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Abstract

Dark pools are equity trading systems that do not publicly display orders. Orders in dark

pools are matched within the exchange bid-ask spread without a guarantee of execution.

Informed traders are more likely to cluster on the heavy side of the market and therefore face

a lower execution probability in the dark pool, relative to uninformed traders. Consequently,

exchanges are more attractive to informed traders, whereas dark pools are more attractive

to uninformed traders. Under natural conditions, adding a dark pool alongside an exchange

concentrates price-relevant information into the exchange and improves price discovery. Dark

pools that operate as nondisplayed limit order books are more attractive to informed traders

than dark pools that execute orders at the exchange midpoint.
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1 Introduction

Dark pools are equity trading systems that do not publicly display orders. Some dark

pools passively match buyers and sellers at exchange prices, such as the midpoint of

the exchange bid and offer. Other dark pools essentially operate as nondisplayed limit

order books that execute orders by price and time priority.

In this paper, I investigate the impact of dark pools on price discovery. Contrary

to misgivings expressed by some regulators and market participants, I find that under

natural conditions, adding a dark pool improves price discovery on the exchange.

According to the Securities and Exchange Commission (SEC; 2010), as of September

2009, 32 dark pools in the United States accounted for 7.9% of total equity trading

volume. As of mid-2011, industry estimates from the Tabb Group, a consultancy, and

Rosenblatt Securities, a broker, attribute about 12% of U.S. equity trading volume to

dark pools. The market shares of dark pools in Europe, Canada, and Asia are smaller

but quickly growing (International Organization of Securities Commissions, 2010).

Dark pools have raised regulatory concerns in that they may harm price discovery.

The European Commission (2010), for example, remarks that “[a]n increased use of

dark pools . . . raise[s] regulatory concerns as it may ultimately affect the quality of the

price discovery mechanism on the ‘lit’ markets.” The International Organization of

Securities Commissions (2011) similarly worries that “the development of dark pools

and use of dark orders could inhibit price discovery if orders that otherwise might

have been publicly displayed become dark.” According to a recent survey conducted

by the CFA Institute (2009), 71% of respondents believe that the operations of dark

pools are “somewhat” or “very” problematic for price discovery. The Securities and

Exchange Commission (2010), too, considers “the effect of undisplayed liquidity on

public price discovery” an important regulatory question. Speaking of nondisplayed

liquidity, SEC Commissioner Elisse Walter commented that “[t]here could be some

truth to the criticism that every share that is crossed in the dark is a share that

doesn’t assist the market in determining an accurate price.”1

My inquiry into dark pools builds on a simple model of strategic venue selection

by informed and liquidity traders. Informed traders hope to profit from proprietary

information regarding the value of the traded asset, whereas liquidity traders wish to

meet their idiosyncratic liquidity needs. Both types of traders optimally choose between

an exchange and a dark pool. The exchange displays a bid and an ask and executes

all submitted orders at the bid or the ask. The dark pool free-rides on exchange prices

1“Speech by SEC Commissioner: Opening Remarks Regarding Dark Pools,” October 21, 2009.
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by matching orders within the exchange’s bid and ask. Unlike the exchange, the dark

pool has no market makers through which to absorb excess order flow and thus cannot

guarantee execution. Sending an order to the dark pool therefore involves a trade-off

between potential price improvement and the risk of no execution.

Execution risk in the dark pool drives my results. Because matching in the dark

pool depends on the availability of counterparties, some orders on the “heavier” side

of the market—the side with more orders—will fail to be executed. These unexecuted

orders may suffer costly delays. Because informed orders are positively correlated with

the value of the asset and therefore with each other, informed orders are more likely to

cluster on the heavy side of the market and suffer lower execution probabilities in the

dark pool. By contrast, liquidity orders are less correlated with each other and less likely

to cluster on the heavy side of the market; thus, liquidity orders have higher execution

probabilities in the dark pool. This difference in execution risk pushes relatively more

informed traders into the exchange and relatively more uninformed traders into the

dark pool. Under natural conditions, this self selection lowers the noisiness of demand

and supply on the exchange and improves price discovery.

The main intuition underlying my results does not hinge on the specific trading

mechanisms used by a dark pool. For example, a dark pool may execute orders at the

midpoint of the exchange bid and ask or operate as a nondisplayed limit order book.

As I show, with both of these mechanisms, traders face a trade-off between potential

price improvement and execution risk. Dark pools that operate as limit order books

are, however, relatively more attractive to informed traders because limit orders can

be used to gain execution priority and thus reduce execution risk. This result suggests

that informed traders have even stronger incentives to trade on the exchange under a

“trade-at” rule, which requires that trading venues that do not quote the best price

either to route incoming orders to venues quoting the best price or to provide incoming

orders with a sufficiently large price improvement over the prevailing best price. The

impact of a trade-at rule on price discovery complements previous fairness-motivated

arguments that displayed orders—which contribute to pre-trade transparency—should

have strictly higher priority than do nondisplayed orders at the same price.2

Dark pools do not always improve price discovery. For example, in the unlikely event

that liquidity traders push the net order flow far opposite of the informed traders, the

2For example, the Joint CFTC-SEC Advisory Committee (2011) has noted: “Under current Regulation NMS
routing rules, venues cannot ‘trade through’ a better price displayed on another market. Rather than route the
order to the better price, however, a venue can retain and execute the order by matching the current best price
even if it has not displayed a publicly accessible quote order at that price. While such a routing regime provides
order execution at the current best displayed price, it does so at the expense of the limit order posting a best price
which need not receive execution.”
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presence of a dark pool can exacerbate the misleading inference regarding the asset

value. Moreover, better price discovery needs not coincide with higher liquidity or

welfare. Indeed, more informative orders often lead to better price discovery but also

tend to worsen adverse selection on the exchange, which results in wider spreads and

higher price impacts. The welfare implications of dark pools could naturally depend

on elements outside the setting of my model, such as how price discovery and liquidity

affect production decisions, asset allocation, and capital formation.3 In addition, for

analytical tractability I have abstracted from some of the trading practices that are

applied in dark pools, such as “pinging,” order routing, and “indication of interest”

(IOI).4 These and other procedures used by some dark pools may well contribute to

concerns regarding their impact on price discovery, although these practices are distinct

from the implications of execution risk, which I focus on in this paper. Finally, the price-

discovery effect of dark pools complements their “size discovery” function, by which

large institutional orders are executed without being revealed to the broad market.

This size-discovery benefit of dark trading has been widely acknowledged by market

participants and regulators, and today only a handful of dark pools execute large orders

(Securities and Exchange Commission, 2010; Ready, 2012).

To the best of my knowledge, this paper is the first to show that the addition of

a dark pool can improve price discovery. My finding stands in contrast to that of Ye

(2011), who studies the venue choice of a large informed trader in the Kyle (1985)

framework and concludes that the addition of a dark pool harms price discovery on

the exchange. Ye (2011), however, assumes exogenous choices of trading venues by

liquidity traders, whereas the endogenous venue choices of liquidity traders are critical

to my results. Most other existing models of dark pools either exogenously fix the

strategies of informed traders, as in Hendershott and Mendelson (2000), or do not

consider the role of asymmetric information regarding the asset value, as in Degryse,

Van Achter, and Wuyts (2009) and Buti, Rindi, and Werner (2011b). Going beyond

the midpoint-matching mechanism, my study additionally reveals that dark pools with

more discretion in execution prices are more attractive to informed traders.

The focus of this paper—i.e., on the fragmentation of order flow between an ex-

3For example, see Bond, Edmans, and Goldstein (2012) for a survey on the literature that studies the effects of
financial markets on the real economy.

4“Pinging” orders are marketable orders that seek to interact with displayed or nondisplayed liquidity. Pinging
is sometimes used to learn about the presence of large hidden orders. Order routing means sending orders from
venue to venue, typically by algorithms. For example, if a dark pool cannot execute an order because there is no
counterparty, the dark pool can route the order to another dark pool, which may further route the order into the
market. An IOI is an electronic message that contains selected information (such as the ticker) about an order and
is sent by a trading venue (such as a dark pool or a broker) to a selected group of market participants in order to
facilitate a match.
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change and a dark pool—differs from the focus of prior studies on competition among

multiple markets. In exchange markets, for example, informed traders and liquidity

traders tend to cluster by time (Admati and Pfleiderer, 1988) or by location (Pagano,

1989; Chowdhry and Nanda, 1991). However, as modeled here, informed traders clus-

ter less with liquidity traders in the dark pool than on the exchange because informed

traders face higher execution risk in the dark pool. Related to the effect captured by

my model, Easley, Keifer, and O’Hara (1996) suggest that the purchase of retail order

flows (“cream-skimming”) by regional exchanges results in higher order informativeness

on the NYSE. In contrast with the mechanism studied in their paper, in my model dark

pools rely on self selection, rather than intermediaries, to separate, at least partially,

informed traders from liquidity traders.

My results have several empirical implications. For example, the model predicts

that higher order imbalances tend to cause lower dark pool activity; higher volumes

of dark trading lead to wider spreads and higher price impacts on exchanges; volume

correlation across stocks is higher on exchanges than in dark pools; and informed traders

more actively participate in dark pools when asymmetric information is more severe

or when the dark pool allows more discretion in execution prices. Section 6 discusses

these implications, as well as discussing recent, related empirical evidence documented

by Ready (2012), Buti, Rindi, and Werner (2011a), Ye (2010), Nimalendran and Ray

(2012), Degryse, de Jong, and van Kervel (2011), Jiang, McInish, and Upson (2011),

O’Hara and Ye (2011), and Weaver (2011), among others.

2 An Overview of Dark Pools

This section provides an overview of dark pools. I discuss why dark pools exist, how

they operate, and what distinguishes them from each other. For concreteness, I tailor

this discussion for the market structure and regulatory framework in the United States.

Dark pools in Europe, Canada, and Asia operate similarly.

Before 2005, dark pools had low market share. Early dark pools were primarily

used by institutions to trade large blocks of shares without revealing their intentions

to the broad market, in order to avoid being front-run.5 A watershed event for the

U.S. equity market was the adoption in 2005 of Regulation National Market System,

or Reg NMS (Securities and Exchange Commission, 2005), which abolished rules that

had protected the manual quotation systems of incumbent exchanges. In doing so,

5Such predatory trading is modeled by Brunnermeier and Pedersen (2005) and Carlin, Lobo, and Viswanathan
(2007).
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Figure 1: U.S. equity trading volume and the market share of dark pools. The left axis plots the
daily consolidated equity trading volume in the United States, estimated by Tabb Group. The
right axis plots the market shares of dark pools as a percentage of the total consolidated volume,
estimated by Tabb Group and Rosenblatt Securities.
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Reg NMS encouraged newer and faster electronic trading centers to compete with the

incumbents. Since Reg NMS came into effect, a wide variety of trading centers have

been established. As of September 2009, the United States had about 10 exchanges,

5 electronic communication networks (ECNs), 32 dark pools, and over 200 broker-

dealers (Securities and Exchange Commission, 2010). Exchanges and ECNs are referred

to as transparent, or “lit,” venues; dark pools and broker-dealer internalization are

considered opaque, or “dark,” venues. In Europe, the adoption in 2007 of the Markets

in Financial Instruments Directive (MiFID) similarly led to increased competition and

a fast expansion of equity trading centers.6

Figure 1 shows the consolidated volume of U.S. equity markets from July 2008 to

June 2011, as well as the market share of dark pools during the same periods, estimated

by Tabb Group and Rosenblatt Securities. According to their data, the market share

of dark pools roughly doubled from about 6.5% in 2008 to about 12% in 2011, whereas

consolidated equity volume dropped persistently from about 10 billion shares per day

in 2008 to about 7 billion shares per day in 2011. A notable exception to the decline

in consolidated volume occurred around the “Flash Crash” of May 2010.

Dark pools have gained market share for reasons that go beyond recent regulations

6For example, according to CFA Institute (2009), European equity market had 92 regulated markets (exchanges),
129 “multilateral trading facilities” (MTFs), and 13 “systematic internalizers” as of Septempber 2010. For more
discussion of MiFID and European equity market structure, see European Commission (2010).
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designed to encourage competition. Certain investors, such as institutions, simply need

nondisplayed venues to trade large blocks of shares without alarming the broad market.

This need has increased in recent years as the order sizes and depths on exchanges

have declined dramatically (Chordia, Roll, and Subrahmanyam, 2011). Further, dark

pools attract investors by offering potential price improvements relative to the best

prevailing bid and offer on exchanges. Finally, broker-dealers handling customer orders

have strong incentives to set up their own dark pools, where they can better match

customer orders internally and therefore save trading fees that would otherwise be paid

to exchanges and other trading centers.

Dark pools differ from each other in many ways. We can categorize them, roughly,

into the three groups shown in Table 1.

Dark pools in the first group match customer orders by acting as agents (as opposed

to trading on their own accounts). In this group, transaction prices are typically derived

from lit venues. These derived prices include the midpoint of the national best bid and

offer (NBBO) and the volume-weighted average price (VWAP). Examples in this group

include block-crossing dark pools such as ITG Posit and Liquidnet.7 Posit crosses orders

a few times a day at scheduled clock times (up to some randomization), although in

recent years it has also offered continuous crossing. Liquidnet is integrated into the

order-management systems of institutional investors and alerts potential counterparties

when a match is found. Instinet is another agency broker that operates scheduled

and continuous dark pools. Dark pools operated by exchanges typically use midpoint

matching as well. Because Group-1 dark pools rely on lit venues to determine execution

prices, they typically do not provide direct price discovery.

Within the second group, dark pools operate as continuous nondisplayed limit order

books, accepting market, limit, or “pegged” orders.8 This group includes many of

the dark pools owned by major broker-dealers, including Credit Suisse Crossfinder,

Goldman Sachs Sigma X, Citi Match, Barclays LX, Morgan Stanley MS Pool, and

UBS PIN. Unlike Group-1 dark pools that execute orders at the market midpoint or

VWAP, Group-2 dark pools derive their own execution prices from the limit prices of

submitted orders. Price discovery can therefore take place. Another difference is that

Group-2 dark pools may contain proprietary order flows from the broker-dealers that

operate them. In this sense, these dark pools are not necessarily “agency only.”

Dark pools in the third group act like fast electronic market makers that immediately

accept or reject incoming orders. Examples include Getco and Knight. Like the second

7See also Ready (2012) for a discussion of these two dark pools.
8Pegged orders are limit orders with the limit price set relative to an observable market price, such as the bid,

the offer, or the midpoint. As the market moves, the limit price of a pegged order moves accordingly.

7



Table 1: Dark pool classification by trading mechanisms.

Types Examples Typical features
Matching at ex-
change prices

ITG Posit, Liquidnet, In-
stinet

Mostly owned by agency brokers
and exchanges; typically execute or-
ders at midpoint or VWAP, and
customer-to-customer

Nondisplayed
limit order books

Credit Suisse Crossfinder,
Goldman Sachs Sigma X,
Citi Match, Barclays LX,
Morgan Stanley MS Pool,
UBS PIN

Most broker-dealer dark pools; may
offer some price discovery and con-
tain proprietary order flow

Electronic market
makers

Getco and Knight High-speed systems handling
immediate-or-cancel orders; typi-
cally trade as principal

group, transaction prices on these platforms are not necessarily calculated from the

national best bid and offer using a transparent rule. In contrast with dark pools in

Groups 1 and 2, Group-3 dark pools typically trade on their own accounts as principals

(as opposed to agents or marketplaces).

