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Abstract

We study optimal monetary policy in a monetary union with heterogeneous net foreign

asset positions and uninsurable country-specific shocks. Member countries trade nominal,

non-contingent claims, which allows for redistributive effects from inflation. Under discretion,

an inflationary bias arises from the central bank’s attempt to redistribute wealth towards

debtor countries, which under incomplete markets have a higher marginal utility of net wealth.

Under commitment, this redistributive motive to inflate is counteracted over time by the

incentive to prevent expectations of future inflation from being priced into new bond issuances;

under certain conditions, steady-state inflation is zero, as both effects cancel out. We calibrate

our model to the euro area and find that the optimal commiment features first-order initial

inflation followed by a gradual decline towards its (near zero) long-run value. Welfare losses

from discretionary policy are first-order in magnitude, affecting both debtor and creditor

countries.
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1 Introduction

A long-standing issue in monetary economics concerns the redistributive effects of inflation in the

presence of nominal assets, whereby inflation benefits debtors and hurts creditors. This question

has become quite relevant in the European Monetary Union (EMU), in light of significant hetero-

geneity in net nominal claims at the country level.1 As shown in Figure 1, the distribution of net

foreign asset positions across EMU member states was already quite dispersed in the early stages

of the crisis, with some countries being heavily indebted in relation to their GDP and some other

having relatively large net creditor positions.2 The Great Recession and the subsequent European

debt crisis have only increased such dispersion. This development has intensified the debate as to

what should be the appropriate conduct of monetary policy in the context of a monetary union

which such unequal net foreign asset positions.3

This paper addresses the above question by analyzing the optimal monetary policy of a benev-

olent central bank, both under commitment and discretion, in a continuous-time model of a mon-

etary union where member countries have heterogeneous net asset positions and face uninsur-

able country-specific shocks. In the model, the individual union members trade nominal, non-

contingent, long-term, domestic-currency-denominated financial claims with each other and with

risk-neutral foreign investors, subject to an exogenous borrowing limit. As a result, inflation re-

distributes wealth from creditor member countries (and foreign investors) to debtor ones, all else

equal. At the same time, expected future inflation raises the nominal costs of new debt issuances

through higher inflation premia. Also, inflation entails direct welfare costs that can be rationalized

on the basis of costly price adjustment. The monetary union as a whole is assumed to be a net

debtor vis-à-vis foreign investors, such that domestic-currency-denominated nominal bonds are in

positive net supply.

On the analytical front, we show that discretionary optimal policy features an ’inflationary bias’,

whereby the central bank tries to use inflation so as to redistribute wealth and hence consumption.

In particular, we show that optimal discretionary inflation increases with the average cross-country

net liability position weighted by each country’s marginal utility of net wealth. The redistributive

motive therefore has both an extra-monetary union and a within-monetary union dimension. On

the one hand, inflation allows to redistribute from foreign investors to indebted union members.

On the other hand, and somewhat more subtly, under market incompleteness and standard concave

1See e.g. Adam and Zhu (2016) for an in-depth analysis of the redistributional consequences of unexpected price
level changes in the EMU.

2The left panel of Figure 1 displays a smoothed approximation to the actual distribution, constructed by means
of a normal kernel. The latter is given by 1

N

∑N
n=1 φ ((y − xn) /σ), where φ is standard normal pdf and {xn}Nn=1

are the actual data points, i.e. the ratio of net financial asset position over GDP for the EMU country members.
The smoothing parameter σ is set to 20 percent. Data on GDP and total financial assets/liabilities are from the
ECB Statistical Data Warehouse.

3See e.g. The Economist (2014) or Eijffi nger (2016).
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Figure 1: Asset distribution and dynamics in the Eurozone. Blue stars and green circles mark
the exact financial position in 2009Q1 and 2015Q3 respectively. Source: ECB Statistical Data
Warehouse.

preferences for consumption, debtor countries have a higher marginal utility of net wealth than

creditor ones. As a result, they receive a higher effective weight in the optimal inflation decision,

giving the central bank an incentive to redistribute wealth from creditor to debtor union members.

Under commitment, the same redistributive motive to inflate exists, but it is counteracted by

an opposing force: the central bank internalizes how investors’ expectations of future inflation

affect their pricing of long-term nominal bonds from the time the optimal commitment plan is

formulated (’time zero’) onwards. At time zero, inflation is exactly the same as under discretion,

as no prior commitments about inflation exist. However, the prices of bonds issued from time zero

onwards do incorporate the central bank’s promises about the future inflation path. This gives

the central bank an incentive to commit to reduce inflation over time. In fact, we show that under

certain conditions on preferences and parameter values, the steady state inflation rate under the

optimal commitment is zero;4 that is, in the long run the redistributive motive to inflate exactly

cancels out with the incentive to reduce inflation expectations and nominal yields for a monetary

union that is a net debtor.

We then solve numerically for the full transition path under commitment and discretion. We

calibrate our model to match a number of features of the EMU, such as observed output fluc-

tuations in its member states, as well as its consolidated net asset position vis-à-vis the rest of

4In particular, assuming separable preferences, then in the limiting case in which the central bank’s discount
rate converges to that of foreign investors optimal steady-state inflation under commiment converges to zero.
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the World.5 The optimal commitment policy depends on the time-zero net wealth distribution

across the monetary union members, which is an infinite-dimensional object, whereas the opti-

mal discretionary policy depends on such distribution at each point in time. To discipline our

choice of initial net wealth distribution in our simulations, we construct it using information from

the actual distribution of net foreign asset positions in the EMU. We find that optimal time-zero

inflation, which as mentioned before is the same both under commitment and discretion, is first-

order in magnitude. We show moreover that such initial inflation reflects mostly an incentive

to redistribute from foreign investors to the monetary union as a whole, with the within-union

redistributive motive contributing comparatively little. Under discretion, inflation remains high

due to the inflationary bias discussed before, converging asymptotically to a level of about 1.5%.

Under commitment, by contrast, inflation falls gradually towards its long-run level (essentially

zero, under our calibration), reflecting the central bank’s concern with preventing expectations

of future inflation from being priced into new bond issuances. In summary, under commitment

the central bank front-loads inflation so as to transitorily redistribute existing wealth among the

monetary union’s members and (especially) from foreign investors to the union’s debtor members,

but commits to gradually undo such initial inflation.

In welfare terms, the discretionary policy implies sizable (first-order) losses relative to the

optimal commitment. Such losses are suffered by creditor member countries, but also by debtor

ones. The reason is that, under discretion, expectations of permanent future positive inflation are

fully priced into current nominal yields. This impairs the very redistributive effects of inflation

that the central bank is trying to bring about, and leaves only the direct welfare costs of permanent

inflation, which are born by creditor and debtor countries alike.

Overall, our findings shed some light on current policy and academic debates regarding the

appropriate conduct of monetary policy in a monetary union with a cross-country distribution of

net financial assets comparable to that of the Eurozone. In particular, our results suggest that

an optimal plan that includes a commitment to price stability in the medium/long-run may also

justify a relatively large (first-order) positive initial inflation rate, especially if the monetary union’s

consolidated position relative to the rest of the World is suffi ciently negative.

Related literature. Our first main contribution is methodological. To the best of our knowl-
edge, ours is the first paper to solve for a fully dynamic optimal policy problem, both under

commitment and discretion, in a general equilibrium model with uninsurable idiosyncratic risk in

which the cross-sectional net wealth distribution (an infinite-dimensional, endogenously evolving

object) is a state in the planner’s optimization problem. We exploit the fact that, in continuous

time, the dynamics of the cross-sectional distribution are characterized by a partial differential

5In particular, the EMU’s consolidated net asset position is used to inform the gap between the central bank’s
and foreign investors’discount rate, which as explained before is a key determinant of long-run inflation under
commiment.
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equation known as the Kolmogorov forward (KF) or Fokker-Planck equation, and therefore the

problem can be solved by using calculus techniques in infinite-dimensional Hilbert spaces.6

Different papers have analyzed Ramsey problems with a continuum of heterogeneous agents.

Dyrda and Pedroni (2014) study the optimal dynamic Ramsey taxation in a discrete-time Aiyagari

economy. They assume that the paths for the optimal taxes follow splines with nodes set at a few

exogenously selected periods, and perform a numerical search of the optimal node values. Acikgoz

(2014), instead, follows the work of Davila et al. (2012) in employing calculus of variations to

characterize the optimal Ramsey taxation in a similar setting. However, after having shown that

the optimal long-run solution is independent of the initial conditions, he analyzes quantitatively

the steady state but does not solve the full dynamic optimal path. Other papers, such as Got-

tardi, Kajii, and Nakajima (2011) or Itskhoki and Moll (2015), are able to find the optimal Ramsey

policies in incomplete-market models under particular assumptions that allow for closed-form solu-

tions. In contrast to these papers, here we introduce a methodology to compute the full dynamics

under commitment in a general setting.7 Regarding discretion, we are not aware of any previous

paper that has quantitatively analyzed the Markov Perfect Equilibrium (MPE) with uninsurable

idiosyncratic risk.8

Aside from the methodological contribution, our paper relates to several strands of the litera-

ture. First, our paper is related to a long-standing literature that analyzes the redistributive effects

of monetary policy. This topic has received a considerable revival in recent years. In particular,

a recent literature addresses this issue in the context of general equilibrium models with incom-

plete markets, (non-trivial) idiosyncratic uncertainty/heterogeneity, and distributional dynamics,

with contributions from Meh, Ríos-Rull and Terajima (2010), Gornemann, Kuester and Nakajima

(2012), McKay, Nakamura and Steinsson (2015), Challe, Matheron, Ragot and Rubio-Ramírez

(2015), Luetticke (2015), Auclert (2015), and Kaplan, Moll and Violante (2016) among others.

Contrary to the above papers, which focus on cross-household heterogeneity in closed-economy,

discrete-time setups, we focus on cross-country heterogeneity in a continuous-time model of an open

monetary union. More importantly, we analyze the optimal monetary policy, both under commit-

6These techniques were first introduced in Lucas and Moll (2014) and Nuño and Moll (2015) in order to find the
first-best or the constrained-effi cient allocation in heterogeneous-agent models.

7In addition, the numerical solution of the model is greatly improved in continuous-time, as discussed in Achdou,
Lasry, Lions and Moll (2015) or Nuño and Thomas (2015). This is due to two properties of continuous-time models.
First, the HJB equation is a deterministic partial differential equation which can be solved using effi cient finite
difference methods. Second, the dynamics of the distribution can be computed relatively quickly as they amount
to calculating a matrix adjoint: the KF operator is the adjoint of the infinitesimal generator of the underlying
stochastic process. This computational speed is essential as the computation of the optimal policies requires several
iterations along the complete time-path of the distribution. In a home PC, the Ramsey problem presented here can
be solved in less than 5 minutes.

8Amador, Aguiar, Farhi and Gopinath (2015), for example, consider a monetary union with a continuum of
atomistic countries and define the MPE, but then they restrict their attention to a particular case with only two
(groups of) countries, one with a high debt level and the other with a low debt level.
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ment and discretion, in a model where the asset distribution is an (infinite-dimensional) state

variable in the planner’s problem. In this regard, the techniques developed here lend themselves

naturally to the analysis of optimal policy (monetary, fiscal, etc.) in frameworks with non-trivial

heterogeneity along alternative dimensions (e.g. households).

Starting from Clarida (1990), some authors have used multi-country models with idiosyncratic

shocks and incomplete markets to study international capital flows. Examples are Castro (2005),

Bai and Zhang (2010), Chang et al. (2013) and Fornaro (2014). We contribute to this literature by

studying the optimal conduct of monetary policy in a monetary union with heterogenous nominal

net debt positions and borrowing limits.

Our paper also relates to a long-standing and vast literature analyzing optimal monetary policy

under commitment and discretion in a monetary union. Notable examples are Beetsma and Uhlig

(1999), Dixit and Lambertini (2001, 2003), Chari and Kehoe (2007, 2008), Cooper, Kempf and

Peled (2010, 2014), and Aguiar, Amador, Farhi and Gopinath (2015), among others. Most of

this literature analyzes issues related to fiscal externalities on monetary policy, or to coordination

between fiscal and monetary authorities, in a monetary union. We contribute to this literature by

analyzing how, in a model of a monetary union with idiosyncratic shocks and incomplete markets,

the endogenously-evolving distribution of net nominal assets determines the optimal inflationary

policy under commitment and discretion.

Finally, our paper is related to the literature on mean-field games in Mathematics. The name,

introduced by Lasry and Lions (2006a,b), is borrowed from the mean-field approximation in statis-

tical physics, in which the effect on any given individual of all the other individuals is approximated

by a single averaged effect. In particular, our paper is related to Bensoussan, Chau and Yam (2015),

who analyze a model of a major player and a distribution of atomistic agents that shares some

similarities with the Ramsey problem discussed here.9

2 A model of a heterogeneous monetary union

Let (Σ,F , {Ft} ,P) be a filtered probability space. Time is continuous: t ∈ [0,∞). There is

a monetary union composed of a measure-one continuum of countries that are heterogeneous in

their net financial wealth. There is a single, freely traded consumption good, the World price of

which is normalized to 1. The price in the monetary union’s currency (equivalently, the nominal

exchange rate) at time t is denoted by Pt and evolves according to

dPt = πtPtdt, (1)

9Other papers analyzing mean-field games with a large non-atomistic player are Huang (2010), Nguyen and
Huang (2012a,b) and Nourian and Caines (2013). A survey of mean-field games can be found in Bensoussan, Frehse
and Yam (2013).
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where πt is the area-wide inflation rate (equivalently, the rate of nominal exchange rate deprecia-

tion).

2.1 Individual member countries

2.1.1 Output and net assets

Country k ∈ [0, 1] in the monetary union is endowed with ykt units of the good at time t, where

ykt follows a two-state Poisson process: ykt ∈ {y1, y2} , with y1 < y2. The process jumps from state

1 (which we may refer to as ’recession’) to state 2 (’boom’) with intensity λ1 and vice versa with

intensity λ2.

In each country a representative household trades a nominal, non-contingent, long-term, domestic-

currency-denominated bond with households in other union member states and with foreign in-

vestors. Let Akt denote the net holdings of such bond in country k at time t; assuming that each

bond has a nominal value of one unit of domestic currency, Akt also represents the total nominal

(face) value of net assets. In countries with a negative net position, (−)Akt represents the total

nominal (face) value of outstanding net liabilities (‘debt’for short). We assume that outstanding

bonds are amortized at rate δ > 0 per unit of time.10 The nominal value of the country’s net asset

position thus evolves as follows,

dAkt = (Anewkt − δAkt) dt,

where Anewkt is the flow of new assets purchased at time t. The nominal market price of bonds at

time t is Qt. Country k incurs a nominal current account primary surplus Pt (ykt − ckt), where ckt
is consumption. The aggregate budget constraint of country k is then

QtA
new
kt = Pt (ykt − ckt) + δAkt.

