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Abstract

When can structural shocks be recovered from observable data? We present

a necessary and sufficient condition that gives the answer for any linear model.

Invertibility, which requires that shocks be recoverable from current and past

data only, is sufficient but not necessary. This means that semi-structural

empirical methods like structural vector autoregression analysis can be applied

even to models with non-invertible shocks. We illustrate these results in the

context of a simple model of consumption determination with productivity

shocks and non-productivity noise shocks. In an application to postwar U.S.

data, we find that non-productivity shocks account for a large majority of

fluctuations in aggregate consumption over business cycle frequencies.
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1 Introduction

Economists often explain economic outcomes in terms of structural “shocks,” which

represent exogenous changes in underlying fundamental processes. Typically, these

shocks are not directly observed; instead, they are inferred from observable processes

through the lens of an economic model. Therefore, an important question is whether

the hypothesized shocks can indeed be recovered from the observable data.

We present a simple necessary and sufficient condition under which structural

shocks are recoverable for any linear model. The model defines a particular linear

transformation from shocks to observables, and our condition amounts to making sure

that this transformation does not lose any information. This can be done by checking

whether the matrix function summarizing the transformation is full column rank

almost everywhere. If it is, then the observables contain at least as much information

as the shocks, and knowledge of the model and the observables is enough to perfectly

infer the shocks.

Our approach differs from existing literature because we do not focus on the

question of whether shocks are recoverable from only current and past observables.

This more stringent “invertibility” requirement is often violated in economic models.1

For example, it may be violated if structural shocks are anticipated by economic

agents.2 However, in many cases it is still possible to recover shocks using future

observables as well. Because there is no reason in principle to constrain ourselves to

recover shocks only from current and past data, we focus on the question of whether

shocks are recoverable from the data without any temporal constraints.

Non-invertibility is usually viewed as a problem from the perspective of using

semi-structural empirical methods in the spirit of Sims (1980). The reason seems to

be that that the first step of these methods usually involves obtaining an invertible

reduced-form representation of the data. But if the structural model of interest is

not invertible, then it is impossible that the reduced-form shocks be equal to the

underlying structural shocks. As a result, it is common practice first to verify that a

model is invertible (using tests such as the one in Fernández-Villaverde et al. (2007)),

and if this can’t be done, then to resort to fully structural methods, which impose

1For some examples, see Hansen and Sargent (1980, 1991), Lippi and Reichlin (1993, 1994), Futia

(1981), and Quah (1990).
2As in Cochrane (1998), Leeper et al. (2013), Schmitt-Grohé and Uribe (2012), and Sims (2012).
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additional theoretical restrictions on the data generating process.3

We respond to these concerns by adopting a different perspective on semi-

structural methods.4 We view the reduced-form model simply as a statistical way

of characterizing the information in the autocovariance function of the observable

processes. Given this function, the structural step involves imposing a subset of

the economic model’s theoretical restrictions to obtain a “structural representation”

with shocks that are the structural shocks of interest. If the structural representation

happens to be non-invertible, so be it. Just because it may be desirable to estimate

an invertible model in the reduced-form step, that should not in any way tie our

hands when we get to the structural step. There are generally many different

representations consistent with the same autocovariance function, and it is the role

of economic theory to help us pick out an economically interesting one.

From this perspective, it is also easy to see that the reduced-form model doesn’t

have to be invertible either. The econometrician could easily estimate a non-invertible

or even non-parametric model in the reduced-form step. All that is required is to

obtain a characterization of the autocovariance function of the observable processes.

Naturally, some reduced-form models will do a better job than others in specific

contexts. Our purpose in this paper is not to advocate for any particular one. Instead,

it is to determine when it is possible to recover structural shocks of interest given a

satisfactory reduced-form representation of the autocovariance structure of the data.

One strand of the macroeconomic literature in which semi-structural methods have

been eschewed involves models with purely belief-driven fluctuations. In particular,

Blanchard et al. (2013) argue that structural vector autoregression (VAR) analysis

cannot be applied to models with non-fundamental noise shocks because they are

inherently non-invertible. In a determinate rational expectations model, if economic

agents could tell on the basis of current and past data that a shock was pure noise,

they would not respond to it. Therefore it is impossible to recover noise shocks from

current and past data.5

3This is the original remedy proposed by Hansen and Sargent (1991), and has been adopted by

a large part of the literature on anticipated shocks. See the arguments in Schmitt-Grohé and Uribe

(2012); Barsky and Sims (2012); and Blanchard et al. (2013).
4In fact, this is the original perspective taken by Sims (1980); see his description on p.15. In

his application, he uses an invertible vector autoregression as the reduced-form model, but neither

invertibility nor vector autoregressions are necessary features of his proposed empirical strategy.
5For a more extended discussion of the limitations of using structural VAR analysis in this
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While it is true that noise shocks are not invertible, they are often recoverable.

As an application of our results, we show that our recoverability condition is satisfied

in an analytically convenient model of consumption determination with noise shocks

taken from Blanchard et al. (2013). We then perform a Monte Carlo exercise to show

how structural VAR analysis can be applied in this situation. Finally, we apply the

same procedure to a sample of postwar U.S. data on consumption and productivity.

We find that less than 15% of the business-cycle variation in consumption can be

attributed to productivity shocks, with all remaining fluctuations attributed to non-

productivity noise. This finding represents a challenge for theories of consumption

determination that rely primarily on beliefs about productivity. It implies that in any

such theory, beliefs about productivity must be fluctuating in ways that are mostly

unrelated to productivity itself.

A few papers have suggested that semi-structural methods are not necessarily in-

applicable when invertibility fails. Lippi and Reichlin (1994) examine a particular

subset of non-invertible representations (“basic” ones) given an invertible reduced-

form model. Sims and Zha (2006) propose an iterative algorithm to check whether

certain structural shocks are “approximately invertible,” even if they are not invert-

ible. Dupor and Han (2011) develop a four-step procedure to partially identify struc-

tural impulse responses whether or not non-invertibility is present. Plagborg-Møller

(2017) suggests that estimating a moving average reduced-form model rather than an

autoregression can help avoid concerns of non-invertibility. In a paper closely related

to our empirical application, Forni et al. (2017a) write down a particular model with

noise shocks and show that it is possible to identify those shocks by finding appro-

priate dynamic rotations of reduced-form VAR residuals. Forni et al. (2017b) also

perform a similar analysis in an asset-pricing context.

These papers tend to give the impression that non-invertibility is a problem, but

one that can be circumvented in some special cases or with additional effort. For

example, one might need to use a different reduced-form model, or rely on additional

theoretical restrictions to select one non-invertible representation among many. By

contrast, we argue that non-invertibility is never a problem, at least not when it comes

to using semi-structural methods. What really matters is recoverability. Neither a

particular reduced-form model, nor additional theoretical restrictions are required to

use semi-structural methods.

literature, see the review article by Beaudry and Portier (2014).
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2 Recoverability Condition

This section presents our main theorem. We begin with some notation and definitions.

Consider an arbitrary nξ dimensional wide-sense stationary process {ξt}, where the

parameter t takes on all integer values.6 We letH(ξ) denote the Hilbert space spanned

by the variables ξk,t for k = 1, . . . , nξ and −∞ < t < ∞, closed with respect to

convergence in mean square. Similarly, we let Ht(ξ) denote the subspace spanned by

these variables over all k but only up through date t. We can then define recoverability

in terms of the relationship between {ξt} and another nη dimensional stationary

process {ηt} with which it is stationarily correlated.

Definition 1. {ηt} is “recoverable” from {ξt} if

H(η) ⊆ H(ξ).

This says that each of the variables ηk,t is contained in the space H(ξ).7 That is,

each of these variables is perfectly revealed by the information contained in {ξt}. In

the Gaussian case, this can be expressed in terms of mathematical expectations as

ηk,t = E[ηk,t|H(ξ)].

Recoverability is different from the familiar concept of invertibility, which has to

do with whether one collection of random variables can be recovered only from the

current and past history of another.

Definition 2. {ηt} is “invertible” from {ξt} if

Ht(η) ⊆ Ht(ξ) for all −∞ < t <∞.

Since Ht(ξ) ⊂ H(ξ), it is easy to see that invertibility is sufficient but not necessary

for recoverability.

It is important to observe that both recoverability and invertibility are popu-

lation concepts. As such, they are closely related to the econometric concept of

identification. If a certain process is recoverable from another, this can be taken to

6Analogues to all our results in the case of continuous time, when t takes on all real values, can

be found in the Supplementary Material.
7Plagborg-Møller and Wolf (2018) adopt this same definition of recoverability in their recent work

on variance decompositions in linear projection instrumental variables models.
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mean that the former is identified from the latter. Likewise, if a process is invert-

ible form another, this means that the value of the former at each date is identified

from the current and past history of the latter. Of course, this use of “identification”

needs to be understood in an appropriately general sense. Its object here is not a

finite-dimensional vector of numbers, as is typically the case; rather, it refers to an

infinite-dimensional family of random variables.8

An alternative but equivalent characterization of recoverability can be given in

terms of an appropriate Hilbert space of complex vector functions. We write the

spectral representation of {ξt} as

ξt =

∫ π

−π
eiλtΦξ(dλ), (1)

where Φξ(dλ) is its associated random spectral measure. We say that a 1×nξ dimen-

sional vector function ψ(λ) belongs to the space L2(Fξ) if 9

∫
ψ(λ)Fξ(dλ)ψ(λ)∗ ≡

nξ∑
k,l=1

∫
ψk(λ)ψl(λ)Fξ,kl(dλ) <∞.

In this expression, Fξ(dλ) denotes the spectral measure of {ξt} and the asterisk de-

notes complex conjugate transposition.10 If we define the scalar product

(ψ1, ψ2) =

∫
ψ1(λ)Fξ(dλ)ψ2(λ)∗,

and do not distinguish between two vector functions that satisfy ‖ψ1 − ψ2‖ = 0, then

L2(Fξ) becomes a Hilbert space. Using these definitions, the following lemma gives

an alternative charaterization of recoverability. Its proof is in the Appendix, together

with all other proofs.

Lemma 1. {ηt} is recoverable from {ξt} if and only if there exists an nη × nξ matrix

function ψ(λ) with rows in L2(Fξ) such that

ηt =

∫
eiλtψ(λ)Φξ(dλ) for all t. (2)

8This sense of identification can be made more precise by establishing a connection with the

literature on the identification of nonparametric functions, but because it would take us too far

afield, we do not pursue such a connection in this paper.
9From now on, whenever the limits of integration are omitted, we will understand them to be

−π, π unless otherwise indicated.
10That is, Fξ,kl(∆) ≡ E[Φξ,k(∆)Φξ,l(∆)] for k, l = 1, . . . , nξ and any Borel set ∆.
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We will say that a process {ηt} can be obtained from {ξt} by a “linear transfor-

mation” whenever it has a representation of the form in equation (2), and we will

call ψ(λ) the “spectral characteristic” associated with this transformation. Using this

language, Lemma (1) says that {ηt} is recoverable from {ξt} if and only if it can be

obtained from {ξt} by a linear transformation.