Appendix A discusses additional institutional features of dark pools. Overviews

of dark pools and nondisplayed liquidity are also provided by Johnson (2010), Butler

(2007), Carrie (2008), Securities and Exchange Commission (2010), European Commis-

sion (2010), CSA/IIROC (2009), and International Organization of Securities Commis-

sions (2011).

3 Modeling the Exchange and the Dark Pool

This section presents a two-period model of trading-venue selection. Each trader

chooses whether to trade on a transparent exchange or in a dark pool. The dark pool

modeled in this section passively matches orders at the midpoint of the exchange’s bid

and ask. Section 4 models a dark pool that operates as a nondisplayed limit order

book. The order-book setting provides additional insights regarding the effect of the

dark pool crossing mechanism for price discovery. A dynamic equilibrium with sequen-

tial arrival of traders is characterized in Section 5. A glossary of key model variables

can be found in Appendix D.
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3.1 Markets and traders

There are two trading periods, denoted by t = 1, 2. At the end of period 2, an asset

pays an uncertain dividend v that is equally likely to be +σ or −σ. Thus, σ > 0 is the

volatility of the asset value. The asset value v is publicly revealed at the beginning of

period 2.

Two trading venues operate in parallel: a lit exchange and a dark pool. The ex-

change is open in periods 1 and 2. On the exchange, a risk-neutral market maker sets

competitive bid and ask prices. Market orders sent to the exchange arrive simultane-

ously. Exchange buy orders are executed at the ask; exchange sell orders are executed

at the bid. The exchange here is thus similar to that modeled by Glosten and Milgrom

(1985).9 After period-1 orders are executed, the market maker announces the volume

Vb of exchange buy orders and the volume Vs of exchange sell orders. The market

maker also announces the exchange closing price P1, which is the expected asset value,

conditional on Vb and Vs. The closing price P1 is also the price at which the market

maker is willing to execute a marginal order at the end of period 1. A key objec-

tive of this section is to analyze price discovery, that is, the informativeness of these

announcements, in particular P1, for the fundamental value v of the asset.

The dark pool executes (or “crosses”) orders in period 1 and is closed in period 2.

Closing the the dark pool in period 2 is without loss of generality because once the

dividend v is announced in period 2, exchange trading is costless. An order submitted to

the dark pool is not observable to anyone but the order submitter. The execution price

of dark pool trades is the midpoint of the exchange bid and ask, also known simply as

the “midpoint” or “mid-market” price. In the dark pool, orders on the “heavier side”—

the buyers’ side if buy orders exceed sell orders, and the sellers’ side if sell orders exceed

buy orders—are randomly selected for matching with those on the “lighter” side. For

example, if the dark pool receives QB buy orders and QS < QB sell orders, all of the

same size, then QS of the QB buy orders are randomly selected, equally likely, to be

executed against the QS sell orders at the mid-market price. Unmatched orders are

returned to the order submitter at the end of period 1. As described in Section 2, this

midpoint execution method is common in dark pools operated by agency brokers and

exchanges. An alternative dark pool mechanism, a nondisplayed limit order book, is

modeled in Section 4.

For-profit traders and liquidity traders, all risk-neutral, arrive at the beginning of

period 1. There is an infinite set of infinitesimal traders of each type. For-profit traders

9As I describe shortly, the model of this section is not exactly the same as that of Glosten and Milgrom (1985)
because orders here arrive in batches, instead of sequentially. Sequential arrival of orders is considered in Section 5.
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have a mass of µ̄ > 0, and can potentially trade one unit of the asset per capita.10 For-

profit traders can acquire, at a cost, perfect information about v, and thus become

informed traders. These information-acquisition costs are distributed across for-profit

traders, with the cumulative distribution function F : [0,∞)→ [0, 1]. After observing

v, informed traders submit buy orders (in either venue) if v = +σ and submit sell

orders if v = −σ. For-profit traders who do not acquire the information do not trade.

I let µI be the mass of informed traders; their signed trading interest is therefore

Y = sign(v) · µI .
Liquidity buyers and liquidity sellers arrive at the market separately (not as netted).

The mass Z+ of liquidity buy orders and the mass Z− of liquidity sell orders are

non-negative, independent and identically distributed on [0,∞) with positive density

functions, and infinitely divisible. Infinite divisibility means that, for each integer

n, the total liquidity buy orders Z+ can be viewed as the aggregate demand by n

liquidity buyers, whose order sizes are independently and identically distributed random

variables. A similar construction applies for the total liquidity sell orders Z−. Thus,

we can interpret a market with infinitely many liquidity traders as the “limiting case”

of a market with n liquidity buyers and n liquidity sellers as n → ∞.11 In particular,

because, in the limit, each liquidity trader’s order size has zero mean and zero variance,

the conditional joint distribution of Z+ and Z−, given this liquidity trader’s order size,

is the same as the unconditional joint distribution of Z+ and Z−.12 I denote by 0.5µz

10Trading one unit per capita is without loss of generality because each informed trader is infinitesimal and has
zero mass. As long as per-capita trading size is finite, an informed trader’s order still has zero mass, and the
qualitative nature of equilibria does not change.

11More specifically, for each integer n, Z+ can be constructed as the sum of n independently and identically
distributed random variables {Z+

in}. That is,

Z+ ∼
n∑

i=1

Z+
in.

Note that the distribution of Z+
in depends on n. I assume that the variance of Z+

in is finite. Similarly, there exist n
i.i.d. random variables Z−in such that

Z− ∼
n∑

i=1

Z−in.

In this setting, {Z+
in} and {Z−in} can be viewed as the order sizes of n liquidity buyers and n liquidity sellers. As

n→∞, the mean and variance of Z+
in and Z−in converge to zero, and liquidity buyers and sellers become infinitesimal.

12We denote by Φ the probability distribution of Z+ and show that, for each i, the conditional distribution of∑n
j=1 Z

+
jn, given Z+

in, converges to the prior distribution of Z+ as n→∞. That is, for all z > 0, Φ(z |Z+
in)→ Φ(z)

as n → ∞. By the independence of Z+
in and {Z+

jn}j 6=i, this amounts to showing that Z+
in converges to zero in

distribution. Indeed, for any z > 0, using Markov’s inequality and the fact that E(Z+
in) converges to zero as n→∞,

we have

P(Z+
in < z) = 1− P(Z+

in ≥ z) ≥ 1− E(Z+
in)

z
→ 1, as n→∞.

Similarly, the conditional distribution of Z−, given Z+
in, converges in n to the prior distribution of Z−. The proof

10



Figure 2: Time line of the two-period model.

Period 1 Period 2| |

Traders select venue
or delay trade

Orders executed

Exchange announces
closing price Value announcedv

Remaining orders
executed on exchange

Value paidv

the mean of Z+ (and Z−) and by 0.5σ2
z the variance of Z+ (and Z−).

Liquidity traders must hold collateral to support their undesired risky positions.

For each liquidity trader, the minimum collateral requirement per unit asset held is the

expected loss, conditional on a loss, of her undesired position. For example, a liquidity

buyer who is already short one unit of the asset has a loss of σ if v = σ, and a gain

of σ if v = −σ. The collateral requirement in this case is σ. For trader i, each unit of

collateral has a funding cost of γi per period. A delay in trade is therefore costly. These

funding costs {γi} are distributed across liquidity traders, with a twice-differentiable

cumulative distribution function G : [0,Γ) → [0, 1], for some Γ ∈ (1,∞]. Failing to

trade in period 1, liquidity buyer i thus incurs a delay cost of

ci = γiE[max(v, 0) | v > 0] = γiσ (1)

per unit of undesirable asset position. A like delay cost applies to liquidity sellers. We

could alternatively interpret this delay cost as stemming from risk aversion or illiquidity.

The key is that liquidity traders differ in their desires for immediacy, captured by the

delay cost ci = γiσ. The delay costs of informed traders, by contrast, stem from the

loss of profitable trading opportunities after v is revealed in period 2.

Finally, random variables v, Z+, Z−, and the costs of information-acquisition and

delay are all independent, and their probability distributions are common knowledge.

Realizations of Y , Z+ and Z− are unobservable, with the exception that informed

traders observe v, and hence know Y . Informed and liquidity traders cannot post limit

orders on the exchange; they can trade only with the exchange market maker or by

sending orders to the dark pool.

Figure 2 illustrates the sequence of actions in the two-period model.

for a liquidity seller’s inference is symmetric.
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3.2 Equilibrium

An equilibrium consists of the quoting strategy of the exchange market maker, the mar-

ket participation strategies of for-profit traders, and the trading strategies of informed

and liquidity traders. In equilibrium, the competitive market maker breaks even in

expectation, and all traders maximize their expected net profits.

Specifically, I let αe and αd be candidates for the equilibrium fractions of liquidity

traders who, in period 1, send orders to the exchange and to the dark pool, respectively.

The remainder, α0 = 1 − αe − αd, choose not to submit orders in period 1 and delay

trade to period 2. We let β be the period-1 fraction of informed traders who send

orders to the dark pool. The remaining fraction 1 − β of informed traders trade on

the exchange. (Obviously, informed traders never delay their trades as they will have

lost their informational advantage by period 2.) Once the asset value v is revealed in

period 2, all traders who have not traded in period 1—including those who deferred

trading and those who failed to execute their orders in the dark pool—trade with the

market maker at the unique period-2 equilibrium price of v.

I first derive the equilibrium exchange bid and ask, assuming equilibrium partici-

pation fractions (β, αd, αe). Because of symmetry and the fact that the unconditional

mean of v is zero, the midpoint of the market maker’s bid and ask is zero. There-

fore, the exchange ask is some S > 0, and the exchange bid is −S, where S is the

exchange’s effective spread, the absolute difference between the exchange transaction

price and the midpoint. For simplicity, I refer to S as the “exchange spread.” As in

Glosten and Milgrom (1985), the exchange bid and ask are set before exchange orders

arrive. Given the participation fractions (β, αd, αe), the mass of informed traders on

the exchange is (1− β)µI , and the expected mass of liquidity traders on the exchange

is αeE(Z+ + Z−) = αeµz. Because the market maker breaks even in expectation, we

have that

0 = −(1− β)µI(σ − S) + αeµzS, (2)

which implies that

S =
(1− β)µI

(1− β)µI + αeµz
σ. (3)

The dark pool crosses orders at the mid-market price of zero.

Next, I derive the equilibrium mass µI of informed traders. Given the value σ of

information and the exchange spread S, the net profit of an informed trader is σ − S.

The information-acquisition cost of the marginal for-profit trader, who is indifferent
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between paying for information or not, is also σ−S. Because all for-profit traders with

lower information-acquisition costs become informed, the mass of informed traders in

equilibrium is µ̄F (σ−S), by the exact law of large numbers (Sun, 2006). We thus have

µI = µ̄F (σ − S) = µ̄F

(
αeµz

(1− β)µI + αeµz
σ

)
. (4)

For any fixed β ≥ 0 and αe > 0, (4) has a unique solution µI ∈ (0, µ̄).

Finally, I turn to the equilibrium trading strategies. Without loss of generality, I

focus on the strategies of buyers. In the main solution step, I calculate the expected

payoffs of an informed buyer and a liquidity buyer, on the exchange and in the dark pool.

The equilibrium is then naturally determined by conditions characterizing marginal

traders who are indifferent between trading on the exchange and in the dark pool.

Suppose that αd > 0. Because informed buyers trade in the same direction, they

have the dark pool crossing probability of

r− = E
[
min

(
1,

αdZ
−

αdZ+ + βµI

)]
, (5)

where the denominator and the numerator in the fraction above are the masses of

buyers and sellers in the dark pool, respectively. Liquidity buyers, on the other hand,

do not observe v. If informed traders are buyers, then liquidity buyers have the crossing

probability r− in the dark pool. If, however, informed traders are sellers, then liquidity

buyers have the crossing probability

r+ = E
[
min

(
1,
αdZ

− + βµI
αdZ+

)]
. (6)

Obviously, for all β > 0, we have

1 > r+ > r− > 0. (7)

Because liquidity buyers assign equal probabilities to the two events {v = +σ} and

{v = −σ}, their dark pool crossing probability (r+ + r−)/2 is greater than informed

traders’ crossing probability r−. In other words, correlated informed orders have a lower

execution probability in the dark pool than relatively uncorrelated liquidity orders.

If the dark pool contains only liquidity orders (that is, β = 0), then any dark pool
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buy order has the execution probability

r̄ = E
[
min

(
1,
Z−

Z+

)]
. (8)

For our purposes, r̄ measures the degree to which liquidity orders are balanced. Per-

fectly balanced liquidity orders correspond to r̄ = 1. For αd = 0, I define r+ = r− = 0.

The expected profits of an informed buyer on the exchange and in the dark pool

are, respectively,

We = σ − S, (9)

Wd = r−σ. (10)

I denote by c the delay cost of a generic liquidity buyer per unit of asset position.

This buyer’s per-unit net payoffs of deferring trade, trading on the exchange, and

trading in the dark pool are, respectively,

X0(c) = −c, (11)

Xe = −S, (12)

Xd(c) = −r
+ − r−

2
σ − c

(
1− r+ + r−

2

)
. (13)

The terms on the right-hand side of (13) are the liquidity trader’s adverse selection

cost and delay cost in the dark pool, respectively. For β > 0, crossing in the dark pool

implies a positive adverse selection cost because execution is more likely if a liquidity

trader is on the side of the market opposite to that of informed traders. For β = 0,

this adverse-selection cost is zero. For simplicity, in the remaining of the paper the net

profits and delay costs of liquidity traders refer to profits and costs per unit of asset,

unless otherwise specified. It is without loss of generality to focus on the venue decision

for one unit of asset because, by risk neutrality, each trader’s optimal venue choice is

a corner solution with probability one.

From (9) and (12), We −Xe = σ. For all delay cost c ≤ σ,

Wd −Xd(c) =
r+ + r−

2
σ + c

(
1− r+ + r−

2

)
≤ σ = We −Xe. (14)

That is, provided c ≤ σ, the dark pool is more attractive to liquidity traders than to

informed traders, relative to the exchange. In particular, (14) implies that a liquidity

trader with a delay cost of σ (or a funding cost of γ = 1) behaves in the same way as
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an informed trader. In addition,

Xd(c)−X0(c) = −r
+ − r−

2
σ +

r+ + r−

2
c. (15)

So a liquidity trader with a funding cost of γ = (r+ − r−)/(r+ + r−) is indifferent

between deferring trade and trading in the dark pool.