Combining the last two equations, we obtain the following dynamics for net nominal wealth,

dAkt =

(
δ

Qt

− δ
)
Aktdt+

Pt (ykt − ckt)
Qt

dt. (2)

We define real net wealth as akt ≡ Akt/Pt. Its dynamics are obtained by applying Itô’s lemma to

equations (1) and (2),

dakt =

[(
δ

Qt

− δ − πt
)
akt +

ykt − ckt
Qt

]
dt. (3)

10See Woodford (2001) for an early use of nominal perpetual bonds with geometrically decaying coupons (which
are isomorphic to the nominal perpetual bonds with a constant amortization rate used here) in a discrete-time
macroeconomic framework. See also Hatchondo and Martinez (2009), and Chatterjee and Eyigungor (2012), for
recent uses of such a modelling device in discrete-time open economy setups.
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We assume that each country faces a limit to the maximum amount of net debt that it may issue

akt ≥ φ. (4)

where φ ≤ 0.

For future reference, we define the nominal bond yield rt implicit in a nominal bond price Qt as

the discount rate for which the discounted future promised cash flows equal the bond price. The

discounted future promised payments are
∫∞

0
e−(rt+δ)sδds = δ/ (rt + δ). Therefore, the nominal

bond yield is

rt =
δ

Qt

− δ. (5)

2.1.2 Households

The representative household has preferences over paths for consumption ckt and union-wide in-

flation πt discounted at rate ρ > 0,

Uk0 ≡ E0

[∫ ∞
0

e−ρtu(ckt, πt)dt

]
, (6)

with uc > 0, uπ > 0, ucc < 0 and uππ < 0. From now onwards we drop country subscripts k for

ease of exposition. The household chooses consumption at each point in time in order to maximize

its welfare. The value function of the household at time t can be expressed as

v(t, a, y) = max
{cs}∞s=t

Et
[∫ ∞

t

e−ρ(s−t)u(cs, πs)ds

]
, (7)

subject to the law of motion of net wealth (3) and the borrowing limit (4). We use the short-hand

notation vi(t, a) ≡ v(t, a, yi) for the value function in a recession (i = 1) and in a boom (i = 2).

The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the problem above is

ρvi(t, a) =
∂vi
∂t

+ max
c

{
u(c, π (t)) + si (t, a, c)

∂vi
∂a

}
+ λi [vj(t, a)− vi(t, a)] , (8)

for i, j = 1, 2, and j 6= i, where si (t, a, c) is the drift function, given by

si (t, a, c) =

(
δ

Q (t)
− δ − π (t)

)
a+

yi − c
Q (t)

, i = 1, 2. (9)

The first order condition for consumption is

uc(ci (t, a) , π (t)) =
1

Q (t)

∂vi(t, a)

∂a
. (10)
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Therefore, household consumption increases with nominal bond prices and falls with the slope of

the value function. Intuitively, a higher bond price (equivalently, a lower yield) gives the household

an incentive to save less and consume more. A steeper value function, on the contrary, makes it

more attractive to save so as to increase net asset holdings.

2.2 Foreign investors

Households trade bonds with competitive risk-neutral foreign investors that can invest elsewhere

at the risk-free real rate r̄. In addition to the latter and the amortization rate δ, foreign investors

discount future nominal payoffs with the accumulated union-wide inflation (i.e. exchange rate

depreciation) between the time of the bond purchase and the time such payoffs accrue. Therefore,

the nominal price of the bond at time t is given by

Q(t) =

∫ ∞
t

δe−(r̄+δ)(s−t)−
∫ s
t
πududs. (11)

Taking the derivative with respect to time, we obtain

Q(t) (r̄ + δ + π(t)) = δ +Q′(t). (12)

The partial differential equation (12) provides the risk-neutral pricing of the nominal sovereign

bond. The boundary condition is

lim
t→∞

Q(t) =
δ

r̄ + δ + π (∞)
, (13)

where π (∞) is the inflation level in the steady state, which we assume exits.

2.3 Central Bank

There is a common central bank that chooses monetary policy for the union as a whole. We assume

that there are no monetary frictions so that the only role of (outside) money is that of a unit of

account (cashless limit). The monetary authority chooses the inflation rate πt.11 In Section 4, we

will study in detail the optimal inflationary policy of the central bank.

11This could be done, for example, by setting the nominal interest rate on a lending (or deposit) short-term
nominal facility with foreign investors.
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2.4 Competitive equilibrium

The state of the economy at time t is the joint distribution of net wealth and output, f(t, a, yi) ≡
fi(t, a), i = 1, 2. The dynamics of this distribution are given by the Kolmogorov Forward (KF)

equation
∂fi(t, a)

∂t
= − ∂

∂a
[si (t, a) fi(t, a)]− λifi(t, a) + λjfj(t, a), (14)

∀a ∈ [φ,∞), i, j = 1, 2, j 6= i. The distribution should satisfy the normalization

2∑
i=1

∫ ∞
φ

fi (t, a) da = 1. (15)

We define a competitive equilibrium in this economy.

Definition 1 (Competitive equilibrium) Given a sequence of inflation rates π (t) and an ini-

tial wealth-output distribution f(0, a, y), a competitive equilibrium is composed of a household value

function v(t, a, y), a consumption policy c(t, a, y), a bond price function Q (t) and a distribution

f(t, a, y) such that:

1. Given π, the price of bonds set by investors in (12) is Q.

2. Given Q and π, v is the solution of the households’problem (8) and c is the optimal con-

sumption policy.

3. Given Q, π, and c, f is the solution of the KF equation (14).

Notice that, given π, the problem of foreign investors can be solved independently of that of

the household in each individual member country, which in turn only depends on π and Q but not

on the aggregate distribution.

We can compute some aggregate (union-wide) variables of interest. The aggregate real net

financial wealth in the monetary union is

āt ≡
2∑
i=1

∫ ∞
φ

afi (t, a) da. (16)

Aggregate consumption is

c̄t ≡
2∑
i=1

∫ ∞
φ

ci (a, t) fi (t, a) da,

where ci (a, t) ≡ c(t, a, yi), i = 1, 2, and aggregate output is

ȳt ≡
2∑
i=1

∫ ∞
φ

yifi (t, a) da.
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These quantities are linked by the union-wide current account identity,

dāt
dt

=
2∑
i=1

∫ ∞
φ

a
∂fi(t, a)

∂t
da =

2∑
i=1

∫ ∞
φ

a

[
− ∂

∂a
(sifi) da− λifi(t, a) + λjfj(t, a)

]
da

=
2∑
i=1

∫ ∞
φ

−a ∂
∂a

(sifi) da = −
2∑
i=1

asifi|∞φ +

2∑
i=1

∫ ∞
φ

sifida

=

(
δ

Qt

− δ − πt
)
āt +

ȳt − c̄t
Qt

, (17)

where we have used (14) in the second equality, and we have applied the boundary conditions

s1 (t, φ) f1 (t, φ) = s2 (t, φ) f2 (t, φ) = 0 in the last equality.12

Finally, we make the following assumption.

Assumption 1 The value of parameters is such that in equilibrium the monetary union is a net

debtor against the rest of the World: āt ≤ 0 ∀t.

This condition is imposed for tractability. We have restricted households in the union to save

only in bonds issued by other union member countries, and this would not be possible if the union

as a whole was a net creditor vis-à-vis the rest of the World. In addition to this, we have assumed

that the bonds issued by the union member countries are priced by foreign investors, which requires

that there should be a positive net supply of bonds to the rest of the World to be priced. In any

case, this assumption is consistent with the recent experience of the Euro area, which we take as

a reference, as we discuss later in the calibration section.

3 Monetary transmission: the redistributive effect of in-

flation

Before analyzing the optimal monetary policy problem of the central bank, it is useful to gain

some insight on the monetary transmission mechanism in our framework. In particular, we want

to illustrate the redistributive effects of inflation, which will play an important role in our analysis

of optimal monetary policy.

To this end, we consider that the monetary union rests at the steady-state implied by a zero

inflation policy,13 and that the central bank generates a surprise, transitory spike in inflation. Since

12This condition is related to the fact that the KF operator is the adjoint of the infinitesimal generator of the
stochastic process (3). See Appendix A for more information.
13As we show in Section 5, optimal long-run inflation under commitment is essentially zero for our baseline

calibration.
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we are not able to solve the model analytically, we use numerical methods to solve continuous-

time models with heterogeneous agents, as in Achdou et al. (2015) or Nuño and Moll (20015).

Appendices B and C explains how to solve for the steady state and for the dynamics, respectively.

3.1 Calibration

Let the time unit be one year. We calibrate our monetary union model to the European Monetary

Union (EMU). We set the world real interest rate r̄ to 3 percent. We assume the following

specification for preferences,

u (c, π) = log (c)− ψ

2
π2. (18)

As discussed in Appendix D, our quadratic specification for the inflation utility cost, ψ
2
π2, can be

micro-founded by modelling firms explicitly and allowing them to set prices subject to standard

quadratic price adjustment costs à la Rotemberg (1982). We set the scale parameter ψ such that

the slope of the inflation equation in a Rotemberg pricing setup replicates that in a Calvo pricing

setup for reasonable calibrations of price adjustment frequencies and demand curve elasticities.14

We set the discount rate of households in the monetary union ρ such that the long-run union-

wide consolidated net foreign asset position vis-à-vis the rest of the world (ā) with zero inflation

replicates the average one in the EMU in the period 2009:Q1-2015:Q3 (-17.3 percent of GDP); this

yields ρ = 3.01 percent. We also set the borrowing limit φ to -2, or -200 percent of average GDP

in the model (which as explained below is normalized to 1), such that the equilibrium range of net

debt positions accommodates the largest country-specific ratios observed in the EMU (see Figure

1).15

Given r̄, we choose the bond amortization rate δ such that the Macaulay bond duration

1/ (δ + r̄) equals 5 years, which is broadly consistent with international evidence (see e.g. Cruces

et al. 2002).

The output process parameters are calibrated as follows. The transition rates between boom

and recession (λ1, λ2) are chosen such that (i) the average duration of recessions equals 1/λ1 = 2

14The slope of the continuous-time New Keynesian Phillips curve in the Calvo model can be shown to be given
by χ (χ+ ρ), where χ is the price adjustment rate (the proof is available upon request). As shown in Appendix D,
in the Rotemberg model the slope is given by ε−1

ψ , where ε is the elasticity of firms’demand curves and ψ is the
scale parameter in the quadratic price adjustment cost function in that model. It follows that, for the slope to be
the same in both models, we need

ψ =
ε− 1

χ (χ+ ρ)
.

Setting ε to 11 (such that the gross markup ε/ (ε− 1) equals 1.10) and χ to 4/3 (such that price last on average
for 3 quarters), and given our calibration for ρ, we obtain ψ = 5.5.
15Quarterly data on GDP and total financial assets/liabilities for the period 2008Q1-2015Q3 are from the ECB

Statistical Data Warehouse. The wealth dimension is discretized by using 1000 equally-spaced grid points from
a = −2 to a = 10.
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years and (ii) the average fraction of time spent in recession equals λ2/ (λ1 + λ2) = 0.40, which

corresponds closely to the historical experience of current EMU member states.16 We assume

from now on that the output distribution is at its ergodic limit, such that the fraction of member

countries in boom and recession are constant at λ1/ (λ1 + λ2) and λ2/ (λ1 + λ2), respectively. We

normalize average output λ2

λ1+λ2
y1 + λ1

λ1+λ2
y2 to 1, such that y2 (the output level in booms) is a

function of y1 (output in recessions); we then set y1 to replicate the average standard deviation

of output fluctuations across current EMU member states.17 Table 1 summarizes our baseline

calibration.

Table 1. Baseline calibration

Parameter Value Description Source/Target

r̄ 0.03 world real interest rate standard

γ 1 relative risk aversion coef. standard

ρ 0.0301 subjective discount rate average NFA position

φ -2 borrowing limit max. debt = 200% of average GDP

δ 0.17 bond amortization rate Macaulay duration = 5 years

λ1 0.50 transition rate recession-to-boom average recession duration

λ2 0.33 transition rate boom-to-recession average time spent in recession

y1 0.930 output level in recession standard deviation of cyclical output

y2 1.047 output level in boom E (y) = 1

ψ 5.5 scale inflation disutility slope NKPC in Calvo model

Figure 2 displays a number of objects in the zero-inflation steady state of the model, including

the value functions vi (a,∞) ≡ vi (a), the consumption policies ci (a) , the drifts si (a) and the the

long-run net asset distribution fi (a), for i = 1, 2. The gross debt is 64.3 percent and the current

account surplus is 0.45 percent (of average GDP). Notice also that the value function is strictly

concave in net wealth, as is typical of models with incomplete markets. While this is diffi cult

to appreciate in the upper left plot of Figure 2, notice from equation (10) that ∂vi(∞, a)/∂a =

Q(∞)/ci (∞, a), and that consumption is strictly increasing in a, as clearly seen in the upper right

plot.

16Using the Federal Reserve Bank of St. Louis’OECD-based Recession Indicators database, we find an average
recession duration of 22.1 months (1.84 years) and an average fraction of time in recession of 0.42 in current EMU
member states; we start the sample in 1960 (the first year in the database) so as to have as large a number of
recessions as possible.
17We use annual real GDP data from Eurostat from 1995 to 2014. We first log and linearly detrend the series so

as to obtain the cyclical component. We then take the standard deviation of cyclical output for each country. The
average standard deviation across countries is 5.9%.
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Figure 2: Steady state with zero inflation.

3.2 An inflation shock

Starting from the zero-inflation steady state just derived, assume that the central bank implements

at time t = 0 a one-off unexpected increase in inflation of 10 percentage points that is reverted

within a year. The responses of a number of union-wide variables are displayed in Figure 3.18 The

surprise increase in inflation produces a redistribution of wealth from creditor to debtor countries

within the union, as shown by panels (e) and (f). This is due to a sharp decline in real yields,

rt − πt, which reflects both the inflation spike and the comparatively tiny increase in nominal

yields, as investors anticipate the short-lived nature of the inflation rise. The increase in nominal

yields (equivalently, the fall in nominal bond prices) leads households in both creditor and debtor

countries to reduce their consumption on impact, i.e. their primary deficit falls for given exogenous

output. After the first year, however, debtor economies increase their consumption above steady

state due to the reduction in their debt burden, whereas creditor ones keep theirs persistently

below steady state for the opposite reason.