In this paper, we are interested in determining the conditions under which a col-

lection of structural economic shocks can be recovered from a collection of observable

variables. Letting {yt} denote the ny dimensional observable process and {εt} the nε

dimensional structural shock process, we make the following two assumptions. The

first puts weak technical restrictions on the observables, the second defines the theo-

retical economic model as a linear transformation from the structural shocks to the

observables.

Assumption 1. {yt} is stationary in the wide sense and linearly regular. That is,

E[yk,t] is a constant and E[|yk,t|2] <∞ for all k = 1, . . . , ny, the function Bkl(t, s) =

E[yk,tyl,s] depends only on t− s for all k, l = 1, . . . , ny, and ∩∞t=−∞Ht(y) = 0.

Assumption 2. {yt} can be obtained from {εt} by a linear transformation with spec-

tral characteristic ϕ(λ), where {εt} is a zero-mean process with orthonormal values.

That is,

yt =

∫
eiλtϕ(λ)Φε(dλ) for all t (3)

with E[εk,t] = 0 and E[|εk,t|2] = 1 for all k = 1, . . . , nε, and E[εk,tεl,s] = 0 for t 6= s

and all k, l = 1, . . . , nε, as well as for k 6= l and all t, s.

Example 1. A special case of the model in equation (3) is when the observables are

related to the structural shocks by a linear state-space structure of the form

(observation) yt = Axt (4)

(state) xt = Bxt−1 + Cεt,

where xt is an nx dimensional state vector. In this case, the spectral characteristic

ϕ(λ) in equation (3) takes the form

ϕ(λ) = A(Inx −Be−iλ)−1C. (5)

6



The solution to a wide class of linear (or linearized) dynamic equilibrium models can

be written in this form.11 �

By Lemma (1), the model in equation (3) says that the observables are recoverable

with respect to the structural shocks. Naturally, a knowledge of the inputs of the

system is enough to perfectly reveal the outputs. We would like to know when the

same is true in the opposite direction. That is, when can the shocks be recovered

from the observables? The following theorem provides the answer.

Theorem 1 (Recoverability). Under Assumptions (1) and (2), the structural shocks

{εt} are recoverable from the observables {yt} if and only if ϕ(λ) is full column rank

for almost all λ.

The logic behind this result can be understood by analogy with the static case. If

ϕ(λ) = ϕ is a constant matrix, not depending on λ, then the model in equation (3)

reduces to

yt = ϕεt.

In order for ϕ to have a left-inverse, ψ, such that ψϕ = Inε , it is necessary and

sufficient that the matrix ϕ have full column rank. In that case we can pre-multiply

both sides of the previous equation by ψ to obtain the solution εt = ψyt. It turns out

that this logic continues to apply in the dynamic case when ϕ(λ) does depend on λ,

with the added proviso that this matrix function may fail to be full column rank on

a set of at most measure zero.

Before moving on, we make a couple of remarks regarding the theorem.

Remark 1. A corollary of the theorem is that a necessary condition for the structural

shocks to be recoverable is that there be at least as many observable variables as

shocks, ny ≥ nε. This is intuitive; it isn’t possible to recover nε separate sources of

random variation without observations of at least nε random processes.

Remark 2. While in many cases, it is possible to check this condition analytically,

there is also a simple numerical procedure that can be used as well. The linear

regularity of {yt} ensures that its spectral density, and therefore ϕ(λ), has a constant

rank for almost all λ. This means that we can draw a number λu randomly from the

interval [−π, π] and simply check whether ϕ(λu) is full column rank.

11Some authors include errors in the observation equation as well as the state equation. Those

representations can be rewritten in the form of equation (4) by augmenting the state vector.
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For the purposes of comparison, we would also like to have a set of necessary

and sufficient conditions for the invertibility of the structural shocks. It does not

seem that any conditions of this type have been proven in the existing literature, at

least not at the level of generality we consider here.12 Since invertibility is stronger

than recoverability, the condition in Theorem (1) must always be satisfied if we are to

recover the shocks from current and past observables. Therefore, we can suppose that

ϕ(λ) is full column rank almost everywhere as we look for the additional restrictions

that are needed.

The key step is to recall that, using Wold’s decomposition theorem, it is possible

to represent {yt} by a linear transformation of the form

yt =

∫
eiλtγ(λ)Φw(dλ), (6)

where Φw(dλ) is the random spectral measure of an ry dimensional mean-zero process

with orthonormal values, {wt}, which has the property that the variables ws, s ≤ t,

form an orthonormal basis in Ht(y) at each date, and ry is the rank of fy(λ) for

almost all λ.13 This implies that Ht(w) = Ht(y) for all t, so {wt} is both invertible

and recoverable from {yt}. Using the spectral characteristic from this representation,

we can state the following result.

Theorem 2 (Invertibility). Under Assumptions (1) and (2), the structural shocks

{εt} are invertible from the observables {yt} if and only if they are recoverable and

1

2π

∫
eiλsψ(λ)γ(λ)dλ = 0 for all s < 0,

where ψ(λ) is any nε × ny matrix function satisfying ψ(λ)ϕ(λ) = Inε for almost all

λ, and γ(λ) comes from some version of Wold’s decomposition of {yt}.

The following example uses three very simple models to illustrate the different

possible combinations of shock recoverability and invertibility that can arise. In later

sections, we will consider models with more explicit economic motivations.

12There are places where sufficient conditions appear, however. The condition of Fernández-

Villaverde et al. (2007) is one example. Necessary and sufficient conditions for certain types of

autoregressive and moving average models can be found in Brockwell and Davis (1991). Any “fun-

damental” process, in the sense of Rozanov (1967), is invertible, but the converse is not true. There-

fore, conditions that determine whether a process is fundamental are sufficient but not necessary for

invertibility as we have defined it.
13See Rozanov (1967), Ch. 2.
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Example 2. In each of the following three models, we assume that the structural

shocks make up a zero-mean process with orthonormal values.

(i) Recoverable and invertible: yt = εt+1, ⇒ ϕ(λ) = eiλ.

(ii) Recoverable but not invertible: yt = εt−1, ⇒ ϕ(λ) = e−iλ.

(iii) Neither recoverable nor invertible:

y1,t = ε1,t + ε2,t+1

y2,t = ε1,t−1 + ε2,t

, ⇒ ϕ(λ) =

[
1 eiλ

e−iλ 1

]
.

�

We conclude this section with a remark about our use of wide-sense stationarity.

Remark 3. Definitions (1) and (2) apply to wide-sense stationary processes. How-

ever, they can be generalized to allow for deviations from stationarity. For example,

consider a process {ξt} that is stationary only after suitable differencing. That is,

∆pξt = ζt (7)

for some integer p > 0, where {ζt} is a stationary process. In this case we can define

a new process

ξ̃t(θ) ≡
∫
eiλt

1

(1− θe−iλ)p
Φζ(dλ), (8)

which is stationary for each value of θ in [0, 1). We can say that a process {ηt} is

recoverable (or invertible) from {ξt} whenever {η̃t(θ)} is recoverable (or invertible)

from {ξ̃t(θ)} for almost all θ ∈ [0, 1).

3 Partial Recoverability

This section extends our results from the previous section to cover situations in which,

within a single model, some shocks may be recoverable while others may not. Even

though the results in this section are technically more general, they require more of

an investment in terms of notation and machinery. On a first reading, it is possible

to skip this section and jump directly to Section (4).

Given a system of the form (3), the condition in Theorem (1) determines whether

the entire vector process {εt} can be recovered. That is, it determines whether {εk,t}
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can be recovered for all k = 1, . . . , nε. However, in certain situations it may be

possible to recover some but not all of these shocks. We refer to these situations as

ones of “partial recoverability.” The following example provides a simple illustration.

Example 3. In a model of the form (3), suppose that ny = nε = 3 and that the

spectral characteristic ϕ(λ) is given by

ϕ(λ) =

 1 eiλ 0

e−iλ 1 0

0 0 1

 .
This matrix function has a rank of 2 for almost all λ, since the first two columns are

linearly dependent for any value of λ in [−π, π]. Given observations of {yt}, it is not

possible to disentangle {ε1,t} from {ε2,t}, so according to Theorem (1), {εt} is not

recoverable. But evidently, it is possible to recover {ε3,t}, because

ε3,t = y3,t

for all t. �

What we would like is a necessary and sufficient condition that is capable of

determining which, if any, of the scalar processes {εk,t}, k = 1, . . . , nε are recoverable.

To find such a condition, we take advantage of the fact that recoverability is equivalent

to error-free prediction. First, we find the best linear forecast of the values of the

shock process {εt} on the basis of the observables. This entails finding the projections

ε̃k,t of the unobserved variables {εk,t} on the subspace H(y). Then, we determine a

set of conditions on the model in equation (3) which ensures that the errors in these

forecasts are zero. This can happen if and only if εk,t is an element of H(y); that is,

if and only if {εk,t} is recoverable from {yt}.
In the course of solving the linear prediction problem, it is helpful for us to define

the “pseudoinverse” of a matrix function.

Definition 3. Let ϕ(λ) be an arbitrary m× n matrix function. Then its “pseudoin-

verse,” ϕ(λ)†, is the n×m matrix function ϕ(λ)† which satisfies the equations

ϕ(λ)†ϕ(λ)ϕ(λ)∗ = ϕ(λ)∗ and ϕ(λ)†(ϕ(λ)†)∗ϕ(λ)∗ = ϕ(λ)†

for almost all λ.
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The existence and uniqueness of this function follows immediately from the ex-

istence and the uniqueness of the ordinary matrix pseudoinverse; see, for example,

Penrose (1955). The only difference is that uniqueness must be understood to mean

that any other matrix function satisfying these equations is equal to ϕ(λ)† almost

everywhere. Analogously to the ordinary matrix case, the function ϕ(λ)† has the

following properties, which are understood to hold for almost all λ,

(i) ϕ(λ)†ϕ(λ) = In if and only if rank(ϕ(λ)) = nε

(ii) ϕ(λ)† = ϕ(λ)−1 if and only if ϕ(λ) is nondegenerate

With this notation, we can state the following lemma.

Lemma 2 (Optimal Smoothing). Under Assumptions (1) and (2), the stationary

process {ε̃t} consisting of the best linear estimates of {εt} on the basis of the values

yk,s, k = 1, . . . , ny, −∞ < s < ∞, is obtained from {yt} by a linear transformation

of the form

ε̃t =

∫
eiλtϕ(λ)†Φy(dλ).