Proposition 1. There exists a unique threshold volatility σ̄ > 0 such that:

1. If σ ≤ σ̄, then there exists an equilibrium (β = 0, αd = α∗d, αe = 1 − α∗d), where

α∗d ∈ (0, G(1)] and µ∗I solve

G−1(αd)(1− r̄) =
µI

µI + (1− αd)µz
, (16)

µI = µ̄F

(
(1− αd)µz

µI + (1− αd)µz
σ

)
. (17)

2. If and only if σ > σ̄, there exists an equilibrium (β = β∗, αd = α∗d, αe = 1−G(1)),

where β∗, α∗d ∈ (0, G(1)], and µ∗I solve

r− = 1− (1− β)µI
(1− β)µI + (1−G(1))µz

, (18)

αd = G(1)−G
(
r+ − r−

r+ + r−

)
, (19)

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz
σ

)
. (20)

The proof of Proposition 1 is provided in Appendix C, but we outline its main

intuition here. If the volatility σ is sufficiently low, the exchange spread is low; thus,

the price-improvement benefit of the dark pool is lower than the cost of execution risk.

In this case, informed traders avoid the dark pool (i.e. β = 0). The equilibrium is then

determined by the marginal liquidity trader who is indifferent between trading on the

exchange and trading in the dark pool, as well as by the marginal for-profit trader who

is indifferent about whether to acquire the information.

If the volatility σ is sufficiently high, informed traders joint liquidity traders in

the dark pool to avoid the higher exchange spread. Thus, β ∈ (0, 1). In this case,

the equilibrium is determined by three indifference conditions. First, informed traders

must be indifferent between trading in either venue, as shown in (18). By (14), a

liquidity trader with a delay cost of σ is also indifferent between the two venues. Thus,

α0 +αd = G(1) and αe = 1−G(1). The second indifference condition (19) then follows
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from (15). Here, the fraction α0 of liquidity traders who delay trade must be strictly

positive because informed traders introduce adverse selection into the dark pool. The

third condition (20) says that the marginal for-profit trader is indifferent about whether

to acquire the information.

Similarly, we can characterize an equilibrium for a market structure in which only

the exchange is operating and the dark pool is absent. This exchange-only equilibrium,

stated below, may also be interpreted as one in which a dark pool is open but no trader

uses it.

Corollary 1. With only an exchange and no dark pool, there exists an equilibrium in

which β∗ = α∗d = 0, and µ∗I and α∗e ∈ (1−G(1), 1) solve

µI
µI + αeµz

= G−1(1− αe) (21)

µI = µ̄F

(
αeµz

µI + αeµz
σ

)
. (22)

Equilibrium selection

The equilibria characterized in Proposition 1 need not be unique among all equilibria

solving (16)-(17) and (18)-(20). For example, under the condition (63), both sides of

(16) strictly increase in αd. Similarly, both sides of (19) strictly increase in αd, and

both sides of (21) strictly decrease in αe. Thus, given the absence of a single-crossing

property, multiple equilibria may arise.13

I use stability as an equilibrium selection criterion, which allows me to compute the

comparative statics of the selected equilibria. Among the equilibria characterized by

Case 1 of Proposition 1, I select that with the smallest liquidity participation α∗d in the

dark pool among those with the property that, as αd varies in the neighborhood of α∗d,

the left-hand side of (16) crosses the right-hand side from below.14 Under the condi-

tions of Proposition 1, this equilibrium exists and is robust to small perturbations.15

Moreover, once αd is determined in equilibrium, µI and β are uniquely determined,

too, as shown in the proof of Proposition 1.

13One special condition that guarantees the uniqueness of the equilibrium in Case 1 of Proposition 1 is that the
distribution function G of delay costs is linear. With a linear G, the condition (63) is also necessary for the existence
of solutions to (16)-(17).

14Selecting the stable equilibrium corresponding to the smallest α∗d is arbitrary but without loss of generality. As
long as the selected equilibrium is stable, comparative statics calculated later follow through.

15If, for example, α∗d is perturbed to α∗d + ε for sufficiently small ε > 0, then the marginal liquidity trader has a
higher cost in the dark pool than on the exchange, and therefore migrates out of the dark pool. Thus, αd is “pushed
back” to α∗d and the equilibrium is restored. There is a symmetric argument for a small downward perturbation to
α∗d−ε. By contrast, if there is an equilibrium in which, as αd varies, the left-hand side of (16) crosses the right-hand
side from above, this equilibrium would not be stable to local perturbations.
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Similarly, among equilibria characterized by Case 2 of Proposition 1, I select the

one with the smallest liquidity participation α∗d in the dark pool among those with the

property that, as αd varies in the neighborhood of α∗d, the left-hand side of (19) crosses

the right-hand side from below. In a market without a dark pool (Corollary 1), I select

the equilibrium with the largest liquidity participation α∗e on the exchange among those

with the property that, as αe varies in the neighborhood of α∗e, the left-hand side of

(21) crosses the right-hand side from below. By the argument given for Case 1 of

Proposition 1, these selected equilibria exist and are stable.

3.3 Market characteristics and comparative statics

I now investigate properties of the equilibria characterized by Proposition 1. Proposi-

tion 2 and Proposition 3 below aim to answer two questions:

1. In a market with a dark pool and an exchange, how do market characteristics vary

with the value σ of private information?

2. Given a fixed value σ of private information, how does adding a dark pool affect

market behavior?

Proposition 2. In the equilibrium of Proposition 1:

1. For σ ≤ σ̄, the dark pool participation rate αd of liquidity traders, the total mass

µI of informed traders, and the scaled exchange spread S/σ are strictly increasing

in σ. The exchange participation rate αe = 1 − αd of liquidity traders is strictly

decreasing in σ. Moreover, αd, µI , and S are continuous and differentiable in σ.

2. For σ > σ̄, all of µI , βµI , r
+, and S/σ are strictly increasing in σ, whereas αd and

r− are strictly decreasing in σ. Moreover, β, αd, µI , S, r+, and r− are continuous

and differentiable in σ.

In the equilibrium of Corollary 1, µI and S/σ are strictly increasing in σ, whereas αe

is strictly decreasing in σ. Moreover, αe, µI , and S are continuous and differentiable

in σ.

Proof. See Appendix C.

Proposition 3. In the equilibria of Proposition 1 and Corollary 1:

1. For σ ≤ σ̄, adding a dark pool strictly reduces the exchange participation rate αe

of liquidity traders and the total mass µI of informed traders. Adding a dark pool

strictly increases the exchange spread S and the total participation rate αe +αd of

liquidity traders in either venue.
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2. For σ > σ̄, adding a dark pool strictly reduces αe. Moreover, adding a dark

pool strictly increases the exchange spread S if and only if, in the equilibrium of

Proposition 1,

r− < 1− µI
µI + (1−G(1− r−))µz

. (23)

It is sufficient (but not necessary) for (23) that

G′′(γ) ≤ 0 for all 1− r̄ ≤ γ ≤ 1 and F (c)→ 1 for all c > 0, (24)

Proof. See Appendix C.

We now discuss the intuition and implications of Proposition 2 and Proposition 3

through numerical examples.

3.3.1 Participation rates and exchange spread

The left-hand side plot of Figure 3 shows the equilibrium participation rates in the

exchange and the dark pool. For a small value of information, specifically if σ ≤ σ̄,

informed traders trade exclusively on the exchange because the exchange spread is

smaller than the cost of execution risk in the dark pool. An increase in σ widens the

exchange spread, encouraging more liquidity traders to migrate into the dark pool. For

σ > σ̄, informed traders use both venues. We observe that informed dark pool partic-

ipation rate β first increases in volatility σ and then decreases. The intuition for this

non-monotonicity is as follows. Consider an increase in the value of information from σ

to σ+ ε, for some ε > 0. This higher value of information attracts additional informed

traders. For a low β, the dark pool execution risk stays relatively low, and these ad-

ditional informed traders prefer to trade in the dark pool, raising β. For sufficiently

high β, however, informed orders cluster on one side of the dark pool and significantly

reduce their execution probability. Thus, these additional informed traders send orders

to the exchange, reducing β. Nonetheless, the total quantity βµI of informed traders in

the dark pool is strictly increasing in σ. Finally, because informed participation in the

dark pool introduces adverse selection, liquidity traders with low delay costs migrate

out of the dark pool, leading to a decline in their dark pool participation rate αd.

The right-hand side plot of Figure 3 shows the scaled exchange spread S/σ. Because

a higher value σ of information encourages more for-profit traders to become informed,

the scaled exchange spread S/σ increases in σ, whether a dark pool is present or not.

For σ ≤ σ̄, adding a dark pool raises S/σ by diverting some liquidity traders, but

none of the informed traders, off the exchange. For σ > σ̄, adding a dark pool in
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Figure 3: Participation rates and exchange spread. The left-hand side plot shows the equilibrium
participation rates (β, αd, αe) in a market with a dark pool. The right-hand side plot shows the
scaled exchange spread S/σ. In both plots, the vertical dotted line indicates the threshold volatility
σ̄ at which the equilibrium of Proposition 1 changes from Case 1 to Case 2. Model parameters:
µz = 60, σz =

√
60, µ̄ = 20, Z+ and Z− have Gamma(30, 1) distributions, G(s) = s/2 for s ∈ [0, 2],

and F (s) = 1− e−s/2 for s ∈ [0,∞).
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this example also increases the scaled spread S/σ because the dark pool diverts more

liquidity traders than informed traders.

3.3.2 Price discovery

Now I turn to price discovery, by which I mean the extent to which the period-1

announcements (P1, Vb, Vs) are informative of the fundamental asset value v. Since the

market maker observes the volume (Vb, Vs), the closing price P1 is

P1 = E[v |Vb, Vs]. (25)

Because v is binomially distributed, its conditional distribution after period-1 trading

is completely determined by its conditional expectation

E[v |P1, Vb, Vs] = E[E[v |Vb, Vs] |P1] = P1. (26)

That is, all period-1 public information that is relevant for the asset value v is conveyed

by the closing price P1. As we will make precise shortly, the “closer” is P1 to v, the

better is price discovery.
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Clearly, P1 is uniquely determined by the log likelihood ratio

R1 = log
P(v = +σ |Vb, Vs)
P(v = −σ |Vb, Vs)

= log
φ
(
Z+ = 1

αe
[Vb − (1− β)µI ]

)
· φ
(
Z− = 1

αe
Vs

)
φ
(
Z+ = 1

αe
Vb

)
· φ
(
Z− = 1

αe
[Vs − (1− β)µI ]

) ,
(27)

where φ is the probability density function of Z+ and Z−. We have also used the fact

that the prior distribution P(v = +σ) = P(v = −σ) = 0.5.

Given R1, the market maker sets the period-1 closing price

P1 =
eR1 − 1

eR1 + 1
σ. (28)

Conditional on P1, a non-trader assigns the probability

Q1 ≡ P(v = +σ |Vb, Vs) =
eR1

eR1 + 1
=

1

2

(
P1

σ
+ 1

)
(29)

that the asset value is high.

Without loss of generality, I condition on v = +σ and consider price discovery to be

unambiguously “improved” if the probability distribution of R1 is “increased,” in the

sense of first-order stochastic dominance. Complete revelation of v = +σ corresponds

to R1 =∞ almost surely.

In general, we need to know the functional form of the density φ(·) in order to

explicitly calculate R1, P1, and Q1. However, since the distribution of Z+ and Z− is

infinitely divisible, Z+ and Z− can be expressed as the sums of i.i.d. random variables.

Further, we can always take an example in which, by the central limit theorem, the

density φ(·) is approximated by Normal(0.5µz, 0.5σ
2
z) when µz and σ2

z are sufficiently

large.16 Substituting into (27) the normal density function, we can approximate R1 by

Rnormal
1 =

2(1− β)µI
α2
eσ

2
z

(Vb − Vs), (30)

which is the counterpart of R1 under the normal distribution.17 Given v = +σ, Vb−Vs
has a distribution close to that of Normal((1−β)µI , α

2
eσ

2
z), so R1 is has a distribution

16We can show this approximation as follows. Fix a small δ > 0 such that m = µz/δ is an integer. By infinite
divisibility, Z+ can be represented as the sum

∑m
i=1 Z

+
im, where {Z+

im} are i.i.d. random variables with mean δ and
variance δσ2

z/µz. Fixing δ, the central limit theorem implies that the distribution of Z+ is approximately normal
when m is large, that is, when µz and σ2

z are large.
17In the calculation of (30), I have used the central limit theorem and the fact that φ(·) and the normal density

are positive and continuous in [0,∞).
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close to that of

Normal

(
2

(
(1− β)µI
αeσz

)2

, 4

(
(1− β)µI
αeσz

)2
)
∼ Normal

(
2I(β, αe)

2, 4I(β, αe)
2
)
,

(31)

where

I(β, αe) ≡
(1− β)µI
αeσz

(32)

is the “signal-to-noise” ratio, which is the mass of informed orders on the exchange

(“signal”) divided by the standard deviation of the imbalance of liquidity orders on

the exchange (“noise”). Naturally, I(β, αe) is increasing in the scaled exchange spread

S/σ.

Figure 4 plots the distribution function of R1, under normal approximation, with

and without a dark pool. The value σ of information is set to be the threshold value σ̄,

so that β = 0 in the equilibria with a dark pool as well as the equilibria without a dark

pool. By Proposition 3, adding a dark pool strictly increases the scaled spread S/σ and

hence the signal-to-noise ratio I(β, αe). With a dark pool, the conditional distribution

of R1 has a higher mean, but also a higher variance. For most realizations of R1, and

on average, adding a dark pool decreases the cumulative distribution of R1 and leads

to a more precise inference of v. Nonetheless, adding a dark pool may increase the

cumulative distribution of R1, thus harming price discovery, when the realization of R1

is sufficiently low.

The price-discovery effect of the dark pool is further illustrated in Figure 5. The

left-hand plot of Figure 5 shows the probability density function of Q1, under normal

approximation, with and without a dark pool. As in Figure 4, adding a dark pool

shifts the probability density function of Q1 to the right, improving price discovery

on average.18 Nonetheless, the dark pool increases the probability of extremely low

realizations of Q1, harming price discovery in these unlikely events. The right-hand

plot of Figure 5 shows how Q1 depends on the imbalance Z = Z+−Z− of liquidity order

flow. Again, for most realizations of Z, adding the dark pool increases Q1, improving

price discovery. For unlikely low realizations of Z, adding the dark pool reduces Q1,

thus harming price discovery. That is, when the trading interests of liquidity traders

are sufficiently large and opposite in direction to the informed, adding the dark pool

can exacerbate the “misleading” inference regarding the asset value. Because liquidity

trading interests are balanced in expectation, such misleading events are rare, and the

18We can analytically show that the expectation E[Q1] under normal approximation is increasing in the signal-
to-noise ratio I(β, αe).
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Figure 4: Distribution functions of R1, under normal approximation, with and without a dark
pool. The true dividend is the threshold value +σ̄ and other parameters are those of Figure 3.

−5 0 5

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

R1

Lit only
Lit + Dark

−5 0 5

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

R1

Figure 5: The left-hand plot shows the probability density function of Q1, under normal approx-
imation, with and without a dark pool. The right-hand plot shows how Q1 depends on the order
imbalance Z = Z+ − Z− of liquidity order flow. Model parameters are those of Figure 4.
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dark pool is normally beneficial for price discovery.

We observe that the practical interpretation of price discovery depends largely on

the horizon of information. Because trading is frequent and fast (with the exception

that large orders can take days to fill), dark pools are most likely to concentrate short-

term information, rather than long-term information, onto the exchange. Short-term

information can be fundamental (such as merger announcements, earnings reports,

or macroeconomic news) or technical (such as the order flows of large institutions).

