On Spatial Dynamics

Klaus Desmet Universidad Carlos III

and

Esteban Rossi-Hansberg Princeton University

April 2009

(3)

Introduction

- Economists have long discussed the relationship between agglomeration and growth
 - Both are based on some form of weakly increasing returns
 - ★ Lucas (1988) and Krugman (1997)
- But no Dynamic Spatial Theory has emerged: Why?

The Literature

Literature can be divided in three main strands:

- 1. Dynamic extensions of the New Economic Geography framework
- Krugman (1991) meets Grossman and Helpman (1991). Nice survey in Baldwin and Martin (2004)
- Mostly 2 locations and no land
- Useful to think about the relationship between regional imbalances and growth
- But very stylized, not rich enough to capture other spatial characteristics within and across industries

The Literature

- 2. Urban dynamics and the size distribution of cities
 - Built to match the size distribution of cities
 - Use Gabaix (1999) insight that dynamic evolution key to determine the observed city heterogeneity
 - Emphasis on obtaining a dynamic evolution of city size based on model's fundamentals: Black and Henderson (1999), Duranton (2007) and Rossi-Hansberg and Wright (2007)
 - Establishes link from growth to the distribution of economic activity in cities
 - But no space and no spatial links between cities (like transport costs)
 - Potential selection bias when looking only at cities

A E > A E >

The Literature

- 3. Optimal evolution of capital in space with forward looking agents
 - Full dynamic spatial framework with either diffusion or capital mobility
 - The problem solved by Boucekkine et al. (2009) is given by:

$$\begin{split} \max_{c} \int_{0}^{\infty} \int_{\mathbb{R}} U\left(c\left(\ell,t\right)\right) L\left(\ell,t\right) e^{-\beta t} d\ell dt \\ \text{subject to} \\ \frac{\partial k\left(\ell,t\right)}{\partial t} - \frac{\partial^{2} k\left(\ell,t\right)}{\partial \ell^{2}} = Z\left(\ell,t\right) f\left(k\left(\ell,t\right)\right) - \delta k\left(\ell,t\right) - c\left(\ell,t\right) \\ k(\ell,0) = k_{0}\left(\ell\right) > 0 \text{ and } \lim_{\ell \to \pm \infty} \frac{\partial k\left(\ell,t\right)}{\partial \ell} = 0 \end{split}$$

- An 'ill-posed' problem so cannot be fully analyzed apart from special cases. Only necessary conditions can be advanced
- For examples with diffusion see Brock and Xepapadeas (2008)

イロト イポト イヨト イヨト

The Importance of Space

Why is modeling geographically ordered space important?

- Land at a particular location is a rival non-replicable input
 - Economic density is endogenous, but non-replicability of land leads to decreasing returns: a dispersion force
- The ordering of economic activity in space determines outcomes
 - Ample evidence for patents (Jaffe et al., 1993), co-location of firms (Duranton and Overman 2005, 2008 and Ellison and Glaeser, 1997), and in general transport costs and mobility costs

The Importance of Space

Why is it hard?

- Adds another dimension
 - Forward looking agents need to understand the distribution of economic activity in all future dates for all feasible decisions
- Clearing markets is difficult
 - One possibility is to make probabilistic statements for a large number of locations as in trade (e.g. Eaton and Kortum, 2002)
 - Another is to clear market sequentially with compact continuous space (e.g. Rossi-Hansberg, 2005)
 - * Hard to do with non-symmetric two dimensional setups (like reality!)

An Alternative Model with Space

- Developed in Desmet and Rossi-Hansberg (2009) with two sectors
- \bullet Land is given by the unit interval [0,1], time is discrete, and total population is \bar{L}
- Agents solve

$$\max_{\left\{c(\ell,t)\right\}_{0}^{\infty}} E\sum_{t=0}^{\infty} \beta U(c\left(\ell,t\right)) \text{ s.t. } w\left(\ell,t\right) + \frac{\bar{R}(t)}{\bar{L}} = p\left(\ell,t\right)c\left(\ell,t\right)$$

- Free mobility implies that utilities equalize across regions each period
- Firm solve

$$\max_{L(\ell,t)} \left(1 - \tau\left(\ell,t\right)\right) \left(p\left(\ell,t\right) Z\left(\ell,t\right) L\left(\ell,t\right)^{\mu} - w\left(\ell,t\right) L\left(\ell,t\right)\right)$$

Innovation

- The government of a county can decide to buy an opportunity to innovate by taxing local firms τ (ℓ, t)
- Buys a probability $\phi \leq 1$ of innovating at a cost $\psi\left(\phi
 ight)$ per unit of land
- If it innovates it draws a technology multiplier $z(\ell)$ from

$$\Pr\left[z < z_{\ell}\right] = \left(\frac{1}{z}\right)^{a}$$

such that TFP becomes $z_{\ell}Z_{i}(\ell, t)$.

