The data avalanche is here

Harvey J. Miller Department of Geography University of Utah harvey.miller@geog.utah.edu

JRS 50th Anniversary Symposium, New York, NY, 23-24 April 2009

Introduction

• From a data-poor environment...

- Measurements were difficult, expensive and cumbersome
- Science designed to tease scare information from limited observation
- ... to a data-rich environment
 - Data costs have collapsed
 - Collection, storage and processing
 - We are flooded with nonscientific but useful data

Introduction

• Computational social sciences Lazer at el. (2009) *Science*

- Based on collecting and analyzing massive databases on individual and group behavior
- Emerging! but at Yahoo, Google, Facebook and U.S. National Security agencies
- Little activity in the mainstream social sciences
- Why?

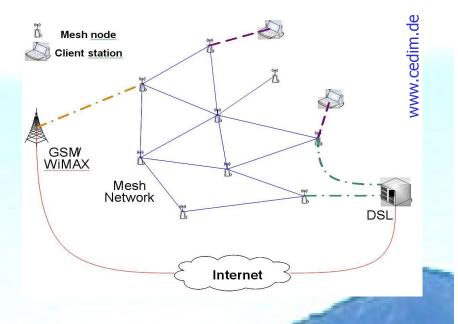
Facebook – 200 million social networks!


Introduction

- Regional science and Knowledge Discovery from Databases
 - What does KDD offer?
 - Individual level data on people, objects and bits
 - Powerful techniques for spatial and temporal exploration
 - New techniques for hypothesis generation (not testing)
 - What does regional science offer?
 - A rich body of theory that can guide the KDD process
- KDD is not atheoretical or anti-theoretic
 - There is a theory underlying KDD
 - KDD harmonizes with knowledge construction in (regional) science

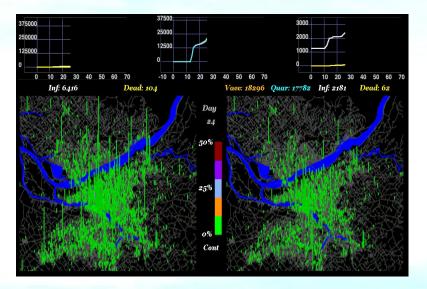
ment of Geography

- Point of sale data
- Location-aware technologies
- Geosensor networks
- The Internet
- Simulation



And lots of imagery too!

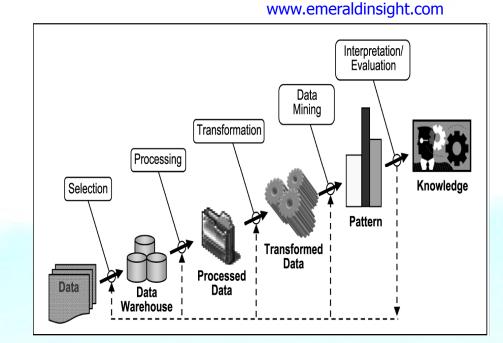
- Location-aware technologies
 - Methods
 - Global Positioning System
 - Radiolocation
 - RFID chips
 - Location-based services (LBS)
- Geosensor networks
 - Connected heterogeneous data collection devices
 - Monitor environments from rooms to regions
- GIS
 - Mobile object databases
 - Space-time exploratory tools


• The Internet

- What people are saying, buying, searching
- Social connections
- Techniques for natural language processing, analyzing multimedia
- Example: Where's George?
 - Locations and times of registered bills
 - Surrogate for human travel
 - Brockman, Hufnagel and Geisel (2006) *Nature*

• Geosimulation

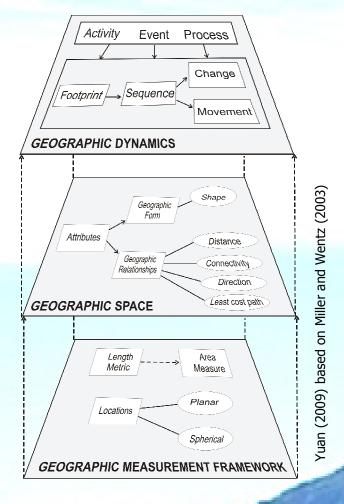
- Cellular automata
- Agent-based modeling
- High-resolution space-time data
 - Empirical and/or synthetic
 - Geo-space and virtual space
 - Rethink theory and analysis of human behavior



EpiSims: Individual-level simulation of disease propagation based on contacts in space and time episims.lanl.gov

What is knowledge discovery from databases?

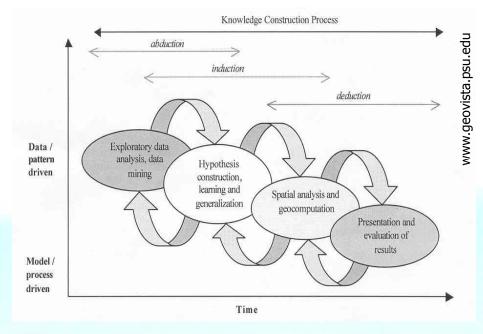
• KDD process


- Complex
- Human-centered
- Cannot be automated
- Data mining
 - Low-level algorithms
 - Classification
 - Associations
 - Trends
 - Outliers
 - Pattern detection not model building

The KDD process

Why geographic knowledge discovery?

