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Abstract

Under specific parametric assumptions, an n-variable structural vector auto-regression

(SVAR) can be identified (up to n! shock orderings) via heteroskedasticity of the

structural shocks (Rigobon (2003), Sentana & Fiorentini (2001)). I show that misspecifi-

cation of the heteroskedasticity process can bias results derived from these identification

schemes. I propose a new identification method that identifies the SVAR up to n! shock

orderings using only moment equations implied by an arbitrary stochastic process for

the variance. Unlike previous work, this result requires only weak technical conditions.

In particular, it requires neither parametric assumptions nor the specification of variance

regimes. I propose intuitive criteria to select among the orderings and show that this

selection does not impact inference asymptotically. As an empirical illustration, I

consider Kilian’s (2009) work examining oil prices and their macroeconomic effects.

This exercise strengthens his results by failing to reject his lower-triangular assumption

and replicating his macroeconomic conclusions.
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1 Introduction

A central challenge in structural vector autoregression (SVAR) analysis is identifying the latent
structural shocks that give rise to the observable VAR innovations (one-step ahead reduced-form
forecast errors). For example, an innovation to the Federal Funds rate could represent either a
true monetary policy shock or the contemporaneous endogenous response of monetary policy to
changes in macroeconomic conditions. To understand the impact of monetary policy shocks on
macroeconomic variables, the shocks must first be isolated from other movements in the data.

In the standard SVAR, the reduced-form innovations, ⌘t, are expressed as a linear combination
of the underlying shocks to the system, "t: ⌘t = H"t for some response matrix H. The parameters
in these equations are unidentified without further assumptions. Many existing approaches impose
assumptions on the response matrix to simplify the problem. These have taken the form of assuming
zeros in the short-run (Sims (1980)), zeros in the long-run (Blanchard & Quah (1986)), and sign
restrictions (Uhlig (2005)), among others; see Kilian & Lütkepohl (2017) for a survey. Although
progress has been made with these approaches, in many contexts such assumptions are not without
controversy.

This paper therefore follows a smaller literature that considers identification based on het-
eroskedasticity. Sentana & Fiorentini (2001) and Rigobon (2003) share an important insight. If the
variances of the shocks change over time, that variation can identify the parameters of the response
matrix of interest. However, their arguments hold only under strict parametric assumptions. Sentana
& Fiorentini establish identification conditional on the variance path, which, in practice, means
variances must be recoverable from observed data. The method of Rigobon (2003) assumes discrete
variance regimes, which must either be determined using external information or estimated. More
recent work has considered Markov switching (Lanne, Lütkepohl, & Maciejowska (2010)) and allowed
for smooth transitions between regimes (Lütkepohl & Netšunajev (2015)). Little consideration has
been given to what happens when these parametric structures fail to hold. Can their intuition be
extended to a general identification argument that does not make use of any such assumptions?

I present an identification approach based on heteroskedasticity that does not depend on any
parametric model. I show that if time-varying volatility is present, in any (unspecified) form,
identification follows from the autocovariance of the volatility process. As a result, unlike previous
approaches, it accommodates both conditional and unconditional heteroskedasticity. Intuitively,
working with the autocovariance allows me to abstract from the shocks, which are uncorrelated across
periods, focusing instead on the dynamics of the underlying variance process. The presence of such
time-varying volatility furnishes equations that identify the response matrix up to a choice of label
for each shock, under very general conditions. The strength of this approach lies in the fact that,
unlike Sentana & Fiorentini (2001) or Rigobon (2003), it does not require any information about the
path of the variances through time. These results also do not require distributional assumptions
or mutual independence of the shocks, unlike e.g. Gouriéroux & Monfort, (2014), Hyvärinen et al
(2010), Lanne, Meitz, & Saikonnen (2017), and Lanne & Lütkepohl (2010). Frequently, identifying
assumptions are a loose approximation of the truth, but the presence of time-varying volatility is
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uncontroversial in many settings.
In much the same way that Rigobon (2003) observes that a second variance regime doubles the

number of equations, I show that a single autocovariance of the reduced-form innovation variances
generates a multitude of identifying equations. While Rigobon compares a small number of regimes
to yield identification, the autocovariance measures evolution continuously. There is a unique solution
when the columns of the autocovariance of the volatility process satisfy a weak rank condition.

I outline a wide variety of options for labeling the shocks obtained, which is equivalent to
labeling the columns of the response matrix. Indeed, any assumptions that an economist would
otherwise employ to identify the matrix itself can analogously be used for the less demanding task
of labeling the shock series. In many cases, such conventional assumptions can also be tested as
overidentifying restrictions, which may increase the economic interpretability of the statistically-
recovered shocks (Kilian & Lütkepohl (2017)). Significantly, it is transparent to discuss the impact
that such assumptions have on the ultimate estimates of the relevant elements of the response matrix.

TVV-ID works even when heteroskedasticity takes an arbitrary, unknown form. This is most
closely compared to Rigobon (2003)’s regime approach when implemented with estimated regimes. I
show that when regimes must be estimated, such identification schemes may suffer from substantial
bias, which is highly influenced by tuning parameters. Simulation evidence supports this.

Since identification relies only on unconditional moments, many more estimation approaches
can be used than in the previous literature. Identification via time-varying volatility (TVV-ID)
can be implemented directly via Generalized Method of Moments (GMM), without any additional
parametric assumptions. A researcher can also make use of any (quasi-)likelihood for the data that
implies some form of autocovariance. I compare GMM, likelihood-based methods, and those of
Sentana & Fiorentini (2001) and Rigobon (2003) in a simulation study. Likelihood-based approaches
perform well in this context, even under misspecification, akin to known results of Quasi-Maximum
Likelihood. Thus, TVV-ID is a more reliable option for researchers not possessing substantive
information about the underlying volatility process.

As an empirical illustration, I apply TVV-ID to Kilian’s (2009) work on oil shocks. Lütkepohl
& Netšunajev (2014) consider this paper as a test case in their exploration of identification using
Markov switching models as a means to test conventional identification restrictions, motivating the
choice to examine it here. Kilian (2009) recovers three shocks impacting oil prices from an SVAR
with recursive structural assumptions: an oil supply shock, an aggregate demand shock, and an
oil-specific demand shock. He finds that the source of oil price movements has important implications
for their effects on the U.S. macroeconomy. While these identifying assumptions are plausible, I
replicate his analysis, but use TVV-ID instead of recursive assumptions to identify the structural
shocks. This means I can test his recursive identifying assumptions as overidentifying restrictions; I
am unable to reject his lower triangular structure, and in the leading implementation, I estimate
precise zeros where he assumes them. This generalizes the results of Lütkepohl & Netšunajev (2014),
who are unable to reject both the recursive structure and the assumption that H is fixed, based on a
Markov switching model. The macroeconomic impact of these shocks is likewise virtually unchanged.
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I overcome the main scope for challenge to Kilian (2009) by validating his identifying assumptions
and thereby strengthen his results. In so doing, I show that his conclusions are robust to different
sources of identification.

In the applied literature, identification via heteroskedasticity has proven very popular. This
underscores the importance of understanding the limits of existing identification approaches, as I
address with TVV-ID. A glance at recent citations shows that numerous published papers adopt the
Rigobon approach alone each year. Prominent examples include Rigobon & Sack (2003, 2004), Craine
& Martin (2008), Pavlova & Rigobon (2007), Lanne & Lütkepohl (2008), Ehrmann, Fratzscher,
& Rigobon (2011), Eichengreen & Panizza (2016), Ehrmann & Fratzscher (2017), and Hébert &
Schreger (2017). Normandin & Phaneuf (2004), Normandin (2004), Doz & Renault (2004), and
Lütkepohl & Milunovich (2016), amongst others, have followed path-based identification, mostly in
monetary economics and finance. While many applications come from such fields, examples can now
be found in public finance (Jahn & Weber (2016)), growth (Islam, Islam & Nguyen (2017)), trade
(Lin, Wang, & Weldemicael (2016), Feenstra & Weinstein (2017)), political economy (Rigobon &
Rodrik (2005), Khalid (2016)), environmental economics (Millimet & Roy (2016), Gong, Yang, &
Zhang (2017)), agriculture and energy (Fernandez-Perez, Frijns, & Tourani-Rad (2016)), education
(Hogan & Rigobon (2009), Klein & Vella (2009)), marketing (Zaefarian et al (2017)), and even fertility
studies (Mönkediek & Bras (2016)). Given the possibility of bias in regime-based identification in
practice, it is important to understand the role of less restrictive alternatives like TVV-ID. On the
other hand, macro models with time-varying volatility have been estimated for some time, without
exploiting its implications for identification. A lower triangular structure on H has generally been
retained due to the belief that doing so is necessary for identification (e.g. Primiceri (2005)). This
literature offers an immediate avenue for the exploitation of my results.

The remainder of this paper proceeds as follows. Section 2 describes the identification problem
in detail and presents the theoretical results. Section 3 addresses the interpretation of results from
TVV-ID. Section 4 discusses estimation strategies. The performance of both identification schemes
and estimation approaches is compared in Section 5, based on theory and simulation studies. The
empirical illustration to Kilian (2009) follows in Section 6. Section 7 concludes. Proofs can be found
in Appendix A; additional details on the application of TVV-ID, of interest to practitioners, are
found in Appendix B. Discussion of further estimation approaches and full simulation results are
available in the Online Appendix.

Notation

The following potentially unfamiliar notation is used in the paper. ⌦ represents the Kronecker
product of two matrices; � represents the element-wise product of two matrices (i.e. Hadamard
product); A(i) denotes the ith row of matrix A; A(j) denotes the jth column of matrix A; Aij denotes
the ijth element of matrix A; A(�i) denotes all columns of A except for the ith, and similarly for
rows and elements; matdiag (A) is a vector of the diagonal elements of the square matrix A; diag (a)
is a diagonal matrix with the vector a on the diagonal; x1:t denotes {x1, x2, . . . , xt}; Et [·] denotes a
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time-specific expectation, i.e. the mean value of xt at time t, as opposed to across t, and similarly
for Et,s [·] when both time t, s variables are contained in the argument.1

2 Identification theory

I consider the canonical SVAR setting, relating a vector of innovations, ⌘t, to unobserved structural
shocks, "t, by a response matrix, H . More broadly, this represents a general decomposition problem.
⌘t is n⇥ 1, obtained from a reduced-form model, or directly observed. For example, a structural
vector auto-regression (SVAR) based on data Yt would yield A (L)Yt = ⌘t. Similarly, "t is n⇥ 1, so
H is n⇥ n. Thus,

⌘t = H"t, t = 1, . . . , T, (1)

leaving H and, equivalently, "t, to be identified. This section first presents a simple example
under special assumptions to build intuition for why this poses an identification problem and how
heteroskedasticity may be a useful starting point to solve it. I then develop a representation of higher
moments of the reduced-form innovations to serve as identifying equations. The following section
establishes conditions under which these equations have a unique solution. I discuss assumptions
with respect to H that could be considered restrictive. Finally, I outline in detail how TVV-ID
relates to and extends existing identification approaches that exploit heteroskedasticity.

2.1 Intuition for the use of heteroskedasticity

To build intuition, I present standard assumptions underlying Equation (1), and consider how, in
this framework, heteroskedasticity can identify H up to n! orderings.