Compared to the rest of the World, the surprise bout in inflation also redistributes wealth from

foreign investors to the monetary union as a whole, as shown by the reaction of the union’s net

asset position in panel (d). Union-wide consumption falls on impact due to the above-mentioned

increase in nominal yields, but rises above its long-run value shortly afterwards, reflecting the

18We have simulated 200 years of data at monthly frequency.
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Figure 3: Transitional dynamics after an unexpected inflation increase.

relatively large consumption gains by creditor member countries.

4 Optimal monetary policy

We now turn to the design of the optimal monetary policy. We assume that the central bank is

utilitarian, i.e. it gives the same Pareto weight to each household (and hence to each country) in

the union. In order to illustrate the role of commitment vs. discretion in our framework, we will

consider both the case in which the central can credibly commit to a future inflation path (the

Ramsey problem), and the time-consistent case in which the central bank decides optimal current

inflation given the current state of the economy (the Markov Perfect equilibrium).
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4.1 Central bank’s preferences

The central bank is assumed to be benevolent and hence maximizes union-wide aggregate welfare,

UCB
0 =

∫ ∞
φ

∑2

i=1
vi (0, a) fi(0, a)da. (19)

It will turn out to be useful to express the above welfare criterion as follows.

Lemma 1 The welfare criterion (19) can alternatively be expressed as

UCB
0 ≡

∫ ∞
0

e−ρs
[∫ ∞

φ

∑2

i=1
u (ci (a, s) , π (s)) fi(s, a)da

]
ds. (20)

4.2 Discretion (Markov Perfect Equilibrium)

Consider first the case in which the central bank cannot commit to any future policy. The inflation

rate π then depends only on the current value of the aggregate state variable, the net wealth

distribution {fi (t, a)}i=1,2 ≡ f (t, a); that is, π (t) ≡ πMPE [f (t, a)] . This is a Markovian problem

in a space of distributions. The value functional of the central bank is given by

JMPE [f (t, ·)] = max
{πs}∞s=t

∫ ∞
t

e−ρ(s−t)

[
2∑
i=1

∫ ∞
φ

u (cis (a) , πs) fi(s, a)da

]
ds, (21)

subject to the law of motion of the distribution (14). Notice that the optimal value JMPE and

the optimal policy πMPE are not ordinary functions, but functionals, as they map the infinite-

dimensional state variable f (t, a) into R.
Let f0 (·) ≡ {fi (0, a)}i=1,2 denote the initial distribution. We can define the equilibrium in this

case.

Definition 2 (Markov Perfect Equilibrium) Given an initial distribution f0, a symmetric

Markov Perfect Equilibrium is composed of a sequence of inflation rates π (t) , a household value

function v(t, a, y), a consumption policy c(t, a, y), a bond price function Q (t) and a distribution

f(t, a, y) such that:

1. Given π, then v, c, Q and f are a competitive equilibrium.

2. Given c,Q and f , π is the solution to the central bank problem (21).

The fact that v, c, Q and f are part of a competitive equilibrium needs to be imposed in the

definition of Markov Perfect Equilibrium, as it is not implicit in the central bank’s problem (21).
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Using standard dynamic programming arguments, the problem (39) can be expressed recursively

as

JMPE [f (t, ·)] = max
{πs}τs=t

∫ τ

t

e−ρ(s−t)
[∫ ∞

φ

∑2

i=1
u (cis, πs) fi(s, a)da

]
ds+ e−ρ(τ−t)JMPE [f (τ , ·)] ,

(22)

for any τ > t and subject to the law of motion of the distribution (14).

The solution to the central bank’s problem is given in the following proposition.

Proposition 1 (Optimal inflation - MPE) In addition to equations (14), (12), (8) and (10),
if a solution to the MPE problem (21) exists, the inflation rate function π (t) must satisfy

2∑
i=1

∫ ∞
φ

[
a
∂vi
∂a
− uπ (ci (t, a) , π (t))

]
fi (t, a) da = 0. (23)

In addition, the value functional must satisfy

JMPE [f (t, ·)] =
2∑
i=1

∫ ∞
φ

vi (t, a) fi(t, a)da, (24)

The proof is in Appendix A. Our approach combines the dynamic programming representation

(22) with the Riesz Representation Theorem, which allows decomposing the central bank value

functional JMPE as an aggregation of individual values vi (t, a) across agents.

Equation (23) captures the basic static trade-off that the central bank faces when choosing

inflation under discretion. The central bank balances the marginal utility cost of higher inflation

across the monetary union (uπ) against the marginal welfare effects due to the impact of inflation

on each country’s net foreign asset position (a∂vi
∂a
). For debtor countries (a < 0), the latter effect

is positive as inflation erodes the real value of their debt burden, whereas the opposite is true for

creditor countries (a > 0). Under Assumption 1 (the monetary union as a whole is a net debtor),

and provided the value function is concave in net wealth, then the central bank will have a double

motive to use inflation for redistributive purposes. On the one hand, it will try to redistribute

wealth from foreign investors to debtor member countries. On the other hand, and somewhat more

subtly, if debtor countries have a higher marginal utility of net wealth than creditor ones, then the

central bank will be led to redistribute from the latter to the former, as such course of action is

understood to raise welfare in the union as a whole.
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4.3 Commitment

Assume now that the central bank can credibly commit at time zero to an inflation path {π (t)}∞t=0.

The optimal inflation path is now a function of the initial distribution f0 (a) and of time: π (t) ≡
πR [t, f0 (a)] . The value functional of the central bank is now given by

JR [f0 (·)] = max
{πs,Qs,v(s,·),c(s,·),f(s,·)}∞s=0

∫ ∞
0

e−ρs
[∫ ∞

φ

∑2

i=1
u (cis, πs) fi(s, a)da

]
ds, (25)

subject to the law of motion of the distribution (14), the bond pricing equation (12), and each

country’s HJB equation (8) and optimal consumption choice (10). The optimal value JR and the

optimal policy πR are again functionals, as in the discretionary case, only now they map the initial

distribution f0 (·) into R, as opposed to the distribution at each point in time. Notice that the
central bank maximizes welfare taking into account not only the state dynamics (14), but also the

HJB equation (8) and the bond pricing condition (12). That is, the central bank understands how

it can steer the expectations of households in each member country and of foreign investors by

committing to an inflation path. This is unlike in the discretionary case, where the central bank

takes the expectations of other agents as given.

Definition 3 (Ramsey problem) Given an initial distribution f0, a Ramsey problem is com-

posed of a sequence of inflation rates π (t) , a household value function v(t, a, y), a consumption

policy c(t, a, y), a bond price function Q (t) and a distribution f(t, a, y) such that they solve the

central bank problem (25).

If v, f, c and Q are a solution to the problem (25), given π, they constitute a competitive

equilibrium, as they satisfy equations (14), (12), (8) and (10). Therefore the Ramsey problem

could be redefined as that of finding the π such that v, f, c and Q are a competitive equilibrium

and the central bank’s welfare criterion is maximized.

The Ramsey problem is an optimal control problem in a suitable function space. The solution

is given by the following proposition.

Proposition 2 (Optimal inflation - Ramsey) In addition to equations (14), (12), (8) and
(10), if a solution to the Ramsey problem (25) exists, the inflation path π (t) must satisfy

µ (t)Q (t) =

2∑
i=1

∫ ∞
φ

[
a
∂vit
∂a
− uπ (ci (t, a) , π (t))

]
fi (t, a) da, (26)

and a costate µ (t) with law of motion

dµ (t)

dt
= (ρ− r̄ − π(t)− δ)µ (t) +

2∑
i=1

∫ ∞
φ

∂vit
∂a

δa+ yi − ci (t, a)

Q (t)2 fi (t, a) da (27)
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and initial condition µ (0) = 0.

The proof can also be found in Appendix A. Our approach is to solve the constrained opti-

mization problem (25) in an infinite-dimensional Hilbert space. To this end, we need to employ a

generalized version of the classical differential known as ‘Gateaux differential’.19

The equation determining optimal inflation under commitment (26), is identical to that in the

discretionary case (23), except for the presence on the left-hand side of the costate µ (t), which is

the Lagrange multiplier associated to the bond pricing equation (12). Intuitively, µ (t) captures

the value to the central bank of promises about time-t inflation made to foreign investors at time

0. Such value is zero only at the time of announcing the Ramsey plan (t = 0), because the central

bank is not bound by previous commitments, but it will generally be different from zero at any

time t > 0. By contrast, in the MPE case no promises are made at any point in time, hence the

absence of such costate. Therefore, the static trade-off between the welfare cost of inflation and

the welfare gains from inflating away net liabilities, explained above in the context of the MPE

solution, is now modified by the central bank’s need to respect past promises to investors about

current inflation. If µ (t) < 0, then the central bank’s incentive to create inflation at time t > 0

so as to redistribute wealth will be tempered by the fact that it internalizes how expectations of

higher inflation affect investors’bond pricing prior to time t.

Notice that the Ramsey problem is not time-consistent, due precisely to the presence of the

(forward-looking) bond pricing condition in that problem.20 If at some future time t > 0 the

central bank decided to re-optimize given the current state f (t, a, y) , the new path for optimal

inflation π̃ (t) ≡ πR [t, ft (·)] would not need to coincide with the original path π (t) ≡ πR [t, f0 (·)],
as the value of the costate at that point would be µ̃ (t) = 0 (corresponding to a new commitment

formulated at time t), whereas under the original commitment it is µ (t) 6= 0.

4.4 Some analytical results

In order to provide some additional analytical insights on optimal policy, we make the following

assumption on preferences.

Assumption 2 Consider the class of separable utility functions

u (c, π) = uc (c)− uπ (π) .

19The system composed of equations (8), (12), (14), (10), (26) and (27) is technically known as forward-backward,
as both households and investors proceed backwards in order to compute their optimal values, policies and bond
prices, whereas the distributional dynamics proceed forwards.
20As is well known, the MPE solution is time consistent, as it only depends on the current state.
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The utility function also satisfies ucc > 0, uccc < 0 for c > 0, uππ > 0 for π > 0, uππ < 0 for π < 0,

uπππ > 0 for all π, and uπ (0) = uππ (0) = 0.

Our first result regards the existence of a positive inflationary bias under discretionary optimal

monetary policy. This holds as long as the value function is concave in a.

Proposition 3 (Inflation bias under discretion) Let preferences satisfy Assumption 2. Pro-
vided that ∂2vi

∂a2 < 0, i = 1, 2, the optimal inflation under discretion is positive: π(t) > 0 for all

t ≥ 0.

The proof can be found in Appendix A. To gain intuition, we can use the above separable

preferences in order to express the optimal inflation decision under discretion (equation 23) as

uππ (π (t)) =
2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da. (28)

That is, under discretion inflation increases with the average net liabilities across the union weighted

by each country’s marginal utility of wealth, ∂vi/∂a. Notice first that, from Assumption 1, the

monetary union as a whole is a net debtor:
∑2

i=1

∫∞
φ

(−a) fi (t, a) da = (−) āt ≥ 0. This, combined

with the strict concavity of each country’s value function (such that debtor countries receive more

weight than creditor ones), makes the right-hand side of (28) strictly positive. Since uππ (π) > 0

only for π > 0, it follows that inflation must be positive. Notice that, even if the monetary union as

a whole is neither a creditor or a debtor (āt = 0), as long as there is within-union wealth dispersion

and the individual value function is concave, the common monetary authority will have a reason

to inflate.

The result in Proposition 3 is reminiscent of the classical inflationary bias of discretionary

monetary policy originally emphasized by Kydland and Prescott (1977) and Barro and Gordon

(1983). In those papers, the source of the inflation bias is a persistent attempt by the monetary

authority to raise output above its natural level. Here, by contrast, it arises from the welfare gains

that can be achieved for the monetary union as a whole by redistributing wealth towards debtor

member countries.

We now turn to the commitment case. Under the above separable preferences, from equation

(26) optimal inflation under commitment satisfies

uππ (π (t)) =

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da+ µ (t)Q (t) . (29)

In this case, the inflationary pressure coming from the redistributive incentives is counterbalanced

by the value of time-0 promises about time-t inflation, as captured by the costate µ (t). Thus, a
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negative value of such costate leads the central bank to choose a lower inflation rate than the one

it would set ceteris paribus under discretion.

Unfortunately, we cannot solve analytically for the optimal path of inflation. However, we

are able to establish the following important result regarding the long-run level of inflation under

commitment.

Proposition 4 (Optimal long-run inflation under commitment) Let preferences satisfy As-
sumption 2. In the limit as ρ→ r̄, the optimal steady-state inflation rate under commitment tends

to zero: lim
ρ→r̄

π (∞) = 0.

Provided the discount factor of households in the monetary union (and of its benevolent central

bank) is arbitrarily close to that of foreign investors, then optimal long-run inflation under com-

mitment will be arbitrarily close to zero. The intuition is the following. The inflation path under

commitment converges over time to a level that optimally balances the marginal welfare costs and

benefits of trend inflation. On the one hand, the welfare costs include the direct utility costs, but

also the increase in nominal bond yields that comes about with higher expected inflation; indeed,

from the definition of the yield (5) and the expression for the long-run nominal bond price (13),

the long-run nominal bond yield is given by the following long-run Fisher equation,

r (∞) =
δ

Q (∞)
− δ = r̄ + π (∞) , (30)

such that nominal yields increase one-for-one with (expected) inflation in the long run. On the

other hand, the welfare benefits of inflation are given by its redistributive effect (for given nominal

yields). As ρ→ r̄, these effects tend to exactly cancel out precisely at zero inflation.

Proposition 4 is reminiscent of a well-known result from the New Keynesian literature, namely

that optimal long-run inflation in the standard New Keynesian framework is exactly zero (see e.g.

Benigno and Woodford, 2005). In that framework, the optimality of zero long-run inflation arises

from the fact that, at that level, the welfare gains from trying to exploit the short-run output-

inflation trade-off (i.e. raising output towards its socially effi cient level) exactly cancel out with the

welfare losses from permanently worsening that trade-off (through higher inflation expectations).

Key to that result is the fact that, in that model, price-setters and the (benevolent) central bank

have the same (steady-state) discount factor. Here, the optimality of zero long-run inflation reflects

instead the fact that, at zero trend inflation, the welfare gains from trying to redistribute wealth

from creditors to debtors becomes arbitrarily close to the welfare losses from lower nominal bond

prices when the discount rate of the investors pricing such bonds is arbitrarily close to that of the

central bank.