- Geo-space
 - Locations and proximity
 - Can be very general!
 - Spatial dependency and heterogeneity
- Spatial objects
 - Cannot be reduced to points
 - Size, shape, boundaries all matter
- Time
 - Change in spatial properties
 - Motion
- GKD exploits the spatio-temporal properties of objects

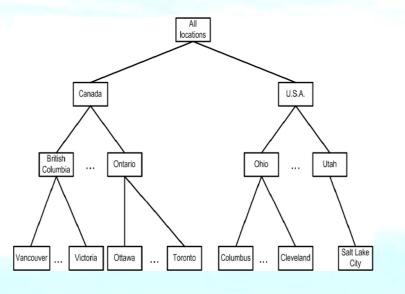

Knowledge discovery in regional science

• KDD to support theory

- Hypothesis generation system
- Abductive reasoning (C.S. Peirce - pragmatism)
- Similar to a telescope a datascope

Theory to support KDD

- Patterns & relations potentially large!
- Theory as a guide
 - Background knowledge
 - Pattern evaluation


Knowledge discovery in the knowledge construction process

Mark Gahegan

Opportunities and challenges

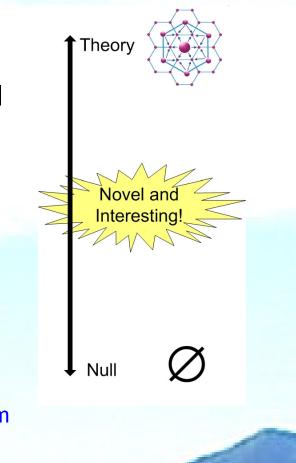
- Background knowledge
 - Domain knowledge to guide data mining
 - Facts, experts, theory
- Regional science concepts
 - Abstract, vague, multi-level
 - Ontology?
 - Knowledge representation
 - RS: Implicit
 - Equations, algorithms, etc
 - KDD: Explicit
 - Networks, hierarchies, rules

12

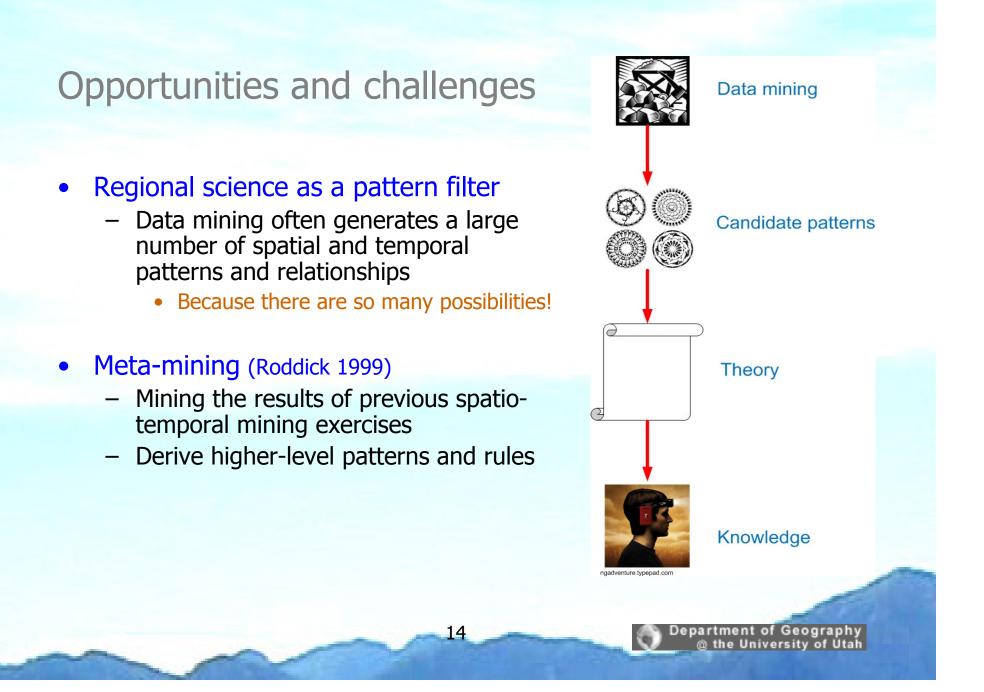
Concept hierarchy for "location"

- based on Han and Kamber (2003)

Opportunities and challenges


Spatial pattern evaluation

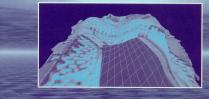
- Reality = theory: Interesting but not novel
- Reality = null: Not interesting or novel
- Between theory and null: May be interesting and novel


Problems

- What is a good spatial null?
 - Not Complete Spatial Randomness (CSR)
- What is the metric?
 - How do we measure spatial departures from theory and null?

13

rtment of Geography



Opportunities and challenges

- Algorithms and infrastructure
 - Geographic models can be computationally complex
 - Pairwise calculations between all locations
 - Research needs
 - Heuristics
 - Parallel, distributed and cloudcomputing
- Educational challenges
 - Computational regional science?
 - Orthogonal concepts
 - Large body of knowledge to master!

15

Parallel Processing Algorithms for GIS

Edited by Richard Healey Steve Dowers Bruce Gittings and Taylor&Francis Mike Mineter

10 years old!

Conclusion

- The data avalanche is not forthcoming, it is here
- There are increasingly powerful tools for discovering new knowledge from individual level spatio-temporal data
- These technique do not replace theory, but are **complementary**
- Regional science has a rich body of theory that can enhance the discovery of new knowledge about cities, economies and societies

www.liacs.nl/~edegraaf

Let's start digging!