As in the case of Theorem (1), the logic behind this result can be understood by

analogy with the static case. If ϕ(λ) = ϕ, where ϕ does not have full column rank,

then the least-squares estimate, ε̃t, of εt based on yt is given by

ε̃t = ϕ†yt.

Returning to the fully general case, we know that {εk,t} is recoverable if and only

if ε̃k,t = εk,t for all t. From the expression for ε̃t in Lemma (2), it is easy to see that

this can be true if and only if the k-th row of the product ϕ(λ)†ϕ(λ) equals the k-th

row of the nε dimensional identity matrix. This is the content of the next theorem.

Theorem 3 (Shock-Specific Recoverability). Under Assumptions (1) and (2), the

process {εk,t} is recoverable from the observables {yt} if and only if

δk(Inε − ϕ(λ)†ϕ(λ)) = 0

for almost all λ, where δk denotes a 1× nε constant vector with components δkk = 1

and δkl = 0 for k 6= l.
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Remark 4. It can be helpful to consider how this result generalizes Theorem (1). If

the condition in Theorem (3) is satisfied for all k = 1, . . . , nε, then

ϕ(λ)†ϕ(λ) = Inε

for almost all λ, which is equivalent to the requirement that ϕ(λ) have full column

rank almost everywhere.

Remark 5. The condition in the theorem can be easily checked numerically. We

can draw a number λu randomly from its domain and compute the matrix ϕ(λu)
†

numerically. An efficient way to do this is to use the singular value decomposition of

ϕ(λu), as Matlab does when given the command ϕ(λu) = pinv(ϕ(λu)). Then we can

check which rows of the matrix

Inε − ϕ(λu)
†ϕ(λu)

are zero vectors. Those rows correspond to shocks that are recoverable. It is also

possible to show that, in Matlab, an equivalent procedure is to execute the command

N = null(ϕ(λu)),

and check which rows of N are zero vectors. If this command returns an empty

matrix, then ϕ(λu) is full column rank, in which case all the shocks are recoverable.

Just as it is possible for the structural shocks to be partially recoverable, so also

it is possible for them to be partially invertible. Theorem (2) can be generalized in a

straightforward way to cover this latter possibility. Namely, we can find the best linear

forecast of the values of the shock process {εt} only on the basis of the information

contained in current and past observables. This involves finding the projections, ε̂k,t

of the unobserved variables εk,t on the subspace Ht(y).14

Let us denote by [ϕ(λ)]+ the matrix function

[ϕ(λ)]+ =
∞∑
s=0

ϕse
−iλs

for any matrix function ϕ(λ) whose elements are square integrable, where {ϕs} are

the Fourier coefficients of ϕ(λ). Then the solution to the linear filtering problem is

given by the following theorem.

14This same basic approach was proposed by Sims and Zha (2006) and later used by Forni et al.

(2017), but it has not been implemented at the same level of generality we consider here.
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Lemma 3 (Optimal Filtering). The stationary process {ε̂t} consisting of the best

linear estimates of {εt} on the basis of the values yk,s, k = 1, . . . , ny, −∞ < s ≤ t, is

obtained from {yt} by a linear transformation of the form

ε̂t =

∫
eiλt[ϕ(λ)†γ(λ)]+γ(λ)†Φy(dλ),

where γ(λ) comes from some version of Wold’s decomposition of {yt}.

Using this lemma, we arrive at the following theorem.

Theorem 4 (Shock-Specific Invertibility). Under Assumptions (1) and (2), the pro-

cess {εk,t} is invertible from the observables {yt} if and only if

δk(Inε − [ϕ(λ)†γ(λ)]+γ(λ)†ϕ(λ)) = 0

for almost all λ, where γ(λ) comes from some version of Wold’s decomposition of

{yt}, and δk denotes a 1 × nε constant vector with components δkk = 1 and δkl = 0

for k 6= l.

Remark 6. It can be helpful to see how this result generalizes Theorem (2). If {εk,t}
is recoverable, then Lemma (2) implies that

εk,t =

∫
eiλtδkϕ(λ)†γ(λ)Φw(dλ).

Comparing this with the expression for ε̂t in Lemma (3), we can see that εk,t = ε̂k,t if

and only if δk[ϕ(λ)†γ(λ)]+ = δkϕ(λ)†γ(λ) for almost all λ. Therefore, an alternative

necessary and sufficient condition for the invertibility of {εk,t} is that it is recoverable

and
1

2π

∫
eiλsδkϕ(λ)†γ(λ)dλ = 0 for all s < 0. (9)

Of course, if this is true for all k = 1, . . . , nε, then we again obtain the same condition

as in Theorem (2).

4 Semi-Structural Analysis

This section describes the relationship between recoverability and semi-structural

empirical analysis. We argue that recoverability is the key condition for performing

this type of analysis, and explain why invertibility is not necessary. We begin with a

brief review, which helps to frame the discussion.
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4.1 Importance of Recoverability

The semi-structural approach, which goes back to the seminar paper of Sims (1980),

represents a hybrid between purely statistical and fully structural approaches to an-

alyzing economic time series. Purely statistical models can provide good empirical

fit, but are not amenable to economic interpretation. By contrast, fully structural

models are amenable to economic interpretation, but require imposing what some

have seen as “incredible” (to borrow Sims’ term) theoretical restrictions. The idea

behind the semi-structural approach, which has by now found wide acceptance in the

macroeconomic literature, is to combine the empirical flexibility of purely statistical

models with a “credible” subset of the restrictions implied by a fully structural model

(or a class of such models).

This combination is achieved in two steps: a reduced-form step and a struc-

tural step. The reduced-form step involves using statistical methods to obtain an

empirically adequate characterization of the spectral density (equivalently, the auto-

covariance function) of the observable process. The goal of this step is to summarize

the data. The spectral density defines a set of observationally equivalent reduced-

form representations of the observable process. The structural step then involves

imposing economic restrictions to select one reduced-form representation from this

set, which has the property that, under the null hypothesis that the structural model

is correctly specified, it is the structural representation. There exists a reduced-form

representation with this property only if the structural shocks are recoverable from

the observables.

To explain these steps in more detail, we introduce the following definition of a

reduced-form representation.

Definition 4. In a “reduced-form representation,” {yt} is related to a zero-mean

process with orthonormal values {ut} by a linear transformation with spectral char-

acteristic ρ(λ), which has full column rank for almost all λ. That is,

yt =

∫
eiλtρ(λ)Φu(dλ) for all t (10)

where ρ(λ) is an ny × ry matrix function, ry is the rank of fy(λ) for almost all λ,

E[uk,t] = 0 and E[|uk,t|2] = 1 for all k = 1, . . . , nu, and E[uk,tul,s] = 0 for t 6= s and

all k, l = 1, . . . , nε, as well as for k 6= l and all t, s.
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Importantly, ρ(λ) is full column rank for almost all λ, which, by Theorem (1) means

that the reduced-form shocks {ut} are always recoverable. This is part and parcel of

what it means for the shocks to be “reduced-form.”

The reduced-form step involves using statistical methods to characterize the spec-

tral density fy(λ) from a time series of observables. It is possible to do this whenever

the observables are linearly regualr and wide-sense stationary, even if the structural

model in equation (3) is not correctly specified. In other words, whenever Assumption

(1) is satisfied, even if Assumption (2) is not. The spectral density defines a set of

observationally equivalent reduced-form representations of the type in Definition (4).

Each reduced-form representation corresponds to an ny × ry matrix function, with

rows in L2(Fu), which satisfies the equation

fy(λ) =
1

2π
ρ(λ)ρ(λ)∗ (11)

for almost all λ. We let R(fy) denote the set of all such functions.

Common practice in this first step, following the application in Sims (1980), is to

use an autoregressive model to characterize the spectral density of observables. But of

course, nothing requires the use of such a statistical model. One could consider models

with moving average terms as well as autoregressive terms; one could consider non-

invertible versions of these models as well as invertible ones; one could even take an

entirely non-parametric approach. The objective is only to characterize the spectral

density, and statistical criteria for evaluating goodness of fit can be used to guide this

part of the analysis.

In the structural step, an estimate of the structural representation is chosen from

among the set of reduced-form representations defined by equation (11). This is

accomplished by imposing theoretical restrictions with the following two properties:

(P1) they identify exactly one reduced-form representation in this set, regardless of

whether Assumption (2) is satisfied, and

(P2) the reduced-form representation they identify is the structural representation if

Assumption (2) is satisfied.

These properties help to clarify the sense in which the restrictions imposed in the

structural step are a “credible subset” of the restrictions implied by the fully structural

model. The first says that they are credible because they respect all the properties
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of the data, regardless of whether the structural model is correctly specified. This

is because they identify a reduced-form representation, which is always consistent

with the spectral density of observables by definition. The second says they are a

subset of the restrictions implied by the structural representation, because the full

set of restrictions may not be consistent with the spectral density of observables if

Assumption (2) is not satisfied. This can happen when the structural model is both

“over-identified” and incorrectly specified.

When is it possible to impose restrictions of this type? Only if the structural

shocks are recoverable from the observables. To see why, suppose that they are not

recoverable. In that case, it is not possible to identify the structural representation

from the set of reduced-form representations even if the structural representation is

correctly specified, and the full set of restrictions are imposed. But then there can

be no hope of identifying the structural representation by imposing only a subset of

those restrictions. We summarize this point in the following theorem.

Theorem 5. Suppose that Assumption (1) is satisfied. Then there exists a matrix

function ϕ̂(λ) ∈ R(fy) with the property that ϕ̂(λ) = ϕ(λ) if Assumption (2) is also

satisfied only if the structural shocks {εt} are recoverable from the observables {yt}.

Of course, the condition that the structural shocks are recoverable doesn’t provide

any direction regarding which specific subset of theoretical restrictions should be

imposed in the structural step. In general, there might be several different subsets

that could be chosen. This choice of restrictions is ultimately an economic one, and

will depend on the details of the structural model(s) under consideration. A number

of different choices have been made in the existing literature, one of which is described

in the following example.

Example 4. Perhaps the most familiar restrictions are the “triangularization” restric-

tions from the original application in Sims (1980):

(i) Ht(ε) = Ht(y) for all t, and

(ii) E[yk,tεl,t] = 0 for all k < l and E[yk,tεk,t] ≥ 0 for all k.

The first restriction says that the information sets generated by past structural shocks

and past observables always coincide, which implies that the shocks are both recover-
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able and invertible.15 The second imposes a recursive causal structure on the shocks,

by allowing only the first shock to affect the first observable contemporaneously, only

the first and second shock to affect the second observable contemporaneously, and so

on.