• County G, with land measure I, will then maximize

$$\max_{\phi(\ell,t)} \int_{\mathcal{G}} \frac{\phi(\ell,t)}{a-1} p(\ell,t) Z(\ell,t) L(\ell,t)^{\mu} d\ell - I \psi(\phi)$$

Diffusion, Transport Costs and Market Clearing

Innovation diffuses spatially between time periods according to

$$Z_{i}\left(\ell,t+1\right) = \max_{r \in [0,1]} e^{-\delta|\ell-r|} Z\left(r,t\right)$$

- Transport costs such that if goods are produced in ℓ and consumed in r, $p(r, t) = e^{\kappa |\ell r|} p(\ell, t)$
- Goods markets clear sequentially so define $H_i(\ell, t)$ by $H_i(0, t) = 0$ and by the differential equation

$$\frac{\partial H(\ell, t)}{\partial \ell} = \theta(\ell, t) \times (\ell, t) - c(\ell, t) \left(\sum_{i} \theta(\ell, t) L(\ell, t) \right) - \kappa |H(\ell, t)|$$

then, the goods market clears if H(1, t) = 0.

• The labor market clearing condition is given by

J

$$\int_{0}^{1} L\left(\ell, t\right) d\ell = \overline{L}, \text{ all } t$$

With two sectors:

- 1. 'Spillover' effect: locations close to other locations in the same sector grow faster because they benefit from innovation investments close by. This in turn increases incentives to innovate in this locations
- 2. 'Trade' effect: locations close to areas that import a particular good experience high prices for that good, thus providing incentives to innovate in that sector

Two Growth Effects

April 2009 12 / 15

Some Evidence for Manufacturing

Decay Emp. Kernel:	0.1 (half life 7 km)											
Decay Imp. Kernel:	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14				
Half-Life Imp, Kernel (km);	9.9	8.7	7.7	6.9	6.3	5.8	5.3	5.0				
Dependent variable: Log(Industry Employment 2000)-Log(Industry Employment 1990,												
Log(Ind. Emp. 1990)	-0.053	-0.0526	-0.05222	-0.05191	-0.05166	-0.05162	-0.0514	-0.05125				
	[12.70]***	[12.59]***	[12.49]***	[12.41]***	[12.34]***	[12.32]***	[12.26]***	[12.21]***				
Log(Ind. Emp. Kernel 1990)	0.00624	0.00617	0.00607	0.00602	0.00605	0.00592	0.00584	0.00567				
	[2.08]**	[2.05]**	[2.02]**	[2.00]**	[2.01]**	[1.97]**	[1.94]*	[1.88]*				
Log(Ind. Imp. Kernel 1990)	0.00626	0.00624	0.00628	0.00638	0.00639	0.00632	0.00633	0.00626				
	[10.71]***	[10.54]***	[10.49]***	[10.59]***	[10.53]***	[10.36]***	[10.36]***	[10.22]***				
Constant	0.56213	0.55913	0.55678	0.55473	0.55276	0.55297	0.55164	0.55117				
	[19.06]***	[18.92]***	[18.82]***	[18.74]***	[18.65]***	[18.64]***	[18.59]***	[18.55]***				
Observations	2543	2543	2543	2543	2543	2543	2543	2543				
R-squared	0.1221	0.121	0.1206	0.1213	0.1209	0.1197	0.1197	0.1187				
Dependent variable: Log(Industry Employment 1990)-Log(Industry Employment 1980												
		,			,							
Log(Ind. Emp. 1980)	-0.03445	-0.03389	-0.03371	-0.03338	-0.03287	-0.03256	-0.0323	-0.03207				
	[7.35]***	[7.22]***	[7.18]***	[7.10]***	[6.99]***	[6.92]***	[6.86]***	[6.81]***				
Log(Ind. Emp. Kernel 1980)	0.03753	0.03786	0.03795	0.03806	0.0382	0.0382	0.03824	0.03828				
. , ,	[10.77]***	[10.89]***	[10.92]***	[10.97]***	[11.03]***	[11.05]***	[11.08]***	[11.10]***				
Log(Ind. Imp. Kernel 1980)	0.00176	0.00223	0.0024	0.00265	0.00297	0.00313	0.00332	0.00348				
31 1 1 1 1 1 1 1	[2.45]**	[3.06]***	[3.26]***	[3.59]***	[4.00]***	[4.21]***	[4,47]***	[4.68]***				
Constant	0.1047	0.09882	0.09711	0.09398	0.08948	0.0871	0.08495	0.08312				
	[3.21]***	[3.02]***	[2.97]***	[2.88]***	[2,73]***	[2.66]***	[2.60]***	[2.54]**				
Observations	2857	2857	2857	2857	2857	2857	2857	2857				
R-squared	0.0417	0.0428	0.0432	0.044	0.045	0.0456	0.0463	0.047				
				2.511	2.510		1.1 100	2.517				

