The Future of Spatial Econometrics

Joris Pinkse Margaret Slade

prepared for the 50th anniversary symposium of the Journal of Regional Science at the New York Federal Reserve

Pean State © 1999 http://www.psu.edu

Pinkse & Slade

In the Paper

- Overview direction spatial econometrics literature
- Important unresolved problems
- Advocacy to inspire theory by applications

Status Quo

- Beautiful applications in economics, e.g.
 - Price competition in geographic space
 - Demand for differentiated products in product-characteristic space
 - Spillovers between firms in product, technology, geographic space

Status Quo

- Beautiful applications in economics, e.g.
 - Price competition in geographic space
 - Demand for differentiated products in product-characteristic space
 - Spillovers between firms in product, technology, geographic space
- Interesting econometric theory.

Status Quo

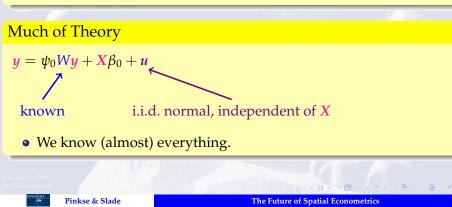
- Beautiful applications in economics, e.g.
 - Price competition in geographic space
 - Demand for differentiated products in product-characteristic space
 - Spillovers between firms in product, technology, geographic space
- Interesting econometric theory.
- Often no match.

Reality

 $m_n(A) = u$ i.i.d. unobservables

matrix of observables

• Everything is possible.


Pinkse & Slade

Reality

 $m_n(A) = u$ i.i.d. unobservables

matrix of observables

• Everything is possible.

Spatial Autoregressive Model

- Normality unnecessary
- Relationship may not be linear
- Should include spatially lagged *x*'s
- *u* and *X* dependent (endogeneity and/or heterogeneity)
- We don't know W
 - Why $\psi_0 W$? • $W \rightarrow W$, i.e. endogenous.

Penn State © 1999 http://www.psu.edu

Pinkse & Slade

Theoretical Extensions

- smooth out some rough edges of simple models
- are of theoretical interest
- are not usually motivated by applications
- are often not all that relevant for applications

Theoretical Extensions

- smooth out some rough edges of simple models
- are of theoretical interest
- are not usually motivated by applications
- are often not all that relevant for applications
- So: theoretical innovations should be driven by applications

Pinkse & Slade

Problems with Spatial Data

- Endogeneity
 - Locations themselves endogenous
 - Missing data
 - Usual problems
- Locations and dependence relationships change with the sample size
- Dependence multidirectional
- No stationarity
- Identification problems
 - Reflection problem
 - Multidirectional dependence
 - Dependence strength
 - Multiple equilibria

• So let's stop treating spatial data as a multidimensional time series.

Pean State © 1999 http://www.psu.ed

A Few Interesting Problems

(more in the paper)

Penn State © 1999 http://www.psu.ed

Pinkse & Slade

A Few Interesting Problems

(more in the paper)

A Somewhat More Reasonable Model

$$\mathbf{y}_i = \sum_{j \neq i} g(\boldsymbol{\delta}_{ij}) \mathbf{y}_j + \mathbf{x}'_i \beta_0 + \mathbf{u}_i, \quad i = 1, \dots, n.$$

Pinkse–Slade–Brett

- *g* unknown; δ_{ij} distance.
- Spatial dependence all over the place, but *x_i* exogenous.
- Still lots of questionable assumptions; objective is to illustrate.
- Endogeneity in δ_{ij} difficult \rightarrow see PSB.
- Interpretation: Faced with rival actions y_i, covariates x_i and a variable u_i observable to player i but not to us, player i would choose y_i.

Binary Choice

Payoff for player *i* to choose option 1 over option 0 is

$$\boldsymbol{y}_i^* = \sum_{j \neq i} g(\boldsymbol{\delta}_{ij}) \boldsymbol{y}_j + \boldsymbol{x}_i' \boldsymbol{\beta}_0 + \boldsymbol{u}_i, \quad i = 1, \dots, n.$$

Problem

- Hard due to nonlinearity and nondifferentiability.
- Tricky even for fixed number of products and large number of markets; here large number of products in one market.
- What about dynamics?

Penn State © 1999 http://www.psu.edu

Pinkse & Slade

Binary Choice

Payoff for player *i* to choose option 1 over option 0 is

$$\mathbf{y}_i^* = \sum_{j \neq i} g(\boldsymbol{\delta}_{ij}) \mathbf{y}_j + \mathbf{x}_i' \boldsymbol{\beta}_0 + \mathbf{u}_i, \quad i = 1, \dots, n.$$

Problem

- Hard due to nonlinearity and nondifferentiability.
- Tricky even for fixed number of products and large number of markets; here large number of products in one market.
- What about dynamics?

No Work Either on

Partial identification.

Penn State © 1999 http://www.psu.edu

Conclusions

- So many interesting well-defined empirically relevant problems.
- Let's work on those.

Pinkse & Slade