In the case that the spectral density of observables has full rank for almost all

λ, these restrictions are sufficient to uniquely select one representation from among

the set of all empirically consistent reduced-form representations. That representation

corresponds to the version of Wold’s decomposition of {yt} with spectral characteristic

ϕ̂(λ) such that ϕ̂0 = 1
2π

∫
ϕ̂(λ)dλ is a lower-triangular matrix with real and positive

diagonal elements. In other words, for any version of Wold’s decomposition of {yt}
with spectral characteristic γ(λ), ϕ̂0 is uniquely determined by the lower-triangular

Cholesky factorization of the matrix γ0γ
∗
0 , given by

ϕ̂0ϕ̂
∗
0 = γ0γ

∗
0 ,

where γ0 = 1
2π

∫
γ(λ)dλ, and ϕ̂(λ) is uniquely determined by the equation

ϕ̂(λ) = γ(λ)(ϕ̂−1
0 γ0)∗.

The spectral characteristic ϕ̂(λ) is well-defined regardless of whether the (implicit)

structural model is correctly specified. But under the null hypothesis that it is, it

will be true that ϕ̂(λ) = ϕ(λ). �

Once an estimate of the structural representation has been obtained, it is straight-

forward to compute many objects of economic interest, such as the shocks themselves,

shock decompositions, impulse responses, and variance shares. For example, under

the null hypothesis that the structural model is correctly specified and the shocks are

recoverable, the values of the shock process {εk,t} are given by

εk,t =

∫
e−iλtδkϕ(λ)†Φy(dλ). (12)

The fluctuations in {yk,t} due only to the shock process {εl,t} are given by the pro-

jections ỹk,t(l) of yk,t onto the subspace of H(ε) spanned by εl,t for all t,

ỹk,t(l) =

∫
eiλtϕkl(λ)Φε,l(dλ). (13)

15Following Rozanov (1967), Ch. 2, this is sometimes described as an assumption that the struc-

tural shocks are “fundamental.” However, this statistical sense of the word “fundamental” is not to

be confused with its economic sense.
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The response of yk,t+s to a unit impulse in the shock εl,t is

IRkl(s) =
1

2π

∫
eiλsϕkl(λ)dλ, (14)

and the share of the variance in the process {yk,t} due to the shock process {εl,t} over

the frequency range ∆ = [λ1, λ2] is

VSkl(∆) =

∫
∆

|ϕkl(λ)|2dλ
(∫

∆

fy,kk(λ)dλ

)−1

. (15)

Finally, it may be that the structural shocks are only partially recoverable (or

only some of the shocks are of interest). In this case, it is still possible to perform

a semi-structural analysis of these shocks in exactly the same manner. However, the

theoretical restrictions imposed in the structural step only need to have the following

properties:

(P1′) they identify at least one reduced-form representation in this set, regardless of

whether Assumption (2) is satisfied, and

(P2′) the reduced-form representations they identify all agree with the parts of the

structural representation involving the shock(s) of interest if Assumption (2) is

satisfied.

The following theorem presents the natural generalization of Theorem (5) to the case

of partial recoverability.

Theorem 6. Suppose that Assumption (1) is satisfied. Then there exists a matrix

function ϕ̂(λ) ∈ R(fy) with the property that ϕ̂(λ)δ∗k = ϕ(λ)δ∗k if Assumption (2) is

also satisfied only if the structural shock process {εk,t} is recoverable from the observ-

ables {yt}.

4.2 Why Invertibility is Not Necessary

In the previous subsection, we showed that recoverability is necessary for performing a

Sims (1980)-style semi-structural analysis of structural shocks. In this subsection, we

explain why invertibility is not necessary. The basic reason is that neither properties

(P1) and (P2), nor their weaker versions (P1′) and (P2′), require that the structural

shocks be invertible.
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Perhaps the easiest way to see this is to consider imposing the same structural

restrictions as in Example (4), but in the opposite time direction. These restrictions

are clearly consistent with Sims (1980)’s proposed empirical strategy, but they are

applicable across a class of structural models with non-invertible structural shocks.

The following example describes how a semi-structural analysis can be performed

with restrictions of this type. We provide an example with more explicit economic

motivation in the following subsection.

Example 5. For any wide-sense stationary random process {ξt}, let Ht(ξ) denote the

closed subspace of H(ξ) spanned by the variables ξk,s for all k and s ≥ t. Instead of

the restrictions from Example (4), consider the following restrictions:

(i) Ht(ε) = Ht(y) for all t, and

(ii) E[yk,tεl,t] = 0 for all k < l and E[yk,tεk,t] ≥ 0 for all k.

The first restriction says that the information sets generated by future structural

shocks and future observables always coincide, which implies that the shocks are

recoverable but not necessarily invertible. The second imposes a recursive causal

structure on the shocks, by allowing only the first shock to affect the first observable

contemporaneously, only the first and second shock to affect the second observable

contemporaneously, and so on.

In the case that the spectral density of observables has full rank for almost all

λ, these restrictions are sufficient to uniquely select one representation from among

the set of all empirically consistent reduced-form representations. That representa-

tion can be obtained using Wold’s decomposition of {yt}. From any version Wold’s

decomposition of {yt} with spectral characteristic γ(λ), ϕ̂0 is uniquely determined by

the lower-triangular Cholesky factorization of the matrix γ∗0γ0, given by

ϕ̂0ϕ̂
∗
0 = γ∗0γ0,

where γ0 = 1
2π

∫
γ(λ)dλ, and ϕ̂(λ) is uniquely determined by the equation

ϕ̂(λ) = γ(λ)∗(ϕ̂−1
0 γ∗0)∗.

The spectral characteristic ϕ̂(λ) is well-defined regardless of whether the (implicit)

structural model is correctly specified. But under the null hypothesis that it is, it

will be true that ϕ̂(λ) = ϕ(λ). �

19



But if invertibility is not necessary, then why has so much of the literature seen

invertibility as an essential part of Sims (1980)’s proposal? One possibility is that

the literature has effectively adopted a “do as he does, not as he says” interpretation

of Sims’s proposal. In his application, he used an autoregression as the reduced-form

model, and imposed the structural restrictions described in Example (4), the first of

which implies that the structural shocks are invertible. By conflating the general pro-

posal with the specific application, the subsequent literature has understood Sims’s

empirical strategy to be applicable only when (i) the reduced-form model is an au-

toregression, and (ii) the structural shocks satisfy Ht(ε) = Ht(y) for all t. We will

now analyze these two restrictions in more detail.

Even if the reduced-form model is an autoregression, that does not require the

structural shocks to be invertible. As we explained in the previous subsection, the

only purpose of the reduced-form model is to provide a characterization of the spectral

density. The specific structural factorization that is chosen depends on the properties

of the structural model, not the reduced-form model. Moreover, it is difficult to see

how it could be advantageous to insist, a priori, that the statistical model always take

the form of an autoregression. Why not entertain any number of possible statistical

models, and only adopt an autoregression if there is good empirical evidence that such

a model is empirically adequate? That way, the fact that the reduced-form model is

an autoregression becomes a result, not an assumption.

The following example illustrates a simple case in which the reduced-form model is

an autoregression and the structural shocks are not invertible, but it is straightforward

to perform a semi-structural analysis of the shocks.

Example 6. Let ny = nε = 1. In the reduced-form step, we use a first-order au-

toregressive model to characterize the spectral density of observables, consistent with

the constraint that only autoregressive models may be estimated. Suppose that the

reduced-form step delivers

fy(λ) =
1

2π

σ2
u

(1− be−iλ)(1− beiλ)
,

where |b| < 1 and σu = (E[|ut|2])1/2 > 0. However, suppose that economic theory tells

us that (i.e. our fully structural model implies that) E[ytεt] ≥ 0 andHt(ε) = Ht(y) for

all t. The unique reduced-form representation of {yt} consistent with these economic

restrictions is

yt = byt+1 + σuεt.
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Therefore, we have ϕ̂(λ) = σu/(1− beiλ). �

While the restriction to autoregressive models in the reduced-form step is perfectly

compatible with non-invertible structural shocks, the restriction that Ht(ε) = Ht(y)

is not.16 However, this is an economic restriction, not a statistical one. And it would

seem to be an especially bad idea to impose it in situations when we have good

economic reasons for thinking it isn’t satisfied. Of course, many papers since Hansen

and Sargent (1991) have presented examples in which this is the case. The correct

interpretation of these examples is not that they represent situations in which Sims’

proposal is inapplicable; rather, they illustrate situations in which the restriction

Ht(ε) = Ht(y) should be replaced by something else. Therefore, we conclude that this

restriction is not a necessary feature of Sims’ proposal, and should only be imposed

if it is implied by the structural model (or class of models) being entertained.

The fact that invertibility is not necessary for adopting Sims’ semi-structural

approach also helps to clarify the relationship between semi-structural analysis and

other empirical approaches. For example, in their recent article on identification

using external instruments, Stock and Watson (2018) provide a detailed description

of “local projections instrumental variables” (LP-IV) analysis, which makes use of

external sources of information about economic shocks to study how those shocks

affect other macroeconomic variables. In describing the advantages of adopting this

approach, they explain that “a major appeal of LP-IV is that the direct regression

approach does not explicitly assume invertibility” (p.27).

But as we have argued, semi-structural analysis in the spirit of Sims (1980) does

not need to assume invertibility either. Therefore, this really isn’t a good reason to

prefer one approach over the other. Of course, there may be other dimensions along

which one approach has important advantages over the other. For instance, the LP-

IV approach does not require a complete characterization of the spectral density of

observables, which makes it more robust to potential misspecification of the reduced-

form statistical model. Conversely, the semi-structural approach allows the researcher

to answer a broader range of questions, and it does not require the researcher to have

access to an external instrument. The point is that while there may be many good

16This restriction often appears in an equivalent form, εt = Θ(yt−P (yt|Ht−1(y)) for all t, where Θ

is a non-singular matrix, and P (yt|Ht−1(y)) denotes the orthogonal projection of yt onto the space

Ht−1(y). See, for example, Fernández-Villaverde et al. (2007) equation (3), or Stock and Watson

(2018) equation (17).
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reasons to choose one approach over another, the invertibility or non-invertibility of

the structural shocks of interest is not one of them.

4.3 Simple Economic Example

To tie together all the discussion so far, we now consider a simple but familiar eco-

nomic example to illustrate how semi-structural methods can be applied even when

the structural model is not invertible. This example is borrowed from Fernández-

Villaverde et al. (2007), who use it to illustrate a situation when their invertibility

condition fails to hold. We will show that the structural shocks are not invertible with

respect to the observables, but nevertheless that the shocks are recoverable. We then

show how to perform a semi-structural analysis of the underlying shocks by imposing

an appropriate subset of the structural model’s economic restrictions.