Assumption 0. (temporary) For all t = 1, 2, . . . , T,

1. Et ["t"
0
t | �t] = diag

�
�2t
�
⌘ ⌃t (�t is the conditional variance of the shocks),

2. �t is a fourth-order stationary strictly positive stochastic process,

3. E [⌃t] = ⌃",

4. Shocks satisfy conditional mean independence, E ["it | "�is] = 0 for all i, all t, s = 1, 2, . . . T,

5. H is time-invariant, invertible, with a unit diagonal normalization.

Note that the fourth point substitutes conditional mean independence for the usual slightly weaker
uncorrelated shocks assumption. While the variance of shocks may change, fixing H means that
the economic impact of a unit shock remains the same. It is natural to seek to identify H from

1This notation is used to make explicit that stationarity is not being assumed, unless otherwise noted, and to
avoid the ambiguity (and possible non-existence) present in simply writing E [xt] in a non-stationary context. The use
of Et should not be confused with reference to the t information set; when a specific information set is intended, I
condition on it explicitly.
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the overall covariance of ⌘t, E [⌘t⌘
0
t] = ⌃⌘. However, it is well-known that these equations can only

identify H up to an orthogonal rotation, � (��0
= I). Observe

⌃⌘ = H⌃"H
0
= (H�)

�
�

0
⌃"�

�
(H�)

0
= H⇤

⌃

⇤
"H

⇤0 , (2)

where H⇤
= H�DH,� and ⌃

⇤
" = D�1

H,��
0
⌃"�D

�1
H,�, with DH,� the matrix that unit-normalizes the

diagonal of H�. This means that the pairs (H,⌃") and (H⇤,⌃⇤
") are observationally equivalent.

Alternatively, note that due to the symmetry of ⌃⌘, it offers n (n+ 1) /2 equations, but there are n2

unknowns. This is the fundamental identification problem posed by the SVAR methodology and
indeed many related models (e.g. factor models).

Variation in ⌃t may allow the researcher to overcome the limitations of (2). Consider a simple
two-variable example, where one structural variance follows a time-varying volatility process and
the other takes a fixed value. This admits the simplest form of the Rigobon approach, which yields
closed form solutions for H (see e.g. Nakamura & Steinsson (2018)). Without loss of generality,
assume �22t is the variance that changes, while �21t ⌘ �21, constant. Denote

�2t =

"
�21
�22t

#
, H =

"
1 H12

H21 1

#
.

The conditional variances of the reduced-form innovations are given by Et [⌘t⌘
0
t | �t] = H⌃tH

0. Given
two subsamples, A,B, containing the sets of time points TA, TB , Appendix A (and prior work) shows
that

ETA
[⌘1t⌘2t]� ETB

[⌘1t⌘2t]

ETA

⇥
⌘22t

⇤
� ETB

⇥
⌘22t

⇤
=

H12�
�
�22t

�

�

�
�22t

�
= H12. (3)

where the � (· ) operator represents the difference in expectation of the argument between subsamples
TA, TB. Assuming that �

�
�22t

�
6= 0, H12 can thus be identified in closed form. Fourth order

stationarity is the only assumption made on the form of the stochastic process for �2t. While the
Rigobon identification scheme is motivated by a regime-based process, identification holds even when
such a form is a misspecification, provided �

�
�22t

�
6= 0, and �1 is indeed fixed. If there are in fact

regimes, they need not be known or correctly specified, as noted in Rigobon (2003). However, if the
value of the �2t process is in fact constant, �

�
�22t

�
would be zero in population, and identification

fails.2

Stated this way, Rigobon’s approach provides moment conditions based on means of the variance
process, which can yield identification for many processes, but, there is no reason not to consider
alternative arguments based on other moments. In each period, there is motivation for an instrumental

2In this case, if regimes are instead estimated from the values of ⌘t, the resulting estimates of �
�
�2
2t

�
are not zero

in population since differing regimes are driven by realized shock values, but this source of variation results in bias, as
discussed in Section 5.
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variables approach. Noting

⌘2t⌘1t = H21"
2
1t +H12"

2
2t + "1t"2t +H12H21"1t"2t,

⌘22t = H2
21"

2
1t + 2H21"1t"2t + "22t,

it is clear that H12 would be identified if we could obtain the ratio of the H12"
2
2t and "22t terms. This

is not possible as we only observe the values of ⌘t, and not their separate components. However, we
can instrument for "22t using a lagged value of ⌘22t. Note

cov
⇣
⌘2t⌘1t, ⌘

2
2(t�p)

⌘
= H12cov

⇣
"22t, "

2
2(t�p)

⌘
,

cov
⇣
⌘22t, ⌘

2
2(t�p)

⌘
= cov

⇣
"22t, "

2
2(t�p)

⌘
,

by Assumption 0.4 and the fact that �1 is fixed. H12 can then be identified in closed form:

cov
⇣
⌘2t⌘1t, ⌘

2
2(t�p)

⌘

cov
⇣
⌘22t, ⌘

2
2(t�p)

⌘
=

H12cov
⇣
"22t, "

2
2(t�p)

⌘

cov
⇣
"22t, "

2
2(t�p)

⌘
= H12. (4)

This is the familiar IV estimator, where the dependent variable is ⌘2t⌘1t, the endogenous regressor
is ⌘22t, and the instrument is ⌘22(t�p). This works because the previous value ⌘22(t�p) is uncorrelated
with all period t terms except those containing "22t. The argument applies for any lag, p. The
only assumptions on the stochastic process �2t is that it is fourth-order stationary (for expositional
simplicity) and that E

⇥
"42t

⇤
< 1. Identification will hold in this case provided

cov
⇣
"22t, "

2
2(t�p)

⌘
6= 0

for some p.
In particular, this requirement that the pth autocovariance of ⌘22t is non-zero is satisfied by a

variety of processes for �22t. If the true process is stochastic regime-switching, the condition is met,
as there is a non-zero autocovariance around the regime break dates. In a stochastic volatility
(SV) process, the condition holds provided some AR coefficient of the variance is non-zero. In a
Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) model, provided at least one
of the auto-regressive parameters is non-zero, it will likewise hold.3 The condition can be verified
for other stochastic processes of interest. This is the crux of TVV-ID: given the structure of the
autocovariance of ⌘t⌘0t, comparing elements of the autocovariance (in this simple case, via a ratio)
identifies the columns of H.

This flexibility of identification – independent of misspecification – is not shared by the existing
approaches. I have made no assumptions about whether the heteroskedasticity is conditional
or unconditional (either implies a suitable autocovariance), unlike in the Rigobon approach that
presumes unconditional heteroskedasticity. As noted above, and discussed in detail in Section 5,

3The GARCH model takes the form �2
t = µ (1�  �⌥) +  �2

t�1 +⌥"t�1, see e.g. Bollerslev (1982).
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Figure 1: Distribution of estimated AR(1) coefficients of ⌘2t . Time series ⌘t are obtained as reduced-form
innovations from AR(12) processes fitted to each of McCracken & Ng’s 128 FRED-MD monthly time series.
The figure displays the distribution of the implied AR(1) coefficients of ⌘2t .

fitting regimes to apply the Rigobon approach runs the risk of substantial bias if the variances in
fact evolve continuously, and thus much of the regime determination is driven by the draws of the
disturbances. In Sentana & Fiorentini’s (2001) work, identification is robust only to a very small
set of specification errors relative to the imposed GARCH functional form; this is illustrated in the
simulation study, Section 5. In contrast, in this example, I have required that the stochastic process
is stationary and exhibits some degree of persistence.

Empirical analysis offers motivation for this approach. While it is not possible to consider
structural shocks directly, I analyze the autocovariance properties of innovations in an AR(12) process
for many macro time series. I consider the 128 monthly series spanning 1959-2018 in McCracken
& Ng’s FRED-MD database. For each set of innovations, I compute the first autocovariance of ⌘2t ,
an analog to the denominator of (4), and test it against the null hypothesis of zero autocovariance.
While this testing problem is very noisy, I reject the null hypothesis of zero autocovariance for 99
of the series. Figure 1 presents a histogram of the implied AR(1) coefficients of the ⌘2t process. It
shows that the distribution is centered well away from zero. I also perform the Variance Stability
(VS) test for heteroskedasticity, as described in Dalla, Giraitis, & Phillips (2015). It rejects the null
hypothesis of homoskedasticity at the 10% level for 118 of the series, the 5% level for 113, and the
1% level for 103. Thus, it appears that the identifying condition is satisfied in much empirical data.

If the denominator is non-zero for multiple p, there are various identifying equations to choose
from, (and in principle, the mean restrictions, (3), can be combined with (4)). The identifying
moments, (4), can easily be written in the form

cov
�
⌘2t⌘1t, ⌘

2
2t�p

�
�H12cov

�
⌘22t, ⌘

2
2t�p

�
= 0

and stacked to furnish an overidentified method of moments problem. Alternatively, it might be
natural to assume that the variances follow some loose parametric form, like an AR(1), and let this
imply the whole series of autocovariances.
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In the setting considered above, strong assumptions are made on dimension and the stochastic
process of �t to yield an elegant closed-form solution; I now relax those restrictions to yield a much
more general result.

2.2 Identification via time-varying volatility

Identification via time-varying volatility applies under much weaker conditions than those outlined
to build intuition above. Again, let

⌘t = H"t, t = 1, 2, . . . T.

Write Ft�1 to denote "1, . . . "t�1 and �21, . . .�2t�1. Dropping Assumption 0, I now adopt Assumption
1:

Assumption 1. For every t = 1, 2, . . . , T,

1. Et ("t | �t,Ft�1) = 0 and Vart ("t | �t,Ft�1) = ⌃t,

2. ⌃t = diag
�
�2t
�
,�2t = �t ✓ �t,

3. Et

⇥
�2t
⇤
< 1.

In addition, I make a preliminary assumption on H:

Assumption 2. H is time-invariant.

By explicitly conditioning on �t, these assumptions cover both SV and auto-regressive conditional
heteroskedasticity-type (ARCH) models (where �t is a function of "1, . . . "t�1), amongst others (or,
more broadly, both unconditional and conditional heteroskedasticity).4

Decomposition

I focus on obtaining identifying equations for observable quantities in terms H and moments of the
underlying variance process. To do so, I work with a transformation of ⌘t, ⌘t⌘0t, as my basic data. I
begin by writing the decomposition,

⌘t⌘
0
t = H⌃tH

0
+ Vt, Vt = H

⇣
"t"

0
t � ⌃t

⌘
H 0,

4ARCH takes the same form as GARCH, with the lagged variance term omitted.
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where �2t is unknown. Define L to be an elimination matrix, and G a selection matrix (of ones and
zeros), see e.g. Magnus & Neudecker (1980).5 Then

⇣t = vech
�
⌘t⌘

0
t

�
= vech

�
H⌃tH

0�
+ vech (Vt)

= L (H ⌦H) vec (⌃t) + vt, vt = vech (Vt) (5)

= L (H ⌦H)G�2t + vt, (6)

The simplification from (5) to (6) in the first term is surprising and follows due to the diagonality of
⌃t using Assumption 1.2. This feature plays a key role in properties established later. From the
definition of Vt, Assumptions 1.1, 1.3, and 2, Et [Vt | �t,Ft�1] = 0, so Et [vt | �t,Ft�1] = 0 and

Et [⇣t | �t,Ft�1] = L (H ⌦H)G�2t .

