A Transaction Data Study of The Forward Bias Puzzle

Francis Breedon Dagfinn Rime Paolo Vitale f.breedon@imperial.ac.uk_dagfinn.rime@norges-bank.no_p.vitale@unich.it

October 8, 2010

Motivation and Results

Motivation

- The forward rate bias is a puzzle in international finance.
- The market microstructure approach to exchange rates provides some rationale for the disconnect puzzle.
- We investigate whether similar headway can be made on the forward bias puzzle.

Results

- Via a market microstructure framework the forward bias is decomposed in parts due to forecast error and risk premium.
- Order flow *affects* the risk premium.
- Carry trade generates order flow and explains part of the bias.

Data

Data Preliminary Analysis

- Transactions data for the period 2/1/1997 to 1/5/2007 from EBS pertaining to inter-dealer trades for the major currencies.
 - * Data indicates the *number* of *customer initiated* buys and sells and the corresponding *prices*.
- Reuters's survey of *individual* market participants' forecasts for EUR/USD, USD/JPY and GBP/USD rates.
 - ★ Each month about 50 market participants provide their forecasts of future exchange rates.
 - $\star\,$ The forecast horizons are 1, 3, 6 and 12 months.

Data Preliminary Analysis

Fama's Regression: Monthly Data

GMM estimates of the slope coefficient β (*t*-statistics in parentheses) in the regression

$$s_{t+1} - s_t = \alpha + \beta (f_t - s_t) + \epsilon_{t+1}$$

. In blue significantly smaller than 1 values.

Currency	1 month	3 months	6 months	1 year
		Realized	Return	
EUR/USD	-4.81	-4.92	-5.08	-5.24
	(-2.59)	(-3.13)	(-4.29)	(-6.02)
USD/JPY	-1.87	-1.61	-1.76	-1.85
	(-1.19)	(-1.09)	(-1.48)	(-2.34)
GBP/USD	-2.51	-2.04	-1.95	-2.19
	(-1.30)	(-1.23)	(-1.36)	(-1.90)

Francis Breedon, Dagfinn Rime and Paolo Vitale

A Transaction Data Study of The Forward Bias Puzzle

Data Preliminary Analysis

Fama's Regression: Monthly Data

GMM estimates of the slope coefficient β (*t*-statistics in parentheses) in the regression

$$s_{t,e} - s_t = \alpha + \beta (f_t - s_t) + \epsilon_t.$$

In blue significantly smaller than 1 values.

Currency	1 month	3 months	6 months	1 year
EUR/USD	-3.60 (-1.87)	Expected -0.77 (-1.10)	Return 0.32 (0.74)	0.64 (1.86)
USD/JPY	-2.87	-1.404	- <mark>0.43</mark>	-0.04
	(-1.80)	(-1.75)	(-0.72)	(-0.09)
GBP/USD	-1.35	0.01	0.33	0.47
	(-0.64)	(0.01)	(0.76)	(1.47)

Francis Breedon, Dagfinn Rime and Paolo Vitale

A Transaction Data Study of The Forward Bias Puzzle

The Modified Uncovered Interest Rate Parity The Decomposition of Fama's Beta

Order flow and Modified UIP

Definition (Order Flow)

Order flow (o_t) is the difference between buyer and seller initiated transactions in the market for the foreign currency.

• Dealers aggregate demand as function of excess return

$$o_t = v_t \left(\bar{E}_t^1 \left[\tilde{s}_{t+1} \right] - s_t - (i_t - i_t^*) \Delta t \right)$$

- *Ē*¹_t[*š*_{t+1}] is average expectation; ν_t is average trading intensity, function of risk aversion and uncertainty.
- Modified UIP:

$$\bar{E}_t^1 \left[\, \tilde{s}_{t+1} \, \right] \, - \, s_t \; = \; \left(\, i_t \, - \, i_t^* \, \right) \Delta t \; + \, o_t \, / \, \nu_t \, .$$

Risk Premium (RP): o_t / v_t .

The Modified Uncovered Interest Rate Parity The Decomposition of Fama's Beta

The Decomposition of Fama's Beta

Reconsider Fama's regression,

$$s_{t+1} - s_t = \alpha + \beta \left(f_t - s_t \right) + \varepsilon_{t+1}, \text{ with } \beta = rac{\operatorname{cov} \left(s_{t+1} - s_t, f_t - s_t \right)}{\operatorname{var} \left(f_t - s_t \right)}$$

Given the modified UIP, inserting the forecasting error, $u_{t+1} = s_{t+1} - E_t[s_{t+1}]$, it follows

$$s_{t+1} - s_t = (f_t - s_t) + o_t / v_t + u_{t+1}.$$

Fama's Beta Decomposition

Fama's coefficient β can be decomposed as follows,

$$\beta = 1 + \beta_o + \beta_u$$
,

where

S

$$\beta_o = \frac{\operatorname{cov}\left(\frac{1}{\nu_t}o_t, f_t - s_t\right)}{\operatorname{var}\left(f_t - s_t\right)}, \quad \beta_u = \frac{\operatorname{cov}\left(u_{t+1}, f_t - s_t\right)}{\operatorname{var}\left(f_t - s_t\right)}$$

The Modified Uncovered Interest Rate Parity The Decomposition of Fama's Beta

The Decomposition of Fama's Beta (cont.ed)

Beta Decomposition (Monthly Data, Jan '97 – Apr '07)

Coefficient values of β_o and β_u (with *t*-statistics in parentheses). Sample: Jan 1997 - Apr 2007.