Example 7. An econometrician tries to recover labor income shocks {εt} from obser-

vations of surplus income, st ≡ zt− ct, where ct is date-t consumption and zt is date-t

labor income, which satisfies

zt = εt, εt
iid∼ N (0, 1).

The optimal path for consumption is a random walk

ct = ct−1 +

(
1− 1

R

)
εt,

where R > 1 is the constant gross real interest rate.17 Combining the previous two

equations with the definition of surplus income, it follows that

yt ≡ st − st−1 =
1

R
εt − εt−1. (16)

Therefore, the observable changes in surplus income, {yt}, follow a first-order moving

average process.

According to this model, the labor income shocks are not invertible. Heuristically,

it is not possible to “solve” for εt as a function of previous values of yt. Iterating

backward T periods,

εt = Ryt +Rεt−1

= Ryt +R2yt−1 +R3yt−3 + · · ·+RT εt−T .

17See Sargent (1987), Chapter XII for a presentation of this model.
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But since economic theory tells us that R > 1, this solution explodes as T →∞.

Nevertheless, these shocks are recoverable. In particular, we can identify the shock

at date t based on the information in subsequent observables.

εt = −yt+1 +
1

R
εt+1

= −yt+1 +
1

R
yt+2 +

(
1

R

)2

yt+3 + · · ·+
(

1

R

)T−1

εt+T

= −
∞∑
s=0

(
1

R

)s
yt+s+1,

where the last equality follows from taking limits as T →∞.

More formally, the spectral characteristic linking the shocks to observables in

equation (16) is

ϕ(λ) =
1

R
− e−iλ.

It is easy to see that ϕ(λ) is full rank (i.e. nonzero) for all λ except λ0 = − ln(1/R)/i.

Therefore, by Theorem (1), the shocks are recoverable. To apply Thereom (2), notice

that

yt = wt −
1

R
wt−1

is a version of Wold’s decomposition of {yt}, which corresponds to the spectral char-

acteristic γ(λ) = 1 − R−1e−iλ. Since ϕ(λ) is nonzero for almost all λ, we have

ψ(λ) = ϕ(λ)−1. By Theorem (2), the income shocks are not invertible because the

Fourier coefficient of ψ(λ)γ(λ) for s = −1 does not vanish. In particular, for R > 1,

1

2π

∫ π

−π
e−iλ

(
R− e−iλ

1−Re−iλ

)
dλ =

1

R2
− 1.

Even though the shocks are not invertible, they are recoverable, and we can adopt

a semi-structural approach. In the reduced-form step, we can use a statistical model

to characterize the spectral density of {yt}. Given fy(λ), we can impose the following

economic restrictions in the structural step:18

(i) Ht(ε) = Ht+1(y) for all t, and

(ii) E[ytεt] ≥ 0.

18As in Example (4), Ht(ε) denotes the subspace of H(ε) spanned by εk,s for all k and s ≥ t.
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These structural restrictions uniquely determine the spectral factor ϕ̂(λ) such that

fy(λ) =
1

2π
|ϕ̂(λ)|2,

where the Fourier coefficients of ϕ̂(λ) vanish for all s > 1. The solution to this

problem is

ϕ̂(λ) = −e−iλγ(λ)∗,

where γ(λ) is the spectral characteristic from any version of Wold’s decomposition of

{yt}. Since the Fourier coefficeints of the function γ̂(λ) vanish for s < 0, it follows

that the Fourier coefficients of γ(λ)∗ vanish for s > 0. Multiplying by a factor

−e−iλ ensures that the Fourier coefficients of ϕ̂(λ) vanish for s > 1, and that the

restriction E[ytεt] ≥ 0 is satisfied. If the structural model is correctly specified, then

ϕ̂(λ) = R−1 − e−iλ. �

The permanent-income example just discussed is a situation in which invertibility

fails to hold because agents inside the model have more information at each date than

the information contained in preceding values of the econometrician’s observables.

Their date-t information set is given by the subspace Ht(ε), while the information

contained by preceding observables is Ht(y). When R > 1, we have shown that Ht(ε)

is not contained in Ht(y). If the set of observables is expanded so that the agents’

information set at each date coincides with the information contained in the preceding

values of the observables, then of course the structural shocks would be invertible from

past observables (the agents know their current income shocks). However, there are

situations in which, even if the observable variables are the same ones the agents

themselves observe, it would still not be possible to identify the structural shocks

using the information in current and past observables. Models with noise shocks are

one example, and we discuss these at length in the following section.

5 Noise shocks

The macroeconomic literature on noise shocks considers situations in which the be-

liefs of economic agents fluctuate for reasons entirely unrelated to the underlying

economic fundamentals. Agents’ beliefs fluctuate in this way because they receive

imperfect signals about fundamentals, and must solve a signal extraction problem

to form expectations about underlying outcomes. At the time that they make their
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decisions, the agents are unable to determine whether changes in their signals are

due to actual fundamental developments or just unrelated noise. As a result, noise

shocks can generate rational fluctuations in their expectations (and therefore also

their actions) that nevertheless turn out to be incorrect after the fact.

We might say that the failure of non-invertibility in models with noise shocks is

more severe than in other contexts, such as the permanent-income model we con-

sidered in previous sections. This is because, even if an econometrician has exactly

the same date-t information as economic agents, he would still be unable to recover

the structural shocks from the history of observables. If he could, then the agents

could as well, which means they would be able to distinguish fundamental shocks

from noise shocks, and would never respond to the latter. But then there would be

no non-fundamental fluctuations in beliefs.

This line of reasoning, originally due to Blanchard et al. (2013), has lead a number

of researchers to conclude that semi-structural methods cannot be applied to models

with noise shocks.19 The usual suggestion is that to make progress the econometri-

cian must rely more heavily on his theoretical model by adopting a fully structural

empirical approach. However, these conclusions rest on the premise that invertibility

is a necessary condition for using semi-structural methods; a premise that so far we

have argued is not true.

In this section we describe how semi-structural methods can be applied to recover

noise and fundamental shocks. We first describe a simple bivariate model of consump-

tion determination taken from Blanchard et al. (2013) with noise and fundamental

shocks. Then we explain how to perform a semi-structural analysis of these shocks.

We verify our results through a Monte Carlo simulation study. Then we apply exactly

the same empirical procedure on an actual sample of U.S. data to quantify the im-

portance of non-TFP fluctuations in aggregate consumption from 1984:Q1-2016:Q4.

Example 8. Model: At each date, consumption is equal to agents’ long-run forecast

of total factor productivity,

ct = lim
j→∞

Et[at+j]. (17)

This forecast is made conditional on the current and past history of productivity and

19Indeed, this is the main methodological conclusion drawn by Blanchard et al. (2013). See also

the literature reviews by Beaudry and Portier (2014) and Lorenzoni (2011).
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signals about future productivity, aτ and sτ for τ ≤ t. Productivity is a random walk,

at = at−1 + σaε
a
t , (18)

and the signal about future productivity is given by

st =

(
1− ρ
1 + ρ

) ∞∑
j=−∞

ρ|j|at−j + vt. (19)

The parameter ρ ∈ (0, 1) controls how much information the signal contains about

future productivity. When ρ = 0, st = at + vt, so the signal contains no additional

information beyond at itself. The process {vt} represents non-fundamental noise, and

is assumed to follow a law of motion of the form

vt = 2ρvt−1 − ρ2vt−2 + σvε
v
t − (β + β̄)σvε

v
t−1 + ββ̄σvε

v
t−2. (20)

The vector of fundamental and noise shocks, εt = (εat , ε
v
t )
′, is independent and iden-

tically distributed over time with zero mean and identity covariance matrix. There

is also a nonlinear restriction on the parameters σa, σv, ρ, and β, which ensures that

{at} can be written alternatively as the sum of a permanent component with first-

order autoregressive dynamics in first differences, and a transitory component with

first-order autoregressive dynamics in levels.20

Because {at} is not stationary in the wide sense, we need to clarify the precise

meaning of the forecast in equation (17). Following the discussion in Remark (3), we

let {ξ̃t(θ)} for |θ| < 1 denote the stationary counterpart to any process {ξt} that is

stationary only after suitable differencing, and H(ξ̃) the Hilbert space generated by

its values. In this example, by letting qt ≡ (at, st)
′ we can understand

Et[at+j] ≡ lim
θ→1−

Et[ãt+j(θ)],

where the conditional expectation on the right side is the linear projection of ãt+j(θ)

onto Ht(q̃). To illustrate, in the case that the signal is completely redundant (ρ = 0),

this would mean that

Et[at+j] = lim
θ→1−

θj ãt(θ) = at.

20Blanchard et al. (2013) write the information structure in this alternative but observationally

equivalent way. For more details on the mapping from their representation to the noise representation

presented above, including the nonlinear parameter restriction, see Chahrour and Jurado (2017).
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Recoverability : We can now show that the structural shocks {εt} are recoverable

with respect to {yt}, where yt ≡ (at, ct)
′. To see this, first note that it is sufficient to

establish these results with respect to {qt}, since Ht(ỹ) = Ht(q̃) whenever the signal

is not redundant. According to equations (18) and (19), {q̃t(θ)} can be obtained from

{εt} by a linear transformation with spectral characteristic

ϕ(λ; θ) =
1

1− θe−iλ


σa 0

(1− ρ)2σa
|1− ρe−iλ|2

(1− βe−iλ)(1− β̄e−iλ)(1− e−iλ)σv
(1− ρe−iλ)2

 .
Here we have used the fact that for any integer s,

1

2π

∫ π

−π
eiλs

(1− ρ)2

|1− ρe−iλ|2
dλ =

(
1− ρ
1 + ρ

)
ρ|s|.

It is easy to see that ϕ(λ; θ) has full rank for almost all λ ∈ [−π, π] and θ ∈ [0, 1)

whenever σa, σv > 0. By Theorem (1), this means that the structural shocks are

recoverable with respect to {ỹt(θ)} for almost all θ. Using the terminology introduced

in Remark (3), we conclude that the shocks are recoverable from {yt}.
Structural step: Now we illustrate how semi-structural methods can be applied

to recover the noise and fundamental shocks from observations of productivity and

consumption. As in Example (2), we first suppose that the econometrician has some

characterization of the spectral density of the stationary observable process {∆yt},
f∆y(λ). The structural step involves factoring the spectral density as

f∆y(λ) =
1

2π
ϕ̂(λ)ϕ̂(λ)∗, (21)

where the factor ϕ̂(λ) is defined by a set of theoretical restrictions that are sufficient

to correctly identify the structural shocks in the model. One such set is21

(i) Ht(ε
a) = Ht(∆a), E[∆atε

a
t ] ≥ 0

(ii) Ht(ε
v) = Ht(ζ), E[ζtε

v
t ] ≥ 0,

where {ζt} is the unique process composed of the orthogonal projections of ∆ct onto

the space H(y) for each t. The first restriction says that the fundamental shock comes

21These restrictions have also been used by Forni et al. (2017b), although their empirical applica-

tion does not impose them in the same way we do in the following subsection.
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from the unique Wold decomposition of {∆at} with E[∆atε
a
t ] ≥ 0. The second says

that the noise shock captures the fluctuations in current consumption growth that

are orthogonal to productivity growth across all time periods.