Moreover, when both short-term investors and long-term investors are present, it is

natural to interpret the former as informed and the latter as uninformed. Under this
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interpretation, the results of this paper suggest that dark pools are more attractive to

long-term investors than to short-term investors, relative to the exchange.

3.3.3 Dark pool market share

I now calculate the dark pool market share, i.e. the proportion of trading volume

handled by the dark pool. The market share of the dark pool is a direct empirical

measure of dark pool activity. I assume that once the dividend v is announced in

period 2, informed traders who have not yet traded leave the market, because they will

not be able to trade profitably. When calculating the exchange volume, I also include

the transactions of liquidity traders in period 2. Thus, the expected trading volumes

in the dark pool, on the exchange, and in both venues are, respectively,

Vd = βµIr
− + αdµz

r+ + r−

2
, (33)

Ve = (1− β)µI + αeµz + αdµz

(
1− r+ + r−

2

)
+ α0µz, (34)

V = Ve + Vd = µz + µI(1− β + βr−). (35)

By Proposition 2, these volumes are differentiable in the volatility σ in each of the two

intervals [0, σ̄] and (σ̄,∞).

For σ ≤ σ̄, the dark pool volume, Vd = αdµz r̄, is increasing in the volatility σ, by

Proposition 2. In particular, as σ → 0, the dark pool participation rate αd of liquidity

traders and the dark pool market share Vd/V converge to zero. For a sufficiently small

σ < σ̄, therefore,

d(Vd/V )

dσ
=

d

dσ

(
αdµz r̄

µz + µI

)
=

µz r̄

µz + µI
· dαd
dσ
− αdµz r̄

(µz + µI)2
· dµI
dσ

> 0,

where the inequality follows from the fact that limσ→0 dαd/dσ > 0 (shown in the proof

of Proposition 2). That is, if the volatility σ is sufficiently low, then the dark pool

market share Vd/V is increasing in σ. For σ ≤ σ̄, because the total volume V = µz +µI

is increasing in σ, the dark pool market share is increasing in the total volume, as

illustrated in the left-hand plot of Figure 6.

Figure 6 further suggests that, as the volatility σ increases beyond σ̄, the exchange

volume Ve can increase substantially, but the dark pool volume Vd may only increase

mildly or even decline. Thus, the dark pool market share can decrease in volatility

σ for sufficiently large σ, creating a hump-shaped relation between volatility and the

dark pool market share. The model also generates a similar relation between the scaled
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Figure 6: Expected trading volume on the exchange and in the dark pool. The left-hand plot
shows the volume in the two venues and the market share of the dark pool. The right-hand plot
shows the dark pool market share as a function of the scaled spread S/σ. The vertical dotted line
corresponds to the threshold volatility σ̄. Parameters are those of Figure 3.
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spread S/σ and the dark pool market share Vd/V , as shown on the right-hand plot of

Figure 6.

4 Dark Pools as Nondisplayed Limit Order Books

So far we have studied a dark pool that crosses orders at the midpoint of the exchange

bid and ask. In this section, I model a dark pool that operates as a nondisplayed limit

order book, where execution prices depend on submitted limit orders, as described in

Section 2. Aside from confirming the basic intuition of Section 3, this section offers

additional insights regarding the impact of dark pool mechanisms on the participation

incentives of informed traders.

Although limit-order dark pools may execute orders at prices other than the mid-

point, such price discretion is often limited by “best-execution” regulations. In the

United States, the Order Protection Rule, also known as the “trade through” rule,

stipulates that transaction prices in any market center—including dark pools, ECN,

and broker-dealer internalization—cannot be strictly worse than the prevailing national

best bid and offer (NBBO).19 For example, if the current best bid is $10 and the best

ask is $10.50, then the transaction price in any market center must be in the interval

[$10, $10.50]. More recently, regulators have also proposed a stricter “trade-at” rule.

19In Europe, MiFID uses a decentralized best-execution rule, by which investment firms decide whether an
execution works for the best interest of investors.
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Under a trade-at rule, execution prices in dark pools must be strictly better than the

best bid or offer on all displayed venues, including exchanges. For example, the Joint

CFTC-SEC Advisory Committee (2011) recommends that the SEC consider “its rule

proposal requiring that internalized or preferenced orders only be executed at a price

materially superior (e.g. 50 mils [0.5 cent] for most securities) to the quoted best bid

or offer.”

I now describe and solve a simple model of a limit-order dark pool that operates

under a trade-at rule. The dark pool executes orders by price priority, and I model

its trading mechanism as a double auction. The dark-pool execution price, p∗, is

determined such that the aggregate limit buy orders (i.e. demand) at p∗ is equal to

the aggregate sell limit orders (i.e. supply) at p∗. Moreover, I model the effect of a

trade-at rule by assuming that transaction prices in the dark pool must be within the

interval [−xS, xS], where S > 0 is the exchange spread and x ∈ [0, 1] captures the

strictness of the trade-at rule. The trade-through rule currently applied in the United

States corresponds to x = 1, indicating a mandatory price improvement of zero. A

midpoint-matching mechanism corresponds to x = 0, indicating a price improvement

of the entire effective spread S. With the exception of this trade-at rule, the model

of this section is identical to that of Section 3. Proposition 4 below characterizes an

equilibrium that is analogous to Case 1 of Proposition 1.20 This result sheds light on

how the trade-at rule affects the dark pool participation of informed traders.

Proposition 4. In a market with an exchange and a dark pool that implements a

double auction, there exists a unique threshold volatility σ̄(x) > 0 with the property

that, for any σ ≤ σ̄(x), there exists an equilibrium (β = 0, αd = α∗d, αe = 1−α∗d), where

α∗d ∈ (0, G(1)] and µ∗I solve[
G−1(αd)−

xS

σ

]
· (1− r̄x) =

µI
µI + (1− αd)µz

, (36)

µI = µ̄F

(
(1− αd)µz

µI + (1− αd)µz
σ

)
. (37)

In this equilibrium with a fixed x:

1. If c ∈ [0, xS), a liquidity buyer (resp. seller) with a delay cost of c quotes a limit

20For tractability reasons, I have not characterized an equilibrium in which some informed traders send orders
to the limit-order dark pool. A modeling challenge with informed participation in the limit-order dark pool is to
calculate the expected loss of liquidity traders, conditional on order execution at each possible price in the interval
[−xS, xS], not only the midpoint. Boulatov and George (2010) model a nondisplayed market in which informed
traders submit demand schedules (i.e. limit orders). Their model is tractable partly because their uninformed
traders are noise traders and hence do not internalize the costs of trading against informed traders. By contrast,
endogenous venue selection of liquidity traders is a key modeling objective of this paper.

25



price of c (resp. −c) in the dark pool. If c ∈ [xS,G−1(α∗d)σ], then a liquidity buyer

(resp. seller) with a delay cost of c quotes a limit price of xS (resp. −xS) in the

dark pool. Liquidity traders with delay costs higher than G−1(α∗d)σ trade on the

exchange.

2. The dark pool execution price is given by (79) in the appendix.

3. The dark pool participation rate αd of liquidity traders, the mass µI of informed

traders, and the scaled exchange spread S/σ are all strictly increasing in the value

σ of information.

Moreover, for x ∈ (0, 1), the volatility threshold σ̄(x) is strictly decreasing in x.

Proof. See Appendix C.

The equilibrium of Proposition 4 with a limit-order dark pool is qualitatively sim-

ilar to the equilibrium characterized in Case 1 of Proposition 1. The equilibrium is

determined by the marginal liquidity trader who is indifferent between the two venues,

shown in (36), and the marginal for-profit trader who is indifferent about whether

to acquire the information, shown in (37). If multiple equilibria exist, I select the

equilibrium with the lowest α∗d among those with the property that, as αd varies in a

neighborhood of α∗d, the left-hand side of (36) crosses the right-hand side from below.

The expressions of σ̄(x) and p∗ in equilibrium are provided in Appendix C.

Naturally, in equilibrium liquidity traders who have higher delay costs submit more

aggressive orders (i.e. buy orders with higher limit prices and sell orders with lower

limit prices). Moreover, because a liquidity buyer’s order is infinitesimal and has zero

impact on the execution price p∗, she wishes to use a “truth-telling” strategy, that is,

to submit a buy order whose limit price is equal to her delay cost.21 If her decay cost

c < xS, the trade-at rule is not binding, so she submit a dark pool buy order with

the limit price c. If c ≥ xS, the trade-at rule becomes binding at the price xS, so the

liquidity buyer selects the highest limit price allowed, xS. In equilibrium, a strictly

positive mass of liquidity buyers set the limit price xS and are rationed with a positive

probability. When the delay cost c is sufficiently high, the liquidity buyer trades on the

exchange in order to avoid the risk of being rationed at the price xS. The intuition for

a liquidity seller is symmetric.

Proposition 4 further reveals that the trade-at rule has a material effect for the

participation of informed traders in the dark pool. Because σ̄(x) is decreasing in x,

21This strategy is reminiscent of the truth-telling strategy of MacAfee (1992), who considers a double auction
with finitely many buyers and sellers. The double auction here has the institutional restriction that transaction
prices are bounded by the trade-at rule.
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the stricter is the trade-at rule, the less attractive is the dark pool to informed traders.

The intuition is as follows. If an informed buyer were to deviate to the dark pool, she

would select the most aggressive permissible limit price, xS, in order to maximize her

execution probability. Although she would be rationed at the price xS, she would only

compete with those liquidity traders who have a delay cost of xS or higher. The lower

is x, the less scope there is for the informed trader to “step ahead of the queue” and

gain execution priority. In particular, a midpoint dark pool with x = 0 has the greatest

effectiveness in discouraging informed traders to participate.

The left-hand plot of Figure 7 shows the dark pool orders in the equilibrium of

Proposition 4. In this example, x = 0.8, so the dark pool provides a price improvement

equal to 20% of the exchange spread S. In this example, about 95% of liquidity traders

in the dark pool set the most aggressive limit price, ±xS. The dark pool transaction

price in this case is about 0.007. The right-hand plot of Figure 7 shows that the

volatility threshold σ̄(x) is strictly decreasing in x. With midpoint crossing (x = 0),

informed traders avoid the dark pool if the value σ of information is lower than about

0.35. Under the current trade-through rule (x = 1), this volatility threshold is reduced

to about 0.22.

The effect of the trade-at rule on informed participation in dark pools complements

prior fairness-motivated arguments, which suggest that displayed orders should have

strictly higher priority than nondisplayed orders at the same price (Joint CFTC-SEC

Advisory Committee, 2011). Proposition 4 predicts that implementing a trade-at rule

is likely to reduce informed participation in dark pools. It also predicts that dark pools

operating as limit order books are more likely to attract informed traders and impatient

liquidity traders than dark pools crossing at the midpoint.

My model of a limit-order dark pool is related to and complements that of Buti,

Rindi, Wen, and Werner (2011), who study the effect of tick size for market quality.

In their model, a limit order book with a subpenny tick size is similar to a dark pool

studied in this section. Since their model allows traders to post limit orders on the

displayed market, it generates predictions on quote depths, which are not offered in

my model. On the other hand, my model focuses on asymmetric information and price

discovery, which are absent in their model. A desirable (and nontrivial) extension of

my price-discovery model is to fully allow limit orders in both the exchange and the

dark pool, and this extension is left for future research. The extensive literature on

displayed limit order books is surveyed by Parlour and Seppi (2008).

The model of this section also differs from existing studies of nondisplayed markets

that operate alone. For example, Boulatov and George (2010) model how informed
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Figure 7: A dark pool as a nondisplayed limit order book. The left-hand plot shows the aggregate
limit orders in the dark pool, where y+(p) and y−(p) denotes the demand schedule and supply
schedule, respectively. The right-hand plot shows the range of σ for which the equilibrium of
Proposition 4 exists, that is, informed traders avoid the dark pool. Model parameters are those of
Figure 3. The left-hand plot also uses x = 0.8, σ = σ̄(0.8) = 0.236, and realizations Z+ = 31 and
Z− = 30.
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traders provide liquidity through limit orders when their demand schedules (i.e. limit

orders) are hidden. This nondisplayed market, they conclude, encourages informed

traders to trade more aggressively on their information, hence improving price discov-

ery, relative to a displayed market. Hendershott and Jones (2005) empirically study

price discovery for exchange-traded funds (ETFs) when Island ECN stopped display-

ing its limit orders. Since Island ECN was the dominant market for affected ETFs, it

differed from today’s equity dark pools, which operate alongside exchanges.

5 Dynamic Trading

This short section generalizes the basic intuition of Section 3 to a dynamic market.

Under natural conditions, all equilibria have the property that, after controlling for

delay costs, an informed trader prefers the exchange to the dark pool, relative to a

liquidity trader.

Time is discrete, t ∈ {1, 2, 3, . . . }. As before, an asset pays an uncertain dividend v

that is +σ or −σ with equal probabilities. The dividend is announced at the beginning

of period T ≥ 2, where T is deterministic, and paid at the end of period T . The trading

game ends immediately after the dividend payment.

In each period before the dividend payment, a new set of informed traders and

liquidity traders arrive. To simplify the analysis, I drop endogenous information ac-
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quisition in this section. (Equivalently, it costs zero to acquire information.) The mass

of informed traders arriving in period t, µI(t) > 0, is deterministic. Informed traders

observe the dividend v and trade in the corresponding direction. The mass of liquidity

buy orders and the mass of liquidity sell orders arriving in period t are Z+(t) > 0 and

Z−(t) > 0, respectively, with commonly known probability distributions. The public

does not observe v or the realizations of Z+(t) or Z−(t).

As before, a lit exchange and a dark pool operate in parallel. Both venues are open

in all periods. At the beginning of period t, the exchange market maker posts a bid

price Bt and an ask price At. Any order sent to the exchange is immediately executed

at the bid or the ask. After execution of exchange orders in each period, the market

maker announces the exchange buy volume and the exchange sell volume. The public

information Ft at the beginning of period t consists of all exchange announcements

prior to, but not including, period t. Thus, the conditional distribution of asset value

v at the beginning of period t is represented by the likelihood ratio

Rt =
Pt(v = +σ)

Pt(v = −σ)
, (38)

where Pt denotes the conditional probability based on Ft. By construction, R0 = 1.

The public’s conditional expectation of the asset value at the beginning of period t is

therefore

V (Rt) = σ(Pt(v = +σ)− Pt(v = −σ)) =
Rt − 1

Rt + 1
σ. (39)

The dark pool executes orders in each period, simultaneously with the execution

of exchange orders. The dark pool implements a double auction with a trade-at rule,

as in Section 4. Midpoint crossing, which offers a price improvement of the exchange

spread, is a special case of this double auction. Liquidity traders differ from each other

in their delay costs, as in Section 3. If a liquidity trader of cost type γ does not trade

in period t, then she incurs a delay cost of c(γ;Rt) in period t, where c(γ;Rt) is strictly

increasing in γ for all Rt. A trader only incurs delay costs after she arrives.

To control for traders’ characteristics other than information, I make the additional

assumption that informed traders also incur positive delay costs, before they execute

their orders. A type-γ informed trader incurs the delay cost c(γ;Rt) in period t if she

fails to execute her order in that period. In practice, this cost may come from the

opportunity cost of capital. Thus, a type-γ informed buyer (resp. seller) and a type-γ

liquidity buyer (resp. seller) differ only in their information about v.