This provides a signal-noise interpretation for the decomposition of the outer product ⌘t⌘0t. It follows
from Assumption 1.3 that I can integrate over ⌃t to obtain Et [vt | Ft�1] = 0 and similarly that
Et [|vt|] < 1. Therefore vt is a martingale difference sequence.

Properties of ⇣t

Coupled with the decomposition derived above, Assumption 3 expands on 1.3 to allow the establish-
ment of useful properties of ⇣t = vech (⌘t⌘

0
t).

Assumption 3. For every t,

1. Vart
�
�2t
�
< 1,

2. Vart ("t"0t) < 1.

Using these additional assumptions, the autocovariance of ⇣t has a convenient form, given by
Proposition 1.

Proposition 1. Under Assumptions 1.1-1.2, 2, & 3,

Covt,s (⇣t, ⇣s) = L (H ⌦H)GMt,s (H ⌦H)

0 L0, t > s (7)

where
Mt,s = Et,s

h
�2t �

20
s

i
G0

+ Et,s

h
�2t vec

�
"s"

0
s � ⌃s

�0i� Et

⇥
�2t
⇤
Es

h
�2

0
s

i
G0.

This equation has the desired form: it represents an observable quantity, Covt,s (⇣t, ⇣s), as a
product of H and the n⇥ n2 Mt,s composed of moments of the underlying variance process.

Remark. If an additional restriction is imposed on the form of conditional heteroskedasticity, further
simplification is possible:

5An elimination matrix L is one such that vech (A) = Lvec (A). A selection matrix G is one such that vec (ADA0) =
(A⌦A)Gd where d = diag (D).
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Assumption 4. For t > s, Et,s

h
�2it

⇣
"s"

0
s � ⌃s

⌘i
is diagonal for all i = 1, 2, . . . , n.

This means that ARCH effects to �2t cannot depend on any off-diagonal elements of "s"
0
s. Assumption

4 is trivially satisfied for standard (non-leverage) SV models, which make the stronger assumption
that "s is independent of �t for all s and t. Further, it is satisfied by common GARCH forms (without
statistical leverage) found in the literature.6 I can adapt Proposition 1 under Assumption 4:

Proposition 2. Under Assumptions 1.1-1.2, 2, 3, & 4, (7) simplifies to

Covt,s (⇣t, ⇣s) = L (H ⌦H)G ˇMt,sG
0
(H ⌦H)

0 L0, (8)

where ˇMt,s = Et,s

h
�2t �

20
s

i
+ Et,s

⇥
�2tmatdiag ("s"

0
s � ⌃s)

0⇤� Et

⇥
�2t
⇤
Es

h
�2

0
s

i
, an n⇥ n matrix.

ˇMt,s subsequently simplifies further to Covt,s
�
�2t ,�

2
s

�
if the process exhibits no conditional

heteroskedasticity. Significantly, the imposition of Assumption 4 reduces the dimension of the
nuisance matrix from n⇥ n2 to n⇥ n. This simpler problem allows slight modifications of the main
Theorems below, which are briefly noted.

To summarize, an autocovariance of the vectorization of ⌘t⌘0t, the outer product of the residuals,
can be expressed as a product of some known elimination and selection matrices, L and G, the
matrix of interest, H, and at most an n⇥ n2 nuisance matrix, Mt,s. This is remarkably compact
for what is essentially a covariance of matrices. Note that at no point is it necessary to assume
stationarity, merely that a collection of higher-order moments are finite. All of the expectations used
are well-defined for an object at a particular point in time, even if the distribution might be different
at another point in time. Since vech (⌘t⌘

0
t) has dimension

�
n2

+ n
�
/2⇥ 1, a single autocovariance

yields
�
n2

+ n
�
/2 ⇥

�
n2

+ n
�
/2 equations in 2n2 � n unknowns, satisfying the necessary order

condition; it remains to show that this system of equations has a unique solution.

Uniqueness

Having derived a set of equations of adequate order to identify H , it remains to show that they yield
a unique solution. I strengthen the assumptions on H from Assumption 2:

Assumption 20. H is time-invariant, invertible, with a unit diagonal.7

Given Assumption 20, the conditions under which equation (7) yields a unique solution for H are
established by Theorem 1.

Theorem 1. Under Assumptions 1.1-2, 20, & 3, equation (7) holds. Then H and Mt,s are jointly
uniquely determined from (7) (up to labeling of shocks) provided rank (Mt,s) � 2 and Mt,s has no
scalar multiple rows.

6For use of GARCH models in the SVAR identification literature, see e.g. Normandin & Phaneuf (2004); such
work generally restricts the matrices �,⌥ to be diagonal. This is actually more restrictive than Assumption 4.

7The unit diagonal assumption is a normalization, without loss of generality.
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In the case where Assumption 4 holds and Mt,s is n⇥ n, the scalar multiple condition is replaced
by the following: “Mt,s has no pairs of rows and columns i, j such that both rows i, j are scalar
multiples and columns i, j are scalar multiples”. This slightly weaker condition results from the
symmetry of equation (8).

Theorem 1 states that (under certain conditions) Equation (7) will yield a unique solution for
the relative magnitudes of elements in each column of H . The solution is unique up to column order,
given the unit-diagonal normalization. However, there are n! column orderings. Thus, while H is
meaningfully identified, it may be helpful to think of it as set-identified. While set-identification
usually refers to an uncountable set, as in Uhlig (2005), in this case it refers to a small set of identified
matrices. This is similar to the sets identified via non-Gaussianity (Lanne & Lütkepohl (2010),
amongst others), Sims’ implementation of subsample identification (see Section 5), or identification
in finite mixture models, and is discussed in Chapter 14 of Kilian & Lütkepohl (2017). In some
cases, the labeling of shocks is unnecessary (as in factor models) – and identification is complete.
This is not the case for policy analysis; labeling is discussed in detail in Section 3.1. Compared
to existing identification schemes, a key advantage of Theorem 1 and TVV-ID is that it does not
presume knowledge of ⌃t, either instantaneously or over periods of time.

The conditions of Theorem 1 impose interpretable mild restrictions on the process �2t . The rank
condition is analogous to the requirement in Rigobon identification that the two regimes do not
evolve proportionally. In a SV model, the rank assumption requires that the stochastic process �2t
has at least two linearly independent dimensions. For instance, the elements of �2t cannot all depend
linearly on a single common factor and idiosyncratic i.i.d. noise. Recall that, in the SVAR setting,
invertibility is assumed – ⌘t spans the space of structural shocks "t. It seems highly unlikely that
there truly is only one component to the variances of all macroeconomic shocks to the economy.
These points are illustrated in the following example.

Example. Consider shocks to two closely-related macroeconomic variables. Much of the movement
in the variances of each shock is likely driven by a common macroeconomic factor, mt. Suppose the
SV takes the form

�2t =

"
1

1

#
mt + !t

where !t is a 2⇥1 idiosyncratic component. If there is no persistence in the idiosyncratic components,
!t, then, assuming stationarity, the autocovariance matrix of �2t has the form

a

"
1 1

1 1

#
(9)

where a is some scalar. In this case, identification is sought from

L (H ⌦H)Ga

"
1 1

1 1

#
G0

(H ⌦H)

0 L0.
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This matrix can be re-written as

vech
⇣
a1/2HI2H

0
⌘
vech

⇣
a1/2HI2H

0
⌘0

= a⇥ vech
�
HH 0� vech

�
HH 0�0

Since, as discussed above, solutions to vech (HH 0
) are unique only up to orthogonal rotations, so

too are any solutions to the expression on the right-hand-side. Note that similar conclusions follow
if the dimensions of �2t are related to mt by different scalars. If however, the second element of �2t
depends on mt through some arbitrary nonlinear function r (·),

�22t = r (mt) + !2t,

the autocovariance will not, in general, have the structure in (9) – the precise form depends on the
distribution of mt. In this example, the two shocks could be those to the FFR and a long-term
interest rate. The volatility processes are clearly related – the question is the extent to which that
relationship is proportional.

When n > 2, beyond the rank condition, a scalar multiple condition applies to the rows of the
matrix as a whole. This requirement on the matrix is weaker than a full-rank assumption. Moreover,
it is better thought of as a technical assumption pertaining to a pathological case where the linear
algebra arguments guaranteeing uniqueness break down. In practice, there is little reason to think
this condition will be violated; rather, it is more likely to lead to a weak identification problem if
nearly violated. For a discussion of weak identification in TVV-ID, see Appendix B.2. Nevertheless,
in some finance settings, see eg. Campbell et al (2017), many volatilities are assumed to move
proportionally. If such assumptions are merely approximations to the truth, then weak identification
could result. If they are literally true, it is helpful to understand what can still be identified, which
motivates the next result.

Even if the scalar multiple condition were to fail, identification is still possible for those columns
of H unaffected, as shown by Corollary 1.

Corollary 1. Under Assumptions 1.1-1.2, 20, & 3, equation (7) holds. Then H(j) is identified from
(7) provided rank (Mt,s) � 2 and Mt,s contains no rows proportional to row j.

The result follows from the proof of Theorem 1. Again, the symmetric relaxation to “no scalar
multiple rows of row j or no scalar multiple columns of column j” applies if Assumption 4 is used.

The dimensionality and scalar multiple assumptions in Theorem 1 can be relaxed further by
supplementing additional equations. If, for example, the (often highly informative) mean

Et

⇥
⌘t⌘

0
t

⇤
= Et [⇣t] (10)

is considered, Theorem 1 can be replaced with Theorem 2.

Theorem 2. Under Assumptions 1.1-2, 20, & 3, equation (7) holds. Then H is uniquely determined
from (7) and (10) (up to labeling of shocks) provided

h
Mt,s Et

⇥
�2t
⇤ i

has rank � 2 and no scalar
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multiple rows.

Again, a symmetric extension applies under Assumption 4. Theorem 2 requires that, in order for
identification to fail, a scalar multiple assumption must also relate Et

⇥
�2t
⇤

to Mt,s. Similar arguments
can be made, adding in further observable moments, requiring progressively more extensive scalar
multiple deficiencies for identification to break down. Corollary 1 can also be extended using the
logic of Theorem 2.

As a final theoretical result, I offer a simple corollary, for cases in which the parameters underlying
the time-varying volatility are of interest.

Corollary 2. If the �t process is parametrized by ✓, and ✓ is identified from the moments of "t, then
✓ can be identified from moments of ⌘t if Theorem 1 applies.

Note that in some cases, additional assumptions may be required to satisfy the identifiability
condition of the corollary, for example, normality of the disturbances "t. A brief discussion is offered
following the proof in the Appendix.

Overidentification and Assumption 20

Even for n = 2, the system of equations is overidentified, with the degree of overidentification
increasing in n. This means tests exploiting overidentification can be conducted. This is an
advantage over many identification approaches in this setting, where strong assumptions are required
to yield even a just-identified model, making specification tests rare. The meaningful modeling
assumptions made are that H is invertible and fixed throughout time. A growing literature considers
issues surrounding the invertibility of H, (e.g. Stock & Watson (2017), Plagborg-Møller (2018)).
In short, if there are more than n underlying shocks in the economy, the true H is non-invertible.
However, it is almost always necessary to assume H is invertible for identification purposes (the
recent work of Chahrour & Jurado (2017) discusses some exceptions). Thus, a test indicating
misspecification, like a J�test, likely relates to the invertibility assumption.