These restrictions imply that ϕ̂(λ) has a lower-triangular form

ϕ̂(λ) =

[
ϕ̂11(λ) 0

ϕ̂21(λ) ϕ̂22(λ)

]
. (22)

Alternatively, in terms of the associated moving average representation, that[
∆at

∆ct

]
= · · ·+

[
0 0

∗ 0

]
︸ ︷︷ ︸

ϕ̂−1

[
εat+1

εvt+1

]
+

[
∗ 0

∗ ∗

]
︸ ︷︷ ︸

ϕ̂0

[
εat

εvt

]
+

[
∗ 0

∗ ∗

]
︸ ︷︷ ︸

ϕ̂1

[
εat−1

εvt−1

]
+ · · · ,

where {ϕ̂s} are the sequence of Fourier coefficients associated with ϕ̂(λ).

To obtain the factor ϕ̂(λ), we can write equation (21) out more explicitly, using

equation (22), as[
f̂∆a(λ) f̂∆a∆c(λ)

f̂∆c∆a(λ) f̂∆c(λ)

]
=

1

2π

[
|ϕ̂11(λ)|2 ϕ̂11(λ)ϕ̂21(λ)

ϕ̂11(λ)ϕ̂21(λ) |ϕ̂22(λ)|2 + |ϕ̂21(λ)|2

]
. (23)

Restriction (i) says that ϕ̂11(λ) can be computed from Wold’s decomposition of {∆at}.
This is unique and can be obtained in the usual way. The lower-left equation in (23)

uniquely determines ϕ̂21(λ) as a function of f̂∆c∆a(λ) and ϕ̂11(λ), the first of which

is given and the second of which has already been determined from the upper-left

equation. The lower-right equation in (23) implies that

|ϕ̂22(λ)|2 = 2πf̂∆c(λ)− |ϕ̂21(λ)|2

Together with restriction (ii), this means that ϕ̂22(λ) is uniquely determined from

Wold’s decomposition of the process with spectral density 2πf̂∆c(λ)−|ϕ̂21(λ)|2. There-

fore, we have shown both that the factor ϕ̂(λ) is unique, and how to obtain it.

Reduced-form step: Lastly, we need to describe the statistical model the econo-

metrician uses to construct his estimate of the spectral density. Of course, there are

many possibilities. To be consistent with the model we use in the following subsec-

tions, let us suppose the econometrician uses an autoregressive model of the form

p∑
s=0

bsyt−s = ut, (24)
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where {ut} is a two-dimensional uncorrelated reduced-form shock process with zero

mean and mutually uncorrelated values, and p is chosen to maximize some measure

of empirical fit. If we define

b(λ) ≡
p∑
s=0

bse
−iλs,

then the assumption that {yt} is difference stationary implies that the rows of (1 −
e−iλ)b(λ) must each be square integrable. Therefore, the econometrician’s estimate

of the spectral density of {∆yt} is

f∆y(λ) =
1

2π
(1− e−iλ)b(λ)b(λ)∗(1− eiλ).

With this estimate, he can proceed to perform the factorization described in the

structural step. �

5.1 A Monte Carlo Study

To demonstrate how semi-structural methods can be applied in practice to models

with noise shocks, we perform a Monte Carlo exercise using the model from Example

(3). The exercise entails simulating data on consumption and productivity from the

model, and placing ourselves in the shoes of an econometrician who has no knowledge

of the true data generating process. He receives a finite sample of realizations, and

is charged with estimating the importance of noise shocks and the effects of a noise

shock on consumption from that sample. To do so, he imposes only the structural

restrictions (i) and (ii) from Example (8).

In practice, we simulate N = 1000 samples of T = 275 observations of consump-

tion and productivity from the model. The structural parameters are set to

ρ = 0.8910, σa = 0.6700, σv = 0.9937, and β = 0.7833− 0.1525i,

which correspond to the same parameters chosen by Blanchard et al. (2013). The

reduced-form model is an unrestricted vector autoregression of the type in equation

(24). We fit the model to the data using the multivariate algorithm of Morf et al.

(1978), and the lag length is chosen to minimize the information criterion proposed

in Hannan and Quinn (1979).

The left panel of Figure (1) plots the true impulse response of consumption to a

noise shock that increases consumption by one unit on impact, together with 95%
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Figure 1: Semi-structural analysis of data simulated from a model with noise shocks.

Left: the dashed line is the true impulse response of consumption to a unit noise

shock, while solid lines are 95% bands from the distribution of point estimates from

each of N = 1000 samples of length T = 275. Right: the dashed line is the true

contribution of noise shocks over business-cycle frequencies (6 to 32 quarters), and

solid line is the distribution of point estimates over all simulated samples.

bands constructed from the point estimates across the N different samples. The true

response of consumption is one of geometric decay; initially consumption increases

due to positive expectations about future productivity, but over time those effects die

out as people come to realize that their expectations had only responded to noise.

In the long run, the effect of noise shocks on consumption converges to zero. The

figure indicates that structural VAR analysis does a good job capturing the response

of consumption to a noise shock, even for samples of T = 275 observations. Not

surprisingly, increasing the sample size increases the accuracy of our estimates.

The right panel of Figure (1) plots the share of the variance in consumption

explained by noise shocks over business cycle frequencies (6 to 32 quarters). The

vertical dashed line is the true noise share (0.69), while the solid line is the histogram

of point estimates from each of the N different samples. Again, the structural VAR

procedure evidently delivers accurate estimates of the importance of noise shocks.

Based on the distribution of point estimates, it appears that the estimated importance

of noise shocks does exhibit some slight downward bias due to the fact that the

sample is finite. A slight downward bias in this estimate would only strengthen the

conclusions we reach in the next section.
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5.2 Application to U.S. Data

In this subsection, we apply the same semi-structural procedure used in our Monte

Carlo study to actual U.S. consumption and productivity data. We measure consump-

tion by the natural logarithm of real per-capita personal consumption expenditure

(NIPA table 1.1.6, line 2, divided by BLS seires LNU00000000Q) and productivity

by the natural logarithm of utilization adjusted total factor productivity (Federal

Reserve Bank of San Francisco). Our sample is 1948:Q1 to 2016:Q4, which gives

T = 276 observations.

Before discussing the results, a cautionary remark is in order regarding the inter-

pretation of noise shocks in actual data. In the model from Example (3), productivity

is the only fundamental process, and agents have rational expectations. As a result,

the only reason that consumption can possibly move without some corresponding

movement in current, past, or future productivity is because of rational errors in-

duced by noisy signals. In the data, it is plausible that consumption is driven by

fundamentals other than productivity, by sunspots, or even by non-rational fluctu-

ations in people’s beliefs. Therefore, noise shocks should be interpreted broadly in

this subsection as composite shocks that capture all non-productivity fluctuations in

consumption.

Keeping that interpretation in mind, we turn to Figure (2). The left panel plots

the estimated impulse response of consumption to a noise shock that increases con-

sumption by one unit on impact. The response is hump-shaped, increasing for six

quarters after the shock, and then slowly decaying back toward zero. The effect of

noise shocks is also highly persistent; even after 20 quarters the response is still sta-

tistically different from zero. To the extent that these shocks do represent rational

mistakes due to imperfect signals, the high persistence means that it takes a while

for people to recognize their errors.

The right panel of Figure (2) plots the share of the variance in consumption

explained by noise shocks over business cycle frequencies (6 to 32 quarters). The

vertical dashed line is our point estimate (0.86), while the solid line is the histogram

of point estimates across N = 1000 bootstrap samples. The point estimate indicates

that productivity only explains 14% of the variation in consumption. Evidently a

large majority of consumption fluctuations are not due to productivity shocks.

Cochrane (1994) reaches a similar conclusion. Using semi-structural methods, he
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Figure 2: Semi-structural analysis of quarterly U.S. consumption and total factor

productivity from 1948:Q1 to 2016:Q4. Left: response of consumption to unit noise

shock. The dashed line is the point estimate, and the solid lines are 95% bootstrap

confidence bands. Right: share of consumption variance due to noise shocks over

business-cycle frequencies (6 to 32 quarters). The dashed line is the point estimate

(0.86) and the solid line is the distribution of bootstrap estimates.

argues that the bulk of economic fluctuations is not due to productivity shocks (or a

number of other shocks including those due to monetary policy, oil prices, and credit).

But, he does not control for the possibility that fluctuations might be due to future

changes in productivity to which people respond in advance. Indeed, he suggests

that fundamentals might matter mainly in this way. Here we provide evidence to the

contrary, at least in the case of total factor productivity. While people’s beliefs about

future productivity may be moving around a lot, it appears either that those move-

ments are mostly unrelated to subsequent changes in productivity, or that people’s

beliefs about future productivity do not matter very much for their current actions.

6 Conclusion

At least since Hansen and Sargent (1991), economists have been keenly aware of the

difficulties that non-invertible models pose for semi-structural methods of the type

originally proposed by Sims (1980). Our purpose has been to argue that, at least from

an econometric perspective, these difficulties aren’t really difficulties at all. Nothing

in the original empirical strategy of Sims (1980) requires either one’s reduced-form
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model or one’s structural model to be invertible.

Instead, we have argued that what is needed is the much weaker condition that

the structural shocks be recoverable from observables. We have presented a simple

necessary and sufficient condition that can be used to check for recoverability. We

have also presented similar conditions for invertibility. Hopefully by clarifying the

difference between invertibility and recoverability, and shifting attention to the later,

our results will allow semi-structural empirical methods to find greater applicability

across a broader class of economically interesting models.

There are a number of practical issues that we have not addressed in this paper.

Foremost among them is probably the task of characterizing precisely what constitutes

a “good” reduced-form model. Undoubtedly this will vary on a case-by-case basis, but

perhaps it is possible to say something about which reduced-form models are likely to

deliver better or worse approximations to the relevant features of the spectral density.

Such guidance could be helpful for “fine-tuning” one’s empirical strategy. A solution

would likely involve relying on additional theoretical restrictions to rule out certain

types of reduced-form models and not others.