I now fix a cost type γ ≥ 0 and compare the venue choice of a type-γ informed
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buyer with that of a type-γ liquidity buyer. For any (Rt, t), I let

We(Rt, t) = σ − At (40)

Xe(Rt, t) = V (Rt)− At (41)

be the payoffs of a type-γ informed buyer and a type-γ liquidity buyer, respectively, for

trading immediately on the exchange. These payoffs do not depend on the cost type

γ because exchange execution incurs no delays. I let Wd(Rt, t; γ) and Xd(Rt, t; γ) be

the corresponding continuation values of entering an order in the dark pool. Finally,

I let W (Rt, t; γ) and X(Rt, t; γ) be the continuation values of the informed buyer and

liquidity buyer, respectively, at the beginning of period t, before they make trading

decisions. For t = T , W (RT , T ; γ) = X(RT , T ; γ) = 0. For t < T , the Bellman

Principal implies that

W (Rt, t; γ) = max [We(Rt, t),Wd(Rt, t),Et(W (Rt+1, t+ 1; γ))] , (42)

X(Rt, t; γ) = max [Xe(Rt, t), Xd(Rt, t),Et(X(Rt+1, t+ 1; γ))] , (43)

where the three terms in the max( · ) operator represents a trader’s three choices: send-

ing her order to the exchange, sending her order to the dark pool, and delaying trade.

The following proposition characterizes equilibrium conditions under which, con-

trolling for delay costs, the liquidity-versus-informed payoff difference Xd(Rt, t; γ) −
Wd(Rt, t; γ) in the dark pool is at least as high as the corresponding payoff difference

Xe(Rt, t)−We(Rt, t) on the exchange. It is in this “difference-in-difference” sense that

the dark pool is more attractive to liquidity traders, and that the exchange is more

attractive to informed traders.

Proposition 5. In any equilibrium, if Wd(Rt, t; γ) ≥ Et[W (Rt+1, t+ 1; γ)], then

Xd(Rt, t; γ)−Wd(Rt, t; γ) ≥ Xe(Rt, t)−We(Rt, t). (44)

Proof. See Appendix C.

Proposition 5 reveals that all equilibria must satisfy the restriction (44), provided

that a informed buyer weakly prefers using the dark pool to delaying trade. The

intuition for this result is as follows. Because the exchange guarantees to execute all buy

orders at the same price At, the exchange payoff difference, Xe(Rt, t)−We(Rt, t), reflects

only the value of private information. The dark pool payoff difference Xd(Rt, t; γ) −
Wd(Rt, t; γ), by contrast, reflects both the value of information and the execution risk.
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Compared with a liquidity buyer, an informed buyer in the dark pool is less likely

to fill her order and, conditional on a trade, more likely to pay a higher price. This

execution risk is costly for the informed buyer in equilibrium as long as she prefers

dark pool trading to delaying, as captured by Wd(Rt, t; γ) ≥ Et[Wd(Rt+1, t + 1; γ)].

I isolate this dark pool execution risk from the value of information by taking the

“difference-in-difference” of payoffs in (44).

Appendix B explicitly solves a dynamic equilibrium in a setting where traders arrive

in Poisson times.

6 Implications and Discussions

This section discusses some implications of my results, both in light of recent empirical

evidence and in relation to the current policy debate on the impacts of dark pools on

price discovery and liquidity. The discussion follows two organizing questions. First,

what are the relations between dark pool market share and observable market charac-

teristics? Second, what are the impacts of dark pool trading on price discovery and

liquidity? For each question, I discuss empirical implications of the model and put

them in the context of related empirical evidence.

6.1 Determinants of dark pool market share

Prediction 1. All else equal, dark pool market share is lower if the execution probability

of dark pool orders is lower.

Prediction 2. All else equal, if the level of adverse selection (or volatility) is low, then

dark pool market share is increasing in adverse selection (or volatility). If the level of

adverse selection (or volatility) is high, then dark pool market share can be decreasing

in adverse selection (or volatility).

Prediction 3. All else equal, informed participation in dark pools is higher if volatility

is higher. Informed participation is higher in dark pools that allow more discretion in

execution prices, compared with dark pools that execute orders at the exchange midpoint.

Prediction 4. All else equal, dark pool market share is lower for trading strategies

relying on shorter-term information. The use of dark pools is also lower for trading

strategies that trade multiple stocks simultaneously, compared with strategies that trade

individual stocks one at a time.
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Prediction 1 follows from the results of Section 3 and Section 4. A lower execution

probability, captured by a lower r̄ or r̄x, discourages both types of traders from partici-

pating in the dark pool.22 Using daily data collected by SIFMA from eleven anonymous

dark pools in 2009, Buti, Rindi, and Werner (2011a) find that dark pool market share

is negatively related to the order imbalance as a percentage of total volume and to the

absolute depth imbalance on lit venues. Prediction 1 is consistent with their findings.23

Prediction 2 suggests that dark pool market share can be increasing or decreasing

in the level of adverse selection (or volatility), depending on whether σ, the value of

private information, is below or above the threshold σ̄. Using transaction data in two

block-crossing dark pools (Liquidnet and Posit), Ready (2012) finds that institutions

are less likely to route orders to dark pools when the level of adverse selection is higher.

In different samples, Buti, Rindi, and Werner (2011a) and Ye (2010) find that dark

pool market shares are lower when volatilities and spreads are higher. To the extent

that at least some informed traders participate in dark pools in practice,24 and that

volatilities and spreads are positively correlated with adverse selection, these findings

are broadly consistent with (the latter half of) Prediction 2.

Prediction 3 suggests that dark pool orders are more informative on average when

information asymmetry is severe. This prediction is consistent with recent evidence

documented by Nimalendran and Ray (2012) in an anonymous dark pool. They infer

the trading direction of each dark pool transaction by comparing the execution price

with the prevailing market midpoint. A trading strategy that follows the directions of

dark pool orders is profitable when spreads are wide but not profitable when spreads are

narrow. To the extent that exchange spreads are proxy measures for adverse selection,

Prediction 3 is consistent with their results. Prediction 3 also suggests that orders in

limit-order dark pools are more informative than those in midpoint dark pools. To my

knowledge, the latter half of Prediction 3 is not yet tested in the data.

Prediction 4 provides strategy-level implications on dark pool activity. Strategies

relying on shorter-term information have higher execution risks in dark pools because

relevant information can become stale sooner. Related to this prediction, Ready (2012)

finds that the usage of block-crossing dark pools is lower for institutions with higher

turnover, which is consistent with the notion that short-term strategies are best imple-

mented in venues that guarantee execution. Because dark pools cannot guarantee the

22This relation can be analytically proved for σ < σ̄ in Proposition 1 and for σ < σ̄(x) in Proposition 4.
23Related, Ye (2010) constructs a proxy for execution probability in eight dark pools from their SEC Rule 605 re-

ports, and studies the relationship between non-execution probability and market characteristics (e.g. price impacts
and effective spreads). He does not examine how non-execution probability relates to the market share of dark pools.
For more details of Rule 605 of Reg NMS, see http://www.finra.org/Industry/Regulation/Guidance/SECRule605/.

24Recall from the model of Section 3 that if σ > σ̄, then some informed traders participate in the dark pool.
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simultaneous execution of trades in multiple stocks, we also expect dark pools to be

less attractive for strategies tracking stock indices or “arbitraging” perceived mispric-

ing among similar securities. For these strategies, partial execution in dark pools can

be particularly costly.

6.2 Effects of dark pools on price discovery and liquidity

Prediction 5. All else equal, a higher dark pool market share is associated with higher

order informativeness, wider spreads, and higher price impacts of trades on the ex-

change.

Prediction 6. All else equal, a higher dark pool market share increases the correlation

of volumes across different stocks in lit exchanges. This cross-stock volume correlation

is lower in dark pools than in lit exchanges.

Prediction 7. All else equal, dark pool execution implies a positive adverse-selection

cost, in that shares bought in dark pools tend to have low short-term returns and that

shares sold in dark pools tend to have high short-term returns. This cost, however, is

lower than the exchange spread at the time of execution.

Proposition 3 provides sufficient conditions under which Prediction 5 holds. Pre-

diction 5 is consistent with empirical evidence from Degryse, de Jong, and van Kervel

(2011), Nimalendran and Ray (2012), Jiang, McInish, and Upson (2011), and Weaver

(2011), but not Buti, Rindi, and Werner (2011a) or O’Hara and Ye (2011). In Dutch eq-

uity markets, Degryse, de Jong, and van Kervel (2011) find that higher market shares

of dark trading—including dark pools and over-the-counter markets—are associated

with higher price impacts, higher quoted spreads, higher realized spreads, and smaller

depths on lit markets. Similarly, in U.S. equity markets, Jiang, McInish, and Upson

(2011) find that off-exchange (dark) order flows are less informative than exchange (lit)

order flows, after adjusting for trading volumes in dark and lit markets. Their results

also indicate that exchange order flows become more informative as off-exchange order

flows increase. Weaver (2011) finds that higher levels of off-exchange trading in the

U.S. are associated with wider spreads, higher price impacts, and higher volatilities.

Using transaction data in an anonymous dark pool, Nimalendran and Ray (2012) doc-

ument that following dark-pool transactions, bid-ask spreads tend to widen and price

impacts tend to increase, especially if the relative bid-ask spreads are already high. By

contrast, Buti, Rindi, and Werner (2011a) find that higher dark pool trading activity

tends to be associated with lower spreads and lower return volatilities, which suggest a
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better market quality. O’Hara and Ye (2011) also conclude that higher fragmentation

of trading is associated with faster execution, lower transaction costs, and more efficient

prices. Given the wide variety of data samples used in these studies and the difficulty

in completely correcting for endogeneity, we should interpret these conflicting results

with caution.

Prediction 6 can be viewed as the mirror image of Prediction 4. Since dark pools are

less attractive to strategies that execute multiple stocks simultaneously, those strategies

should have higher concentration in lit venues than in dark pools. Consequently, the

volume correlation across stocks should be higher in lit venues than in dark pools. To

my knowledge, this prediction is not yet tested in the data.

Finally, Prediction 7 on the adverse selection in dark pools is consistent with Sofianos

and Xiang (2011), who find that dark pools that have higher execution probabilities

also have more severe adverse selection (that is, more “toxic”). Næs and Odegaard

(2006) provide anecdotal evidence that filled orders in a dark pool are subject to short-

term losses. Mittal (2008) and Saraiya and Mittal (2009) emphasize that short-term

adverse selection in dark pools can reduce execution quality of institutional investors.

Conrad, Johnson, and Wahal (2003), Brandes and Domowitz (2010), and Domowitz,

Finkelshteyn, and Yegerman (2009) examine execution costs in dark pools, although

they do not explicitly measure the costs of adverse selection.

7 Concluding Remarks

In recent years, dark pools have become an important part of equity market structure.

This paper provides a simple model of dark pool trading and their effects on price

discovery and liquidity. I show that under natural conditions, the addition of a dark

pool concentrates informed traders on the exchange and improves price discovery, at

the cost of reducing exchange liquidity.

Besides price discovery and liquidity, there are a few additional aspects of dark pools

that contribute to their controversy. One of these is information leakage. In practice,

a dark pool may send an “indication of interest” (IOI), which contains selected order

information such as the ticker, to potential counterparties in order to facilitate a match.

In this sense, these dark pools are not completely dark. For example, Buti, Rindi, and

Werner (2011b) considers a setting where selected traders are informed of the state

of the dark pool. The Securities and Exchange Commission (2009) proposed to treat

actionable IOIs—IOIs containing the symbol, size, side, and price of an order—as

quotes, which must be disseminated to the broad market immediately.
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Another consideration is fair access. In the United States, dark pools are not re-

quired to provide fair access unless the dark pool concerned reaches a 5% volume

threshold. Whether investors suffer from the lack of fair access can depend on perspec-

tive. On the one hand, it seems plausible that the lack of fair access can reduce trading

opportunities and the welfare of excluded traders. On the other hand, “some dark

pools attempt to protect institutional trading interest by raising access barrier to the

sell-side or certain hedge funds,” observes SEC Deputy Director James Brigagliano.25

For example, results from Boni, Brown, and Leach (2012) indicate that the exclusion of

short-term traders in a dark pool (Liquidnet) improves the execution quality of insti-

tutional orders. Foster, Gervais, and Ramaswamy (2007) theoretically illustrate that

setting a volume threshold in the dark pool—i.e. the dark pool executes orders only

if trading interests on both sides of the market reach that threshold—can sometimes

prevent impatient traders or informed traders from participating in the dark pool.

Finally, dark pools are opaque not only in their orders, but also in their trading

mechanisms. For example, a Greenwich Associates survey of 64 active institutional

users of dark pools reveals that, on many occasions, dark pools do not disclose suffi-

cient information regarding the types of orders that are accepted, how orders interact

with each other, how customers’ orders are routed, what anti-gaming controls are in

place, whether customer orders are exposed to proprietary trading flows, and at what

price orders are matched (Bennett, Colon, Feng, and Litwin, 2010). The International

Organization of Securities Commissions (2010) also observes that “[l]ack of information

about the operations of dark pools and dark orders may result in market participants

making uninformed decisions regarding whether or how to trade within a dark pool or

using a dark order.” Opaque operating mechanics of dark pools can make it more diffi-

cult for investors and regulators to evaluate the impact of dark pools on price discovery,

liquidity, and market quality.

25“Keynote Speech to the National Organization of Investment Professionals,” by James A. Brigagliano, April
19, 2010.
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Appendix

A Institutional Features of Dark Pools

This appendix discusses additional institutional features of dark pools and nondisplayed

liquidity that are not covered in Section 2.

Besides the three-way classification of dark pools discussed in Section 2, another

classification is provided by Tabb Group (2011). They categorize dark pools into

block-cross platforms, continuous-cross platforms, and liquidity-provider platforms.

The main features of these three groups are summarized in the top panel of Table 2,

and their respective market shares are plotted in Figure 8. As we can see, the market

share of block-cross dark pools has declined from nearly 20% in 2008 to just above

10% in 2011. Continuous-cross dark pools have gained market share during the same

period, from around 50% to around 70%. The market share of liquidity-providing dark

pools increased to about 40% around 2009, but then declined to about 20% in mid

2011. Tabb Group’s data, however, do not cover the entire universe of dark pools, and

the components of each category can vary over time. For this reason, these statistics

are noisy and should be interpreted with caution.

Figure 8: Market shares of three types of U.S. dark pools as fractions of total U.S. dark pool
volume, estimated by Tabb Group. The three types are summarized in the top panel of Table 2.
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Dark pools are also commonly classified by their crossing frequencies and by how

they search for matching counterparties, as illustrated in the bottom panel of Table 2.
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Aside from mechanisms such as midpoint-matching and limit order books, advertise-

ment is sometimes used to send selected information about orders resting in the dark

pool to potential counterparties, in order to facilitate a match.