The other substantive assumption made is that while TVV-ID focuses on the instability of the
variances of structural shocks, H remains fixed. While this may seem inconsistent, there are several
points to consider. First, no existing identification scheme flexibly handles time-varying H (Carreiro,
Clark & Marcellino (2018) do so under a very specific functional form). Even simple identification
based on Cholesky structure, when the true structure is Cholesky, does not identify the mean of
H if H is time-varying. Compared to other schemes that assume time-varying volatility, such as
Rigobon (2003), TVV-ID is in a better position to consider sub-sample estimation to evaluate the
stability of H over time. Since the Rigobon approach already works with sub-samples, it becomes
difficult to further subdivide in order to isolate both the variance regimes and separate H regimes
(which are likely related). Allowing H to vary presents an interesting econometric problem, which
is a prominent part of an ongoing research agenda. However, even if H varies, provided it does so
at a slower rate than the variances, identification can still hold; H will be locally stationary over
intervals over which the variances are not.
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There is also good reason to believe that the economic transmission mechanisms captured by H

do indeed move more slowly than the variances in the economy. This notion appears in theoretical
work; for example, Barro & Liao (2017) split volatility into short-run and long-run components,
which move around more slowly. If agents in the economy mainly respond to long-run movements
(due to adjustment costs, rational inattention, etc.), then H will also be slow-moving. Regardless,
should a researcher remain worried about the assumption of a fixed H, it is natural to apply a
J�test of the underlying model. Further, Andrews (1993) develops tests for parameter instability in
a GMM context, for example the sup-Wald test, the conditions for which are satisfied for a variety
of time-varying volatility models.8

Stationarity

Note that at no point is stationarity assumed for the process �2t ; I rely only on the existence of
necessary moments. This is possible because, conditional on some distribution over outcomes at
an initial point, it is natural to form moments over future values of a process, �2t . The moments
need not be the same – Et

⇥
�2t
⇤
6= Es

⇥
�2s
⇤

for t 6= s, but both can be well-defined. If Covt,s (⇣t, ⇣s) is
known for any t, s pair, the identification argument holds. However, stationarity can play a role in
estimation, where assumptions are required for Covt,s (⇣t, ⇣s) to be well-estimated.

Connection to signal processing TVV-ID has important connections to the signal processing
literature. There is a duality with the problem of recovering the signal, for example the volatility
of "t, from a noisy measurement, ⌘t. In fact, this problem is studied by electrical engineers, in
particular in relation to medical devices such as electroencephalograms, (see Blanco & Mulgrew
(2005) or by geophysicists, in relation to earthquake detection, as discussed by Bharadwaj, Demanet,
& Fournier (2017). As a signal extraction problem, Blanco & Mulgrew (2005) and Blanco et al
(2007) have resorted to higher moments, in a framework imposing independence of the noise across
dimensions of the measurement, based on Multivariate Independent Components Analysis (MICA).
Of course, while that assumption may be plausible in some contexts, it is not in macroeconomics,
where the noise is inherently part of the shocks themselves that are mixed to form the measurement
(the reduced-form innovation), as opposed to the noise impacting each dimension of the already-
mixed signal independently. It is for this reason that, while these authors rely on contemporaneous
fourth moments or cumulants, i.e. E

⇥
vec (⌘t⌘

0
t) vec (⌘t⌘

0
t)
0⇤, I make use of lagged fourth moments i.e.

E
h
vec (⌘t⌘

0
t) vec

�
⌘t�p⌘

0
t�p

�0i.

8The use of GMM to estimate TVV-ID models is discussed below. The less-familiar assumptions needed in Andrews
(1993), those of Near-Epoch Dependence (NED), can be replaced by stronger properties that hold for both GARCH
and SV processes. Lindner (2009) shows that GARCH satisfies �-mixing (and thus ↵-mixing with exponential rate)
and Davis & Mikosch (2009) show that SV models inherit the mixing properties of the log-variance process. Andrews’
(1983) results show that an AR(1) variance process is ↵�mixing with exponential rate. These mixing properties can
be shown to imply NED; see Davidson (1994) Chapter 17 for additional background.

14



2.3 Nesting the existing literature

TVV-ID holds in virtually any case where previously developed identification schemes apply. While
Proposition 4 of Sentana & Fiorentini (2001) shows that the presence of time-varying volatility is
sufficient to identify this model, conditional on the path of variances, TVV-ID demonstrates that
knowing the values the variance takes is not necessary for identification. Sentana & Fiorentini’s
ability to apply their result is restricted by its reliance on the path of H⌃tH

0 for t = 1, ..., T . In
most applications, it is only possible to estimate the noisy ⌘t⌘0t = H"t"

0
tH

0; H⌃tH
0 is never observed

directly. Thus, applying their result requires a one-to-one mapping between
�
⌘t, H,�21

�
and �22:T

(this also implies the path "1:T ). Then, a matrix H can be chosen that satisfies some criterion –
such as maximizing the joint likelihood of �21:T and "21:T . Sentana & Fiorentini propose the only
likelihood-based choice discussed in the literature, assuming a GARCH structure for �2t ; that is, �2t
evolves depending only on its past values and past values of "t"0t. Thus, �2t is entirely predictable
based on ⌘t�1 and H, satisfying the requirement of a one-to-one mapping.9 It is concerning that
our ability to exploit an identification argument is dependent on a functional form assumption,
particularly in applications of identification via heteroskedasticity removed from finance, where
the GARCH structure is most familiar. While estimates may often be sensitive to functional form
assumptions, here identification itself is literally dependent on such an assumption, or some other
restrictive method to map

�
⌘t, H,�21

�
to �22:T one-to-one. TVV-ID clearly nests the GARCH-based

identification of Sentana & Fiorentini (2001) – a GARCH(1,1) functional form implies a matrix
Mt,t�1 ⌘ M1 based on the first autocovariance of the stationary variance process, so Theorem 1 can
be applied.

Rigobon (2003) simplifies the insight of Sentana & Fiorentini, showing that two or more variance
regimes are sufficient to identify H. While H⌃tH

0 cannot be observed from the data, it is essentially
possible to observe H⌃AH

0
= HE [⌃t | t 2 A]H 0, the mean over the sub-sample A ⇢ T , by LLN,

provided the set A is large and �2t is stationary within the sub-sample. If there is a second such
set, B, and the rows of

h
diag (⌃A) diag (⌃B)

i
are not proportional, H is identified up to column

order, a special case of Sentana & Fiorentini’s Proposition 3. Intuitively, with one regime (the
whole sample) there are

�
n2

+ n
�
/2 equations in n2 unknowns. Adding a second regime yields

twice as many equations, n2
+ n, with only an additional n parameters, leaving a total of n2

+ n

unknowns. The requirement of linear independence ensures the rank condition holds. Additional
regimes offer overidentification. As a matter of revealed preference, this approach has been most
popular in the identification via heteroskedasticity literature. TVV-ID will work in almost all cases
where a regime-based approach could be used. Switching between regimes is a parametric form of
time-varying volatility, and yields a matrix of the form Mt,s, averaging over regimes and breaks.
However, Mt,s will only satisfy the technical conditions when a break occurs between s and t. Thus,
if identification is attempted using overall sample moments where the number of breaks is much less
than T , identification may fail asymptotically.

9Milunovich & Yang (2013) offer an alternative proof of identification under the GARCH assumptions based on
the Jacobian of the moment equations.
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When there are clear variance regimes, Rigobon’s scheme is compelling; it is more difficult when
variance regimes must be imposed or estimated. The same is true when it seems more plausible that
variances just fluctuate continuously, despite extensions like Lütkepohl & Netšunajev (2017) to allow
for smooth transitions between fixed regimes. External information can convincingly isolate periods
of high and low volatility, as in the original Rigobon (2003) paper, Rigobon & Sack (2004), and
Lanne & Lütkepohl (2008), up to more recent papers such as Nakamura & Steinsson (2018) and
Brunnermeier et al (2017). These studies make arguments such as “the volatility of the monetary
policy shock will be higher on monetary policy announcement days” or “the historical record indicates
periods of crisis and thus high volatility in Latin American currency markets”. Splitting the sample on
such a basis furnishes the two or more subsamples required for identification. When such information
is not available, or the variance is thought to change continuously, regimes must be imposed or
estimated, using some sort of threshold rule or Markov-switching model, (see e.g. Lanne et al
(2010)). Such estimation is most analogous to the spirit of TVV-ID – assuming the presence of
heteroskedasticity, and seeking to identify H without imposing additional information. Examples
include Rigobon & Sack (2003), Pavlova & Rigobon (2007), and Ehrmann, Fratzscher, & Rigobon
(2011). The difficulties resulting from the estimation of regimes, which will inherently be endogenous,
including the possibility of substantial bias, are discussed in Section 5. TVV-ID does not face these
difficulties, as no variance path must be estimated.

3 Interpretation of results

Having identified H through TVV-ID, there are myriad approaches to labeling the resulting structural
shocks, or, equivalently, the columns of H. Kilian and Lütkepohl (2017) discuss how there may in
fact be some difficulty in interpreting these as economically meaningful shocks, given the purely
statistical methods used to derive them; this step helps to develop such interpretations. In this
section, I first outline a range of labeling approaches that might be appropriate in various contexts.
Second, I offer results that show that if the labeling procedure has certain asymptotic properties, it
does not impact inference on H. Finally, I discuss practical ways in which researchers can report
their results transparently and accentuate the robustness of their findings.

3.1 Labeling of shocks

Labeling can be viewed as part of the identification problem, as it is still necessary to shrink
the set of candidate H matrices to obtain an identified point. The same problem arises in the
identification schemes based on non-Gaussianity, and is discussed in some detail in Kilian and
Lütkepohl (2017). In the non-Gaussianity literature, Lanne & Lütkepohl (2010) make restrictions
on the H matrix to label monetary policy shocks and Lanne, Meitz, & Saikonnen (2017) offer a
purely statistical method of selecting the labeling, based on a pre-defined normalization of H and an
arbitrary preference for the relative of magnitude of subsequent elements in each column. Hyvärinen
et al (2010) and Gouriéroux & Monfort (2014) do not address the issue. Ludvigson, Ma & Ng
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(2016) discuss “winnowing constraints” to eliminate possible solutions for H; loosely speaking, these
comprise both event constraints (certain shock series must take values above/below certain thresholds
during important periods) and correlation constraints between external variables and the structural
shocks. Some sets of assumptions eliminate candidates from the identified set, while others select a
best candidate. It is notable that for virtually any traditional macroeconomic identification scheme
one would otherwise be forced to use to identify a SVAR, there is a weaker analog that can be used
here to choose between the shock series furnished by TVV-ID. In reality, each applied setting will
lend itself to its own particular set of assumptions, and a researcher ought to choose carefully based
on the data to be considered, as she would otherwise be forced to do before identifying H itself in
the first place.