Our application to data on U.S. consumption and productivity also invites a more

comprehensive investigation. How important are other fundamentals, like monetary

policy shocks, oil price shocks, credit shocks, or government spending shocks? What

about other macroeconomic variables of interest like output, inflation, or unemploy-

ment? The empirical procedure we used in this paper can be helpful for determining

the importance of a any set of observable fundamental processes. Since our main pur-

pose in this paper is to clarify the difference between invertibility and recoverability,

we reserve such an investigation for future research.
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Appendix

Proof of Lemma (1). First, we observe that H(ξ) is isomorphic to L2(Fξ).
22 This

can be seen by defining a correspondence between elements h ∈ H(ξ) of the form

h =

∫
ψ(λ)Φξ(dλ), (25)

where ∫
|ψk(λ)|2Fξ,kk(dλ) <∞, k = 1, . . . , nξ, (26)

and the vector functions ψ(λ) ∈ L2(Fξ) which occur in the representation (25). This

correspondence is linear, since h1 ↔ ψ1 and h2 ↔ ψ2 implies

α1h1 + α2h2 =

∫
(α1ψ1(λ) + α2ψ2(λ))Φξ(dλ)↔ α1ψ1 + α2ψ2

22Recall that two Hilbert spaces are said to be “isomorphic” if it is possible to define a one-to-one

correspondence between their elements which is linear and isometric.
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for arbitrary scalars α1, α2. Moreover, it is isometric, since

(h1, h2) =

∫
ψ1(λ)Fξ(dλ)ψ2(λ)∗ = (ψ1, ψ2).

Because the closed linear manifold spanned by elements of the form (25) coincides

with H(ξ), and the closed linear manifold spanned by elements ψ(λ) of the form (26)

coincides with L2(Fξ), it follows that correspondence we have defined can be extended

by continuity to H(ξ) and L2(Fξ), preserving both its linearity and isometry.23

Necessity: If H(η) ⊆ H(ξ), then ηk,0 ∈ H(ξ) for all k = 1, . . . , nη. Since H(ξ)

is isomorphic to L2(Fξ), there exists a unique vector function ψ(λ), whose rows are

elements of L2(Fξ), such that

η0 =

∫
ψ(λ)Φξ(dλ).

For every stationary process {ηt}, there exists a family of unitary operators Ut, −∞ <

t <∞, on H(ξ) such that

Utηk,t = ηk,t+s, k = 1, . . . , nη

for any t, s. To the unitary operator Ut in H(η) corresponds the operator of multipli-

cation by eiλt in L2(Fη); that is, for all k = 1, . . . , nη,

Utηk,0 = Ut

[∫
δkψ(λ)Φξ(dλ)

]
= ηk,t =

∫
eiλtδkψ(λ)Φε(dλ),

where δk is a 1× nη constant vector with components δkk = 1 and δkl = 0 for k 6= l.

From this it follows that ηt has a representation of the form (2).

Sufficiency: Suppose there exists a function ψ(λ) with rows in L2(Fξ) such that

equation (2) holds. Then the function eiλtδkψ(λ) is evidently also an element of L2(Fξ)

for each k = 1, . . . , nη, since∫
eiλtδkψ(λ)Fξ(dλ)ψ(λ)∗δ∗ke

−iλt =

∫
δkψ(λ)Fξ(dλ)ψ(λ)∗δ∗k <∞.

Because L2(Fξ) is isomorphic to H(ξ), this means that ηk,t ∈ H(ξ) for k = 1, . . . , nη.

Therefore, H(η) ⊆ H(ξ).

23See Rozanov (1967), Ch. 1.
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Proof of Theorem (1).24 Sufficiency: Equation (3) indicates that {yt} can be ob-

tained from {εt} by a linear transformation with spectral characteristic ϕ(λ). This

means that the random spectral measure of {yt} can be decomposed as25

Φy(dλ) = ϕ(λ)Φε(dλ). (27)

Because ϕ(λ) has constant rank nε, there exists an nε×ny matrix function ψ(λ) such

that

ψ(λ)ϕ(λ) = Inε . (28)

Combining equations (27) and (28), we get

ψ(λ)Φy(dλ) = Φε(dλ).

Moreover, note that the rows of ψ(λ) are elements of L2(Fy) because for any k =

1, . . . , nε, equations (27) and (28) imply that∫
ψk(λ)Fy(dλ)ψk(λ)∗ =

1

2π

∫
ψk(λ)ϕ(λ)ϕ(λ)∗ψk(λ)∗dλ = 1 <∞.

Therefore {εt} can be obtained from {yt} by a linear transformation with spectral

characteristic ψ(λ). By Lemma (1), it follows that the shocks are recoverable.

Necessity: To the contrary, suppose that the shocks are recoverable, so H(ε) ⊆
H(y), but that ϕ(λ) has rank different than nε on some set of positive measure.

Because ϕ(λ) has nε columns, its rank can never be greater than nε. Therefore, its

rank on this set must be strictly less than this.

Now we find an element in H(ε) that is not in H(y), which is a contradiction.

Because rank(ϕ(λ)) < nε on some set of positive measure, there exists a 1×nε vector

function ψ(λ) ∈ L2(Fε) such that ‖ψ(λ)‖ 6= 0 and

ϕ(λ)ψ(λ)∗ = 0

for all λ. This would mean that the element

η =

∫
ψ(λ)Φε(dλ)

is orthogonal to H(y), because, for all k = 1, . . . , ny and −∞ < t <∞,

(ykt, η) =

∫
eiλtϕk(λ)ψ(λ)∗dλ = 0.

But this contradicts the hypothesis that H(ε) ⊆ H(y).
24This proof comes from Rozanov (1967), Ch. 1.
25More precisely, equation (27) means that Φy(∆) =

∫
∆
ψ(λ)Φε(dλ) for any Borel set ∆.
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Proof of Theorem (2). The fact that the variables ws, s ≤ t, form a basis in Ht(y)

at each date means that a variable h is an element of Ht(y) if and only if it can be

represented in the form of a series

h =
∞∑
j=0

αjwt−j (29)

that converges in mean square. What we need to show is that each element of the

vector εt has a representation of this form.

By the definition of ψ(λ) and equation (6),

εt =

∫
eiλtψ(λ)Φy(dλ) =

∫
eiλtψ(λ)δ(λ)Φw(dλ) (30)

for all t. The rows of ψ(λ) are elements of L2(Fy), but they may not be square

integrable with respect to the Lebesgue measure. On the other hand, the rows of

α(λ) ≡ ψ(λ)δ(λ) are square integrable, because Fw(dλ) = 1
2π
Inεdλ. Therefore, α(λ)

has a Fourier series expansion of the form

α(λ) =
∞∑

s=−∞

αse
−iλs, where αs =

1

2π

∫
eiλsα(λ)dλ.

Combining this with equation (30), we can see that the elements of εt have a represen-

tation of the form (29) if and only if the Fourier coefficients {αs} vanish for negative

values of s, which is the condition stated in the theorem.

Proof of Lemma (2). By Lemma (1), the projections ε̃k,t form an nε dimensional

stationary process {ε̃t} which is obtained from the process {yt} by a linear transfor-

mation,

ε̃t =

∫
eiλtψ(λ)Φy(dλ),

where ψ(λ) is some nε × ny matrix function whose rows are elements of L2(Fy). For

the prediction errors εk,t − ε̃k,t, k = 1, . . . , nε, to be orthogonal to the space H(y), it

must be that

E[(εt − ε̃t)y∗s ] =
1

2π

∫
eiλ(t−s)[ϕ(λ)∗ − ψ(λ)ϕ(λ)ϕ(λ)∗

]
dλ = 0

for any t and s. This is true if and only if

ϕ(λ)∗ = ψ(λ)ϕ(λ)ϕ(λ)∗ (31)
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for almost all λ. By definition, ψ(λ) = ϕ(λ)† is a solution. Moreover, this solution is

unique, in the sense that its rows are uniquely determined as elements of the space

L2(Fy). To see this, consider any other matrix function, ψ(λ) 6= ϕ(λ)†, whose rows

are elements of L2(Fy), which also satisfies (31). Then

‖δkϕ(λ)† − δkψ(λ)‖2 =

∫
δk(ϕ(λ)† − ψ(λ))ϕ(λ)ϕ(λ)∗(ϕ(λ)† − ψ(λ))∗δ∗kdλ = 0

for each k = 1, . . . , nε, where δk denotes a 1 × nε constant vector with components

δkk = 1 and δkl = 0 for k 6= l.

Proof of Theorem (3). Using the optimal smoothing formula from Lemma (2),

‖εk,t − ε̃k,t‖2 =
1

2π

∫
δk(Inε − ϕ(λ)†ϕ(λ))(Inε − ϕ(λ)†ϕ(λ))∗δ∗kdλ,

which equals zero if and only if δk(Inε − ϕ(λ)†ϕ(λ)) = 0 almost everywhere.

Proof of Lemma (3). First we observe that the projections of εk,t and ε̃k,t on Ht(y)

coincide. Combining the representation of {ε̃t} from Lemma (2) with the Wold rep-

resentation of {yt} in equation (6), we obtain

ε̃t =

∫
eiλtϕ(λ)†γ(λ)Φw(dλ).

Using this representation of {ε̃t}, we can see that the projections ε̂k,t form a stationary

process {ε̂t} which is obtained from {wt} by a linear transformation of the form

ε̂t =

∫
eiλt[ϕ(λ)†γ(λ)]+Φw(dλ).

Since γ(λ) has full column rank for almost all λ, it follows that γ(λ)†γ(λ) = Iry ,

where ry is the rank of fy(λ). Therefore

Φw(dλ) = γ(λ)†Φy(dλ).

Substituting this into the previous expression for Φw(dλ) gives the linear transforma-

tion reported in the lemma. Analogously to the proof of Lemma (2), the uniqueness

of the projections ε̂k,t implies that the spectral characteristic in this representation

has rows which are all unique elements of L2(Fy).
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Proof of Theorem (4). Using the optimal filtering formula from Lemma (3),

‖εk,t − ε̂k,t‖2 =
1

2π

∫
δk(Inε − α(λ)γ(λ)†ϕ(λ))(Inε − α(λ)γ(λ)†ϕ(λ))∗δ∗kdλ,

where α(λ) ≡ [ϕ(λ)†γ(λ)]+. This equals zero if and only if δk(Inε−α(λ)γ(λ)†ϕ(λ)) = 0

for almost all λ.

Proof of Theorem (5). Because it is the spectral characteristic associated with a

reduced-form representation, the matrix function ϕ̂(λ) has full column rank for almost

all λ. The fact that ϕ̂(λ) = ϕ(λ) under Assumptions (1) and (2) means that ϕ(λ) is

full column rank for almost all λ under these assumptions. By Theorem (1), it follows

that the structural shocks are recoverable.