Characteristics that distinguish dark pools also include ownership structure and

order size. Today, most dark pools are owned by broker-dealers (with or without pro-

prietary order flows), whereas a small fraction is owned by consortiums of broker-dealers

or exchanges. Order sizes can also vary substantially across dark pools. According to

Rosenblatt Securities (2011), two block-size dark pools (Liquidnet and Pipeline) have

an order size of around 50,000 shares, which is larger than that of Posit (around 6,000

shares per order) and much larger than those of other broker dark pools (about 300

shares per order). This sharp contrast in order sizes can be attributed to the use of

algorithms that split “parent” orders into smaller “children” orders, as observed by the

Securities and Exchange Commission (2010).

There are at least two reasons why high-quality data are lacking on dark pool

trading in the United States. First, in the United States, dark pool trades are reported

to “trade reporting facilities,” or TRFs, which aggregate trades executed by all off-

exchange venues—including dark pools, ECNs, and broker-dealer internalization—into

a single category. Thus, it is generally not possible to assign a TRF trade to a specific

off-exchange venue that executes the trade.26 Second, dark pools often do not have their

own identification numbers (MPID) for trade reporting. For example, a broker-dealer

may report customer-to-customer trades in its dark pool together with the broker’s own

over-the-counter trades with institutions, all under the same MPID. Similarly, trades

in an exchange-owned dark pool can be reported together with trades conducted on the

exchange’s open limit order book, all under the exchange’s MPID. Because different

trading mechanisms share the same MPID, knowing the MPID that executes a trade

is insufficient to determine whether that trade occurred in a dark pool.27

Finally, there are two sources of nondisplayed liquidity that are usually not referred

to as dark pools. One is broker-dealer internalization, by which a broker-dealer handles

customer orders as a principal or an agent (Securities and Exchange Commission, 2010).

A crude way of distinguishing dark pools from broker-dealer internalization is that the

former are often marketplaces that allow direct customer-to-customer trades, whereas

the latter typically involves broker-dealers as intermediaries.28 The other source of

26The Securities and Exchange Commission (2009) has recently proposed a rule requiring that alternative trading
systems (ATS), including dark pools, provide real-time disclosure of their identities on their trade reports.

27For example, Ye (2010) finds that only eight U.S. dark pools can be uniquely identified by MPIDs from their
Rule 605 reports to the SEC. The majority of dark pools cannot.

28There are exceptions. For example, dark pools acting like electronic market makers (like Getco and Knight)
also provide liquidity by trading on their own accounts. Nonetheless, they are highly automated systems and rely
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nondisplayed liquidity is the use of hidden orders on exchanges. Examples include

reserve (“iceberg”) orders and pegged orders, which are limit orders that are partially or

fully hidden from the public view.29 For example, Nasdaq reports that more than 15%

of its order flow is nondisplayed.30 In particular, midpoint-pegged orders on exchanges

are similar to dark pool orders waiting to be matched at the midpoint.

B Dynamic Trading with Stochastic Crossing

This appendix explicitly characterizes a family of dynamic equilibria in which informed

traders do not participate in the dark pool. Different from Section 5, information and

traders in this section arrive at Poisson times, which give rise to tractable stationary

equilibria.

Time is continuous, t ≥ 0, and the market opens at time 0. As before, an asset

pays an uncertain dividend v that is +σ or −σ with equal probabilities. The time of

the dividend payment is exponentially distributed with mean 1/λF , for λF > 0. Two

types of risk-neutral traders—liquidity traders and informed traders—have independent

Poisson arrivals with respective mean arrival rates of λL and λI . (Traders are thus

“discrete.”) Each trader can buy or sell one unit of the asset. As in Section 5, I do not

consider endogenous information acquisition here. Upon arrival, an informed trader

observes v perfectly. Liquidity traders, who are not informed regarding the dividend,

arrive with an unwanted position in the asset whose size is either +1 or −1, equally

likely and independent of all else.

As before, a lit exchange and a dark pool operate in parallel. A competitive and

risk-neutral market maker on the exchange continually posts bid and ask prices for one

unit of the asset, as in Glosten and Milgrom (1985). Any order sent to the exchange

is immediately executed at the bid or the ask, and trade information is immediately

disseminated to everyone. By competitive pricing, the bid price at any time t is the

conditional expected asset value given the arrival of a new sell order at time t and

given all public information up to, but before, time t. The ask price is set likewise.

The market maker also maintains a public “midpoint” price that is the conditional

expected asset value given all public information up to but before time t. Once an

less on human intervention than, say, dealers arranging trades over the telephone.
29A reserve order consists of a displayed part, say 200 shares, and a hidden part, say 1,800 shares. Once the

displayed part is executed, the same amount, taken from the hidden part, becomes displayed, until the entire order
is executed or canceled. Pegged orders are often fully hidden. Typically, pegged orders and hidden portions of
reserve orders have lower execution priority than displayed orders with the same limit price.

30See http://www.nasdaqtrader.com/Trader.aspx?id=DarkLiquidity
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exchange order is executed, the market maker immediately updates her bid, ask, and

midpoint prices.

The dark pool accepts orders continually, and an order sent to the dark pool is

observable only by the order submitter. The dark pool executes orders at the midpoint

price and at the event times of a Poisson process with intensity λC that is independent of

all else. Allocation in the dark pool is pro-rata on the heavier side, as in Section 3. For

analytical tractability, I assume that unmatched orders in the dark pool are immediately

sent to the exchange market maker, who then executes these orders at the conditional

expected asset value given all past public information and given the quantity and

direction of unmatched orders from the dark pool.

As in Section 5, the conditional likelihood ratio of v at time t is

Rt =
Pt(v = +σ)

Pt(v = −σ)
, (45)

where Pt denotes the market maker’s conditional probability. By construction, R0 = 1.

The conditional expected asset value is, as in Section 5,

V (Rt) = σ(Pt(v = +σ)− P(v = −σ)) =
Rt − 1

Rt + 1
σ. (46)

To calculate the bid and ask prices, I let λt be the time-t arrival intensity (conditional

mean arrival rate) of traders of any type to the exchange, and let µt be the time-t

conditional probability that an arriving exchange trader is informed. Then,

qt = µt + (1− µt)0.5 = 0.5 + 0.5µt (47)

is the probability that an exchange trader arriving at t is “correct,” that is, buying if

v = +σ and selling if v = −σ. The likelihood ratio

zt =
qt

1− qt
(48)

then represents the informativeness of a time-t exchange order.31 For example, if a buy

order hits the market maker’s bid at time t, then Bayes’ Rule implies that

Rt =
Pt(v = +σ |Q = 1)

Pt(v = −σ |Q = 1)
=

Pt(Q = 1 | v = +σ)

Pt(Q = 1 | v = −σ)
· Pt−(v = +σ)

Pt−(v = −σ)
= Rt−zt, (49)

31In the equilibria characterized in this section, the information content of a buy order is equal to that of a sell
order, so there is no need to specify them separately.
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where Pt− denotes the market maker’s probability conditional on all exchange transac-

tions up to but before time t, and where Rt− ≡ lims↑tRs. Similarly, if an exchange sell

order arrives at time t, then

Rt =
Pt(v = +σ |Q = −1)

Pt(v = −σ |Q = −1)
=
Rt−

zt
. (50)

To break even, the market maker quotes a time-t bid price of V (Rtz
−1
t ) and a time-t

ask price of V (Rtzt). Because V ( · ) is nonlinear, V (Rt) is generally not identical to the

bid-ask midpoint, (V (Rtzt) +V (Rtz
−1
t ))/2. Nonetheless, for simplicity I refer to V (Rt)

as the “midpoint” price.

Liquidity traders must hold collateral equal to the expected loss on their unwanted

risky positions. With probability κj and independently of all else, an arriving liquidity

trader incurs a cost of γj per unit of time for every unit of collateral support in her

risky position, where (κj)
J
j=1 and (γj)

J
j=1 are commonly-known constants and satisfy

0 ≤ γ1 < γ2 < · · · < γJ−1 < γJ , (51)

J∑
j=1

κj = 1. (52)

Before executing her order, a liquidity buyer of type j incurs a flow cost of

cjt = γjEt[max(0, v − V (Rt))] = γj
Rt

Rt + 1
·
(

1− Rt − 1

Rt + 1

)
σ = γj

2Rt

(Rt + 1)2
σ. (53)

A liquidity seller of type j has the same flow cost cjt because

γjEt[max(0, V (Rt)− v)] = γj
1

Rt + 1
·
(
Rt − 1

Rt + 1
− (−1)

)
σ = γj

2Rt

(Rt + 1)2
σ. (54)

By independent splitting of Poisson processes, the arrival intensities of type-j liquidity

buyers and type-j liquidity sellers are both 0.5κjλL.

Without loss of generality, we focus on the strategies of informed buyers and liquidity

buyers, whose payoffs are denoted W (Rt) and X(Rt), respectively. For simplicity, I use

Eit[ · ] as a shorthand for Et[ · | v = σ], where the superscript “i” stands for “informed.”

Because I look for stationary equilibria, the payoffs W (Rt) and X(Rt) depend on the

public information Rt but not on time t.
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Proposition 6. For fixed integer M ∈ {0, 1, 2, . . . , J}, define

ze =
λI + 0.5

∑J
i=M κiλL

0.5
∑J

i=M κiλL
. (55)

Under the conditions

λC <

∑J
i=M κjλL

2λI
λF , (56)

γj < (λC + λF )
ze − 1

ze
, 1 ≤ j < M, (57)

γj > (λC + λF )(ze − 1) +

(
λI +

J∑
i=M

κiλL

)
(ze − 1)3

ze(
√
ze + 1)2

, M ≤ j ≤ J, (58)

there exists an equilibrium in which:

1. Informed traders trade on the exchange immediately upon arrival.

2. Type-j liquidity traders, M ≤ j ≤ J , trade immediately on the exchange upon

arrival.

3. Type-j liquidity traders, 1 ≤ j < M , enter orders in the dark pool. If the dark

pool has not crossed by the time that the dividend is paid, they cancel their dark

pool orders and trade immediately on the exchange.

4. At time t, the market maker quotes a bid of V (Rtz
−1
e ) and an ask of V (Rtze).

Moreover, immediately after a dark pool crossing, the market maker executes all

outstanding orders at a price of V (Rt). Immediately after the dividend v is paid,

the market maker executes all outstanding orders at the cum-dividend price of v.

Proof. See Appendix C.

A key step in the equilibrium solution of Proposition 6 is that informed traders

expect the exchange price to move against them over time, but liquidity traders expect

the exchange spread to narrow over time. Thus, informed traders are relatively impa-

tient, whereas liquidity traders are relatively patient. These different expectations of

future prices, as formally stated in the following lemma, underlie the partial separation

between informed traders and liquidity traders in the equilibria of Proposition 6.

Lemma 1. Let Q be the direction of the next exchange order that arrives before the

dividend payment, that is, Q = 1 denotes a buy order and Q = −1 denotes a sell order.

Under the strategies stated in Proposition 6:
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• The asset value is a martingale for liquidity traders and the public, in that

V (Rt) = Et[V (Rtz
Q
e )]. (59)

• The exchange ask price is a submartingale for informed buyers, in that

V (Rtze) < Eit[V (Rtz
Q
e ze)]. (60)

• The exchange ask price is a supermartingale for liquidity buyers, in that

Et[V (Rtz
Q
e ze)] = V (Rtze)−

2R2
t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ. (61)

Proof. See Appendix C.

In Proposition 6, ze reflects the degree of information asymmetry on the exchange

because it is the ratio of the mean arrival rate of traders in the “correct” direction versus

the mean arrival rate of traders in the “wrong” direction. Proposition 6 says that an

informed trader trades immediately on the exchange if the crossing frequency λC of the

dark pool is sufficiently low relative to the risk that her private information becomes

stale. A liquidity trader sends her order to the dark pool if and only if her delay cost

γ is sufficiently low compared to the potential price improvement obtained by trading

at the market midpoint. Moreover, because the exchange order informativeness ze is

increasing in M , the more liquidity traders trade in the dark pool, the more informative

are exchange orders. This property is a dynamic analogue of the two-period equilibrium

of Section 3.

We now briefly discuss the comparative statics of the equilibria, based on the tight-

ness of the incentive constraints (56)-(58). First, a higher crossing frequency λC tightens

(56), suggesting that informed traders are more likely to participate in the dark pool

if the crossing frequency is higher. On the other hand, a higher λC relaxes (57) but

tightens (58), making the dark pool more attractive to liquidity traders. As long as

λC is sufficiently low, informed traders avoid in the dark pool. Second, a higher arrival

rate λF of information relaxes (56), suggesting that informed traders are less likely to

trade in the dark pool if they face a higher risk of losing their information advantage.

By contrast, a higher λF makes the dark pool more attractive to liquidity traders by

shortening their expected waiting time, as in (57)-(58). Third, a higher delay cost γ

makes the dark pool less attractive to liquidity traders, without affecting the incentives

of informed traders.
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C Proofs

C.1 Proof of Proposition 1

I define µ̂I : [0,∞)→ [0, µ̄] by

µ̂I(s) = µ̄F

(
(1−G(1))µz

µ̂I(s) + (1−G(1))µz
s

)
. (62)

Given the value σ of information, µ̂I(σ) is the unique “knife-edge” mass of informed

traders with the property that all informed traders and a fraction 1−G(1) of liquidity

traders send orders to the exchange.

To prove the proposition, I show that a Case 1 equilibrium exists if

r̄ ≤ 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
, (63)

and that a Case 2 equilibrium exists if and only if

r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
. (64)

Then I show that the condition (63) is equivalent to σ ≤ σ̄ for some σ̄, and that the

condition (64) is equivalent to σ > σ̄.

Clearly, β < 1; otherwise, the exchange spread would be zero and informed traders

would deviate to trade on the exchange. Thus, in equilibrium either β = 0 or 0 < β < 1.

We first look for an equilibrium in which β = 0. By (15), α0 = 0 and αe =

1−αd. The indifference condition of the marginal liquidity trader is given by (16). For

notational simplicity, we write the left-hand side of (16) as −X̃d(αd) and the right-hand

side as −X̃e(αd). For each αd, µI is uniquely determined by (17). We have

− X̃d(0) = 0 < −X̃e(0),

− X̃d(G(1)) = 1− r̄ ≥ µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= −X̃e(G(1)),

where the second inequality follows from (63), (17), and (62). So there exists a solution

α∗d ∈ (0, G(1)] that satisfies (16).

Now we look for an equilibrium in which β > 0, that is, informed traders are

indifferent between the exchange and the dark pool. What remains to be shown is

that the incentive-compatibility conditions (18)-(20) have a solution. For simplicity,

we write the left-hand side of (18) as W̃d(β) and the right-hand side of (18) as W̃e(β).
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For each β ≥ 0, µI is unique determined by (20) and is increasing in β. Under condition

(64) and for each αd > 0,

W̃d(0) = r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= W̃e(0),

W̃d(1) = r− < 1 = W̃e(1),

where the first inequality follows from (63), (17), and (62). So there exists a solution

β∗ ∈ (0, 1) to (18), as a function of αd. Because µI increases in β, we see that W̃ ′
d(β) < 0

and W̃ ′
e(β) > 0, holding αd fixed. Thus, the solution β∗ to (18) is unique for each αd.

Moreover, (18) implies that in equilibrium r− is bounded away from 0. So there

exists some r0 > 0 such that r− > r0. So for sufficiently small αd > 0,

G(1)−G
(
r+ − r−

r+ + r−

)
> G(1)−G

(
1− r0

1 + r0

)
> αd.