It is important to note that some work has considered the problem of interpreting the shocks
recovered using statistical identification methods (like identification via heteroskedasticity) as a
more difficult problem. Kilian & Lütkepohl (2017) argue that these shocks need not be economically
meaningful. The labeling exercise outlined above does not, however, necessarily assume the shocks
are meaningful - it is possible that no shock satisfies a theoretically-motivated labeling criterion.
Nevertheless, a researcher holding the concerns of Kilian & Lütkepohl (2017) can consider, as those
authors suggest, whether a statistically-recovered shock represents an economic shock by formally
testing conventional identifying assumptions as overidentifying restrictions. If the restrictions cannot
be rejected, the shock satisfies the theoretical properties of a conventional SVAR shock. Significantly,
while conventional restrictions are being tested at this post-estimation stage, the recovery of shocks
and responses is unrestricted and more flexible than in standard approaches. Such exercises do,
however, still generally require an initial labeling to determine a shock series or column of H to
compare to the theoretical restrictions. A second alternative is a more informal approach, evaluating
the extent to which the impulse response functions (IRFs) are compared to those based on economic
theory (or conventional models identified using such theory), as in Brunnermeier et al (2018) or
Lütkepohl & Netšunajev (2014).10 There is clearly scope to develop more rigorous frameworks to
conceptualize the shocks recovered from statistical identification approaches like TVVID, conventional
methods using heteroskedasticity, and non-Gaussianity. The underlying point is that TVVID makes
progress on existing approaches by delivering the candidate shocks under weak assumptions.

Regardless of whether the shocks recovered are assumed to be meaningful, or more skepticism is
taken in presuming interpretability, labeling then plays a role either in isolating the shock of interest
directly, or furnishing appropriate shocks to be tested against structural assumptions. A collection
of possible approaches is outlined below.

• In a context where a lower-triangular assumption could otherwise be used and is considered
plausible, the columns can be ordered so as to come closest to the zero restrictions under some
norm. This lets the data dictate more realistic near-zeros instead of assuming sharp zeros.
A similar analog exists for Uhlig’s (2005) sign restrictions, or Blanchard & Quah’s (1989)

10IRFs plot the dynamic causal effect of a scaled shock on a variable of interest, holding constant all other
contemporaneous and future shocks.
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long-run restrictions.

• Imposing a restriction on a column of interest will ex ante label that column. Conversely,
restricting all other columns has the same effect. Such assumptions can be arbitrarily sparse -
there is no need for a fully lower-triangular structure. This approach is adopted in Lanne &
Lütkepohl (2010).

• As is common in the Rigobon approach, assumptions on how the shock variances change
(perhaps in conjunction with historical episodes) can label the columns.

• A forecast error variance decomposition-type approach can label H by supposing that within
a period, the majority of unpredictable variation in a particular series is driven by a certain
type of shock.

• If there is an external instrument available for a policy shock, as described by Stock (2008), it
can be used to select the shock series that is best correlated with it, instead of making a strict
exogeneity assumption.

• Certain magnitudes of responses can be ruled out as implausible. Even very loose magnitude
restrictions can be helpful in contexts where the estimated columns have drastic differences in
relative magnitudes (a wrong normalization inflates elements dramatically).

• Plotting IRFs for the recovered shocks and attempting to name the shocks based on the
dynamics is also an option, as in Brunnermeier et al (2017).

A more detailed discussion, complete with examples, is presented in Appendix B.1.
A final approach, while not strictly an identification argument, since it references a single observed

draw rather than population moments, relies on filtered volatility paths. These can be compared
to the historical record to rule out elements of the identified set. For example, a high volatility
of inflation shocks is expected to have occurred during the 1973 oil crisis and the Volcker period.
This is essentially the “winnowing constraint” mentioned above. In practice, as in the empirical
application, this can be, at the very least, a convincing check on another means of shock labeling.
Moreover, some researchers will likely find it to be one of the most intuitive methods of labeling the
shock series. This is similar in spirit to the use of knowledge of economic events to define regimes in
the Rigobon framework. Section C.1 of the Online Appendix discusses implementation of the Least
Mean Squares filter in this context, which can furnish volatility paths under minimal parametric
assumptions.

3.2 Inference on labeled columns

Importantly, inference techniques that are valid for an estimated ˆH will also be valid for a labeled
column of ˆH, denoted dH(j), under standard conditions. Note that in general, the use of statistical
measures to select a column of a matrix will impact the asymptotic distribution of the ultimate
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column estimates. However, for all methods above that map a single shock to each label, it is the
case that the labeling criterion is consistent in the probability limit sense. In this context, that means
that as T ! 1, the probability of selecting the correct column based on the criterion approaches
unity. Pötscher (1991) establishes asymptotic distributions in a discrete model selection setting
building on intuition dating back to at least Geweke & Meese (1981). In the context considered
here, the strong notion of consistency of the labeling criterion makes it direct to show that a strong
form of his results to hold. Thus, if an estimator ˆH has a known asymptotic distribution, and the
labeling method is consistent, the asymptotic distribution of dH(j) will be that of the jth column of
ˆH. In other words, the labeling problem can be ignored asymptotically for the purpose of inference.

3.3 Transparency and reporting

TVV-ID demonstrates further value by enabling transparent discussion about the impact of economic
assumptions on the estimates obtained. In particular, since more subjective “economic” identifying
assumptions are only used to label a defined set of shocks, or, equivalently, to identify which column
H(j) pertains to a shock of interest, it is straightforward to specify what values would be identified
under alternative assumptions. Thus, the notion of a result being robust to identifying assumptions
is very clear. In many cases, a variety of sets of assumptions lead to precisely the same labeling
and thus the same result. Showing this can make empirical work more compelling, in that a reader
ascribing to any single member of that set of assumptions can be convinced by the result, even if she
does not agree with the validity of all such assumptions. In contrast, in much empirical work of the
nature considered here, the scope for comparison of identifying assumptions has been limited. When
such a juxtaposition is present, even if both sets of assumptions were valid, they would only yield
quantitatively identical results in a finite sample under very specific circumstances. Further, when
the subsequent results differ, it is hard to pin down exactly what aspect of the assumptions led to
those differences and precisely how this influence operates. Here, on the other hand, as the impact
of each assumption discriminates between a small number of discrete possibilities, it is simple to
discuss.

Finally, TVV-ID ought to be attractive to researchers not wanting to take a strong stand on
such economic assumptions, or wishing to leave the reader scope to decide the credibility of the
identification. TVV-ID provides the option of reporting the values of H(i) under multiple, possibly
all, column orderings. Reporting this finite, identified set is not usually an option, but here could
provide a check on the integrity of the results and illuminate the degree to which the convenience of
the findings may influence assumptions made.11

11Reporting all possible labelings is of course possible in any identification via heteroskedasticity approach, or others
where identification is up to column order. However, what sets TVV-ID apart is that extra economic assumptions
(besides the generic economic content of Assumptions 1, 20, & 3) have not been enforced prior to this labeling problem,
so it is possible to leave all “economic” decisions in the hands of the reader.
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4 Estimation

Having established sufficient equations to identify the structural shocks, there are many options
available to apply these results to estimate the parameters of interest. Estimation using a GMM
approach follows directly from the identifying equations. In particular, with the addition of a
stationarity assumption, Equation (7) can be consistently estimated, and standard GMM results
apply. However, in practice, (and in the simulation study) there may be challenges to this approach,
which are discussed in Appendix B.3. In this section, I consider other approaches: I outline likelihood-
based inference via Markov Chain Monte Carlo (MCMC) and describe what I call hybrid GARCH.
Further options exist, including variants of the GARCH-based inference of Sentana & Fiorentini and
methods inspired by the infill asymptotic framework. These additional methods are described in
Appendix B.3. While stationarity is not needed for identification, many estimation procedures will
require the assumption for desirable asymptotic properties to hold.

4.1 Quasi-likelihood inference based on time-varying volatility

A quasi likelihood approach is appealing because it provides a natural way to incorporate the
identifying information of multiple autocovariances. The drawback of any likelihood-based approach
is the necessity of specifying a law of motion for the structural variances; to some extent this may
seem a return to parametric assumptions this paper set out to avoid. However, thanks to the
general identification arguments offered above, identification is not tied to a particular functional
form. A researcher can specify any functional form for time-varying volatility provided it implies
an autocovariance. In analogy to a simple IV model, determining the validity of an instrument
(identification) is a separate problem from deciding whether to estimate via two-stage least squares
or choosing a parametric model for maximum likelihood. It is also possible to fit multiple functional
forms to examine how robust results are to such assumptions. Each functional form implies various
moments for ⇣t, exploiting the result in Theorem 2 showing that additional moments lessen the
risk of weak or non-identification. There is an extensive literature discussing functional forms for
time-varying volatility in the financial econometrics literature, see e.g. Shephard (1996) or Fuh
(2006). A popular general form is a simple AR(1) log SV model12. For a dimension i, it takes the
form

log

�
�2it
�
= µi (1� �i) + �i log

�
�2it�1

�
+ eit, (11)

where eit and ejt can have arbitrary covariance for i, j 2 1, ..., n. Provided |�i| < 1, this provides a
stationary approximation to popular models viewing log-variance as a random walk. Such general
forms for the likelihood require estimation via simulation methods like MCMC. The AR(1) SV model
is applied throughout this paper, and ultimately constitutes the recommended implementation for
TVV-ID. The reasons for this are addressed in the simulation study of Section 5. For more details
on quasi-likelihood estimation in this context, see Appendix B.3.

12Henceforth, I use the terms AR(1) log SV and AR(1) SV interchangeably to refer to the same model, with the
choice depending on the emphasis in context.
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4.2 Hybrid GARCH

A hybrid method based on the GARCH functional form has the advantage of minimizing nuisance
parameters to be estimated and not requiring intensive algorithms like MCMC, without directly
strictly imposing the GARCH structure. Calibrated GARCH parameter values can be used to form
a kernel and obtain a volatility path. Quasi-Maximum Likelihood (QML) estimation can then be
performed for H based on the implied filtered path. The applicability of the GARCH model is
discussed in Engle (2001), for example. Consider the GARCH(1,1) functional form for t = 2, 3, . . . , T :

�2it = µi

�
1� ¯ � ¯

⌥

�
+

¯ �2i,t�1 +
¯

⌥"2i,t�1, i = 1, 2, . . . , n, and µi, ¯ , ¯⌥ � 0, (12)

where a bar denotes a pre-determined calibrated parameter. The GARCH(1,1) law of motion means
that if ¯ +

¯

⌥ < 1, then E
⇥
�2it
⇤
= µi, where the expectation is with respect to the stationary

distribution. The hybrid approach deviates from standard GARCH by fixing the values of ¯ and ¯

⌥

via calibration (calibration details are discussed in Appendix B.5). My focus allows µi to remain
a free parameter to capture the mean variance of each series, as in Pakel, Shephard, & Sheppard
(2011); experimentation suggests doing so greatly improves performance. For estimation, the initial
value, �21 must be fixed; a default in most statistical packages is to set �21 = µ. Appendix A develops
the asymptotic properties of this estimator, showing standard QML results apply.

The underlying standard set of parameters used to calibrate ¯ and ¯

⌥ may vary based on the
application and especially frequency considered – whether highly volatile financial variables or
slow-moving macro variables. For the purposes of the simulation study, I calculate such a standard
set of parameters based on the monthly 128-variable McCracked & Ng FRED-MD database. The
following simulation study shows that hybrid GARCH estimation performs well.