Proof of Theorem (6). Let {ε̂t} denote the shock process from the reduced-form

representation of {yt} associated with the spectral measure ϕ̂(λ). Let ψ̂(λ) denote

any ry × ny matrix function that satisfies ψ̂(λ)ϕ̂(λ) = Iry for almost all λ. Such

a matrix function always exists because, by definition, ϕ̂(λ) is full column rank for

almost all λ. Under Assumptions (1) and (2), it follows that

ε̂t =

∫
eiλtψ̂(λ)ϕ(λ)Φε(dλ)

=

∫
eiλt

[
ψ̂(λ)ϕ(λ)δ∗kΦε,k(dλ) +

∑
l 6=k

ψ̂(λ)ϕ(λ)δ∗l Φε,l(dλ)

]
.

Using the hypothesis that ϕ(λ)δ∗k = ϕ̂(λ)δ∗k for almost all λ,

E[ε̂tεk,t] =
1

2π

∫
ψ̂(λ)ϕ(λ)δ∗kdλ = δ∗k,

which means that ε̂k,t = εk,t for all k, t. The recoverability of {εk,t} then follows from

the recoverability of {ε̂k,t}.
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Appendix for Online Publication

A Continuous Time

Our discussion of recoverability and invertibility in the paper focuses on the case of

discrete time, when the parameter t takes on all integer values. However, a similar

analysis can be performed in the case of continuous time, when t takes on all real

values. The main complication is that the idea of a structural shock process being

an mutually uncorrelated random process {εt} with a flat spectral density no longer

applies in continuous time. Instead, we need to think of the structural shocks as

mutually uncorrelated random measures. We can show that, with this change in the

interpretation of structural shocks, Theorem (1) continues to hold exactly as stated,

while Theorem (2) requires some slight changes.

First, we observe that Definitions (1) and (2) do not depend on time being dis-

crete, so they remain the same. Lemma (1) also continues to hold in continuous

time, provided that the limits of integration are set to −∞,∞ rather than −π, π.

This is because any continuous-time wide-sense stationary process {ξt} such that the

functions

Bkl(t) = E[ξk,t+sξl,s], k, l = 1, . . . , nξ

are continuous in the parameter t has a spectral representation that is similar to the

one in equation (1), but with different limits of integration,

ξt =

∫ ∞
−∞

eiλtΦξ(dλ).

Second, we extend Definitions (1) and (2) so they apply to an nζ dimensional

random measure ζ(dt), defined on the Borel sets of the real line. We let H(ζ) denote

the Hilbert space spanned by the variables ζk,t(∆) for k = 1, . . . , nζ and any ∆ on

the line −∞ < t <∞. Similarly, we let Ht(ζ) denote the subspace spanned by these

variables over all k, but only for ∆ lying in the half-line (−∞, t]. We say that the

random measure ζ(dt) is recoverable or invertible depending on whether

H(ζ) ⊆ H(y) or Ht(ζ) ⊆ Ht(y).

In continuous time, we consider an economic model of the form

yt =

∫ ∞
−∞

ϕ(λ)Φε(dλ). (32)
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This representation has the same form as its discrete-time analogue in (3), except

that the limits of integration are set to −∞,∞ rather than −π, π.26 But it is still

the case that the random measures Φε,k(dλ), k = 1, . . . , nε are mutually uncorrelated,

i.e.,

E[Φε,k(∆1)Φε,l(∆2)] = 0

if k 6= l, for any Borel sets ∆1 and ∆2 of the real line; and, moreover,

E[|Φε,k(dλ)|2] =
1

2π
dλ

for all k = 1, . . . , nε.

The difference is that in the continuous-time case, Φε(dλ) cannot be the random

spectral measure of an uncorrelated stationary process. This is because any such

process would not have finite variance. Instead, we need to understand the structural

shocks to be a collection of uncorrelated random measures εk(dt), k = 1, . . . , nε,

defined as the Fourier transforms of the measures Φε,k(dλ), k = 1, . . . , nε. That is,

we set

ε(∆) =

∫
eiλt2 − eiλt1

iλ
Φε(dλ),

for any semi-interval ∆ = (t1, t2], and then take the extension of this measure to all

Borel sets of the real line. With these changes, we obtain the following continuous-

time “moving-average” representation of {yt}

yt =

∫ ∞
−∞

ϕt−sε(ds),

where {ϕs} are the Fourier coefficients of the function ϕ(λ).

In sum, we can replace Assumption (2) with the following assumption.

Assumption 3. {yt} can be obtained from the nε dimensional mutually uncorrelated

random measure ε(dt) by a relation of the form

yt =

∫
eiλtϕ(λ)Φε(dλ) for all t, (33)

where E|εk(dt)|2] = dt for all k, and E[εk(∆1)εl(∆2)] = 0 for k 6= l and any Borel

sets ∆1 and ∆2.

26In this subsection, when the limits of integration are omitted, they are understood to be −∞,∞.
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Example 9. As a special case of the model in equation (33), suppose that we have a

state-space structure of the form

(observation) yt = Axt

(state) dxt = Bxtdt+ Cdεt,

where xt is an nx dimensional state vector, and {εt} is an nε dimensional continuous-

time process with orthogonal increments. The values εk,t of this process are related

to the mutually uncorrelated random measures εk(dt) by the correspondence

εk,t = εk(∆), ∆ = (−∞, t],

for all t and k = 1, . . . , nε. This system corresponds to the the spectral characteristic

ϕ(λ) = A(iλInx −B)−1C.

�

It turns out that the recoverability or invertibility of the random measure ε(dt)

can be shown to coincide with the recoverability or invertibility of the stationary

random process {ηt}, defined by

ηt =

∫
eiλtΦη(dλ), Φη(dλ) = (1 + iλ)−1Φε(dλ).

This is an nε dimensional process with the property that H(η) = H(ε) and Ht(η) =

Ht(ε) for all t. This can be seen from the fact that, for any ∆ = (t1, t2] with t2 ≤ t,

ε(∆) =

∫
eiλt2 − eiλt1

iλ
(1 + iλ)Φη(dλ)

= ηt2 − ηt1 +

∫ t2

t1

ηsds.

Therefore our objective can be re-framed in terms of determining whether {ηt} is

recoverable or invertible, which facilitates matters.

We begin by showing that the recoverability condition in Theorem (1) continues to

apply, exactly as stated, when time is continuous. The projections η̃k,t of the values

ηk,t onto the space H(y) form an nε dimensional stationary process {η̃t}, which is

obtained from {yt} by a linear transformation

η̃t =

∫
eiλtψ̃(λ)Φy(dλ), (34)
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where, by Lemma (1), the rows of ψ̃(λ) are elements of L2(Fy). In terms of the

process {ηt}, the economic model (33) can be written as

yt =

∫
eiλt(1 + iλ)ϕ(λ)Φη(dλ) ≡

∫
eiλtϕ̃(λ)Φη(dλ).

This means that for any t and s,

E[(ηt − η̃t)y∗s ] =

∫
eiλ(t−s) 1

2π(1 + λ2)

[
ϕ̃(λ)∗ − ψ̃(λ)ϕ̃(λ)ϕ̃(λ)∗

]
dλ,

which equals zero if and only if

ϕ̃(λ)∗ = ψ̃(λ)ϕ̃(λ)ϕ̃(λ)∗

for almost all λ. Using the fact that ϕ̃(λ) = (1 + iλ)ϕ(λ), it follows that

ψ̃(λ) = ϕ̃(λ)† = (1 + iλ)−1ϕ(λ)†.

Therefore the (squared) distance between ηk,t and the projection η̃k,t is

‖ηk,t − η̃k,t‖2 =

∫
1

2π(1 + λ2)
δk(Inε − ϕ(λ)†ϕ(λ))(Inε − ϕ(λ)†ϕ(λ))∗δ∗kdλ,

which equals zero if and only if

δk(Inε − ϕ(λ)†ϕ(λ)) = 0

for almost all λ. And this is the same condition stated in Theorem (3).

Theorem 7 (Recoverability: continuous time). Under Assumptions (1) and (3), the

measure εk(dt) is recoverable from the observable process {yt} if and only if

δk(Inε − ϕ(λ)†ϕ(λ)) = 0

for almost all λ, where δk denotes a 1× nε constant vector with components δkk = 1

and δkl = 0 for k 6= l.

Now we show how the invertibility condition in Theorem (4) carries over with some

slight changes. The continuous-time version of Wold’s decomposition theorem implies

that it is possible to represent {yt} in the form of equation (6), where now Φw(dλ) is

the random spectral measure associated with an ry dimensional random measure with
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mutually uncorrelated values, w(dt), which has the property that Ht(w) = Ht(y) for

all t.

As in the discrete-time case, we can find the projections η̂k,t of the variables ηk,t

onto the subspace Ht(y) by projecting the variables η̃k,t onto this space. Combining

equations (34) and (6),

η̃t =

∫
eiλtϕ̃(λ)†γ(λ)Φw(dλ).

As in the discrete-time case, let us denote by [ϕ(λ)]+ the matrix function

[ϕ(λ)]+ =

∫ ∞
0

ϕse
−iλs

for any matrix function ϕ(λ) whose elements are square integrable, where {ϕs} are

the Fourier coefficients of ϕ(λ). Projecting on the subspace Ht(y), we obtain

η̂t =

∫
eiλt[ϕ̃(λ)†γ(λ)]+Φw(dλ) =

∫
eiλt[ϕ̃(λ)†γ(λ)]+γ(λ)†Φy(dλ).

Therefore,

‖ηk,t − η̂k,t‖2 =

∫
1

π(1 + λ2)
δk(Inε − α̃(λ)γ(λ)†ϕ̃(λ))(Inε − α̃(λ)γ(λ)†ϕ̃(λ))∗δ∗kdλ,

where α̃(λ) ≡ [ϕ̃(λ)γ(λ)]+. This equals zero if and only if

δk(Inε − α̃(λ)γ(λ)†ϕ̃(λ)) = 0

for almost all λ. We have therefore arrived at the following result.

Theorem 8 (Invertibility: continuous time). Under Assumptions (1) and (3), the

measure εk(dt) is invertible from the observable process {yt} if and only if

δk(Inε − [ϕ̃(λ)γ(λ)]+γ(λ)†ϕ̃(λ)) = 0

for almost all λ, where ϕ̃(λ) = (1+ iλ)ϕ(λ), γ(λ) comes from some version of Wold’s

decomposition of {yt}, and δk denotes a 1×nε constant vector with components δkk = 1

and δkl = 0 for k 6= l.

Remark 7. As in the discrete-time case, it is possible to articulate an alternative

necessary and sufficient condition for invertibility in terms of the Fourier coefficients

of ϕ̃(λ)†γ(λ). Namely, εk(dt) is invertible if and only if it is recoverable and

1

2π

∫
eiλsδkϕ̃(λ)†γ(λ)dλ = 0

for all s < 0.
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