Assumption 1 restricts us to have ρ > r̄, as otherwise households would we able to accumulate

enough wealth so that the monetary union would stop being a net debtor to the rest of the World.
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However, Proposition 4 provides a useful benchmark to understand the long-run properties of

optimal policy in our model when ρ is very close to r̄. This will indeed be the case in our

subsequent numerical analysis.

5 Quantitative analysis of optimal monetary policy

In the previous section we have characterized the optimal monetary policy in our model. In this

section we solve numerically for the dynamic equilibrium under optimal policy. Before analyzing

the dynamic path of this economy under the optimal policy, we first analyze the steady state

towards which such path converges asymptotically. The numerical algorithms that we use are

described in Appendices B (steady-state) and C (transitional dynamics).

5.1 Steady-state

We consider the same calibration of section 3. The steady-state values in the two monetary regimes

(commitment and discretion) are displayed in Table 2. Under commitment, the optimal long-run

inflation is close to zero (-0.02 percent), consistently with Proposition 4 and the fact ρ and r̄

are essentially the same in our calibration.21 The net total asset position is -17.9 percent, the

gross debt is 64.4 percent and the current account surplus is 0.46 percent. From now on, we use

x ≡ x (∞) to denote the steady state value of any variable x. As shown in the previous section,

the long-run nominal yield is r = r̄ + π, where the World real interest rate r̄ equals 3 percent in

our calibration.

Table 2. Steady-state values

units Ramsey MPE

Inflation, π % −0.02 1.47

Nominal yield, r % 2.98 4.47

Net assets, ā % union GDP −17.94 −5.72

Gross assets (creditors) % union GDP 46.43 54.37

Gross debt (debtors) % union GDP −64.37 −60.09

Current acc. deficit, c̄− ȳ % union GDP −0.46 −0.14

Under discretion, by contrast, long run inflation is 1.47 percent, which reflects the inflationary

bias discussed in the previous section. Net total assets amount to 5.7 percent, the gross debt is

21As explained in section 3, in our baseline calibration we have r̄ = 0.03 and ρ = 0.0301.
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60.1 percent and the current account surplus is 0.14 percent. The presence of an inflationary bias

makes nominal interest rates higher through the Fisher equation (30).

5.2 Optimal transitional dynamics

As explained in Section 4, the optimal policy paths depend on the initial (time-0) net wealth distri-

bution across union member countries, {fi (0, a)}i=1,2, which is an (infinite-dimensional) primitive

in our model.22 In order to discipline our choice of initial distribution, and given our choice of the

EMU as our target currency area for calibration, we consider an initial distribution that is close

to that observed nowadays across EMU member states. In particular, we construct a smoothed

approximation to the actual (19-point) distribution in the year 2009 using a normal kernel similar

to that in Figure 1 but modified to take account of the different country sizes.23 Our choice of 2009

as a reference year is mainly for the purpose of illustration, and is not intended to suggest that

the ECB should have reassessed its monetary policy commitment based on the asset distribution

in that year; using instead an initial distribution based on the actual one in 1999, i.e. the year the

EMU started operating, produces similar results.24

Consider first the case under commitment (Ramsey policy). The optimal paths are shown by

the green solid lines in Figure 4. Under our assumed functional form for preferences in (18), we

have from equation (29) that initial optimal inflation is given by

π (0) =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi (0, a)

∂a
fi (0, a) da,

where we have used the fact that µ (0) = 0, as there are no pre-commitments at time zero.

Therefore, the initial inflation rate, of about 2.5 percent, reflects exclusively the redistributive

motive discussed in section 4.

As time goes by, optimal inflation under commitment gradually declines towards its (near) zero

long-run level. The intuition is straightforward. At the time of formulating its commitment, the

central bank exploits the existence of a stock of nominal bonds issued in the past. This means

that the inflation created by the central bank has no effect on the prices at which those bonds

22As explained in section 3.1, in our numerical exercises we assume that the output distribution starts at its
ergodic limit: fy (yi) = λj 6=i/ (λ1 + λ2) , i = 1, 2. Also, in all our subsequent exercises we assume that the time-0
net asset distribution conditional on being in a boom is identical to that conditional on recession: fa|y (0, a | y2) =
fa|y (0, a | y1) ≡ f0 (a). Therefore, the initial joint density is simply f (0, a, yi) = f0 (a)λj 6=i/ (λ1 + λ2), i = 1, 2.
23The normal kernel shown in Figure 1 uses the actual net foreign asset-to-GDP ratio of each EMU country

member, implicitly giving the same weight to all 19 data points, both of small countries (e.g. Luxembourg) and
large ones (e.g. Germany). Since all monetary union members are equally sized in our model, the resulting normal
kernel overrepresents small countries and vice versa. Here, by contrast, we reweight each country’s net foreign asset
ratio with its weight in 2009 EMU GDP.
24These results are available upon request.
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Figure 4: Dynamics under optimal monetary policy and zero inflation.
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were issued. However, the price of nominal bonds issued from time 0 onwards does incorporate

the expected future inflation path. Under commitment, the central bank internalizes that higher

future inflation reduces nominal bond prices, i.e. it raises nominal bond yields, which hurts net

bond issuers. This effect becomes stronger and stronger over time, as the fraction of total nominal

bonds that were issued before the time-0 commitment becomes smaller and smaller. This gives the

central bank the right incentive to gradually reduce inflation over time. Formally, in the equation

that determines optimal inflation at t ≥ 0,

π (t) =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da+
1

ψ
µ (t)Q (t) , (31)

the (absolute) value of the costate µ (t), which captures the effect of time-t inflation on the price

of bonds issued during the period [0, t), becomes larger and larger over time. As shown in Figure

4, the increase in |µ (t)Q (t)| dominates that of the marginal-value-weighted average net liabilities,∑
i

∫∞
φ

(−a) ∂vi
∂a
fi (t, a) da, which from equation (31) produces the gradual fall in inflation.25 In

summary, under the optimal commitment the central bank front-loads inflation in order to redis-

tribute existing wealth, committing to gradually reduce inflation towards zero in order to prevent

inflation expectations from permanently raising nominal yields.

Under discretion (dashed blue lines in Figure 4), time-zero inflation is the same as under

commitment, given the absence of prior commitments in the latter case. In contrast with the com-

mitment case, however, from time zero onwards optimal discretionary inflation remains relatively

high, with no tendency to fall. The reason is the inflationary bias that stems from the central

bank’s attempt to redistribute wealth from creditors (including foreign investors) to debtors. This

inflationary bias is not counteracted by any concern about the effect of inflation expectations on

nominal bond yields; that is, the costate µ (t) in equation (31) is zero at all times under discretion.

This inflationary bias produces permanently lower nominal bond prices (higher nominal yields)

than under commitment.

In order to further illustrate the effects of the optimal inflation path under commitment, we

compare the latter policy with a strict policy rule of zero inflation at all times: π (t) = 0 for all

t ≥ 0. The implied equilibrium dynamics are shown by the red dashed lines in Figure 4. Under

such a policy, bond prices and yields are constant at the levels Q(t) = δ
r̄+δ

= 0.85 and r̄ = 3%,

respectively, and no redistribution takes place between creditors and debtors. Compared to this

zero-inflation equilibrium, the Ramsey allocation does achieve a certain degree of redistribution, as

debtors’liabilities increase more slowly. The reason is that the optimal commitment plan manages

25Panels (b) and (c) in Figure 4 display the two terms on the right-hand side of (31), i.e. the marginal-value-
weighted average net liabilities and µ (t)Q (t) both rescaled by the inflation disutility parameter ψ. Therefore, the
sum of both terms equals optimal inflation under commitment.
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to reduce real yields temporarily relative to r̄, thanks both to the temporary inflation and the

relatively mild increase in nominal yields, as investors anticipate the transitory nature of such

inflation.

5.3 Welfare analysis

We now turn to the welfare analysis of alternative policy regimes. Aggregate union-wide welfare

is defined as∫ ∞
φ

2∑
i=1

vi (0, a) fi(t, a)da =

∫ ∞
0

e−ρt
∫ ∞
φ

2∑
i=1

u (ci (t, a) , π (t)) fi(t, a)dadt ≡ W [c] ,

Table 3 displays the welfare losses of suboptimal policies vis-à-vis the Ramsey optimal equilibrium.

We express welfare losses as a permanent consumption equivalent, i.e. the number Θ (in %) that

satisfies in each case WR [c] = W [(1 + Θ) c], where R denotes the Ramsey equilibrium.26 The

table also displays the welfare losses incurred respectively by creditor and debtor countries.27 The

welfare losses from discretionary policy versus commitment are of first order: 0.26% of permanent

consumption. This welfare loss is suffered by creditor countries (0.12%), but also by debtor ones

(0.15%), despite the fact that the discretionary policy is aimed precisely at redistributing wealth

towards debtor countries. As shown in Figure 4, debtors’liabilities actually increase under dis-

cretion relative to the Ramsey equilibrium. The reason is that the lower bond prices force these

countries to sell more bonds and thus increase their indebtedness. Moreover, the higher inflation

under discretion does not help erode such indebtedness: nominal yields are much higher too, im-

plying higher real yields and hence faster debt accumulation; in fact, real yields under discretion

are even higher than under the zero inflation policy (for which rt−πt = r̄ = 3%), as investors price

in the rising path of future inflation. By contrast, and as explained in the previous subsection, the

commitment policy does reduce real yields relative to r̄, by creating some inflation initially while

avoiding high nominal yields.

In summary, discretionary policy fails at producing the very redistribution towards debtor

countries that it intends to achieve in the first place, while leaving both creditor and debtor

members to bear the direct welfare costs of permanent positive inflation.

26Under our assumed separable preferences with log consumption utility, it is possible to show that Θ =
exp

{
ρ
(
WR [c]−W [c]

)}
− 1.

27That is, we report Θa>0 and Θa<0, where

Θa>0 = exp
[
ρ
(
WR,a>0 −WMPE,a>0

)]
− 1,

with Θa<0 defined analogously, and where for each policy regime we have defined W a>0 ≡∫∞
0

∑2
i=1 vi (0, a) fi(t, a)da, W a<0 ≡

∫ 0
φ

∑2
i=1 vi (0, a) fi(t, a)da. Notice that Θa>0 and Θa>0 do not exactly add up

to Θ, as the expontential function is not a linear operator. However, Θ is suffi ciently small that Θ ≈ Θa>0 + Θa>0.
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Table 3. Welfare losses relative to the optimal commitment

Union-wide Creditor countries Debtor countries

Discretion 0.26 0.12 0.15

Zero inflation 0.01 -0.02 0.03

Note: welfare losses are expressed as a % of permanent consumption

We also compute the welfare losses from a policy of zero inflation, π (t) = 0 for all t ≥ 0. As the

table shows, the latter policy approximates the welfare outcome under commitment very closely,

by balancing the welfare gains for creditor countries and the losses for debtor ones, both of which

are in turn relatively small. Such small welfare losses reflects the transitory nature of optimal

inflation under commitment and the limited extent of the resulting redistribution, as well as the

fact that both policies avoid the first-order welfare costs from a redistribution-driven inflationary

bias.

5.4 Robustness

Steady state inflation. In Proposition 4, we established that the Ramsey optimal long-run inflation

rate converges to zero as the central bank’s discount rate ρ converges to that of foreign investors, r̄.

In our baseline calibration, both discount rates are indeed very close to each other, implying that

Ramsey optimal long-run inflation is essentially zero. We now evaluate the sensitivity of Ramsey

optimal steady state inflation to the difference between both discount rates. From equation (31),

Ramsey optimal steady state inflation is

π =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (a) da+
1

ψ
µQ, (32)

where the first term on the right hand side captures the redistributive motive to inflate in the long

run, and the second one reflects the effect of central bank’s commitments about long-run inflation.

Figure 5 displays π (left axis), as well as its two determinants (right axis) on the right-hand side

of equation (32). Optimal decreases approximately linearly with the gap ρ − r̄. As the latter

increases, two counteracting effects take place. On the one hand, it can be shown that as the

monetary union’s households become more impatient relative to foreign investors, the net asset

distribution shifts towards the left, i.e. more and more member countries become net borrowers

and come close to the borrowing limit, where the marginal utility of wealth is highest.28 As shown

in the figure, this increases the central bank’s incentive to inflate for the purpose of redistributing

28The evolution of the long-run wealth distribution as ρ− r̄ increases is available upon request.
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Figure 5: Sensitivity analysis to changes in ρ− r̄.

wealth towards debtor countries. On the other hand, the more impatient households become

relative to foreign investors, the more the central bank internalizes in present-discounted value

terms the welfare consequences of creating expectations of higher inflation in the long run. This

provides the central bank an incentive to committing to lower long run inflation. As shown by

Figure 5, this second ’commitment’effect dominates the ’redistributive’effect, such that in net

terms optimal long-run inflation becomes more negative as the discount rates gap widens.

Initial inflation. As explained before, time-0 optimal inflation and its subsequent path de-

pend on the initial net wealth distribution across monetary union members, which is an infinite-

dimensional object. In our baseline numerical analysis, we disciplined our choice of initial distri-

bution by setting it approximately equal to the actual cross-country distribution in the EMU in

2009. We now investigate how initial inflation depends on such initial distribution. To make the

analysis operational, we restrict our attention to the class of Normal distributions truncated at

the borrowing limit φ. That is,

f (0, a) =

{
φ (a;µ, σ) / [1− Φ (φ;µ, σ)] , a ≥ φ

0, a < φ
, (33)

where φ (·;µ, σ) and Φ (·;µ, σ) are the Normal pdf and cdf, respectively.29 The parameters µ and

σ allow us to control both (i) the initial net foreign asset position for the monetary union as a

29As explained in Section 5.2, in all our simulations we assume that the initial net asset distribution conditional
on being in a boom or in a recession is the same: fa|y (0, a | y2) = fa|y (0, a | y1) ≡ f0 (a). This implies that the
marginal asset density coincides with its conditional density: f (0, a) =

∑
i=1,2 fa|y (0, a | yi) fy (yi) = f0 (a).
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whole and (ii) the within-union cross-country dispersion in net foreign asset positions, and hence

to isolate the effect of each factor on the optimal inflation path. Notice also that optimal long-run

inflation rates do not depend on f (0, a) and are therefore exactly the same as in our baseline

numerical analysis regardless of µ and σ.30 This allows us to focus here on inflation at time 0,

which is the same under commitment and discretion, while noting that the transition paths towards

the respective long-run levels are isomorphic to those displayed in Figure 4.31

Figure 6 displays optimal initial inflation rates for alternative initial net foreign asset distribu-

tions. In the first row of panels, we show the effect of increasing within-union net wealth dispersion

while restricting the monetary union to have a zero net position vis-à-vis the rest of the World,

i.e. we increase σ and simultaneously adjust µ to ensure that ā (0) = 0. In the extreme case of a

(quasi) degenerate initial distribution at zero net assets (solid blue line in the upper left panel), the

central bank has no incentive to create inflation, and thus optimal initial inflation is zero. As the

degree of initial wealth dispersion increases, so does optimal initial inflation, although the latter

remains within first-order magnitude.

