12 ,

E
h
eQ1X−Q2X

2
i
= e

Q21
2(1+2Q2)

− 1
2
ln(1+2Q2) (A.1)

Proof:

The expectation can be written as:

E
h
eQ1X−Q2X

2
i
=

1√
2π

Z ∞

−∞
eQ1x−Q2x

2− 1
2
x2dx (A.2)

The result follows after completing the square and using properties of the normal density func-

tion.

Proof of Proposition 1

We begin by substituting the nominal pricing kernel into the bond pricing equation (12):

P (t, t+ n∆t) = Et

h
e−(πt+rt−φ1h

2
t )∆t− 1

2
4
j=1 φ

2
jh
2
j,t∆t− 4

j=1 φjhj,t
√
∆t�j,t+∆tP (t+∆t, t+ n∆t)

i
(A.3)

Now assume the bond price has the form

P (t, t+ n∆t) = e−(Kn+Anπt+Bnrt+Cnαt+
4
j=1Dj,nh2j,t) (A.4)

and substitute equation (A.4) into the left- and right-hand sides of equation (A.3). Substituting

in for the state variables at date t+∆t using equation (8), collecting all coefficients of the random

variables of the same type together, and then taking expectations using Lemma 1 leads to the

resulting recursive equations for the coefficients. The initial boundary conditions come from

considering the case when n = 1.

Proof of Proposition 2

Assume the structure for growth in the price level, I(t, t+ n∆t) has the following form:

I(t, t+ n∆t) = eK̄n+Ānπt+B̄nrt+C̄nαt+
4
j=1 D̄j,nh

2
j,t (A.5)

Then:

I(t, t+ n∆t) = Et

∙
It+∆t

It
I(t+∆t, t+ n∆t)

¸
(A.6)
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Substituting in the assumed form for I(t+∆t, t+ n∆t), we obtain

I(t, t+n∆t) = Et

h
eπt∆t− 1

2
h2t∆t+ht

√
∆t�1,t+∆t+F̄n−1+Ān−1πt+∆t+B̄n−1rt+∆t+C̄n−1αt+∆t+ 4

j=1 D̄j,n−1h2j,t+∆t
i
.

(A.7)

Substituting in for the state variables at date t+∆t using equation (8), collecting all coefficients

of the random variables of the same type together, and then taking expectations using Lemma

1 leads to the resulting recursive equations for the coefficients. The initial boundary conditions

come from considering the case when n = 1.

Proof of Proposition 3

Let t be the current date, te = t + n∆t and tp = te + d∆t. Suppressing ts, we need to

compute V (t; te = t+ n∆t). Then assume the following structure:

V d(t; t+ n∆t) =
It
Its

e−K̃n−Ãnπt−B̃nrt−C̃nαt− 4
j=1 D̃j,nh2j,t (A.8)

Now

V d(t; t+ n∆t) = Et

∙
Mt+∆t

Mt
V d(t+∆t; t+ n∆t)

¸
(A.9)

Substituting in the structure for V d(t+∆t; t+ n∆t) leads to:

V d(t; t+ n∆t) = Et

∙
It+∆t

Its

Mt+∆t

Mt
e−K̃n−1−Ãn−1πt+∆t−B̃n−1rt+∆t−C̃n−1αt+∆t− 4

j=1 D̃j,n−1h2j,t+∆t

¸
(A.10)

This can be rewritten as:

V d(t; t+ n∆t) =
It
Its

Et

∙
It+∆t

It

Mt+∆t

Mt
e−K̃n−1−Ãn−1πt+∆t−B̃n−1rt+∆t−C̃n−1αt+∆t− 4

j=1 D̃j,n−1h2j,t+∆t

¸
(A.11)

Substituting in for the nominal pricing kernel and inflation process using equations (1) and (3),

as well as for the state variables at date t+∆t using equation (8), collecting all coefficients of

the random variables of the same type together, and then taking expectations using Lemma 1

leads to the resulting recursive equations for the coefficients.