5 Performance of estimators

To evaluate the practical potential of TVV-ID, it is important to differentiate its performance from
that of the alternatives. First, I present a theoretical argument highlighting difficulties encumbering
the Rigobon approach when regime breaks must be estimated. Second, I present simulation results
across a range of estimators. In doing so, I examine the performance of a variety of popular regime-
estimation approaches in simulation; the results are highly varied. Then I compare the performance
of TVV-ID (under multiple estimation approaches) to various applications of the Rigobon scheme
and Sentana & Fiorentini’s GARCH identification. I do so across several data-generating processes
(DGPs), and with varying degrees of time variation in volatility. In general, TVV-ID performs
favorably, and, in particular, the likelihood-based estimators are superior.

5.1 The breakdown of conditional diagonality

When regime breaks must be estimated based on the data, estimates obtained via the Rigobon
method face an important source of bias. It is standard in the SVAR context to assume that E ["t"

0
t]
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Table 1: The presence of off-diagonal elements

E ["1t"2t | t 2 T ] E ["1t"2t | t 2 A] E ["1t"2t | t 2 B]

H = I2 -0.001 -0.002 0.000

H =

�
[1, 1]0 , [1, 1]0

�
-0.001 0.414 -0.415

The table computes the conditional expectations noted via simulation. The variance matrix is I2 for 500,000
observations and

�
[1, 0]

0
, [0, 2]

0� for 500,000. The data is split into subsamples based on the trace of ⌘t⌘0t. A

is the subset of observations with trace above the median; B is A’s complement.

is diagonal; the Rigobon scheme requires in addition that E ["t"
0
t | t 2 A] is diagonal for a subsample,

A ⇢ T , used for identification. There are two potential forces driving any norm of H"t"
0
tH

0 to
be “high-valued” or “low-valued” – in A or not in A. On the one hand, a period of high volatility
increases the norm. On the other, certain values of "t"0t will be more conducive to a high norm (the
precise values will especially depend on H and also on �2t ). Thus, conditional on being in a certain
data-dependent sub-sample, some draws of "t"0t will be more likely than others, and this equally
applies to off-diagonal elements of "t"0t. Thus, E ["t"

0
t | t 2 A] will not, in general, be diagonal. Put

differently, the estimated regimes are not exogenous to "t as they are calculated based on ⌘t.
A simple example illustrates this fact. For this purpose, compare the generic H = I2 to

H =

�
[1, 1]0 , [1, 1]0

�
. Let the “low variance” regime be I2 and the high

�
[1, 0]0 , [0, 2]0

�
; shocks are

normally distributed. Now, compute the trace of H"t"0tH 0 for each observation and define sub-sample
A as those draws whose trace is above the overall median, and B below. I compute the expectations
numerically using 500,000 draws for each regime. Table 1 reports the conditional expectations.
With H as the identity, the off-diagonal elements are indistinguishable from zero, but with non-zero
off-diagonal elements in H, the orthogonality clearly breaks down, as described above.

A lack of orthogonality within the sub-samples biases estimates of H . Consider the 2-dimensional
case. When orthogonality holds, E ["1t"2t | t 2 A] = 0, so

�2⌘11,A = E
⇥
"21t | t 2 A

⇤
+H2

12E
⇥
"22t | t 2 A

⇤
= c1 +H2

12c2.

Without orthogonality,

�2⌘11,A = E
⇥
"21t | t 2 A

⇤
+H2

12E
⇥
"22t | t 2 A

⇤
+ 2H12E ["1t"2t | t 2 A]

= c1 +H2
12c2 +H12c3,

which includes an additional unknown, c3. It is clear that assuming c3 = 0, as the literature
does, biases estimates. The problem is compounded for higher dimensions, introducing additional
confounding parameters. Simply speaking, the Rigobon argument, which yields just-identification
with two regimes, is now under-identified if c3 must be determined.

This issue is most clearly illustrated when one considers the alternative sub-sample identification
argument (and its estimation analog) offered by Sims (2014). If SA = H⌃AH

0 where ⌃A ⌘
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E [⌃t | t 2 A] and similarly for B, then

SAS
�1
B = H⌃A⌃

�1
B H�1.

If ⌃A⌃
�1
B is diagonal, then those diagonal elements are the eigenvalues of the matrix on the right hand

side, and the columns of H are the corresponding right eigenvectors (uniquely so if the eigenvalues
are distinct). However, if ⌃A,⌃B, and thus ⌃A⌃

�1
B are not diagonal, then the diagonal elements

are not the eigenvalues of the matrix, and the columns of H are not the eigenvectors. Therefore,
diagonality conditional on membership in a sub-sample is crucial for estimates to be valid.

This problem is likely to manifest if the true variance process exhibits continuous variation.
In particular, estimated “high” regimes will mix individual short periods with high variances with
surrounding periods of low variance, but with draws of "t conducive to large ⌘t⌘0t; the converse is
also true. The mixing of variance regimes is not a problem in itself (as shown in Rigobon (2003)),
but the inclusion of periods on the basis of certain draws of "t is. This is potentially a problem in
data with frequent variance changes, where the end observations of each regime, marginal based on
variance value, are largely assigned based on "t . In smaller samples, these end observations may
make a sizable contribution to the subsample expectations.

The researcher faces a trade-off in choosing regimes - either explicitly, or implicitly via the
likelihood of a Markov switching model. As the length of the window over which the norm of
⌘t⌘

0
t is computed tends to infinity, provided some heteroskedasticity is present, the off-diagonal

elements will converge to zero. However, as the length of the sub-samples goes to infinity, provided
stationarity holds, the covariance matrix of each subsample will converge to the same value. A weak
identification problem emerges – if the covariances are identical across sub-samples, the original
problem of identification only up to orthogonal rotations returns. In much macroeconomic data,
from an estimation point of view, it remains unlikely that sample sizes are large enough to avoid
the issue of non-diagonality within the sub-samples. A potential solution is accepting the presence
of off-diagonal terms and using additional regimes to identify the extra parameters outlined above.
However, in the current literature, these issues are unaddressed; further work should investigate the
extent to which existing results are robust to this issue.

5.2 Simulations

I begin by describing the DGPs used across simulations. My first simulation study explores the bias
of Rigobon identification based on rolling window variance regimes. The second study compares
TVV-ID to existing identification schemes, under a variety of estimation approaches.

Data generating processes I consider a range of models of heteroskedasticity prevalent in the
literature. In particular, I consider a generic AR(1) SV model, a GARCH(1,1) model, and a Markov
switching model, intended to mirror the regime-based heteroskedasticity of Rigobon. The model used
for calibration is a bivariate SVAR(12) where the regressors are the first factor of the McCracken &
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Table 2: Calibration of volatility processes for simulations

AR(1)

µ � E [ete
0
t] details

(17.49,�42.11)0 (0.90, 0.96)
0


0.106 0.074
0.074 0.128

�
T = 100, 200, 400

weak i.d.: E [ete
0
t] /10

GARCH(1,1)

µ  ⌥ details

(7.29, 0.46)
0

(0.704, 0.764)0 (0.169, 0.226)0
T = 200

weak i.d.: ⌥/1.5

Markov Switching

Ptrans Vlow Vhigh details
0.971 0.029
0.092 0.908

� 
4.12 0
0 0.11

� 
15.91 0
0 2.27

�
T = 200

Calibration of the volatility processes used in the simulation studies. Values of estimated using a bivariate
VAR(12) based on the first factor of the McCracken & Ng FRED-MD database (excluding the FFR) and
the FFR. H was first estimated using the QML AR(1) approach and the other structural parameters were
estimated based on these structural shock series. The “weak” versions of the AR(1) and GARCH (1,1) are
scaled to offer substantively less identifying variation, as discussed in Section C.3 of the Online Appendix.

Ng data (excluding the FFR), and the FFR. H is estimated using the QML AR(1) SV model, and
given by

H =

"
1 0.298

0.333 1

#
.

This H is then used to obtain time-series for "t from which the structural parameters are estimated
for the other DGPs. Calibration details are in Table 2.13 Shocks are normally distributed (as are
innovations to the log SV process).14

The basic sample length is T = 200. This is shorter than the approximately 600 and 400
observations in the McCracken & Ng FRED-MD dataset and the empirical application respectively,
because these sample sizes are somewhat long relative to many macroeconomic datasets. The shorter
sample puts the methods through a sterner test in terms of strength of identification. Simulations
are conducted with 5,000 replications. Labeling of the columns of H proceeds via an infeasible
method of comparing the L2 norm of the resulting H matrices to the true matrix. This is infeasible
because, in practice, the true H is unknown.

13For the calibration, the estimated GARCH and ARCH parameters were scaled by 0.99 for the second structural
shock to avoid non-stationarity to machine precision.

14Unreported additional simulations show that using heavy-tailed shocks (implying misspecification for the likelihood
estimators) does not significant harm estimates. In general, it actually improves performance for estimators that
implicitly fit the variance of ⌘t⌘0t, which now contains additional identifying information due to non-Gaussianity.
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Study 1: Estimating regimes I apply a range of norms, window lengths, and threshold rules
motivated by those used in the empirical literature to assess the performance of the Rigobon
methodology. For norms, I consider both the trace of ⌘t⌘0t, and the diagonal element expected to be
most impacted by heteroskedasticity, as in Rigobon & Sack (2003). For windows, given that the
calibration is to monthly data, I consider single-period, 7-period, and 13-period symmetric windows.
For thresholds, I consider both the median, which maintains precision in the estimation of both
subsample covariances, and one standard deviation above the mean, as in Rigobon & Sack (2003).
I analyze both the Markov switching DGP, as it is the leading case for the Rigobon scheme, and
the AR(1) SV DGP, as representative of a volatility model with continuous variation. Estimation
proceeds using the Sims methodology discussed in Section 5.1.

For both DGPs, many tuning parameters result in moderate to severe bias. For the Markov-
switching DGP, the identification scheme should perform relatively well, since there truly are windows
of high and low variance. Results for “oracle” estimation, where the true break dates are known,
are accurate to Monte Carlo error. Histograms for all estimators are available in Figures C.3-C.5 of
the Online Appendix. Table 3 shows severe bias results when the regime determination is based
on only the contemporaneous values of ⌘0t⌘t, although RMSE is moderate. Note that without bias
of the type discussed above, even these estimators should be consistent, like the oracle. Bias falls
with the length of the rolling window, with lower RMSE for the 13-period window than 7-period.
Performance for the SV DGP is similar; results are available in Table C.1 of the Online Appendix.
Here, longer windows yield estimates quite close to the true values. That longer windows better
identify the true parameters accords with theory; the off-diagonal bias will be minimized, since it is
unlikely to have a long sequence of similarly conducive draws of "t driving the regime determination.
Results appear most sensitive to window length, with the threshold and norm having smaller effects.
However, these results suggest that even if the researcher has a strong belief that the underlying
heteroskedasticity is dramatic (as it is here - see Section C.3 of the Online Appendix), care must be
taken in estimating regimes, as there is potential for substantial bias.