The bottom row of panels in Figure 6 isolates instead the effect of increasing the monetary

union’s liabilities with the rest of theWorld, while assuming at the same time σ ' 0, i.e. eliminating

any within-union wealth dispersion.32 As shown by the lower right panel, optimal inflation increases

fairly quickly with the monetary union’s external indebtedness; for instance, an external debt-to-

GDP ratio of 50% justifies an initial inflation of over 6%.

As we saw in Section 5.2, setting the initial asset distribution equal to (a smoothed approxi-

mation) of the actual cross-country distribution in the EMU in 2009 delivered an initial optimal

inflation rate of π (0) = 2.55%. Such distribution implies a consolidated net asset position for the

monetary union of ā (0) = −17.34% of GDP. Using as initial condition a degenerate distribution

at exactly that ratio (i.e. σ ' 0, µ = −17.34%) delivers π (0) = 2.49%. This suggests that initial

optimal inflation is mostly the outcome of the central bank’s attempt to redistribute wealth from

foreign investors to debtor union members, rather than from creditor to debtor countries within

the union.

5.5 Political economy considerations

Although in our model the Ramsey optimal monetary policy is the best one for the monetary union

as a whole, not all member countries prefer it to other alternative policies. And if all members

30As shown in Table 2, long-run inflation is −0.02% under commitment, and 1.47% under discretion.
31The full dynamic optimal paths under any of the alternative calibrations considered in this section are available

upon request.
32That is, we approximate ’Dirac delta’distributions centered at different values of µ. Since such distributions

are not affected by the truncation at a = φ, we have ā (0) ≡ µ, i.e. the monetary union’s net foreign asset position
coincides with µ.
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have a say in the monetary policy decisions, then it is not guaranteed that the Ramsey policy

would actually be implemented. For instance, we may consider an institutional setup in which

all monetary policy decisions are taken by simple majority by a ’governing council’in the central

bank where all countries have equal voting rights.33 We now analyze whether the Ramsey optimal

policy would actually be approved with such an institutional setup. This requires specifying an

alternative monetary policy against which member countries can compare the Ramsey optimal

one. For the purpose of illustration, we consider as benchmark the zero inflation policy, π (t) = 0

for all t ≥ 0, which can be interpreted as ’strict inflation targeting’.

The upper panel in Figure 7 shows the time-0 value function for an individual country as a

function of its initial net wealth under the Ramsey policy net of the same value function under

strict inflation targeting.34 Notice first that the level of net wealth that separates countries in

favor and against the Ramsey policy is a = −8.5% of average GDP, such that all countries below

that threshold would vote in favor. As it turns out, the fraction of countries below that threshold

at time 0 is strictly higher than one half. This can also be seen by noticing that the median net

wealth, a = −11.5% of average GDP, (marked by a star in the figure), is below the yes/no voting

threshold. We conclude that the Ramsey policy would be approved by this hypothetical ’governing

council’, although by a relatively small margin.

5.6 Aggregate shocks

So far we have restricted our analysis to the transitional dynamics, given the economy’s initial

state, while abstracting from shocks that affected the monetary union as a whole. We now extend

our analysis to allow for aggregate shocks in the case of the Ramsey optimal policy. In particular,

we allow the World real interest rate r̄ to vary over time and simulate a one-off, unanticipated

increase at time 0 followed by a gradual return to its baseline value of 3%.

Figure 8 displays the exogenous path of r̄t for two shock sizes (1pp and 2pp) and their impact on

a number of variables in each case, measured as the difference between the equilibrium paths with

and without the shock (the latter being those displayed in Figure 4). The shock raises nominal

(and real) bond yields, which leads households in the monetary union to reduce their consumption.

Notice however that these shocks barely affect the optimal inflation path, the reaction of which is

an order of magnitude smaller than that of nominal yields or consumption. Therefore, we conclude

33This setup broadly resembles the actual one in the EMU, where monetary policy decisions are made by its
Governing Council, in which all country members have one vote. Nonetheless, it should be emphasized that the
ECB has traditionally aimed at reaching a full consensus among the members of the Governing Council when
making its monetary policy decisions.
34The figure displays the difference in value functions both for countries in recession (i = 1) and in boom (i = 2).

Both lines are virtually indistinguishable, i.e. at each asset level the welfare difference between the Ramsey and the
zero inflation policy is independent of the country’s output level.
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that aggregate shocks such as those considered here barely affect the Ramsey optimal inflation path

beyond the transition path analyzed before, which in turn arises from an incentive to (transitorily)

redistribute wealth within the monetary union and also away from foreign investors.

6 Conclusion

We have analyzed optimal monetary policy, under commitment and discretion, in a continuous-

time model of a monetary union where member countries are heterogenous in their net foreign

asset positions and receive country-specific shocks. Markets are incomplete: each country can only

trade nominal, noncontingent bonds with other member countries and with (risk neutral) foreign

investors, subject to an exogenous borrowing limit. Our analysis sheds light on a recent policy and

academic debate on the consequences that large differences in net foreign asset positions across

member countries in a monetary union (such as those characterizing the European Monetary Union

since its inception) should have for the conduct of monetary policy. On a methodological level,

to the best of our knowledge our paper is the first to compute the fully dynamic optimal policy,

both under commitment and discretion, in a continuous-time model with uninsurable idiosyncratic

risk where the wealth distribution (an infinite-dimensional, endogenously time-varying object) is

a state in the planner’s problem.

We show analytically that, whether under discretion or commitment, the central bank has

an incentive to create inflation in order to redistribute wealth both within the monetary union

from creditor to debtor countries, to the extent that the latter have a higher marginal utility

of net wealth, and away from foreign investors, to the extent that these are net creditors vis-à-

vis the monetary union as a whole. Under commitment, however, such an inflationary force is

counteracted by the central bank’s understanding of how expectations of future inflation affect

current nominal bond prices. We show moreover that, in the limiting case in which the central

bank’s discount factor converges to that of foreign investors, the long-run inflation rate under

commitment converges to zero.

We calibrate the model to the EMU, including its cross-country net foreign asset distribution.

We show that the optimal policy under commitment features first-order positive initial inflation,

followed by a gradual decline towards its (near zero) long-run level. That is, the central bank

front-loads inflation so as to transitorily redistribute existing wealth both within the union and

away from international investors, committing to gradually abandon such redistributive stance. By

contrast, discretionary monetary policy keeps inflation permanently high; such a policy is shown

to reduce welfare substantially, both for creditor and for debtor union members.

Our analysis thus suggest that, in a monetary union with heterogenous net foreign positions in

nominal assets, inflationary redistribution should only be used temporarily, avoiding any tempta-
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tion to prolong positive inflation rates over time.
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Appendix

A. Proofs

Mathematical preliminaries

First we need to introduce some mathematical concepts. An operator T is a mapping from one

vector space to another. Given the stochastic process at defined in (3), its infinitesimal generator

is an operator A defined by

Av ≡
(
s1(t, a)∂v1(t,a)

∂a
+ λ1 [v2(t, a)− v1(t, a)]

s2(t, a)∂v2(t,a)
∂a

+ λ2 [v1(t, a)− v2(t, a)]

)
, (34)

so that the HJB equation (8) can be expressed as

ρv =
∂v

∂t
+ max

c
{u (c, π) +Av} ,

where v ≡
(
v1(t,a)
v2(t,a)

)
and u (c, π) ≡

(
u(c1,π)
u(c2,π)

)
.

From now on, we assume that there is an upper bound arbitrarily large κ such that f(t, a, y) = 0

for all a > κ. In steady state this can be proved in general following the same reasoning as in
Proposition 2 of Achdou et al. (2015). Alternatively, we may assume that there is a maximum

constraint in asset holding such that a ≤ κ, and that this constraint is so large that it does not
affect to the results. In any case, let Φ ≡ [φ,κ] be the valid domain. The space of Lebesgue-

integrable functions L2 (Φ) with the inner product

〈v, f〉Φ =
2∑
i=1

∫
Φ

vifida =

∫
Φ

vTfda, ∀v, f ∈ L2 (Φ) ,

is a Hilbert space.35

Given an operator A, its adjoint is an operator A∗ such that 〈f,Av〉Φ = 〈A∗f, v〉Φ . In the case
of the operator defined by (34) its adjoint is the operator

A∗f ≡
(−∂(s1f1)

∂a
− λ1f1 + λ2j2

−∂(s2f2)
∂a
− λifi + λ1j1

)
,

with boundary conditions

si (t, φ) fi (t, φ) = si (t,κ) fi (t,κ) = 0, i = 1, 2, (35)

35See Luenberger (1969) or Brezis (2011) for references.
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such that the KF equation (14) results in

∂f

∂t
= A∗f, (36)

for f ≡
(
f1(t,a)
f2(t,a)

)
. We can see that A and A∗ are adjoints as

〈Av, f〉Φ =

∫
Φ

(Av)T fda =
2∑
i=1

∫
Φ

[
si
∂vi
∂a

+ λi [vj − vi]
]
fida

=

2∑
i=1

visifi|κφ +

2∑
i=1

∫
Φ

vi

[
− ∂

∂a
(sifi)− λifi + λjjj

]
da

=

∫
Φ

vTA∗fda = 〈v,A∗f〉Φ .

We introduce the concept of Gateaux and Frechet differentials as generalizations of the standard

concept of derivative to infinite-dimensional spaces.36

Definition 4 (Gateaux differential) Let J [f ] be a linear continuous functional and let h be

arbitrary in L2 (Ω) , where Ω ⊂ Rn. If the limit

δJ [f ;h] = lim
α→0

J [f + αh]− J [f ]

α
(37)

exists, it is called the Gateaux differential of J at f with increment h. If the limit (37) exists for

each h ∈ L2 (Ω) , the functional J is said to be Gateaux differentiable at f.

If the limit exists, it can be expressed as δJ [f ;h] = d
dα
J [f + αh] |α=0. Amore restricted concept

is that of the Fréchet differential.

Definition 5 (Fréchet differential) Let h be arbitrary in L2 (Ω) . If for fixed f ∈ L2 (Ω) there

exists δJ [f ;h] which is linear and continuous with respect to h such that

lim
‖h‖L2(Ω)→0

|J [f + h]− J [f ]− δJ [f ;h]|
‖h‖L2(Ω)

= 0,

then J is said to be Fréchet differentiable at f and δ [Jf ;h] is the Fréchet differential of J at f

with increment h.

The following proposition links both concepts.

36See Luenberger (1969), Gelfand and Fomin (1991) or Sagan (1992).
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Theorem 2 If the Fréchet differential of J exists at f , then the Gateaux differential exists at f
and they are equal.

Proof. See Luenberger (1969, p. 173).
The familiar technique of maximizing a function of a single variable by ordinary calculus can be

extended in infinite dimensional spaces to a similar technique based on more general differentials.

We use the term extremum to refer to a maximum or a minimum over any set. A a function

f ∈ L2 (Ω) is a maximum of J [f ]if for all functions h, ‖h− f‖L2(Ω) < ε then J [f ] ≥ J [h]. The

following theorem is the Fundamental Theorem of Calculus.

Theorem 3 Let J have a Gateaux differential, a necessary condition for J to have an extremum
at f is that δJ [f ;h] = 0 for all h ∈ L2 (Ω) .

Proof. Luenberger (1969, p. 173), Gelfand and Fomin (1991, pp. 13-14) or Sagan (1992, p. 34).

In the case of constrained optimization in an infinite-dimensional Hilbert space, we have the

following Theorem.

Theorem 4 (Lagrange multipliers) Let H be a mapping from L2 (Ω) into Rp. If J has a con-
tinuous Fréchet differential, a necessary condition for J to have an extremum at f under the

constraint H [f ] = 0 at the function f is that there exists a function η ∈ L2 (Ω) such that the

Lagrangian functional

L [f ] = J [f ] + 〈η,H [f ]〉Ω (38)

is stationary in f, i.e., δL [f ;h] = 0.

Proof. Luenberger (1969, p. 243).

Proof of Lemma 1

Given the welfare criterion defined as in (19), we have

UCB
0 =

∫ ∞
φ

2∑
i=1

vi(0, a)fi(0, a)da =

∫ ∞
φ

2∑
i=1

E0

[∫ ∞
0

e−ρtu(ct, πt)dt|a (0) = a, y (0) = yi

]
fi(0, a)da

=

∫ ∞
φ

2∑
i=1

[
2∑
j=1

∫ ∞
φ

∫ ∞
0

e−ρtu(c, π)f(t, ã, ỹj; a, yi)dtdã

]
fi(0, a)da

=

∫ ∞
0

2∑
j=1

e−ρt
∫ ∞
φ

u(c, π)

[
2∑
i=1

∫ ∞
φ

f(t, ã, ỹj; a, yi)fi(0, a)da

]
dãdt

=

∫ ∞
0

2∑
i=1

e−ρt
∫ ∞
φ

u(c, π)fj(t, ã)dãdt,
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where f(t, ã, ỹj; a, y) is the transition probability from a0 = a, y0 = yi to at = ã, yt = ỹj and

fj(t, ã) =

2∑
j=1

∫ ∞
φ

f(t, ã, ỹj; a, yi)fi(0, a)da,

is the Chapman—Kolmogorov equation.

Proposition 1. Solution to the MPE

The idea of the proof is to employ dynamic programming in order to transform the problem of the

central bank in a family -indexed by time- of static calculus of variations problems. Then we solve

each of these problems using differenciation techniques in infinite-dimensional Hilbert spaces.

Step 1: Representation The first step is to show how the central bank functional J [f ] is a

linear continuous functional in the Hilbert space L2 (Φ) . The fact that the functional

J [f (t, ·)] =

∫ ∞
t

e−ρ(s−t)
2∑
i=1

∫
Φ

[u (cs, πs)] fi(s, a)dads, (39)

is linear in f(t, ·) is trivial. The functional is bounded (or continuous) if there is a constant M
such that

‖J‖ ≡ sup
f 6=0

|J (f)|
‖f‖L2(Φ)

≤M.