The boundary conditions are obtained by recognizing that at date t+n∆t, the final payment

is known, but is deferred by d periods. So the boundary conditions with no periods to go are

given by the known payment multiplied by the d-period discount bond price, the formula for

which is given in Proposition 1.
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Table 1: Inflation Process Parameter Estimation  

The table shows the estimates for the following inflation process:

 

Maximum likelihood estimates were obtained using 1982 to 2008 monthly data on the Consumer Price Index and 
one-month expected inflation derived from Blue Chip Economic Indicator consensus forecasts of CPI inflation. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Parameter Estimate t -Statistic p -Value
0.0083 3.98 0

-1.446 -1.86 0.063

1.2310-4 2.34 0.019

-5.86 -0.19 0.849

Observations 318

1h

11d

12d

13d



Table 2: Real and Nominal Term Structure Parameter Estimates 

 The estimates of the parameters of the process below are reported for five different specifications that differ 
according to which volatility dynamics  are permitted to have GARCH specifications. w, v, and u are the standard 
deviations of the measurement errors for nominal Treasury yields, survey inflation rate forecasts, and inflation swap 
rates, respectively. For each set of estimates, the parameters of the GARCH process for inflation (h1) are fixed at the 
point estimates  reported in Table 1. Note: ***, **, and * denotes statistical significance at the 1%, 5%, and 10% level. 

 

 

Parameter No GARCH h 2 Only h 3 Only h 4 Only All GARCH 

    0.0258***     0.0241***     0.0416***     0.0258***     0.0322***

a 1     0.6929***     0.5625***     0.4949***     0.6928***     0.4916***

a 2    -2.762***    -2.7236***    -2.3683***    -2.762***    -2.4224***

β 1     0.7405***     0.8285***     0.8323***     0.7415***     1.0669***

b 1    -1.8036***    -1.4668***    -1.2476***    -1.8027***    -1.2543***

b 2     2.7787***     2.2795***     1.848***     2.7773***     1.8482***

 1 -0.1311    -0.597***    -0.6659*** -0.131    -0.9093***

 2    -0.9822***    -1.3765***    -1.0281***    -0.9826***    -1.0295***

    0.0126**     0.0119**     0.0252***     0.0127**     0.0157**

c 1    -0.0541***    -0.051***    -0.0482***    -0.0541***    -0.0483***

 1 -0.0427 -0.0188     0.1372** -0.0418     0.1975***

 2 -0.0242    -0.0365*** 0.017 -0.0278     0.0346*

 3    -0.0752***    -0.073***    -0.1408***    -0.0759***    -0.1586***

    0.02494***     0.02504***     0.024576***     0.02494***     0.02508***

d 21 -    -1.9082*** - -    -1.9891***

d 22 -     0.001388*** - -     0.001419***

d 23 -  -25.48*** - - 0.08

    0.02571***     0.026851***     0.016703***     0.02571***     0.017029***

d 31 - -    -6.033*** -    -6.0448***

d 32 - -     0.001331*** -     0.001386***

d 33 - -    33.33*** -   32.61***

    0.010536***     0.011916***     0.010296***     0.010488***     0.009849***

d 41 - - - -11.9984    -2.2841***

d 42 - - - 0.000022     0.000031***

d 43 - - - -0.51 -179.51***

 1   -60.06***  -58.2***   16.00***  -59.96***    19.93***

 2    39.54***   39.35***     4.06**   39.49***    -6.88***

 3 7.41   13.17***   -50.18*** 7.44   -50.25***

 4   -19.27***  -13.25***   -27.54***   -18.40***   -36.27***

w 0.0038 0.0037 0.0035 0.0038 0.0035
v 0.0039 0.0038 0.004 0.0039 0.0039
u 0.0027 0.0026 0.0027 0.0027 0.0027

Ln Likelihood 32443.314 32515.5 32632.206 32443.314 32686.266

Reject No GARCH Yes Yes No Yes



r

2h

3h

4h



Table 3: Estimated Standard Deviations and Correlations 

The table reports the annualized standard deviations and correlations among the state variables  for one-
month horizons and are based on parameter estimates from the unrestricted model. 