Absolute value of t statistics in brackets

* significant at 10%; ** significant at 5%; *** significant at 1%

イロト イポト イヨト イヨト

Some Evidence for Services

Decay Emp. Kernel:	0.1 (half life 7 km)											
Decay Imp. Kernel:	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14				
Half-Life Imp. Kernel (km):	9.9	8.7	7.7	6.9	6.3	5.8	5.3	5.0				
Dependent variable: Log(Service Employment 2000)-Log(Service Employment 1990,												
Log(Serv. Emp. 1990)	0.00346	0.00383	0.00409	0.00426	0.0043	0.00443	0.00451	0.00458				
	[1.29]	[1.43]	[1.53]	[1.59]	[1.61]	[1.66]*	[1.69]*	[1.72]*				
Log(Serv. Emp. Kernel 1990)	0.00624	0.00603	0.00587	0.00576	0.00572	0.00563	0.00557	0.00552				
	[4.55]***	[4.40]***	[4.28]***	[4.20]***	[4.17]***	[4.11]***	[4.07]***	[4.03]***				
Log(Serv. Imp. Kernel 1990)	-0.00028	0.00014	0.00044	0.00065	0.00073	0.00089	0.00101	0.00113				
	[0.74]	[0.36]	[1.15]	[1.67]*	[1.85]*	[2.26]**	[2.55]**	[2.87]***				
Constant	0.18715	0,18406	0.18195	0.1805	0.18018	0.17918	0.17855	0.17789				
	[8.08]***	[7.95]***	[7.86]***	[7.80]***	[7,79]***	[7.75]***	[7.73]***	[7.71]***				
Observations	2277	2277	2277	2277	2277	2277	2277	2277				
R-squared	0.0131	0.013	0.0135	0.0141	0.0144	0.0151	0.0157	0.0165				
Dependent variable: Log(Service Employment 1990)-Log(Service Employment 1980												
			-3(,							
Log(Serv. Emp. 1980)	0.04007	0.04012	0.04028	0.04034	0.04026	0.04024	0.04023	0.0402				
,	[13.89]***	[13.91]***	[13.99]***	[14.02]***	[14.00]***	[14.00]***	[14.00]***	[13.99]***				
Log(Serv. Emp. Kernel 1980)	0.01013	0.01003	0.00987	0.00977	0.00977	0.00973	0.00975	0.00978				
	[6.89]***	[6.82]***	[6.72]***	[6.67]***	[6.67]***	[6.65]***	[6.66]***	[6.68]***				
Log(Serv. Imp. Kernel 1980)	0.00153	0.00176	0.00208	0.00232	0.00236	0.00249	0.00251	0.00245				
5111	[3,72]***	[4.22]***	[4.96]***	[5.49]***	[5.58]***	[5.86]***	[5.90]***	[5,76]***				
Constant	-0.19616	-0.19598	-0.19655	-0.19644	-0.19573	-0.19524	-0.19523	-0.19522				
	[8,12]***	[8,11]***	[8,15]***	[8,15]***	[8,12]***	[8,11]***	[8,11]***	[8,11]***				
Observations	2616	2616	2616	2616	2616	2616	2616	2616				
R-squared	0.1191	0.1204	0.1227	0.1245	0.1248	0.1259	0.1261	0.1255				
		2201		2	2	2200	2201	2200				

Absolute value of t statistics in brackets

* significant at 10%; ** significant at 5%; *** significant at 1%

· ▲ 볼 ▷ 볼 · ♡ (? April 2009 14 / 15

イロト イポト イヨト イヨト

Conclusion

- Frameworks in the literature either not rich enough, lack space, or only partially understood
- Need to develop new spatial dynamic framework that can be contrasted to the data
 - On what dimensions?
 - Should have both 'spillover' and 'trade' effects
- Need a structural way of relating to the data to be able to run counterfactual exercises
- These are mayor challenges for the next fifty years of regional science!