Household inflation expectations- exploiting the cross-sectional dimension

Alina Barnett

Haroon Mumtaz

Matthias Paustian

Silvia Pezzini

Bank of England

Conference on Consumer Inflation Expectations
Federal Reserve Bank of New York

18 November 2010

Motivation: main questions

 Can sticky information models capture some of the dynamics of UK inflation expectations better than the full information models?

• Is the proportion of agents updating information sets each period constant or time varying- which specification fits UK surveys better?

•Can we find any evidence of the sticky information model in the micro data? Motivation: literature review

Rational expectations

- agents share information sets and form expectations conditional on that information
- everybody has the same expectations

Expectations formation is heterogeneous across agents

- agents have different information sets (Mankiw and Reis (2002), Mankiw et al. (2003), Carroll (2003))
- agents use different models to form expectations (Gramlich (1983), Branch and Evans (2005), Branch (2007), Molnar and Reppa (2010))
- agents have different processing capabilities- learning models (Orphanides and Williams (2003))

Road map

- 1. Methodology
- 2. Data description
- 3. Results- macro analysis
 - Similar exercise to Mankiw, Reis and Wolfers (2003) on UK data (Part 1)
 - Fit the full distribution of the model forecasts to that of the Barclays Basix survey (Part 2)
- 4. Results- micro analysis
- 5. Conclusion

Methodology

There are two dimensions to our exercise:

- •The time when the information set was updated- information types
- •The way the new information is incorporated forecasting process

Recursive forecasting process:

- 1) equal weight on all information available (constant coefficient)
- 2) variable weight on new information (TVP with stochastic volatility)
- 3) most weight on new data (constant gain least square)

Information set

- •Inflation (RPIX)
- •Real time GDP growth
- Bank Rate

Sample: 1967 Q1 to 2010 Q2

Start forecast: 1987 Q1 for Basix and 2000 Q1 for NOP

Surveys of inflation expectations

Barclays Basix

- •asks about inflation rate
- •1987Q1 to 2010Q3
- •1 and 2 years ahead expectations; from 2008, also 5 years ahead expectations

Bank NOP

- asks about prices in general
- •2000Q1 to 2010Q3
- 1 year ahead expectations & perceptions; from 2008, also 2 and 5 years ahead expectations

Estimation

1) Constant coefficient BVAR

Start of Barclays Basix survey

Latest observation

$$Y_{t} = \beta_{t} * Y_{t-1} + \varepsilon_{t}$$

Type 1
$$Y_{t+1|t} = \beta_t * Y_t$$

Most informed

Type 2
$$Y_{t+1|t-1} = \beta_{t-1}^2 * Y_{t-1}$$

Type 3
$$Y_{t+1|t-3} = \beta_{t-3}^3 * Y_{t-3}$$

.

Type 20
$$Y_{t+1|t-20} = \beta_{t-20}^{20} * Y_{t-20}$$

Least informed

Part 1

• Assume that the same fraction θ of households updates its

Compare with full information model with parameter uncertainty

Population shares are geometrically distributed...

Results: fitting the full distribution

Part 2

- 1) Estimate the Barclays Basix survey's density and that of the model based forecasts using a normal Kernel
- 2) Use the Kullback- Leibler (Klic) distance measure to assess how 'close' the model based densities are to that of the survey

$$Klic(p, p^*) = \int \log[\frac{p^*(x)}{p(x)}]p^*(x)dx$$

Forecast density of the model

Density of survey

Results: models generating density forecasts

Models:

Full information model

• Sticky information model:

 $Beta(\alpha, \beta)$ = beta distribution parameterised by two shape parameters

Results: Klic- distance measure between model based and survey density

Results: estimated PDFs

Results: estimated weights in the time varying sticky information model

Results- micro analysis

<u>Aim</u>: match characteristics of NOP respondents to BVAR forecasts

- frequent updaters: those who last updated within the last year
- infrequent updaters: those who last updated between 6 and 15 quarters ago
- rare updaters: those who last updated between 16 and 20 quarters earlier
- don't knows: those who do not form expectations

Method: run a probit regression for these 4 'types' on individual characteristics

Results- micro analysis

- 13% do not formulate expectations- likely to be women, not have a degree, not to own a house or have a mortgage
- 87% form expectations- likely to be male, have a degree, own a house and/or have a mortgage
- 47% have a match in the model based forecasts- use those that have only one match (cc. 17%)

Frequent updaters

- 8% more likely to be educated than rare updaters
- More likely to have a mortgage, not to own or rent

Infrequent updaters

- Likely to have a mortgage as well as own their own house
- Lower probability of a degree than frequent updaters

Results- micro analysis

Depvar Pers char	Frequent updaters	Infrequent updaters	Rare updaters	Don't know
Edu: degree	0.085***	0.023***	-0.017	-0.029***
Edu: secondary	0.044***	0.014	-0.002	-0.019***
Own house outright	0.018	0.025**	0.033**	-0.023***
Has mortgage	0.027**	0.024**	0.021*	-0.025***
Rents	-0.062***	0.012	0.039***	0.003
Obs	12,832	12,832	12,832	45,655

^{***: 1%, **: 5%, *:10%} significance level

Conclusion

- Full information model fits less well than sticky information models
- Sticky information model with t.v. weights fits the Basix survey best- although more free parameters!
- Around high inflation in 1990s, we estimate households to have updated their information on average just under once a year
- During the great stability, this increased to every other year.
- Micro-analysis suggests frequent updaters are more likely to be highly educated than the rest

To do next...

- Add several models of expectations formations for comparison such as:
 TVP and a constant gain parameter model
- Re-do the analysis for these
- Analyse perceptions and 2 years ahead expectations in more detail
- Entire exercise using different price indexes such as CPI and RPI
- Explore how to incorporate the news on inflation as a factor in affecting the frequency of data updates.
- Add other sources of prediction heterogeneity- different consumption baskets for example