MODELING RISKS TO INFRASTRUCTURE IN URBAN AREAS

Dr. Patricia Grossi

Presentation for FRBNY Conference November 1, 2013

R<u>M</u>S

OVERVIEW

- 1. What are the challenges in modeling catastrophe risk?
- 2. How do the models evaluate critical infrastructure risk?
- 3. What do catastrophe models tell us about critical infrastructure risk?
 - Example of transportation network
- 4. What are best practices in utilizing catastrophe models?

Modeling Catastrophe Risk to Infrastructure

CHALLENGES IN MODELING CATASTROPHE RISK: HAZARD

- Hazard
 - Models provide a representation of complex physical phenomena
 - The historical record of events is **not complete** and must be supplemented
 - For high resolution perils (e.g., storm surge), models require **supercomputing resources**

CHALLENGES IN MODELING CATASTROPHE RISK: EXPOSURE & VULNERABILITY

- Exposure
 - Infrastructure (transportation, water, electric and gas power, etc.) is comprised of integrated and correlated subsystems that are geographically dispersed
 - Infrastructure represented by networks of nodes and links
- Vulnerability
 - Detailed network
 analysis (to estimate
 interruption of
 service) is best
 accomplished
 through simulation

EVALUATION OF INFRASTRUCTURE RISK

TYPES OF ANALYSIS

- **Probabilistic** analysis using model stochastic event set
- Scenario analysis using historical event or customized event footprint

RISK METRICS

- Effective Downtime (EDT)
- Average Annual Downtime
- Return Period Downtime
- Probable Maximum Loss = Downtime * Revenue

Effective Downtime (days)

IMPACT OF HURRICANE SANDY

HURRICANE SANDY BY THE NUMBERS

5000 million gallons of water flooded Hoboken, NJ. the equivalent of over 750 Olympic-sized pools

Over **85** million customers in 15 states lost power at the peak of the storm... the second most due to weather in history

Every inch of all **600** miles of New York City's subway system must be inspected for damage... the distance from New York City to Detroit

Diameter of tropical storm-force winds at landfall: 945_{miles...} making Sandy the size of Mongolia

20,000 Flights Cancelled

HURRICANE SANDY'S IMPACT ON NEW YORK MTA

Structural losses: \$4.75b (\$1.06b covered by private insurance; \$2.73b covered by FEMA)

Operating loss: \$268m (Loss of "fare and toll" revenue along with the necessary expenses to prepare for and reestablish services after the storm)

NETWORK ANALYSIS OF NEW YORK MTA

- Case 1: All stations are independent.
 - Damage to any station doesn't propagate to the other stations.

- Case 2: Multiple segments in each line.
 - Damage to any station stops operation of its segment.

- Case 3: Stations are connected by serial connection within each line.
 - Damage to any station stops operation of entire line.

FOR ILLUSTRATIVE PURPOSES ONLY

BEST PRACTICES IN MODELING CATASTROPHE RISK

- Models are comprised of formulas, assumptions, parameterizations, and corollaries to similar environments
 - Know the modeling assumptions
 - Compare and validate against real world events
- Models allow for the calculation of future expected loss and the quantification of uncertainty around results
 - Explore uncertainty through stress testing

RMS SURGE EXTENT VERSUS FEMA FLOOD ZONES

100m VRG resolution of flooding in RMS model as good as best data developed by FEMA using detailed engineering studies.