We can check that as long as the instantaneous utility is bounded in Φ :

|u (c, π)| ≤M0, ∀a ∈ Φ, y ∈ {y1, y2}

the functional J is continuous:

sup
f 6=0

|J [f ]|
‖f‖L2(Φ)

< sup
f 6=0

1

‖f‖L2(Φ)

2∑
i=1

∫
Φ

∫ ∞
t

e−ρ(s−t) |u (cs)| fi(s, a)dads

≤ sup
f 6=0

M0

‖f‖L2(Φ)

∫ ∞
t

e−ρ(s−t)ds ≤ M0

√
κ − φ
ρ

= M,

where the last inequality follows from the Cauchy-Schwarz inequality and the normalization con-

dition (15):

1 =

2∑
i=1

∫
Φ

fida = 〈1, f〉Φ ≤ ‖f‖L2(Φ) ‖1‖L2(Φ) = ‖f‖L2(Φ)

√∫
Φ

12da = ‖f‖L2(Φ)

√
κ − φ.
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We may then apply the Riesz representation theorem.

Theorem 5 (Riesz representation theorem) Let J [f ] : L2 (Φ) → R be a linear continuous

functional. Then there exists a unique function j ∈ L2 (Φ) such that

J [f ] = 〈j, f〉Φ =

2∑
i=1

∫
Φ

jifida.

Proof. See Brezis (2011, pp. 97-98).
Therefore, the central banks functional (39) can be represented as

J [f (t, ·)] =
2∑
i=1

∫
Φ

ji(t, a)fi(t, a)da,

where j(t, ·) ∈ L2 (Φ) is the central bank’s value at time t of a country with debt a.37

Step 2: Dynamic programming Second, for any initial condition f(t0, ·) we have an optimal
control path {π (t)}∞t=t0 and we may apply the Bellman’s Principle of Optimality

J [f(t0, ·)] =

∫ t

t0

e−ρ(s−t0)

2∑
i=1

∫
Φ

u (cs, πs) fi(s, a)dads+ e−ρ(t−t0)J [f(t, ·)] . (40)

Let Ξ [f ] be defined as

Ξ [f ] ≡
2∑
i=1

∫
Φ

u (ct, πt) fi(t, a)da = 〈u, f〉Φ .

Taking derivatives with respect to time in equation (40) and the limit as t→ t0:

0 = Ξ [f ]− ρJ [f(t, ·)] +
∂

∂t
J [f(t, ·)] = Ξ [f ]− ρJ [f(t, ·)] +

∂

∂t

2∑
i=1

∫
Φ

ji(t, a)fi(t, a)da (41)

= Ξ [f ]− ρJ [f(t, ·)] +

2∑
i=1

∫
Φ

[
∂ji
∂t
fi(t, a) + ji(t, a)

∂fi
∂t

]
da.

Equation (41) is the Bellman equation of the problem (39). This is equivalent to the HJB

37The functional is J [f (t, ·) , f (t′ > t, ·)] and thus j (t, a, y) = j [f (t′ > t, ·)] is the functional derivative of J with
respect to f :

j =
δJ

δf
.
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equation, but in an integral form. The last term of the expression is

2∑
i=1

∫
Φ

ji(t, a)
∂fi
∂t
da =

〈
j,
∂f

∂t

〉
Φ

= 〈j,A∗f〉Φ = 〈Aj, f〉Φ ,

where in the last equality we have applied the KF equation (36).

We may express the Bellman equation as

ρJ [f ] = ρ

∫
Φ

jfda = max
π

∫
Φ

(
u (c, π) +

∂j

∂t
+Aj

)T
fda. (42)

Step 3: Optimal inflation The first order condition with respect to inflation in (42) is

∂

∂π

∫
Φ

(
u (c, π) +

∂j

∂t
+Aj

)T
fda (43)

=
2∑
i=1

∫
Φ

(
uπfi +

∂si
∂π

∂ji
∂a

)
fida

=
2∑
i=1

∫
Φ

(
uπfi − afi

∂ji
∂a

)
da = 0,

so that the optimal inflation should satisfy

2∑
i=1

∫
Φ

(
afi

∂ji
∂a
− uπfi

)
da = 0. (44)

Step 4: Central Bank’s HJB In order to find the value of j(t, ·), we compute the Gateaux
differential of the Bellman equation (41). If we take the Gateaux differential at both sides of

equation (42), we obtain

d

dα

∫
Φ

(
u (c, π) +

∂j

∂t
+Aj − ρj

)T
(f + αh) da

∣∣∣∣∣
α=0

=

∫
Φ

(
u (c, π) +

∂j

∂t
+Aj − ρj

)T
hda = 0,

For any h ∈ L2 (Φ) we have
∫

Φ

(
u (c, π) + ∂j

∂t
+Aj − ρj

)T
hda = 0 and hence u (c, π)+∂j

∂t
+Aj−ρj =

0, ∀a ∈ Φ, y ∈ {y1, y2} :

ρji(t, a) = u(ci, π) +
∂ji
∂t

+ si (t, a)
∂ji
∂a

+ λi (jk(t, a)− ji(t, a)) , i = 1, 2, k 6= i. (45)
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Equation (45) is the same as the individual HJB equation (8). The boundary conditions are also the

same (state constraints on the domain Φ) and therefore its solution should be the same: j(t, a, y) =

v(t, a, y), that is, the marginal social value to the central bank under discretion j (·) equals the
individual value v (·).

Proposition 2. Solution to the Ramsey problem

The problem of the central bank is given by

J [f0 (·)] = max
{πs,Qs,v(s,·),c(s,·),f(s,·)}∞s=0

2∑
i=1

∫ ∞
0

e−ρs
[∫

Φ

u (cs, πs) fi(s, a)da

]
ds,

subject to the law of motion of the distribution (14), the bond pricing equation (12) and the indi-

vidual HJB equation (8). This is a problem of constrained optimization in an infinite-dimensional

Hilbert space Φ̂ = [0,∞) × Φ. Notice that we are working now in the Hilbert space Φ̂, including

the time dimension, where the inner product is

〈v, f〉Φ̂ =
2∑
i=1

∫ ∞
0

∫
Φ

vifidadt =

∫ ∞
0

〈v, f〉Φ dt, ∀v, f ∈ L2
(

Φ̂
)
.

In this case, the Lagrangian is

L [π,Q, f, v, c] =

∫ ∞
0

e−ρt 〈u, f〉Φ dt+

∫ ∞
0

〈
e−ρtζ (t, a) ,A∗f − ∂f

∂t

〉
Φ

dt

+

∫ ∞
0

e−ρtµ (t)
(
Q (r̄ + π + δ)− δ − Q̇

)
dt

+

∫ ∞
0

〈
e−ρtθ (t, a) , u+Av +

∂v

∂t
− ρv

〉
Φ

dt

+

∫ ∞
0

〈
e−ρtη (t, a) , uc −

1

Q

∂v

∂a

〉
Φ

dt
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where ζ (t, a), η (t, a), θ (t, a) ∈ L2
(

Φ̂
)
and µ (t) ∈ L2[0,∞) are the Lagrange multipliers associated

to equations (14), (10), (8) and (12), respectively. The Lagragian can be expressed as

L [π,Q, f, v, c] =

∫ ∞
0

e−ρt
〈
u+

∂ζ

∂t
+Aζ − ρζ + µ

(
Q (r̄ + π + δ)− δ − Q̇

)
, f

〉
Φ

dt

+

∫ ∞
0

e−ρt
(
〈θ, u〉Φ +

〈
A∗θ − ∂θ

∂t
, v

〉
Φ

+

〈
η, uc −

1

Q

∂v

∂a

〉
Φ

)
dt

+ 〈ζ (0, ·) , f (0, ·)〉Φ − lim
T→∞

〈
e−ρT ζ (T, ·) , f (T, ·)

〉
Φ

+ lim
T→∞

〈
e−ρT θ (T, ·) , v (T, ·)

〉
Φ
− 〈θ (0, ·) , v (0, ·)〉+

∫ ∞
0

e−ρt
2∑
i=1

visiθi|κφ dt,

where we have applied 〈ζ,A∗f〉 = 〈Aζ, f〉 , 〈θ,Av〉 = 〈A∗θ, v〉Φ +
∑2

i=1 visiθi|
κ
φ and integrated by

parts

∫ ∞
0

〈
e−ρtζ,−∂f

∂t

〉
dt = −

2∑
i=1

∫ ∞
0

∫
Φ

e−ρtζ i
∂fi
∂t
dadt

= −
2∑
i=1

∫
Φ

fie
−ρtζ i

∣∣∞
0
da+

2∑
i=1

∫ ∞
0

∫
Φ

fi
∂

∂t

(
e−ρtζ i

)
dadt

=
2∑
i=1

∫
Φ

fi (0, a) ζ i (0, a) da− lim
T→∞

2∑
i=1

∫
Φ

e−ρTfi (T, a) ζ i (T, a) da

+
2∑
i=1

∫ ∞
0

∫
Φ

e−ρtfi

(
∂ζ i
∂t
− ρζ i

)
dadt

= 〈ζ (0, ·) , f (0, ·)〉Φ − lim
T→∞

〈
e−ρT ζ (T, ·) , f (T, ·)

〉
Φ

+

∫ ∞
0

e−ρt
〈
∂ζ

∂t
− ρζ, f

〉
Φ

dt,
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and∫ ∞
0

〈
e−ρtθ,

∂v

∂t
− ρv

〉
dt =

2∑
i=1

∫ ∞
0

∫
Φ

e−ρtθi

(
∂vi
∂t
− ρvi

)
dadt

=
2∑
i=1

∫
Φ

θie
−ρt
i v

∣∣∞
0
da−

2∑
i=1

∫ ∞
0

∫
Φ

vi

[
∂

∂t

(
e−ρtθi

)
+ ρθi

]
dadt

= lim
T→∞

2∑
i=1

∫
Φ

e−ρTvi (T, a) θi (T, a) da−
2∑
i=1

∫
Φ

vi (0, a) θi (0, a) da

−
2∑
i=1

∫ ∞
0

∫
Φ

e−ρtvi

(
∂θi
∂t

)
dadt

= lim
T→∞

〈
e−ρT θ (T, ·) , v (T, ·)

〉
Φ
− 〈θ (0, ·) , v (0, ·)〉Φ

+

∫ ∞
0

e−ρt
〈
−∂θ
∂t
, v

〉
Φ

dt,

In order to find the extrema, we need to take the Gateaux differentials with respect to the controls

π, Q, v and c.

The Gateaux differential with respect to f is

d

dα
L [π,Q, f + αh (t, a) , v, c] |α=0 = 〈ζ (0, ·) , h (0, ·)〉Φ − lim

T→∞

〈
e−ρT ζ (T, ·) , h (T, ·)

〉
Φ

−
∫ ∞

0

e−ρt
〈
u+

∂ζ

∂t
+Aζ − ρζ, h

〉
Φ

dt,

which should equal zero for any function h (t, a) ∈ L2
(

Φ̂
)
such that h (0, ·) = 0, as the initial

value of f (0, ·) is given. If we consider functions with h (T, ·) = 0, we obtain

ρζ = u+
∂ζ

∂t
+Aζ, (46)

and taking this into account and considering functions h (T, ·) 6= 0, we obtain the boundary

condition

lim
T→∞

e−ρT ζ (T, a) = 0.

We may apply the Feynman—Kac formula to (46) and express ζ (t, a) as

ζ (t, a) = Et
[∫ ∞

t

e−ρ(s−t)u(cs, πs)ds | at = a

]
,

subject to the evolution of at given by equation (3). This is the expression of the individual value

function (7). Therefore, we may conclude that ζ (·) = v (·).
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In the case of c (t, a) :

d

dα
L [π,Q, f, v, c+ αh (t, a)] |α=0 =

∫ ∞
0

e−ρt
〈(

uc −
1

Q

∂ζ

∂a

)
h, f

〉
Φ

dt

+

∫ ∞
0

e−ρt
(〈

θ,

(
uc −

1

Q

∂v

∂a

)
h

〉
Φ

+ 〈η, ucch〉Φ
)
dt = 0,

where ∂
∂a

(Aζ) = − 1
Q
∂ζ
∂a
. Due to the first order conditions (10) and to the fact that ζ (·) = v (·) this

expression reduces to ∫ ∞
0

e−ρt 〈η (t, a) , ucc (t, a)h (t, a)〉Φ dt = 0,

so that η (t, a) = 0 ∀ (t, a) ∈ Φ̂, that is, the first order condition (10) is not binding as its associated

Lagrange multiplier is zero.

In the case of v (t, a) :

d

dα
L [π,Q, f, v + αh (t, a) , c] |α=0 =

∫ ∞
0

e−ρt
(〈
A∗θ − ∂θ

∂t
, h

〉
Φ

)
dt

+ lim
T→∞

〈
e−ρT θ (T, ·) , h (T, ·)

〉
Φ
− 〈θ (0, ·) , h (0, ·)〉Φ +

2∑
i=1

hisiθi|κφ = 0,

where we have already taken into account the fact that η (t, a) = 0. Proceeding as in the case of

f, we conclude that this yields a Kolmogorov forward equation

∂θ

∂t
= A∗θ, (47)

with boundary conditions

si (t, φ) θi (t, φ) = si (t,κ) θi (t,κ) = 0, i = 1, 2,

lim
T→∞

e−ρT θ (T, ·) = 0,

θ (0, ·) = 0.

This is exactly the same KF equation than in the case of f, but the initial distribution is

θ (0, ·) = 0. Therefore, the distribution at any point in time should be zero θ (·, ·) = 0. Both the

Lagrange multiplier of the HJB equation θ and that of the first-order condition η are zero, reflecting

the fact that the HJB condition is not binding, that is, that the monetary authority would choose

the same consumption as the individual economies.

In the case of π (t) :
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d

dα
L [π + αh (t) , Q, f, v, c] |α=0 =

∫ ∞
0

e−ρt
〈
uπ − a

(
∂ζ

∂a

)
+ µQ, f

〉
Φ

hdt = 0,

where we have already taken into account that so the fact that θ (t, a) = 0. Taking into account

that ζ (t, a) = v (t, a) :

µ (t)Q (t) =
2∑
i=1

∫
Φ

(
a
∂vi
∂a
− uπ

)
fi (t, a) da.