So there exists a solution α∗d ∈ (0, G(1)] to (19). The equilibria characterized by (18)-

(20) thus exist. To show that (64) is necessary for the existence of equilibria in which

β > 0, suppose for contradiction that (64) does not hold. Then, for all αd and β > 0,

W̃e(β) > W̃e(0) ≥ W̃d(0) > W̃d(β), which implies that all informed traders wish to

deviate to the exchange, contradicting β > 0.

Finally, by (62), increasing the value σ of information raises the knife-edge mass µ̂(σ)

of informed traders, which in turn tightens the condition (63) under which informed

traders avoid the dark pool. Thus, there exists some unique volatility threshold σ̄ at

which (63) holds with an equality. That is, the equilibrium in Case 1 exists if σ ≤ σ̄,

and the equilibrium in Case 2 exists if σ > σ̄.

C.2 Proof of Proposition 2

Because β, αd, αe, µ, S, r+ and r− are implicitly defined by differentiable functions in

each case of Proposition 1, they are continuous and differentiable in σ in each of the

two intervals [0, σ̄] and (σ̄,∞). At the volatility threshold σ = σ̄, differentiability refers

to right-differentiability in Case 1 of Proposition 1, and left-differentiability in Case 2.
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Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, β = 0. Total differentiation of (16)-(17) with respect to σ yields[
dG−1(αd)

dαd
(1− r̄)− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dσ
− ∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dσ

= 0, (65)

[
1− µ̄F ′(σ − S)

∂ (σ − S)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dσ

+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(66)

where the first term of (65) is positive because of equilibrium selection. If dαd/dσ ≤ 0

at, say, some σ0, then (66) implies that dµI/dσ > 0 at σ0. But then (65) cannot hold.

Thus, dαd/dσ > 0, dµI/dσ > 0, and d(S/σ)/dσ > 0, by (16).

Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. I denote by r+′ and r−
′

the derivatives of r+ and r− with

respect to βµI/αd. We have r+′ > 0 and r−
′
< 0. Total differentiation of (18)-(20)

with respect to σ yields(
r−
′ 1

αd
− ∂(1− S/σ)

∂(βµI)

)
︸ ︷︷ ︸

<0

d(βµI)

dσ
=
∂(1− S/σ)

∂µI︸ ︷︷ ︸
<0

dµI
dσ

+ r−
′ βµI
α2
d︸ ︷︷ ︸

<0

dαd
dσ

, (67)

[
1−G′

(
r+ − r−

r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

βµI
α2
d

]
︸ ︷︷ ︸

>0

dαd
dσ

= −G′
(
r+ − r−

r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

1

αd︸ ︷︷ ︸
>0

d(βµI)

dσ
,

(68)[
1− µ̄F ′(σ − S)σ

∂(1− S/σ)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)σ
∂(1− S/σ)

∂(βµI)︸ ︷︷ ︸
>0

d(βµI)

dσ
+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(69)

where the first term of (68) is positive because of equilibrium selection.

We can show that dαd/dσ cannot switch signs in [σ̄,∞). To see why, suppose

otherwise, and dαd/dσ switches signs at some σ0. By continuity, at σ0, dαd/dσ = 0.

But (68) and (67) imply that d(βµI)/dσ = 0 = dµI/dσ at σ0 as well, which contradicts

(69). Thus, dαd/dσ cannot switch signs in [σ̄,∞); nor can it be zero.
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At σ = σ̄, β = 0 and dβ/dσ ≥ 0. Then, by (68),

d(βµI)

dσ

∣∣∣
σ=σ̄

= µI
dβ

dσ

∣∣∣
σ=σ̄
≥ 0 =⇒ dαd

dσ

∣∣∣
σ=σ̄
≤ 0.

Because dαd/dσ cannot be zero, it must be strictly negative for all σ ∈ [σ̄,∞). By

(68)-(69), for all σ ∈ [σ̄,∞), βµI and µI are both strictly increasing in σ. Then, (18)

implies that
d(S/σ)

dσ
= −dr

−

dσ
= −r−′ d

dσ

(
βµI
αd

)
> 0.

The spread itself, S = σ · (S/σ), obviously increases in σ as well. Finally,

dr+

dσ
= r+′ d

dσ

(
βµI
αd

)
> 0,

dr−

dσ
= r−

′ d

dσ

(
βµI
αd

)
< 0.

No dark pool

The comparative statics for Corollary 1 are similar to that for the first case of Propo-

sition 1 and are omitted.

C.3 Proof of Proposition 3

Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, adding a dark pool is equivalent to increasing r̄. Total differentiation of

(16)-(17) with respect to r̄ yields[
(1− r̄)∂G

−1(αd)

∂αd
− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dr̄

= G−1(αd) +
∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dr̄

, (70)

[
1− µ̄F ′(σ − S)

∂

∂µI
(σ − S)

]
︸ ︷︷ ︸

>0

dµI
dr̄

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dr̄

, (71)

where the first term on the left-hand side of (70) is positive because of the equilibrium

selection. If dαd/dr̄ ≤ 0 at any σ0, then (71) implies that dµI/dr̄ ≥ 0 at σ0. But that

contradicts (70). Thus, dαd/dr̄ > 0 and dµI/dr̄ < 0. Adding a dark pool, which is

equivalent to an increase in r̄, raises αd and reduces αe = 1−αd. The total participation

rate of liquidity traders in either the dark pool or the exchange is αd + αe = 1, higher

than a market without a dark pool. Moreover, by (17), a lower µI implies a wider

spread S on the exchange.
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Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. In a market with a dark pool, αe = 1 − G(1), a constant.

Substituting it into (21) and we have

µI
µI + (1−G(1))µz

< 1.

So the equilibrium αe without a dark pool resides in the interval (1 − G(1), 1). That

is, adding a dark pool reduces αe.

Moreover, adding a dark pool increases the exchange spread if and only if αe in the

equilibrium of Corollary 1 is larger than (1−G(1))/(1−β), where β > 0 is determined

in Proposition 1. By the equilibrium selection rule and by (18),

αe >
1−G(1)

1− β
⇐⇒ G−1

(
1− 1−G(1)

1− β

)
>

µI
µI + µz(1−G(1))/(1− β)

= 1− r−,

(72)

where the µI is given by

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz

)
.

We rearrange (72) and obtain

β <
G(1)−G(1− r−)

1−G(1− r−)
.

On the other hand, because the left-hand side of (18) is decreasing in β and the right-

hand side is increasing in β, the above condition is equivalent to (23).

As F (c) → 1 for all c > 0, (20) implies that µI → µ̄, a constant. Holding µI = µ̄

fixed, we now show that if G′′(1 − r−) ≤ 0, then (23) holds for all r− ∈ [0, r̄]. At

r− = r̄, we have σ = σ̄ and (23) holds by the definition of σ̄. At r− = 0, (23) also

holds trivially. Take the first and second derivatives of the right-hand side of (23) with

respect to r− and we obtain

d[rhs(23)]

dr−
=

µ̄µzG
′(1− r−)

[µ̄+ (1−G(1− r−))µz]2
> 0,

d2[rhs(23)]

d(r−)2
= µ̄µz

G′′(1− r−)[µ̄+ (1−G(1− r−))µz]− 2µz[G
′(1− r−)]2

[µ̄+ (1−G(1− r−))µz]3
< 0.

Thus, the right-hand side of (23) is concave and (23) holds for all r− ∈ [0, r̄].

48



C.4 Proof of Proposition 4

I prove this proposition in three steps. First, I calculate the execution price in the dark

pool and the optimal limit prices chosen by liquidity traders. Second, I derive incentive-

compatibility conditions under which informed traders choose not to participate in the

dark pool. Finally, I prove the comparative statics and conditions under which the

equilibrium exists.

Step 1: Price p∗ of execution and optimal prices of limit orders

I let y+ : [−xS, xS] → [0,∞) be the aggregate downward-sloping demand schedule of

liquidity buyers in the dark pool, and let y− : [−xS, xS] → [0,∞) be the aggregate

upward-sloping supply schedule of liquidity sellers. For each p, y+(p) is the total mass

of limit buy orders that have a limit price of p or higher, and y−(p) is the total mass

of limit sell orders that have a limit price of p or lower. Because the dark pool crosses

orders by price priority, its execution price p∗ is

p∗ =


xS, if y+(p) > y−(p) for all p ∈ [−xS, xS].

−xS, if y+(p) < y−(p) for all p ∈ [−xS, xS].

{p : y+(p) = y−(p)}, otherwise.

(73)

I proceed under the conjecture that the set {p : y+(p) = y−(p)} contains at most one

element, in which case p∗ of (73) is uniquely well-defined. I later verify this conjecture.

Once p∗ is determined, buy orders with limit prices above or equal to p∗ are matched,

at the price of p∗, with sell orders whose prices are at most p∗. If there is a positive

mass of buy or sell orders at the price p∗, then traders setting the limit price p∗ are

rationed pro-rata, as before.

I now derive the optimal limit prices of liquidity traders in the dark pool, under

the conjecture that the probability distribution of p∗ has no atom in (−xS, xS). This

no-atom conjecture, verified later, implies that a liquidity trader quoting a price of

p ∈ (−xS, xS) has her order filled with certainty (i.e. is not rationed) if p∗ = p. Thus,

a liquidity buyer who has a delay cost of c ∈ [0, xS) and quotes a price of p in the dark

pool has the expected payoff (negative cost)

Xd(p; c) = −E
[
I{p≥p∗}p∗ + I{p<p∗}c

]
= −c−

∫ p

−xS
(p∗ − c) dH(p∗), (74)
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where I( · ) is the indicator function and H(p∗) is the cumulative distribution function

of p∗. Because there is no adverse selection in the dark pool, the execution cost for this

liquidity buyer is either the payment p∗ or the delay cost c. Conjecturing that H(p∗)

is differentiable with H ′(p∗) > 0 for p∗ ∈ (−xS, xS), properties that are also verified

later, we obtain
dXd(p; c)

dp
= −(p− c)H ′(p). (75)

Because (75) shows that the sensitivity of expected payoff to the limit price p is positive

for p < c and negative for p > c, the optimal limit price for the liquidity buyer is her

delay cost c. Symmetrically, the optimal limit price for a liquidity seller with a delay

cost of c ∈ [0, xS) is −c. This “truth-telling” strategy is also ex-post optimal, in

that no one wishes to deviate even after observing the execution price. The first-order

condition (75) also implies that xS is the highest limit price in the dark pool, and that

−xS is the lowest limit price.32

Let y(p) be the downward-sloping demand schedule in the dark pool if Z+ = 1.

Because a limit price p ∈ [0, xS) is submitted by the liquidity buyer with the delay

cost p,

y(p) = αd −G
(

max(0, p)

σ

)
, −xS < p < xS. (76)

By symmetry, the liquidity buyers’ demand schedule and the liquidity sellers’ supply

schedule in the dark pool are, respectively,

y+(p) = Z+y(p), (77)

y−(p) = Z−y(−p). (78)

Because the equation y+(p) = y−(p) has at most one root, we have verified our earlier

conjecture that the dark pool execution price p∗ is uniquely well-defined.

Given y(p), the execution price p∗ in the dark pool is

p∗ =



+xS, if [αd −G
(
xS
σ

)
]Z+ ≥ αdZ

−,

+σG−1
[
αd

(
1− Z−

Z+

)]
, if

[
αd −G

(
xS
σ

)]
Z+ < αdZ

− ≤ αdZ
+,

−σG−1
[
αd

(
1− Z+

Z−

)]
, if

[
αd −G

(
xS
σ

)]
Z− < αdZ

+ ≤ αdZ
−,

−xS, if [αd −G
(
xS
σ

)
]Z− ≥ αdZ

+.

(79)

32If the maximum limit price were lower, say p0 < xS, then a liquidity buyer with a delay cost of p0 + ε for some
small ε > 0 would deviate to the dark pool and quote p0 + ε. This deviating buyer has an execution probability of
1 and pays at most p0 + ε < xS ≤ S, which is better than execution on the exchange. The argument for the lowest
limit price is symmetric.
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Because the total trading interest Z+ of liquidity buyer and the total trading interest

Z− of liquidity sellers are identically distributed, the dark pool execution price p∗ has a

mean of zero. By the differentiability of G and of the distribution function of Z−/Z+,

H(p∗) is continuous, differentiable, and strictly increasing on (−xS, xS), as conjectured

earlier.

Step 2: Incentive conditions for participation

What remains to be shown are the incentive-compatibility conditions of liquidity traders

who set the limit price xS or−xS in the dark pool, as well as the incentive-compatibility

condition of informed traders, who avoid the dark pool. A liquidity buyer quoting the

limit price xS in the dark pool has an execution probability of

r̄x = E
[
min

(
1,

αdZ
−

(αd −G(xS/σ))Z+

)]
, (80)

and an expected payoff, given the delay cost c, of

Xd(xS; c) = −(1− r̄x)(c− xS). (81)

This expected payoff calculation follows from the fact that E(p∗) = 0 and the fact that

failing to cross in the dark pool incurs a delay cost of c but saves the payment xS.

Because informed traders avoid the dark pool with probability 1 in the conjectured

equilibrium, an informed buyer who deviates to the dark pool also has the crossing

probability r̄x. Moreover, in order to get the highest priority, this deviating informed

trader sets the highest limit price xS. Her expected profit in the dark pool is thus

Wd = σ − (1− r̄x)(σ − xS). (82)

As before, for any delay cost c ≤ σ,

Wd −Xd(xS; c) = σr̄x + c(1− r̄x) ≤ σ = We −Xe. (83)

That is, an informed buyer behaves in the same way as does a liquidity buyer who has a

delay cost of σ. If informed traders do not participate in the dark pool, an equilibrium

is determined by a marginal liquidity trader who is indifferent between the dark pool

and the exchange. Given αd, this liquidity trader has a delay cost of G−1(αd)σ. So

we must have Xd(xS;G−1(αd)) = −S, or (36). Thus, (36) and (37) characterize an

equilibrium. We now look for conditions under which, in equilibrium, α∗d ≤ G(1). In
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this equilibrium, β = 0.

Step 3: Comparative statics and conditions for the existence of equilibria

I now calculate the comparative statics, assuming the existence of an equilibrium, and

then show conditions under which the stated equilibrium exists. Total differentiation

of (36) and (37) with respect to σ yields(
∂[lhs(36)]

∂αd
− ∂[rhs(36)]

∂αd

)
︸ ︷︷ ︸

>0

dαd
dσ

+

(
∂[lhs(36)]

∂µI
− ∂[rhs(36)]

∂µI

)
︸ ︷︷ ︸

<0

dµI
dσ

= 0, (84)

(
1− ∂[rhs(37)]

∂µI

)
︸ ︷︷ ︸

>0

dµI
dσ

=
∂[rhs(37)]

∂αd︸ ︷︷ ︸
<0

dαd
dσ

+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

. (85)

As before, if dαd/dσ ≤ 0 at some σ0, then (84) implies that dµI/dσ ≤ 0 at σ0 as well.

But this contradicts (85). Thus, the comparative statics with respect to σ follow. And

given the equilibrium, the dark pool execution price p∗ and the optimal limit prices

follow from calculations done in Step 1 of the proof.