	EUR/USD		USD	USD/JPY		GBP/USD	
	OF	ExpE	OF	ExpE	OF	ExpE	
1 Month	-4.25	-1.06	-3.97	0.92	-0.10	-1.47	
	(-3.44)	(-1.28)	(-3.21)	(1.04)	(-0.08)	(-2.09)	
3 Month	-2.63	-3.11	-2.70	-0.61	-0.54	-2.27	
	(-2.55)	(-2.18)	(-2.26)	(-0.39)	(-0.72)	(-1.52)	
6 Month	-2.81	-3.62	-3.23	-0.76	-0.35	-2.74	
	(-3.14)	(-2.37)	(-2.70)	(-0.48)	(-0.58)	(-1.61)	
12 Month	-2.80	-4.21	-4.23	-0.14	0.29	-4.11	
	(-3.43)	(-2.81)	(-4.44)	(-0.12)	(0.64)	(-2.72)	

Carry Trade: Order Flow, Profits and Crash Risk

For the EUR/USD and USD/JPY:

• Carry trading *generates* order flow:

 $o_t = \alpha_o + \beta_o fd_{t-1} + \epsilon_t^o, \ \beta_o < 0$ (Table 4).

• Carry traders *expect* profits from carry trading:

 $r_{e,t} = \alpha_{er} + \beta_{er} fd_t + \epsilon_t^{er}, \beta_{er} < 1$ (Table 1, Panel B).

• Expectations of carry trading profits generate order flow:

 $o_t = \alpha_o + \lambda_o r_{e,t-1} + \epsilon_t^o, \lambda_o > 0$ (Table 5).

• Order flow affects expected risk-premia:

 $s_{t,e} - f_t = \alpha_{ep} + \gamma_{ep} o_t + \epsilon_t^{ep}$, $\gamma_{ep} > 0$ (Table 6).

• Carry trade increases crash risk:

$$skew_t = \alpha_{sk} + \gamma_{sk} o_t + \beta_{sk} fd_{t-1} + \delta_{sk} ImpVol_{t-1} + \epsilon_t^{sk}$$
$$\gamma_{sk} < 0 \text{ (Table 7).}$$

The Impact of the Expected Return on Order Flow

Risk-Adjusted Order Flow (Monthly Data, Jan '97 – Apr '07)

ot	=	αο	+	λoι	e,t-1	$+ \epsilon_t^o$	(<i>t</i> -statistics	in	parentheses).
----	---	----	---	-----	-------	------------------	------------------------	----	-------------	----

	1 month	3 month	6 month	12 month
EUR/USD	0.00	0.26	0.56	0.80
	(0.02)	(2.78)	(2.85)	(2.46)
USD/JPY	0.11	0.90	1.42	1.64
	(0.97)	(3.10)	(2.51)	(1.66)

Carry Trade, Order Flow and the Time-Varying Risk Premium

Order Flow and the Time-Varying Risk Premium

Expected Risk Premium (Monthly Data, Jan '97 – Apr '07)

 $s_{t,e} - f_t = \alpha_{ep} + \gamma_{ep} o_t + \eta_t^{ep}$ (t-statistics in parentheses).

	Horizon						
	1 month	3 months	6 months	1 year			
EUR/USD	0.198	0.212	0.100	0.027			
	(1.04)	(2.82)	(2.24)	(0.92)			
USD/JPY	0.054	0.154	0.150	0.153			
	(0.35)	(3.54)	(3.32)	(5.89)			

Carry Trade, Order Flow and the Time-Varying Risk Premium

Not a Free Lunch: Crash Risk

Realized Skewness (Monthly Data, Jan '97 – Apr '07)

 $skew_t = \alpha_{sk} + \gamma_{sk} o_t + \beta_{sk} fd_{t-1} + \delta_{sk} ImpVol_{t-1} + \epsilon_t^{sk}$

1	4 - + - + ! - + !	•		۱
(t-statistics	In	parentneses).

	E	EUR/USE)	USD/JPY			
	OF	FD	IV	OF	FD	IV	
1 Month	-13.78	37.88	-1.14	-3.07	48.10	-0.19	
	(-1.85)	(0.78)	(-0.40)	(-0.58)	(2.08)	(-0.10)	
3 Month	-5.97	9.40	-8.55	-4.25	34.92	4.54	
	(-1.88)	(0.50)	(-2.58)	(-2.21)	(4.50)	(2.69)	
6 Month	-3.94	4.72	-7.03	-2.90	22.78	6.86	
	(-2.01)	(0.45)	(-1.82)	(-4.08)	(5.83)	(4.28)	
12 Month	-1.27	5.85	-6.10	-1.29	7.97	4.41	
	(-1.16)	(0.99)	(-1.41)	(-4.03)	(5.40)	(2.99)	

Francis Breedon, Dagfinn Rime and Paolo Vitale

A Transaction Data Study of The Forward Bias Puzzle

Conclusions

Carry Trade, Order Flow and the Time-Varying Risk Premium

- Order flow explains a large share of expected risk premia.
- Order flow is partly carry motivated.
- Decomposing Fama's beta we explain the forward bias with:
 - ★ Forecast errors
 - ★ Carry-motivated order flow

- (shown before);
 - (new result).