In the case of Q (t) :

d

dα
L [π,Q+ αh (t) , f, v, c] |α=0

=

∫ ∞
0

e−ρt
〈
− δh
Q2
a
∂ζ

∂a
− (y − c)h

Q2

∂ζ

∂a
+ µ

[
h (r̄ + π + δ)− ḣ

]
, f

〉
Φ

dt = 0

Integrating by parts∫ ∞
0

e−ρt
〈
−µḣ, f

〉
Φ
dt = −

∫ ∞
0

e−ρtµḣ 〈1, f〉Φ dt = −
∫ ∞

0

e−ρtµḣdt

= − e−ρtµh
∣∣∞
0

+

∫ ∞
0

e−ρt (µ̇− ρµ)hdt

= µ (0)h (0) +

∫ ∞
0

e−ρt 〈(µ̇− ρµ)h, f〉Φ dt.

Therefore,∫ ∞
0

e−ρt
〈
− δ

Q2
a
∂ζ

∂a
− (y − c)

Q2

∂ζ

∂a
+ µ (r̄ + π + δ − ρ) + µ̇, f

〉
Φ

hdt+ µ (0)h (0) = 0,

so that, using similar arguments as in the case of θ above we can show that µ (0) = 0 and〈
− δ

Q2
a
∂v

∂a
− (y − c)

Q2

∂v

∂a
, f

〉
Φ

+ µ (r̄ + π + δ − ρ) + µ̇ = 0, t > 0.

Finally,
dµ

dt
= (ρ− r̄ − π − δ)µ+

1

Q2 (t)

2∑
i=1

∫
Φ

∂vi
∂a

[δa+ (y − c)] fi (t, a) da,

here we have applied the fact that ζ = v. In steady-state, this results in

µ =
1

(r̄ + π + δ − ρ)Q2

2∑
i=1

∫
Φ

∂vi
∂a

[δa+ (y − c)] fi (a) da.
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Proposition 3: Inflation bias in MPE

As we are assuming that the value function is concave in a, then it satisfies that

∂vi (t, ã)

∂a
<
∂vi (t, 0)

∂a
<
∂vi (t, â)

∂a
, ∀ã ∈ (0,∞), â ∈ (φ, 0), t ≥ 0, i = 1, 2. (48)

In addition, the condition that the union as a whole is a net debtor (āt < 0) implies

2∑
i=1

∫ 0

φ

(−a) fi(t, a)da ≥
2∑
i=1

∫ κ

0

(a) fi(t, a)da, ∀t ≥ 0. (49)

Therefore

2∑
i=1

∫ κ

0

afi
∂vi(t, a)

∂a
da <

∂vi (t, 0)

∂a

2∑
i=1

∫ κ

0

afida ≤
∂vi (t, 0)

∂a

2∑
i=1

∫ 0

φ

(−a) fi(t, a)da (50)

<
2∑
i=1

∫ 0

φ

(−a) fi(t, a)
∂vi(t, a)

∂a
da, (51)

where we have applied (48) in the first and last stepts and (49) in the intermediate one. The

optimal inflation in the MPE case (23) with separable utility u = uc − uπ is

2∑
i=1

∫ κ

φ

(
afi

∂vi
∂a
− uπfi

)
da =

2∑
i=1

∫ κ

φ

afi
∂vi
∂a

da+ uππ = 0.

Combining this expression with (50) we obtain

uππ =
2∑
i=1

∫ κ

φ

(−a) fi
∂vi
∂a

da > 0.

Finally, taking into account the fact that uππ > 0 only for π > 0 we have that π (t) > 0.

Proposition 4: optimal long-run inflation under commitment in the limit as r̄ → ρ

In the steady state, equations (27) and (29) in the main text become

(ρ− r̄ − π − δ)µ+
1

Q2

2∑
i=1

∫ ∞
φ

∂vi
∂a

[δa+ (yi − ci)] fi (a) da = 0,

µQ = uππ (π) +

2∑
i=1

∫ ∞
φ

a
∂vi
∂a

fi (a) da,
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respectively. Consider now the limiting case ρ → r̄ , and guess that π → 0. The above two

equations then become

µQ =
1

δQ

2∑
i=1

∫ ∞
φ

∂vi
∂a

[δa+ (yi − ci)] fi (a) da,

µQ =

2∑
i=1

∫ ∞
φ

a
∂vi
∂a

fi (a) da,

as uππ (0) = 0 under our assumed preferences in Section 4.4. Combining both equations, and using

the fact that in the zero inflation steady state the bond price equals Q = δ
δ+r̄

, we obtain

2∑
i=1

∫ ∞
φ

∂vi
∂a

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (52)

In the zero inflation steady state, the value function v satisfies the HJB equation

ρvi(a) = uc(ci (a)) +

(
r̄a+

yi − ci (a)

Q

)
∂vi
∂a

+ λi [vj(a)− vi(a)] , i = 1, 2, j 6= i, (53)

where we have used uπ (0) = 0 under our assumed preferences. We also have the first-order

condition

ucc (ci (a)) = Q
∂vi
∂a
⇒ ci (a) = uc,−1

c

(
Q
∂vi
∂a

)
.

We guess and verify a solution of the form vi(a) = κia+ ϑi, so that ucc (ci) = Qκi. Using our guess

in (53), and grouping terms that depend on and those that do not, we have that

ρκi = r̄κi + λi (κj − κi) , (54)

ρϑi = uc
(
uc,−1
c (Qκi)

)
+
yi − uc,−1

c (Qκi)

Q
κi + λi (ϑj − ϑi) , (55)

for i, j = 1, 2 and j 6= i. In the limit as r̄ → ρ, equation (54) results in κj = κi ≡ κ, so that

consumption is the same in both states. The value of the slope κ can be computed from the
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boundary conditions.38 We can solve for {ϑi}i=1,2 from equations (55),

ϑi =
1

ρ
uc
(
uc,−1
c (Qκ)

)
+
yi − uc,−1

c (Qκ)

ρQ
κ+

λi (yj − yi)
ρ (λi + λj + ρ)Q

κ,

for i, j = 1, 2 and j 6= i. Substituting ∂vi
∂a

= κ in (52), we obtain

2∑
i=1

∫ ∞
φ

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (56)

Equation (56) is exactly the zero-inflation steady-state limit of equation (17) in the main text

(once we use the definitions of ā, ȳ and c̄), and is therefore satisfied in equilibrium. We have thus

verified our guess that π → 0.

B. Computational method: the stationary case

B.1 Exogenous monetary policy

We describe the numerical algorithm used to jointly solve for the equilibrium value function,

v (a, y), and bond price, Q, given an exogenous inflation rate π. The algorithm proceeds in 3 steps.

We describe each step in turn.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation Given π, the bond pricing

equation (12) is trivially solved in this case:

Q =
δ

r̄ + π + δ
. (57)

The HJB equation is solved using an upwind finite difference scheme similar to Achdou et al.

(2015). It approximates the value function v(a) on a finite grid with step ∆a : a ∈ {a1, ..., aJ},
where aj = aj−1 + ∆a = a1 + (j − 1) ∆a for 2 ≤ j ≤ J . The bounds are a1 = φ and aI = κ,
such that ∆a = (κ − φ) / (J − 1). We use the notation vi,j ≡ vi(aj), i = 1, 2, and similarly for the

policy function ci,j.

38The condition that the drift should be positive at the borrowing constraint, si (φ) ≥ 0, i = 1, 2, implies that

s1 (φ) = r̄φ+
y1 − uc,−1c (Qκ)

Q
= 0,

and

κ =
ucc (r̄φQ+ y1)

Q
.

In the case of state i = 2, this guarantees s2 (φ) > 0.
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Notice first that the HJB equation involves first derivatives of the value function, v′i(a) and

v′′i (a). At each point of the grid, the first derivative can be approximated with a forward (F ) or a

backward (B) approximation,

v′i(aj) ≈ ∂Fvi,j ≡
vi,j+1 − vi,j

∆a
, (58)

v′i(aj) ≈ ∂Bvi,j ≡
vi,j − vi,j−1

∆a
. (59)

In an upwind scheme, the choice of forward or backward derivative depends on the sign of the drift

function for the state variable, given by

si (a) ≡
(
δ

Q
− δ − π

)
a+

(yi − ci (a))

Q
, (60)

for φ ≤ a ≤ 0, where

ci (a) =

[
v′i(a)

Q

]−1/γ

. (61)

Let superscript n denote the iteration counter. The HJB equation is approximated by the following

upwind scheme,

vn+1
i,j − vni,j

∆
+ρvn+1

i,j =
(cni,j)

1−γ

1− γ −
ψ

2
π2+∂Fv

n+1
i,j sni,j,F1sni,j,F>0+∂Bv

n+1
i,j sni,j,B1sni,j,B<0+λi

(
vn+1
−i,j − vn+1

i,j

)
,

for i = 1, 2, j = 1, ..., J , where 1 (·) is the indicator function and

sni,,jF =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂F v

n
i,j

]1/γ

Q
, (62)

sni,j,B =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂Bv

n
i,j

]1/γ

Q
. (63)

Therefore, when the drift is positive (sni,,jF > 0) we employ a forward approximation of the deriv-

ative, ∂Fvn+1
i,j ; when it is negative (s

n
i,j,B < 0) we employ a backward approximation, ∂Bvn+1

i,j . The

term
vn+1
i,j −vni,j

∆
→ 0 as vn+1

i,j → vni,j. Moving all terms involving v
n+1 to the left hand side and the

rest to the right hand side, we obtain

vn+1
i,j − vni,j

∆
+ ρvn+1

i,j =
(cni,j)

1−γ

1− γ − ψ

2
π2 + vn+1

i,j−1α
n
i,j + vn+1

i,j βni,j + vn+1
i,j+1ξ

n
i,j + λiv

n+1
−i,j , (64)
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where

αni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

βni,j ≡ −
sni,j,F1sni,j,F>0

∆a
+
sni,j,B1sni,j,B<0

∆a
− λi,

ξni,j ≡
sni,j,F1sni,j,F>0

∆a
,

for i = 1, 2, j = 1, ..., J . Notice that the state constraints φ ≤ a ≤ 0 mean that sni,1,B = sni,J,F = 0.

In equation (64), the optimal consumption is set to

cni,j =

(
∂vni,j
Q

)−1/γ

. (65)

where

∂vni,j = ∂Fv
n
i,j1sni,j,F>0 + ∂Bv

n
i,j1sni,j,B<0 + ∂v̄ni,j1sni,F≤01sni,B≥0.

In the above expression, ∂v̄ni,j = Q(c̄ni,j)
−γ where c̄ni,j is the consumption level such that s (ai) ≡

sni = 0 :

c̄ni,j =

(
δ

Q
− δ − π

)
ajQ+ yi.

Equation (64) is a system of 2×J linear equations which can be written in matrix notation as:

1

∆

(
vn+1 − vn

)
+ ρvn+1 = un +Anvn+1

where the matrix An and the vectors vn+1 and un are defined by

An = −



βn1,1 ξn1,1 0 0 · · · 0 λ1 0 · · · 0

αn1,2 βn1,2 ξn1,2 0 · · · 0 0 λ1
. . . 0

0 αn1,3 βn1,3 ξn1,3 · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1 βn1,J−1 ξn1,J−1 0 · · · λ1 0

0 0 · · · 0 αn1,J βn1,J 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1 ξn2,1 · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J βn2,J



, vn+1 =



vn+1
1,1

vn+1
1,2

vn+1
1,3
...

vn+1
1,J−1

vn+1
1,J

vn+1
2,1
...

vn+1
2,J


(66)
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un =



(cn1,1)1−γ

1−γ − ψ
2
π2

(cn1,2)1−γ

1−γ − ψ
2
π2

...
(cn1,J )1−γ

1−γ − ψ
2
π2

(cn2,1)1−γ

1−γ − ψ
2
π2

...
(cn2,J )1−γ

1−γ − ψ
2
π2


.

The system in turn can be written as

Bnvn+1 = dn (67)

where ,Bn =
(

1
∆

+ ρ
)
I−An and dn = un + 1

∆
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial guess {v0
i,j}Jj=1,

i = 1, 2. Set n = 0. Then:

1. Compute {∂Fvni,j, ∂Bvni,j}Jj=1, i = 1, 2 using (58)-(59).

2. Compute {cni,j}Jj=1, i = 1, 2 using (61) as well as {sni,j,F , sni,j,B}Jj=1, i = 1, 2 using (62) and (63).

3. Find {vn+1
i,j }Jj=1, i = 1, 2 solving the linear system of equations (67).

4. If {vn+1
i,j } is close enough to {vn+1

i,j }, stop. If not set n := n+ 1 and proceed to 1.

Most computer software packages, such as Matlab, include effi cient routines to handle sparse

matrices such as An.

Step 2: Solution to the Kolmogorov Forward equation The stationary distribution of

debt-to-GDP ratio, f(a), satisfies the Kolmogorov Forward equation:

0 = − d

da
[si (a) fi(a)]− λifi(a) + λ−if−i(a), i = 1, 2. (68)

1 =

∫ ∞
φ

f(a)da. (69)

We also solve this equation using an finite difference scheme. We use the notation fi,j ≡ fi(aj).

The system can be now expressed as

0 = −
fi,jsi,j,F1sni,j,F>0 − fi,j−1si,j−1,F1sni,j−1,F>0

∆a
−
fi,j+1si,j+1,B1sni,j+1,B<0 − fi,jsi,,jB1sni,,jB<0

∆a
−λifi,j+λ−if−i,j,
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or equivalently

fi,j−1ξi,j−1 + fi,j+1αi,j+1 + fi,jβi,j + λ−if−i,j = 0, (70)

then (70) is also a system of 2× J linear equations which can be written in matrix notation as:

ATf = 0, (71)

whereAT is the transpose ofA = limn→∞A
n. Notice thatAn is the approximation to the operator

A and AT is the approximation of the adjoint operator A∗. In order to impose the normalization
constraint (69) we replace one of the entries of the zero vector in equation (71) by a positive

constant.39 We solve the system (71) and obtain a solution f̂ . Then we renormalize as

fi,j =
f̂i,j∑J

j=1

(
f̂1,j + f̂2,j

)
∆a

.

Complete algorithm The algorithm proceeds as follows.

Step 1: Individual economy problem. Given π, compute the bond price Q using (57) and

solve the HJB equation to obtain an estimate of the value function v and of the matrix A.

Step 2: Aggregate distribution. Given A find the aggregate distribution f .