Now I characterize the condition for the existence of an equilibrium and the thresh-

old volatility σ̄(x). For x ∈ [0, 1], I define K̄(x) implicitly by

(1− xK̄(x))

{
1− E

[
min

(
1,

G(1)Z−

[G(1)−G(xK̄(x))]Z+

)]}
= K̄(x). (86)

This K̄(x) is uniquely well-defined because the left-hand side of (86) is decreasing in

K̄(x) and the right-hand side is strictly increasing in K̄(x). Moreover, total differenti-

ation of (86) with respect to x yields(
∂[lhs(86)]

∂K̄(x)
− 1

)
︸ ︷︷ ︸

<0

K̄ ′(x) +
∂[lhs(86)]

∂x︸ ︷︷ ︸
<0

= 0.

So we have K̄ ′(x) < 0.

On the other hand, given K̄(x), I define µ∗I(x) by

µ∗I(x)

µ∗I(x) + (1−G(1))µz
= K̄(x),
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and define σ̄(x) by

µ∗I(x) = µ̄F

(
(1−G(1))µz

µ∗I(x) + (1−G(1))µz
σ̄(x)

)
.

Because µ∗I(x) is strictly increasing in K̄(x) and because σ̄(x) is strictly increasing in

µ∗I(x), σ̄(x) is strictly increasing in K̄(x). Because K̄ ′(x) < 0, σ̄′(x) < 0.

What remains to be shown is that, for σ ≤ σ̄(x), an equilibrium characterized by

Proposition 4 exists. Clearly, once αd is determined, µI is uniquely determined by (37).

For sufficiently small αd, the left-hand side of (36) is negative, whereas the right-hand

side is strictly positive. For αd = G(1), (37) implies that

µI = µ̄F

(
(1−G(1))µz

µI + (1−G(1))µz
σ

)
,

which is no larger than µ∗I(x). Thus,

K ≡ µI
µI + (1−G(1))µz

=
S

σ

∣∣∣
αd=G(1)

≤ K̄(x),

and, by the definition of K̄(x),

(1− xK)

{
1− E

[
min

(
1,

G(1)Z−

[G(1)−G(xK)]Z+

)]}
> K.

That is, at αd = G(1), the left-hand side of (36) is weakly higher than the right-hand

side. Therefore, there exists a solution α∗d ∈ (0, G(1)) to (36), and an equilibrium

exists.

C.5 Proof of Proposition 5

Suppose that Wd(Rt, t; γ) ≥ Et[W (Rt+1, t + 1; γ)] in an equilibrium. I denote by

X̂(Rt, t; γ) the “auxiliary payoff” of a type-γ liquidity buyer who “imitates” the strat-

egy of a type-γ informed buyer. That is, the imitating buyer behaves as if v = +σ.

Clearly, such imitation is suboptimal for the liquidity buyer, so X(Rt, t; γ) ≥ X̂(Rt, t; γ)

for all Rt, t, and γ. For notional simplicity, in the calculations below I suppress the

cost type γ and likelihood ratio Rt as function arguments.

Suppose that the informed buyer enters an order in the dark pool at time t. The

imitating liquidity buyer does the same, by construction. Let X̂+
d be the dark pool

payoff of the imitating buyer conditional on v = +σ, and let X̂−d be the dark pool
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payoff of the imitating buyer conditional on v = −σ. I define X̂+
e and X̂−e similarly.

Then, we have

X̂d(t)−Wd(t) =
Rt

Rt + 1
X̂+
d (t) +

1

Rt + 1
X̂−d (t)−Wd(t)

=
1

Rt + 1

(
X̂−d (t)− X̂+

d (t)
)
,

where the last equality follows from the fact that, conditional on the true dividend, the

expected payoff Wd of the informed buyer is the same as the payoff X̂+
d of the imitating

liquidity buyer. If we can show that X̂+
d (t)− X̂−d (t) ≤ 2σ, then

Xd(t)−Wd(t) ≥ X̂d(t)−Wd(t) ≥ −
2σ

Rt + 1
= Xe(Rt, t)−We(Rt, t).

Now I prove that X̂+
d (t)− X̂−d (t) ≤ 2σ. I denote by C the event that the imitating

buyer’s order is crossed in the dark pool, and let

k+
t ≡ Pt[C | v = +σ],

k−t ≡ Pt[C | v = −σ],

be the crossing probabilities of the imitating buyer in the dark pool in period t, condi-

tional on v = +σ and v = −σ, respectively. Then, we have

X̂+
d (t) = k+

t [+σ − Et(p∗ | C, v = +σ)] + (1− k+
t )Et(X̂+(t+ 1)),

X̂−d (t) = k−t [−σ − Et(p∗ | C, v = −σ)] + (1− k−t )Et(X̂−(t+ 1)),

where p∗ is the execution price in the dark pool in period t, and X̂+ and X̂− are the

imitating buyer’s payoffs conditional on v = +σ and v = −σ, respectively. Informed

buyers have either a zero or positive mass in the dark pool in period t, so

k+
t ≤ k−t ,

Et(p∗ | C, v = +σ) ≥ Et(p∗ | C, v = −σ).

Because Wd(t) ≥ Et[W (t+ 1)], X̂+
d (t) ≥ Et(X̂+(t+ 1)). Thus,

X̂+
d (t)− Et(X̂+(t+ 1)) = k+

t [σ − Et(p∗ | C, v = +σ)− Et(X̂+(t+ 1))]

≤ k−t [σ − Et(p∗ | C, v = −σ)− Et(X̂+(t+ 1))],

54



which implies that

X̂+
d (t)− X̂−d (t) ≤ 2σk−t + (1− k−t )Et[X̂+(t+ 1)− X̂−(t+ 1)]. (87)

I now prove that X̂+
d (t)− X̂−d (t) ≤ 2σ and that X̂+(t)− X̂−(t) ≤ 2σ by induction.

For all t < T , X+
e (t) − X−e (t) = 2σ. Because v is revealed in period T , X̂+(T ) =

X̂−(T ) = 0. By (87), X̂+
d (T − 1)− X̂−d (T − 1) ≤ 2σ. Because the venue choice of the

imitating liquidity buyer does not depend on realizations of v,

X+(T − 1)−X−(T − 1)

= max
[
X+
e (T − 1)−X−e (T − 1), X+

d (T − 1)−X−d (T − 1),ET−1(X+(T )−X−(T ))
]
≤ 2σ.

For the induction step, suppose that X̂+(t+ 1)− X̂−(t+ 1) ≤ 2σ. Then, (87) implies

that X+
d (t)−X−d (t) ≤ 2σ. Thus,

X+(t)−X−(t) = max
[
X+
e (t)−X−e (t), X+

d (t)−X−d (t),Et(X+(t+ 1)−X−(t+ 1))
]
≤ 2σ,

which completes the proof.

C.6 Proof of Lemma 1

Given the public information Rt, the probability that v = +σ is Rt/(Rt + 1). Let q

be implicitly defined by ze = q/(1 − q). That is, q is the probability that an arriving

exchange order is in the same direction as informed orders. Under a liquidity trader’s

belief, the probability that the next exchange order is a buy order is

Rt

Rt + 1
q +

1

Rt + 1
(1− q) = (1− q)Rtze + 1

Rt + 1
.

Similarly, the probability that the next exchange order is a sell order is

Rt

Rt + 1
(1− q) +

1

Rt + 1
q = q

Rtz
−1
e + 1

Rt + 1
.
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We can verify that identity

(1− q)Rtze + 1

Rt + 1
V (Rtze) + q

Rtz
−1
e + 1

Rt + 1
V (Rtz

−1
e )

=(1− q)Rtze + 1

Rt + 1

(
1− 2

Rtze + 1

)
σ + q

Rtz
−1
e + 1

Rt + 1

(
1− 2

Rtz−1
e + 1

)
σ

=

(
1− 2

Rt + 1

)
σ, (88)

which implies Et[V (Rtz
Q
e )] = V (Rt), that is, the expected midpoint price is a martingale

for liquidity traders.

Note that the identity (88) holds for all Rt, including the informed trader’s likelihood

ratio ∞. Using (88) again, we have that

V (Rtze) =

(
1− 2

Rtze + 1

)
σ

= (1− q)Rtzeze + 1

Rtze + 1

(
1− 2

Rtzeze + 1

)
σ + q

Rtzez
−1
e + 1

Rtze + 1

(
1− 2

Rtzez−1
e + 1

)
σ

< (1− q)ze
(

1− 2

Rtzeze + 1

)
σ + qz−1

e

(
1− 2

Rtzez−1
e + 1

)
σ

= Eit[V (Rtz
Q
e ze)].

That is, the exchange ask price is a submartingale for informed buyers.

Finally, direct calculation gives

Et[V (Rtz
Q
e ze)] = V (Rtze)−

2R2
t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ,

Et[V (Rtz
Q
e z
−1
e )] = V (Rtz

−1
e ) +

2R2
t (1− z−1

e )3

(Rt + 1)2(Rtz−1
e + 1)(Rtz−2

e + 1)
σ.

That is, for liquidity traders, the exchange ask price is a supermartingale and the

exchange bid price is a submartingale.

C.7 Proof of Proposition 6

I prove Proposition 6 by direct verification. The quoting strategy of the market maker

simply follows from risk neutrality and zero profit.

Under the proposed equilibrium strategy, the total arrival intensity of exchange

orders is λt = λI +
∑J

i=M κiλL. The Hamilton-Jacobi-Bellman (HJB) equation of an
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informed buyer is

W (Rt) = max

[
σ − V (Rtze),

λtEit[W (Rtz
Q
e )] + λC(σ − V (Rt))

λt + λC + λF

]
,

where the profit of immediate trading on exchange is σ − V (Rtze) and the expected

profit of trading in the dark pool is the weighted sum of:

• Eit[W (Rtz
Q
e )], the expected profit if the next event is the arrival of an exchange

order.

• σ − V (Rt), the profit if the next event is a dark pool cross.

• 0, the profit if the next event is the dividend payment.

To verify that W (Rt) = σ − V (Rtze), it is sufficient to verify that, for all t and all

realizations of random variable Rt,

σ − V (Rtze) >
λtEit[σ − V (Rtz

Q
e ze)] + λC(σ − V (Rt))

λt + λC + λF
. (89)

By Lemma 1, the expected profit for informed buyers to trade on the exchange is a

supermartingale, that is, σ−V (Rtze) > Eit[σ−V (Rtz
Q
e ze)]. Thus, a sufficient condition

for (89) is

λC + λF > sup
R∈(0,∞)

{
λC

σ − V (R)

σ − V (Rze)

}
= zeλC ,

which simplifies to (56).

Now we turn to a type-j liquidity buyer, whose HJB equation is

X(Rt) = max

[
−(V (Rtze)− V (Rt)),

λtEt[X(Rtz
Q
e )]− cjt

λt + λC + λF

]
.

Her cost of liquidation C(Rt) satisfies the HJB equation

C(Rt) = −X(Rt) = min

[
V (Rtze)− V (Rt),

λtEt[C(Rtz
Q
e )] + cjt

λt + λC + λF

]
.

There are two cases, depending on j.

If 1 ≤ j < M , to verify that C(Rt) < V (Rtze)− V (Rt), it suffices to verify

V (Rtze)− V (Rt) >
λtEt[V (Rtz

Q
e ze)− V (Rtz

Q
e )] + cjt

λt + λC + λF
, (90)

where C(Rtz
Q
e ) is replaced by the higher cost of V (Rtz

Q
e ze)− V (Rtz

Q
e ), as implied by
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the conjectured equilibrium. Because the ask spread is a supermartingale for liquidity

buyers (Lemma 1), a sufficient condition for (90) is

λC + λF > sup
R∈(0,∞)

{
cjt

V (Rze)− V (R)

}
= sup

R∈(0,∞)

{
γj · 2R/(R + 1)2 · σ
V (Rze)− V (R)

}
= γj

ze
ze − 1

,

which simplifies to (57).

If M ≤ j ≤ J , to verify that C(Rt) = V (Rtze)− V (Rt), it suffices to verify

V (Rtze)− V (Rt) <
λtEt[V (Rtz

Q
e ze)− V (Rtz

Q
e )] + cjt

λt + λC + λF
,

that is, by Lemma 1,

(λC + λF )[V (Rtze)− V (Rt)] < −λt
2R2

t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ + γj
2Rt

(Rt + 1)2
σ.

(91)

A sufficient condition for (91) is

γj > sup
R∈(0,∞)

{
(λC + λF )

(R + 1)(ze − 1)

Rze + 1

}
+ sup

R∈(0,∞)

{
λt

R(ze − 1)3

(Rze + 1)(Rz2
e + 1)

}
= (λC + λF )(ze − 1) + λt

(ze − 1)3

ze(
√
ze + 1)2

.

The argument for sellers is symmetric and yields the same parameter conditions.
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D List of Model Variables

This appendix summarizes key variables used in Section 3 and Section 4.

Variable Description

Variables Introduced in Section 3
v, σ Asset value v is either +σ or −σ, for σ > 0
µ̄, µI Total masses of for-profit traders and informed traders
F Cumulative distribution function (c.d.f.) of information-acquisition cost
Y Signed informed trading interests: Y = sign(v) · µI
Z+, Z−, φ Liquidity buy quantity Z+ and liquidity sell quantity Z− have p.d.f. φ
µz, σ

2
z Total mean and variance of liquidity trading interests Z+ + Z−

c, γ, G Delay cost of a liquidity trader is c = σγ per unit of asset, and γ has c.d.f. G
αe, αd, α0 Fractions of liquidity traders who trade on the exchange, trade in the dark

pool, and defer trading, respectively
β Fraction of informed traders who trade in the dark pool
S Exchange (effective) spread; bid is −S and ask is S
r̄ Dark pool crossing probability if no informed traders go to the dark pool
r−, r+ Dark pool crossing probabilities conditional on informed traders being on the

same and opposite side, respectively
σ̄ Maximum volatility for which informed traders avoid the dark pool
µ̂I(σ) Knife-edge mass of informed traders, defined by (62)
We, Wd Expected profits of an informed buyer on the exchange and in the dark pool
X0(c), Xe, Xd(c) Per-unit payoff of a liquidity buyer with a delay cost of c who defers trading,

trades on the exchange, and trades in the dark pool, respectively
R1 Period-1 log likelihood ratio of {v = +σ} versus {v = −σ}
P1 Period-1 closing price on the exchange
I(β, αe) Signal-to-noise ratio of period-1 exchange order flow
Vb, Vs Period-1 realized buy volume and sell volume on the exchange, respectively
Vd, Ve, V Expected volumes in the dark pool, on the exchange, and both, respectively

Variables Introduced in Section 4
x Strictness of trade-at rule; maximum (minimum) dark pool price is xS (−xS)
y Aggregate demand schedule in the dark pool if Z+ = 1
y+, y− Aggregate dark pool demand and supply schedules, respectively
p∗, H Dark pool transaction price p∗ has a c.d.f. of H
Xd(p; c) Dark pool payoff of a liquidity buyer with the limit price p and per-unit delay

cost c
r̄x Dark pool crossing probability of a liquidity buyer with the limit price xS
σ̄(x) Maximum volatility for which informed traders avoid the dark pool
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