Study 2: Comparison of estimators Three identification schemes are compared in this
simulation study: the Rigobon approach, Sentana & Fiorentini’s GARCH-based identification, and
TVV-ID. Table 4 summarizes these estimators. The first implementation of Rigobon uses sub-samples
defined based on a 13-period rolling window of trace (⌘t⌘0t), with the regime cut-off being the median.
This combination was chosen as it performed quite well in the Study 1. Second, it is implemented
with the two sub-samples corresponding to simply the first and second halves of the sample. This
should avoid the bias outlined above, but may be susceptible to weak identification. Third, I estimate
a Markov switching model via maximum likelihood. The standard implementation of Sentana &
Fiorentini’s (2001) scheme uses maximum likelihood on GARCH(1,1) variance processes. TVV-ID
is implemented in three ways. First, an approximation to quasi-maximum likelihood is estimated
via Hamiltonian MCMC with flat priors and the model of equation (11), allowing for correlated
innovations across dimensions. The point estimate is the median of the MCMC draws. GMM is
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Table 3: Mean estimates for Rigobon estimator: Markov-switching DGP

window 1-period 7-period 13-period oracle

norm threshold H21 H12 RMSE H21 H12 RMSE H21 H12 RMSE H21 H12

trace

median 0.078 -0.24 3.79 0.016 0.419 4.93 0.023 0.357 4.42

0.033 0.277

mean+ 1 s.d. 0.064 -0.156 5.91 0.006 0.451 6.81 0.006 0.453 6.57

⌘̄21
median 0.061 -0.032 1.91 0.009 0.441 6.10 0.018 0.392 5.22

mean+ 1 s.d. 0.067 -0.139 4.20 0.009 0.427 7.12 0.011 0.403 6.83

Mean estimates for Rigobon-type estimators for the empirically-calibrated Markov-switching DGP, T = 200,
5,000 draws. The window indicates the length of the rolling window over which variances were computed
to form subsamples. The norm indicates the method used to evaluate the magnitude of the variance over
each window. The threshold indicates the value a window had to surpass for its central observation to be
considered “high variance”. Estimation via the Sims (2014) method. Labeling proceeds via an infeasible method
matching H estimate to the true H to minimize L2 norm. Since the RMSE must account for error in multiple
parameter estimates, the MSE is computed for each, and then normalized by the square of the true parameter,
before the root of the sum is taken.

Table 4: Estimators considered in simulations

Identification
scheme Estimator Summary

Rigobon
Sub-sample 13-month moving ave. trace, median threshold
T/2 split subsample split at T/2

Markov switching Maximum likelihood on Markov switching model

Sentana & Fiorentini GARCH Independent GARCH(1,1) processes, maximum likelihood

TVV-ID
Quasi-likelihood AR(1) log SV with correlated innovations (MCMC)

GMM 2-step GMM using mean and first autocovariance of ⌘t⌘0t
Hybrid GARCH(1,1) with calibrated GARCH and ARCH parameters

The estimators applied are split into three categories based on the identification approach exploited. The key
features of each estimator are described in the summary column.

applied using the mean and first autocovariance of ⌘t⌘0t; the standard two-stage procedure is used for
weighting. Finally, I estimate the hybrid approach where the GARCH parameters are calibrated as
¯ = 0.6048, ¯⌥ = 0.2476 (estimated based on 128 macro time series, see Appendix B.5), with the
remaining estimation, including each process’s mean, via QML.

Seven DGPs are considered. The three central specifications are a Markov switching process,
a GARCH(1,1), and an AR(1) log SV, all with T = 200. I augment this with variants of the
GARCH(1,1) and AR(1) SV. For GARCH(1,1), I add a version with “weak variation in the volatility;
for the AR(1) SV, I consider T = 100, 400 and a version with T = 200 and “weak” variation in the
volatility. The “weak” calibrations are chosen to scale down the ARCH parameters by a factor of
1.5 for GARCH(1,1) and the innovation variances by a factor of 10 for the AR(1) 15. These values

15Note that for both the AR(1) SV and GARCH(1,1), this also implies a change E
⇥
�2
t

⇤
.
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are admittedly arbitrary, but were chosen after comparing sample variance paths under different
calibrations to obtain paths that exhibited modest fluctuation in the neighborhood of the process
mean. Representative sample paths are given in Section C.3 of the Online Appendix. As before,
labeling is conducted using the infeasible method based on the L2 norm. This procedure allows the
results to focus on the challenge of estimating H , as opposed to that of labeling the shocks thereafter.
The details are presented in Table 2.

The mean values obtained from each estimator, the RMSE, and rejection rates of the associated
standard errors are reported in Table 5. Histograms for all DGPs are available in Figures C.6-C.12
of the Online Appendix. Estimates are in general better for H21 than H12, which can be attributed
to the larger autoregressive parameter �2 = 0.96 for the second shock series. All estimators exhibit
bias for certain DGPs (particularly in small samples), but for the most part, this is driven by a few
outliers; the histograms demonstrate that the distributions are meaningfully centered around the
true parameter values, with few exceptions. Given this, the RMSE is a useful tool in comparing the
estimators, in giving a measure of their dispersion around the true parameter values.

Across DGPs, the QML implementation of the AR(1) SV model performs best. It does exhibit
some bias due to outliers for smaller sample sizes, but even when misspecified, its RMSE is only
slightly worse than those of the correctly specified estimators. The once case where it breaks down,
with substantial bias, is for H12 in the weak GARCH DGP, where it is both misspecified and
faced with weak identification, but there it still maintains an RMSE not too far behind the leading
well-specified GARCH estimator. Its robustness to misspecification - that, even when misspecified -
it can compete with well-specified estimators, is not shared by any other estimator. The rejection
rates are actually undersized, offering conservative inference.16

The hybrid GARCH estimator and Markov switching estimators offer the next best performance.
Frequently, they actually have a lower bias than the AR(1) SV due to fewer outliers, but their
RMSEs are systematically higher. Their performance varies with the degree of misspecification and
sample size, as expected, and both break down in the presence of weak identification. The hybrid
GARCH has some difficulty in fitting the “weak” GARCH DGP as it is calibrated to have a very
different ARCH parameter. The standard errors for both estimators offer minimal size distortions.

The GARCH estimator generally is comparable to the hybrid GARCH and Markov switching
approaches. However, it breaks down badly for the AR(1) with T = 400. This is because the
empirical calibration dictates GARCH parameters that are very close to non-stationarity. As a
result, with a longer draw of data, the dynamics sometimes appear explosive from a GARCH-fitting
perspective, negatively impacting the estimates.17 As opposed to being an artifact of the calibration,
this should be seen as a strike against GARCH since these results follow from an empirical calibration

16One exception is for H12 in the AR(1) 400 DGP. This is likely because with a longer sample size the sampling
variation is quite low, while given the unsupervised nature of the simulation study, some of the chains may not
converge, or cycle between column orderings, inflating the rejection rate. This will not be a problem when MCMC is
supervised as in usual practice.

17The start values for the GARCH parameters in the optimization are based on the median of 1000 sample paths
of T drawn from the DGP. These start values, some of which are very large for T = 400, thus only impact the
optimization commensurately with how they impact the data being passed to the algorithm.
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Table 5: Mean estimates and rejection rates: study 2

QL AR(1) GMM Hybrid GARCH Sub-sample
(rolling)

Sub-sample
(T/2)

Markov
switching

mean ↵ mean ↵ mean ↵ mean ↵ mean ↵ mean ↵ mean ↵

Markov
switching,
T = 200

H21 0.038 1.2 0.018 33.1 0.024 9.6 0.025 48.5 0.023 0.0 0.014 0.1 0.034 4.4

H12 0.327 13.1 0.352 36.5 0.325 11.3 0.346 46.8 0.357 0.0 0.378 0.2 0.273 5.0

RMSE 2.39 - 6.36 - 5.34 - 4.74 - 4.42 - 6.62 - 2.19 -

GARCH(1,1),
T = 200,

H21 0.037 1.1 0.030 13.4 0.031 4.3 0.033 4.7 0.028 0.0 0.029 3.4 0.031 11.6

H12 0.394 5.2 0.335 18.7 0.329 5.3 0.295 4.6 0.304 0.0 0.360 3.2 0.331 11.2

RMSE 2.75 - 5.82 - 2.47 - 2.58 - 6.62 - 6.88 - 5.31 -

GARCH(1,1),
T = 200,

weak

H21 0.041 0.5 0.024 49.8 0.023 24.5 0.032 4.9 0.033 0.0 0.022 0.1 0.026 9.5

H12 1.186 15.8 0.775 51.8 0.979 24.4 0.266 5.7 0.114 0.0 0.829 0.2 0.635 8.8

RMSE 7.26 - 12.13 - 8.27 - 6.92 - 7.99 - 13.3 - 11.15 -

AR(1),
T = 100

H21 0.048 0.8 0.017 42.9 0.027 9.2 0.026 22.4 0.020 0.0 0.023 0.5 0.023 11.7

H12 0.441 2.2 0.585 46.0 0.347 10.2 0.364 21.5 0.445 0.0 0.387 0.3 0.438 10.4

RMSE 4.30 - 8.92 - 6.67 - 6.37 - 8.28 - 7.42 - 7.26 -

AR(1),
T = 200

H21 0.041 0.9 0.023 37.2 0.030 6.9 0.031 23.6 0.021 0.0 0.024 0.4 0.030 5.8

H12 0.370 3.0 0.376 40.1 0.322 7.7 0.306 22.3 0.369 0.0 0.365 0.2 0.306 5.1

RMSE 2.54 - 7.14 - 4.31 - 3.92 - 6.91 - 6.30 - 5.16 -

AR(1),
T = 400

H21 0.034 1.3 0.028 27.8 0.033 4.3 0.061 62.2 0.023 0.0 0.024 0.3 0.0343 4.7

H12 0.300 11.4 0.314 31.4 0.287 4.9 0.756 51.7 0.308 0.0 0.369 0.3 0.285 4.9

RMSE 1.34 - 5.60 - 2.52 - 8.50 - 6.23 - 5.72 - 3.25 -

AR(1),
T = 200,

weak

H21 0.063 0.2 0.014 42.7 0.0187 47.6 0.019 8.6 0.032 0.0 0.018 0.0 0.019 15.4

H12 0.44 3.2 0.535 43.0 0.503 48.6 0.500 10.0 0.155 0.0 0.470 0.0 0.465 14.3

RMSE 4.85 - 8.96 - 8.36 - 7.78 - 7.17 - 8.41 - 8.04 -

Mean estimates for the full range of estimators for the specified DGPs. Labeling proceeds via an infeasible
method matching H estimates to the true H to minimize L2 norm. Rejection rates, ↵, are presented for
a nominally-sized 5% test for each draw. For the MCMC methods, this is based on the covariance matrix
calculated from chains. For GMM, the approach is the standard asymptotic variance estimator. For the
subsample method, the approach is a wild bootstrap. For GARCH, the Fisher information is used. For the
hybrid, the QML variance is used. For Markov Switching, a parametric bootstrap is used. Since the RMSE
must account for error in multiple parameter estimates, the MSE is computed for each, and then normalized
by the square of the true parameter, before the root of the sum is taken.
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based on commonly-used data. In some cases, estimates of the GARCH and ARCH parameters on the
explosive edge of the parameter space lead to excess mass of H around zero. These are examples of
problematic misspecification resulting from assuming GARCH as in Sentana & Fiorentini’s approach;
GARCH(1,1) struggles to accommodate a stationary DGP (�2 = 0.96 is quite reasonable) of a
different functional form. The rejection rates, based on the Fisher Information, are accurate when
well-specified, but as expected, break down when misspecified.

