Reforming road user charges: A research challenge for regional science

Robin Lindsey

Regional Science: The Next Fifty Years, April 24, 2009
Role of transportation in regional science

Cost of distance

50th anniversary issue of *Papers in Regional Science* (2004)

Glaeser and Kohlhase: Historical decline in transport costs; implications for city & regional development

Rietveld and Vickerman: Continuing importance of transport costs (“death of distance” is premature)
Reform of road user charges

1. Limitations of status quo (U.S.)
2. A Vehicle Mileage Traveled (VMT) fee
3. Research questions and challenges
Motivation

Forward-looking

Roads dominate passenger & freight transport

Potential impacts on travel behavior, urban form, regional development, direction of trade

Endogenizes transport costs \{asymmetric, dependent on infrastructure investment\}

Interdisciplinary. A policy issue to align the groups
\{transport, urban, NEG, trade, public finance, public choice, environmental, behavioral?; Engineers, economic geography, urban planners…\}

Another way to price roads in New York City
Limitations of status quo in the U.S.

1. Road user charges do not match marginal social costs of travel
2. Growing gap between revenues and road infrastructure needs
## Estimated marginal external costs [2006 cents]

<table>
<thead>
<tr>
<th></th>
<th>Passenger (per passenger-mile)</th>
<th>Freight (per ton-mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion delay(^a)</td>
<td>0.88 - 7.5</td>
<td>0.54</td>
</tr>
<tr>
<td>Road damage(^b)</td>
<td>0</td>
<td>0.235</td>
</tr>
<tr>
<td>Accidents (external)(^a)</td>
<td>1.4 - 14.4</td>
<td>0.11 - 2.0</td>
</tr>
<tr>
<td>Air pollution (health)(^a)</td>
<td>0.09 - 6.7</td>
<td>0.10 - 18.7</td>
</tr>
<tr>
<td>Climate change(^a)</td>
<td>0.06 - 4.8</td>
<td>0.02 - 5.9</td>
</tr>
<tr>
<td>Noise(^a)</td>
<td>0.0 - 3.5</td>
<td>0.0 - 5.3</td>
</tr>
<tr>
<td>Water pollution(^a)</td>
<td>0.01 - 0.05</td>
<td>0.003 - 0.05</td>
</tr>
<tr>
<td>Energy security(^a)</td>
<td>0.20 - 0.84</td>
<td>0.22 - 0.84</td>
</tr>
</tbody>
</table>

\(^a\) Delucchi and McCubbin (2009) \(^b\) Parry (2008)
# Variation of marginal external costs

<table>
<thead>
<tr>
<th>Externality</th>
<th>Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td><strong>Distance-related externalities</strong></td>
<td></td>
</tr>
<tr>
<td>Congestion delay</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Road damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidents (external)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pollution (health)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fuel-related externalities</strong></td>
<td></td>
</tr>
<tr>
<td>Climate change</td>
<td></td>
</tr>
<tr>
<td>Energy security</td>
<td></td>
</tr>
<tr>
<td><strong>Other externalities</strong></td>
<td></td>
</tr>
<tr>
<td>Parking congestion</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pollution</td>
<td></td>
</tr>
</tbody>
</table>

*Also driver characteristics*
Existing road user charges

Fixed charges
- Unrelated to usage

Fuel taxes
+ Nearly ideal for covering fuel-related externalities
- Poor for covering distance-related externalities
- Fuel-related externalities < 0.1 distance-related externalities (Parry et al., 2007)

Tolls
- 5,000 miles of tolled facilities (less than 1%)
- Time-varying or usage-dependent tolls on only 25 of 277 tolled facilities
- Truck tolls rarely based on axle weight
Shortage of funds

1. Deteriorating infrastructure

2. Declining revenues
   - Declining real tax rates
   - Improving vehicle fuel economy
   - Alternative-powered vehicles

3. Flawed revenue allocation mechanism
   - Earmarking of Highway Trust Fund

Estimated annual infrastructure gap 2008-2035: 43-71% of needs (NSTIFC, 2009)
A Vehicle Mileage Traveled (VMT) fee

1. Efficient pricing

Potential to internalize all road transport externalities with appropriate differentiation by time, location, etc.