B.2 Optimal monetary policy - MPE

In this case we need to find the value of inflation that satisfies condition (23). The algorith proceeds

as follows. We consider an initial guess of inflation, π(1) = 0. Set m := 1. Then:

Step 1: Individual economy problem problem. Given π(m), compute the bond price Q(m)

using (57) and solve the HJB equation to obtain an estimate of the value function v(m) and

of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

Step 3: Optimal inflation. Given f (m) and v(m), iterate steps 1-2 until π(m) satisfies40

2∑
i=1

J−1∑
j=2

ajf
(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

+ ψπ(m) = 0.

39In particular, we have replaced the entry 2 of the zero vector in (71) by 0.1.
40This can be done using Matlab’s fzero function.
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B.3 Optimal monetary policy - Ramsey

Here we need to find the value of the inflation and of the costate that satisfy conditions (27) and

(26) in steady-state. The algorith proceeds as follows. We consider an initial guess of inflation,

π(1) = 0. Set m := 1. Then:

Step 1: Individual economy problem problem. Given π(m), compute the bond price Q(m)

using (57) and solve the HJB equation to obtain an estimate of the value function v(m) and

of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

Step 3: Costate. Given f (m), v(m),compute the costate µ(m) using condition (26) as

µ(m) =
1

Q(m)

 2∑
i=1

J−1∑
j=2

ajf
(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

+ ψπ(m)

 .
Step 4: Optimal inflation. Given f (m), v(m) and µ(m), iterate steps 1-3 until π(m) satisfies

(
ρ− r̄ − π(m) − δ

)
µ(m) +

1

(Q(m))
2

 2∑
i=1

J−1∑
j=2

(
δaj + yi − c(m)

i,j

)
f

(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

 .
C. Computational method: the dynamic case

C.1 Exogenous monetary policy

We describe now the numerical algorithm to analyze the transitional dynamics, similar to the one

described in Achdou et al. (2015). With an exogenous monetary policy it just amounts to solve the

dynamic HJB equation (8) and then the dynamic KFE equation (14). Define T as the time interval

considered, which should be large enough to ensure a converge to the stationary distribution and

discretize it in N intervals of lenght

∆t =
T

N
.

The initial distribution f(0, a, y) = f0(a, y) and the path of inflation {πt}Tt=0 are given. We

proceed in three steps.

Step 0: The asymptotic steady-state The asymptotic steady-state distribution of the model

can be computed following the steps described in Section A. Given πN , the result is a stationary

destribution fN , a matrix AN and a bond price QN defined at the asymptotic time T = N∆t.
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Step 1: Solution to the Bond Pricing Equation The dynamic bond princing equation (12)

can be approximated backwards as

(r̄ + πn + δ)Qn = δ +
Qn+1 −Qn

∆t
,⇐⇒ Qn =

Qn+1 + δ∆t

1 + ∆t (r̄ + πn + δ)
, n = N − 1, .., 0, (72)

where QN is the asymptotic bond price from Step 0.

Step 2: Solution to the Hamilton-Jacobi-Bellman equation The dynamic HJB equation

(8) can approximated using an upwind approximation as

ρvn = un +Anvn +
(vn+1 − vn)

∆t
,

where An is constructing backwards in time using a procedure similar to the one described in Step

1 of Section B. By defining Bn =
(

1
∆

+ ρ
)
I−An and dn = un + Vn+1

∆t
, we have

vn = (Bn)−1 dn. (73)

Step 3: Solution to the Kolmogorov Forward equation Let A defined in (66) be the

approximation to the infinitesimal generator A. Using a finite difference scheme similar to the one
employed in the Step 2 of Section A, we obtain:

fn+1 − fn
∆t

= ATfn+1,⇐⇒ fn+1 =
(
I−∆tAT

)−1
fn, n = 1, .., N (74)

where f0 is the discretized approximation to the initial distribution f0(b).

Complete algorithm The algorith proceeds as follows:

Step 0: Asymptotic steady-state. Given πN , compute the stationary destribution fN , matrix
AN , bond price QN .

Step 1: Bond pricing. Given {πn}N−1
n=0 , compute the bond price path {Qn}N−1

n=0 using (72).

Step 2: Individual economy problem. Given {πn}N−1
n=0 and {Qn}N−1

n=0 solve the HJB equation

(73) backwards to obtain an estimate of the value function {vn}N−1
n=0 , and of the matrix

{An}N−1
n=0 .

Step 3: Aggregate distribution. Given {An}N−1
n=0 find the aggregate distribution forward f

(k)

using (74).
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C.2 Optimal monetary policy - MPE

In this case we need to find the value of inflation that satisfies condition (23)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , matrix AN , bond

price QN and inflation rate πN . Set π(0) ≡ {π(0)
n }N−1

n=0 = πN and k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price path Q(k) ≡ {Q(k)
n }N−1

n=0 using (72).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB equation (73)

backwards to obtain an estimate of the value function v(k) ≡ {v(k)
n }N−1

n=0 and of the matrix

A(k) ≡ {A(k)
n }N−1

n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution forward f (k) using

(74).

Step 4: Optimal inflation. Given f (k) and v(k), iterate steps 1-3 until π(k) satisfies

Θ(k)
n ≡

2∑
i=1

J−1∑
j=2

ajf
(k)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

+ ψπ(k)
n = 0.

This is done by iterating

π(k)
n = π(k−1)

n − ξΘ(k)
n ,

with constant ξ = 0.05.

C.3 Optimal monetary policy - Ramsey

In this case we need to find the value of the inflation and of the costate that satisfy conditions

(27) and (26)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , matrix AN , bond

price QN and inflation rate πN . Set π(0) ≡ {π(0)
n }N−1

n=0 = πN and k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price path Q(k) ≡ {Q(k)
n }N−1

n=0 using (72).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB equation (73)

backwards to obtain an estimate of the value function v(k) ≡ {v(k)
n }N−1

n=0 and of the matrix

A(k) ≡ {A(k)
n }N−1

n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution forward f (k) using

(74).
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Step 4: Costate. Given f (k) and v(k), compute the costate µ(k) ≡ {µ(k)
n }N−1

n=0 using (27):

µ
(k)
n+1 = µ(k)

n

[
1 + ∆t

(
ρ− r̄ − π(k) − δ

)]
+

∆t(
Q

(k)
n

)2

 2∑
i=1

J−1∑
j=2

(
δaj + yi − c(k)

n,i,j

)
f

(k+1)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

 ,
with µ(k)

0 = 0.

Step 5: Optimal inflation. Given f (k), v(k) and µ(k) iterate steps 1-4 until π(k) satisfies

Θ(k)
n ≡

2∑
i=1

J−1∑
j=2

ajf
(k)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

+ ψπ(k)
n −Q(k)

n µ(k)
n = 0.

This is done by iterating

π(k)
n = π(k−1)

n − ξΘ(k)
n .

D. An economy with costly price adjustment

In this appendix, we lay out a model economy with the following characteristics: (i) firms are

explicitly modelled, (ii) a subset of them are price-setters but incur a convex cost for changing

their nominal price, and (iii) the social welfare function and the equilibrium conditions are the

same as in the model economy in the main text.

Final good producer

In the model laid out in the main text, we assumed that output of the single consumption good

in each country k, ykt, is exogenous. From now on we ignore k subscripts for ease of exposition.

Consider now an alternative setup in which the single consumption good is produced by a repre-

sentative, perfectly competitive final good producer with the following Dixit-Stiglitz technology,

yt =

(∫ 1

0

y
(ε−1)/ε
it di

)ε/(ε−1)

, (75)

where {yit} is a continuum of intermediate goods and ε > 1. Let Pit denote the nominal price of

intermediate good i ∈ [0, 1]. The firm chooses {yit} to maximize profits, Ptyt−
∫ 1

0
Pityitdi, subject

to (75). The first order conditions are

yit =

(
Pit
Pt

)−ε
yt, (76)
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for each i ∈ [0, 1]. Assuming free entry, the zero profit condition and equations (76) imply Pt =

(
∫ 1

0
P 1−ε
it di)1/(1−ε).

Intermediate goods producers

Each intermediate good i is produced by a monopolistically competitive intermediate-good pro-

ducer, which we will refer to as ’firm i’henceforth for brevity. Firm i operates a linear production

technology,

yit = ztnit, (77)

where nit is labor input and zt is productivity. The latter is assumed to follow a 2-state Poisson

process: zt ∈ {z1, z2}, with z1 < z2, where the process jumps from z1 to z2 with intensity λ1 and

vice versa with intensity λ2.

At each point in time, firms can change the price of their product but face quadratic price

adjustment cost as in Rotemberg (1982). Letting Ṗit ≡ dPit/dt denote the change in the firm’s

price, price adjustment costs in units of the final good are given by

Ψt

(
Ṗit
Pit

)
≡ ψ

2

(
Ṗit
Pit

)2

C̃t, (78)

where C̃t is aggregate consumption. Let πit ≡ Ṗit/Pit denote the rate of increase in the firm’s

price. The instantaneous profit function in units of the final good is given by

Πit =
Pit
Pt
yit − wtnit −Ψt (πit)

=

(
Pit
Pt
− wt
zt

)(
Pit
Pt

)−ε
yt −Ψt (πit) , (79)

where wt is the perfectly competitive real wage and in the second equality we have used (76) and

(77). Without loss of generality, firms are assumed to be risk neutral and have the same discount

factor as households, ρ. Then firm i’s objective function is

E0

∫ ∞
0

e−ρtΠitdi,

with Πit given by (79). The state variable specific to firm i, Pit, evolves according to dPit = πitPitdt.

We conjecture that the aggregate state relevant to the firm’s decisions can be summarized by

(at, Pt, zt, t) ≡ (St, zt, t).41 Then firm i’s value function V (Pit, St, zh, t) ≡ Vh (Pit, St, t) must satisfy

41In particular, we later show that in equilibrium yt = zt, whereas wt and C̃t are also functions of (at, Pt, zt, t).
The states Pt and at follow the same laws of motion as in the main text.
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the following Hamilton-Jacobi-Bellman (HJB) equation,

(ρ+ λh)Vh (Pi, S, t) = max
πi

{(
Pi
P
− w

zh

)(
Pi
P

)−ε
y −Ψ (πi) + πiPi

∂Vh
∂Pi

(Pi, S, t)

}

+
∂Vh
∂t

(Pi, S, t) + λhVh′ (Pi, S, t) + sh (a, t)
∂Vh
∂a

(Pi, S, t) + πP
∂Vh
∂P

(Pi, S, t) ,

for h, h′ = 1, 2, h′ 6= h, where sh (a, t) is the drift of the country’s net assets a as defined in section

2.1 of the main text. The first order and envelope conditions of this problem are (we omit the

arguments of Vh to ease the notation),

ψπiC̃ = Pi
∂Vh
∂Pi

, (80)

(ρ+ λh)
∂Vh
∂Pi

=

[
ε
w

zh
− (ε− 1)

Pi
P

](
Pi
P

)−ε
y

Pi
+ πi

(
∂Vh
∂Pi

+ Pi
∂2Vh
∂P 2

i

)
+
∂2Vh
∂t∂Pi

+ λh
∂Vh′

∂Pi
+ sh (a, t)

∂2Vh
∂a∂Pi

+ πP
∂2Vh
∂P∂Pi

. (81)

In what follows, we will consider a symmetric equilibrium in which all firms choose the same price:

Pi = P, πi = π for all i. After some algebra, it can be shown that the above conditions imply the

following pricing Euler equation,42[
ρ− dC̃h/dt

C̃h (a, t)
+ λh

(
1− C̃h′ (a, t)

C̃h (a, t)

)]
π (t) =

ε− 1

ψ

(
ε

ε− 1

w

zh
− 1

)
zh

C̃h (a, t)
+ π′ (t) , (82)

where C̃h ≡ C̃h (a, t) is consumption in state h = 1, 2, and similarly for h′ 6= h. Equation (82)

determines the market clearing wage w as a function of the country’s state: w = wh (a, t) , h = 1, 2.

Households

The representative household’s preferences are given by

E0

∫ ∞
0

e−ρt log
(
C̃t

)
dt,

42The proof is available upon request.
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where C̃t is household consumption of the final good. Define total real spending as the sum of

household consumption and price adjustment costs,

ct ≡ C̃t +

∫ 1

0

Ψt (πit) di

= C̃t +
ψ

2
π2
t C̃t, (83)

where in the second equality we have used the definition of Ψt (eq. 78) and the symmetry across

firms in equilibrium. Instantaneous utility can then be expressed as

log(C̃t) = log (ct)− log

(
1 +

ψ

2
π2
t

)
= log (ct)−

ψ

2
π2
t +O

(∥∥∥∥ψ2 π2
t

∥∥∥∥2
)
, (84)

where O(‖x‖2) denotes terms of order second and higher in x. Expression (84) is the same as

the utility function in the main text (eq. 18), up to a first order approximation of log(1 + x)

around x = 0, where x ≡ ψ
2
π2 represents the percentage of aggregate spending that is lost to price

adjustment. For our baseline calibration (ψ = 5.5), the latter object is relatively small even for

relatively high inflation rates, and therefore so is the error in computing the utility losses from

price adjustment. Therefore, the utility function used in the main text provides a fairly accurate

approximation of the welfare losses caused by inflation in the economy with costly price adjustment

described here.

We assume that the household supplies one unit of labor input inelastically: nt = 1. It also

receives firms’profits in a lump-summanner. Thus the household’s real income equals wt+
∫ 1

0
Πitdi.

In the symmetric equilibrium, each firm’s real profits equal Πit = yt−wt− ψ
2
π2
t C̃t. Therefore, real

primary surplus equals

wt +

∫ 1

0

Πitdi− C̃t = yt −
ψ

2
π2
t C̃t − C̃t

= yt − ct,

as in the main text, where in the second equality we have used (83). It is then trivial to show that

the household’s maximization problem is exactly the same as in the main text. As a result, the

policy function for consumption is also the same: ct = ch (at, t), h = 1, 2.
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Market clearing and equilibrium

In the symmetric equilibrium, each firm’s labor demand is nit = yit/zt = yt/zt. Since labor supply

equals one, labor market clearing requires∫ 1

0

nitdi = yt/zt = 1⇔ yt = zt.

Therefore, in equilibrium output is simply equal to exogenous productivity zt.

Notice finally that C̃t = ch (a, t) /[1 + ψ
2
π (t)2] ≡ C̃h (a, t), h = 1, 2. Likewise, the pricing Euler

equation derived above (equation 82) determines the market clearing wage given the country’s

state: wt = wh (a, t), h = 1, 2. We thus verify our previous conjecture that (a, zh, P, t) are the

relevant aggregate states for firms.
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