 

 

 

 

 

 

 

  

Steady 
State

Average Minimum Maximum

Standard Deviations
ln(I t + t /I t ) 0.0083 0.0077 0.0039 0.0154

 t + t 0.0266 0.0258 0.012 0.046

r t + t 0.0318 0.0335 0.0158 0.0718

 t + t 0.0104 0.0108 0.0085 0.015

Correlations

ln(I t + t /I t ),  t + t 0.333 0.326 0.191 0.671

ln(I t + t /I t ), r t + t -0.237 -0.216 -0.465 -0.071

ln(I t + t /I t ),  t + t 0.158 0.143 0.065 0.3

 t + t , r t + t -0.844 -0.785 -0.992 -0.306

 t + t ,  t + t 0.131 0.122 0.059 0.235

r t + t ,  t + t -0.244 -0.274 -0.641 -0.123

1982 – 2008 Sample Period



Table 4: Stock Return Process Estimates 

Maximum likelihood estimates were obtained using monthly returns on the S&P500 (including dividends) 
over the 1982 to 2008 sample period. Term structure variables and parameters were set to their values 
estimated from the unrestricted model. The total number of monthly observations is 312. The dynamics of 
the stock return are: 

 

 

 
 
 

 
 

 

  

Parameter Estimate t-Statistic p-Value

0.1545 7.03 0.000

d 51 -8.5723 -3.8 0.000

d 52 0.05549 2.98 0.003

d 53 7.62 3.43 0.001

 1 -1.5414 -1.8 0.072

 2 -0.3543 -1.31 0.191

 3 0.3868 1.41 0.159

 4 -1.211 -2.32 0.021

 5 3.0011 2.2 0.028

5h



Figure 1: Time Series of Volatilities of State variables 

Using the parameter estimates of the full model with all GARCH effects  we compute the time series of 
standard deviations of the state variables from 1982 to 2008.  

 

 

 

 

  



Figure 2: Time Series of State Variables 

The figures below show the time series of Expected Inflation, its Central Tendency and Real Rates over 
the time span from 1982 to 2008. The estimated parameters for these time series come from using the 
full model with all GARCH effects. 

 

 

 

 

 

 

  



Figure 3: Impact of One Standard Deviation Shocks on State Variables 

The figures show the expected path of Inflation, Real rates and Central Tendency following a one 
standard deviation move in each of these variables. The top panel shows the impact of shocks to 
Expected Inflation, the middle panel shows the sensitivity to shocks to Real Rates, and the bottom panel 
shows the  sensitivity to shocks to the Central Tendency.  

 



Figure 4: Impact of One Standard Deviation Shocks on State Variables 

The figures show the expected path of Inflation, Real rates and Central Tendency following a one 
standard deviation move in each of these variables. The top panel shows the impact of shocks to 
Expected Inflation, the middle panel shows the sensitivity to shocks to Real Rates, and the bottom panel 
shows the sensitivity to shocks to the Central Tendency. Figure 4 differs from Figure 3 in that when there 
is a positive one standard deviation shock to a state variable, the other state variables also suffer a shock 
commensurate with the estimated correlations given in Table 3.  
 



Figure 5: Real and Nominal Yield Curves with Inflation Expectations 

The figure shows the nominal yield curve, the real yield curve and the term structure of expected inflation  
when the state variables are set equal to their steady state values. 

 

 

 

 

  

  



Figure 6: Time Series of Inflation Indexed Yield Curves 

The figure shows the inflation indexed yield curves from 1982 to 2008. The yield curves were constructed 
using the parameter estimates from the full GARCH model as reported in Table 2. 

 

 

 

 

 

  



Figure 7: Real and Nominal Yield Curves with Inflation Expectations 

The figure shows the nominal yield curve, the real yield curve and the term structure of expected inflation  
when the state variables are set equal to their steady state values but all market prices of risk are set 
equal to zero. 

 

 

 

  



Figure 8: Nominal, Real and Inflation Risk Premia 

The figure shows the term structure of risk premia for nominal and real yields as well as for expected 
inflation when all the state variables are initialized at their steady state levels. 

 

 

 

  



Figure 9: Ten Year Expected Inflation and real and Nominal Risk Premia 

The Figure shows the time variation in the ten year risk premia. The state variables used for this analysis 
come from  the full GARCH model, with parameter values provided in Table 2. 

 

 

 

 

  



Figure 10: Term Structure of Expected Inflation 

The Figure shows the time series of term structures of inflation expectations over the time period from 
1982 to 2008. The parameter estimates for the figure correspond to the full GARCH model and are 
reported in Table 2. 

 

 

 

  



Figure 11:  Five  and Ten Year TIPS Yields versus Real Yields 

The top panel  compares the five year TIPS yields with the five year real yields produced by the full 
GARCH model.  The bottom panel compares the ten year TIPS yields with the 10 year real yields. Data 
for the TIPS yields were obtained from  Gurkaynak, Sack and Wright. 

 

 

 

 