2. Generate revenues

Supplement or replace fuel taxes
   - Gasoline, diesel
   - Federal, state

Satellite-based technology
Existing and proposed VMT schemes

Existing schemes
Heavy goods vehicles (Germany, Austria, Switzerland, Czech Republic)

European national proposals
Britain (2004)
Netherlands (Dutch Mobility Plan, 2008)
    Trucks (2011), cars (2016)

US trials
Puget Sound (2005), Oregon (2006), Iowa (underway)

US proposals
NSTPRSC (2008) and NSTIFC (2009)
## Estimated annual benefits

<table>
<thead>
<tr>
<th></th>
<th>United States</th>
<th>Great Britain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban congestion pricing</td>
<td>$40 billion (Winston and Langer 2008)</td>
<td></td>
</tr>
<tr>
<td>Pay as you drive insurance</td>
<td>$50-60 billion (Progressive, Bordoff and Noel 2008)</td>
<td>£2.6-2.9 billion (Glaister and Graham 2005)</td>
</tr>
<tr>
<td>All roads, congestion and emissions</td>
<td>Approx. welfare neutral (Graham et al. 2009)</td>
<td></td>
</tr>
</tbody>
</table>
Questions addressed in paper

1. Appropriate coverage of externalities and differentiation of VMT fee.
2. Choice of transportation models for evaluation (microsimulation, …, national).
3. Cost recovery.
4. Implementation path.
5. **Effect of VMT fee on transport costs.**
6. Response of users.
7. Optimal road capacity and road design.
Effect of VMT fee on transport costs

Thisse/Duranton

• Transport cost for freight
• Transport cost for commuting

Agglomeration depends on relative magnitudes of the two costs.
Effect of VMT fee on transport costs

Generalized cost per mile

\[ c = \tau_{VMT} + \text{fuel} + t \left( M c + K \right) \]

Direct effect
A VMT fee increases cost
Effect of VMT fee on transport costs

Indirect effect
A VMT fee increases revenue available for infrastructure.
Effect of VMT fee on transport costs

+ Monetary cost
- Travel time, unreliability
+ Marginal insurance cost
- Total insurance cost $\Rightarrow$ higher vehicle ownership?
- Use of information technology
- Higher road capacity and better road quality?

Some costs may rise, others fall:
  Passenger vs freight
  Urban vs. rural
From second-best to first best

A VMT fee brings economic analysis closer to first best!

Lipsey and Lancaster (1956/57)
Verhoef et al. (2000s)

Information required on cross-price elasticities
Danger of making things worse

Remaining distortions
Other transport modes
Other economic sectors (labor markets)
Optimal road capacity

Two opposing factors

1. Demand falls $\Rightarrow$ optimal capacity falls

2. Eliminate latent demand $\Rightarrow$ optimal capacity increases
   
   Strength depends on price elasticity of demand

Additional consideration

3. Tolling may increase lane capacity.
Optimal road design

Highways overbuilt for light-duty vehicles and for speed

• Truck-only toll lanes and corridors (Samuel, Poole and Holguín-Veras, 2002)

• Sacrifice speed for capacity (Small, 2008)

  Case perhaps weakened with a VMT fee
Response of users

Traveler heterogeneity (value of time, value of reliability, …)
  Adjustments made by marginal travelers
  Welfare impacts felt by all travelers

Most evidence on response to tolls comes from individual toll roads, not comprehensive road pricing

Greater informational demands on users

Role of Advanced Traveler Information Systems
Response of users

Cognitive limits, nonstandard preferences

• Drivers underestimate monetary costs of driving
• Drivers overestimate travel time saved by taking toll lanes or toll roads
• GPS measurements differ from perceptions (e.g. distance)
• Loss aversion?

Future developments

1959 → 2009 → 2059

Technological
Logistics: Just in time … Just in case
Vehicle safety, emissions control
Automated roads
Personal helicopters (1950s); Segway & PUMA …

Demand
Internet, telecommuting
Car-sharing

Policy
Cap-and-trade system or carbon tax
High-speed intercity rail ($9 billion is a small start)