GMM has difficulty with small sample sizes and weak identification. This makes sense, as there
are fewer explicitly-estimated moments compared to the implicitly incorporated moments of the
likelihood-based approaches. Thus, when there is difficulty precisely estimating and decomposing
the higher moments of the shocks, identification is impacted. For AR(1) SV T = 200 though, the
performance is very good. The standard errors also improve with sample size as the asymptotics
“kick in”. For larger sample sizes, GMM can offer a real alternative that requires no parametric
assumptions.

The rolling window Rigobon estimator is generally reliable, which, given that the window length
and threshold were chosen based on Study 1 to perform well in this data is unsurprising. A naïve
implementation would perform very differently. When identification is strong, the bias is actually
very low. However, the breakdown is dramatic for weak identification, which makes sense, as in this
context the realized shock values dominate the regime selection, causing non-diagonality bias. Even
when well specified (the Markov switching DGP), it is not competitive with the other estimators in
terms of RMSE; the RMSE is high in general. The same remarks apply to the T/2 split estimator.
The wild bootstrap used for both is severely undersized.

6 Empirical illustration: estimating oil price shocks

Kilian (2009) contributes to a substantial literature examining the effects of oil price fluctuations on
the macroeconomy. In particular, Kilian (2009) examines how the effects may vary depending on the
cause of the price change. He estimates a 3-variable SVAR (oil production growth, real economic
activity, real oil price) to obtain structural shock series, each of which represents a possible cause
of oil price fluctuations. Based on his structural assumptions, these are an oil supply shock, an
aggregate demand shock, and an oil-specific demand shock. Examining the impact of these structural
shocks on GDP and inflation illustrates that oil price movements have different effects on the real
economy depending on the source of the price movement - which type of shock caused it.

This problem is a natural candidate for identification via time-varying volatility. It has in fact
already been evaluated in a similar context by Lütkepohl & Netšunajev (2014) who assess the robust-
ness of results using identification via heteroskedasticity with a Markov switching implementation.
Moreover, as discussed in that paper, and in Zhu (2017), there is evidence that oil markets exhibit
time-varying volatility. Further, the recursive identification assumptions previously exploited, while
plausible, are not ex ante obviously true in a “hard zero” sense. TVV-ID allows me to finally perform
such tests of identifying assumptions and more broadly to assess the robustness of results (in terms of
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ultimate impulse responses) to a structural response matrix that is not lower triangular. The ability
to test conventional identification assumptions on the H matrix is a key avenue for application of
TVV-ID in applied work.

Explicitly, Kilian’s (2009) model takes the form

⌘t =

0

B@
⌘�prod.
t

⌘r.e.a.t

⌘r.p.o.t

1

CA =

2

64
1 0 0
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H31 H32 1

3

75

0

B@
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t
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t
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t

1

CA ,

where the residual ⌘t is obtained from a 24-lag VAR of the percent change in global crude oil
production, an index of real economic activity, and the real price of oil. Note that I have used
a different normalization (unit diagonal of H as opposed to identity structural shock covariance)
to remain consistent with the theoretical portion of the present paper, and because an identity
covariance normalization (of a specific period) is not useful in the TVVID argument based on
autocovariance. The data is monthly, spanning 1973:2-2007:12. The identifying assumptions are

1. Oil production does not respond to either aggregate or oil demand shocks within the month

2. Real economic activity does not respond to oil demand shocks within the month

These assumptions have also been adopted in Kilian & Park (2009).
I adopt Kilian’s (2009) VAR specification, using replication code available from the AEA website,

up to the estimation of the reduced form residuals. I deviate in terms of assuming time variation in
the structural shock variances and estimating the H matrix using several forms of TVV-ID, instead
of simply taking a Cholesky decomposition. Note that for identification purposes, I need not take
a stand on whether the time variation is conditional or unconditional. I consider both the AR(1)
stochastic volatility implementation, and the fully non-parametric 2-step GMM approach. Recall
from the simulation study that the AR(1) stochastic volatility implementation, while an unconditional
heteroskedasticity model, performs fairly well even in the presence of conditional heteroskedasticity,
and that the GMM implementation is completely agnostic to the type of heteroskedasticity. For
contrast, I also present results from a Rigobon (2003) estimator using the same 13-period rolling
window and threshold rule as in the simulation study. Lütkepohl & Netšunajev (2014) conduct
essentially the same exercise with a Markov switching model, so I do not pursue that here.18 Table 6
presents the H matrices computed using each of these three approaches, with Kilian’s (2009) result
for comparison. Note that I employ the unit-diagonal normalization, while Kilian (2009) uses the
unit-variance normalization.

Columns are labeled to provide the closest match to Kilian’s (2009) results. Equivalently, labeling
based on ruling out implausible magnitudes of responses leads to the same permutations of columns,
due to the large differences in relative magnitude of the entries in each column. At first glance, it

18They do, however, consider a VAR(3) as opposed to the VAR(24), referring to several information criteria
supporting a more parsimonious specification.
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Table 6: Estimates of H in three-variable oil market SVAR

AR(1) SV GMM Markov switching Kilian

H

1 0.37 0.02 1 -0.14 -0.36 1 -0.09 0.42 1 0 0
-0.01 1 0.03 0.01 1 0.03 -0.00 1 0.14 0.00 1 0
-0.01 0.04 1 0.02 0.09 1 -0.06 -0.20 1 -0.02 0.12 1

null Chol. col. 2 col. 3 Chol. col. 2 col. 3 Chol. col. 2 col. 3
– – –

p�val. 0.31 0.72 0.21 0.94 0.97 0.83 0.95 0.90 0.85

The first block presents estimates for the H matrix based on the various estimators. The lower block reports
p�values for tests of Cholesky structure collectively, and then by column. The AR(1) SV method implements
an AR(1) model for log-variance using MCMC. Standard errors are based on the sampling variation of the
chains. The GMM approach uses 2-stage GMM. The Rigobon method employs a 13-month rolling window
with the median trace as the regime threshold; standard errors use a wild bootstrap. The Kilian matrix is a
Cholesky decomposition, with unit normalized diagonal.

appears that the matrices obtained without restrictions differ from Kilian’s (2009) due to non-zero
point estimates in the upper-triangular portion.

However, I can now test the recursive assumptions that Kilian (2009) uses to obtain structural
responses, as they are overidentifying restrictions when the model is identified using TVVID.
Proposition 3 presents the test formally.

Proposition 3. Under Assumptions 1.1-1.2, 20, & 3,

1. Conventional identifying assumptions on the H matrix of the form ⇤H = � (where ⇤ is p⇥ n

and � p⇥ 1) are overidentifying restrictions,

2. For an asymptotically normally distributed estimator ˆH with mean H and asymptotic variance
var

⇣
ˆH
⌘
, these overidentifying restrictions can be tested using the Wald test statistic

J⇤ =

⇣
⇤

ˆH � �
⌘0 h

⇤var
⇣
ˆH
⌘
⇤

0
i�1 ⇣

⇤

ˆH � �
⌘
,

where J⇤
d! �2

p under the null hypothesis ⇤H = �.

The first point follows from Theorem 1. The test statistic and its limiting distribution follow
from the properties of a standard Wald test. Accordingly, I perform a simple joint Wald test for
the three overidentifying zero restrictions, and report separate test results for the restrictions on
each column of H. The asymptotic variance for the AR(1) SV estimator is based on the sampling
variation from the MCMC and for the Rigobon estimator, a recursive wild bootstrap.19 For both
AR(1) SV and GMM, the recursive assumptions cannot be rejected column-by-column or collectively.

19Appendix A discusses the use of QML-type standard errors for MCMC as proposed by Müller (2013). Note that
the simple standard errors based on the sampling distribution were found to be conservative in the simulation study.
The Müller (2013) errors were also computed here for robustness and found to be even more conservative than those
reported, so do not change the conclusions.
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Figure 2: Estimated variance paths for the three structural shocks obtained from the AR(1) SV method,
normalized to present on the same axes. The blue line represents the variance of the oil supply shock, red
aggregate demand, and gold oil-specific demand.

This should be particularly convincing in the face of the size distortions found in the simulation
study for the GMM standard errors in samples of this size. The results using the Rigobon estimator
also cannot reject the Cholesky structure, though this is unsurprising given how undersized the
bootstrap approach was found to be in simulation. Thus, I cannot reject the validity of Kilian’s
(2009) lower triangular structure. These results accord with those of Lütkepohl & Netšunajev (2014),
based on identification via heteroskedasticity using a Markov switching model; they are also unable
to reject the overidentifying restrictions of a lower triangular structure. Comparing the implied paths
of the structural shocks shows very similar results across both identification schemes and estimators.

The AR(1) SV implementation allows me to recover implied paths for the shock variances. Figure
2 plots these paths, standardized to display on the same axes. The oil supply shock variance is in
blue, the aggregate demand in red, and the oil-specific demand in gold. The general dynamics of
these accord with the labeling of the shocks and economic intuition. Oil supply shocks are at their
most volatile during the first part of the sample, and become somewhat more stable in the latter
period. Aggregate demand shock volatility behaves quite similarly to that of oil supply shocks.20

Oil demand shock volatility rises throughout the sample, punctuated by periodic spikes. For a
comprehensive discussion of events affecting oil markets during this period, see e.g. Barsky & Kilian
(2002, 2004)

Besides testing the impact of the recursive ordering assumptions on the H matrix itself, it is
important to assess their impact on the impulse response functions. Figure 3 reports the IRFs
under the four identification approaches. Kilian’s (2009) responses are in gold, AR(1) SV in blue,
GMM in red, and Rigobon in purple. Generally speaking, the paths are all very similar; this should
not be surprising, considering the role of reduced form parameters in dictating the IRFs. The
largest deviations occur for the Rigobon estimates; potential issues with this methodology have
already been discussed at length. Figure 3 replicates Kilian’s (2009) Figure 3 under the AR(1) SV

20Note that the similar paths are not a major issue for identification since identification is based on a combination
of both autocovariance, mean and other implied moments in this implementation, which do not collectively exhibit
collinearity. On the other hand, such data would challenge Sentana & Fiorentini’s (2001) identification approach,
which requires linear independence of the variance paths.
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Figure 3: Comparison of IRFs to oil price shocks for each of the four estimators, replicating the IRFs from
Kilian (2009) Figure 3. The blue lines correspond to AR(1) SV, red to GMM, purple to Rigobon, and gold to
Kilian. Shocks are one standard deviation, which is calculated separately for each path based on the structural
shocks implied from the respective unit-diagonal H matrices.

implementation of TVV-ID (blue), with Kilian’s results for comparison (gold, dashed), and 1- and
2-standard deviation confidence intervals. The procedure for the confidence intervals is discussed in
Appendix B.4. The only possible case for rejecting Kilian’s (2009) responses is at early horizons,
when the mild bias caused by imposing recursive assumptions is at its highest. This is also impacted
in level shifts by the fact that a “one standard deviation shock” has a different size in each of the
two implementations.

Kilian’s (2009) analysis culminates with the response of GDP and inflation to each type of
oil shock, making the argument that the macroeconomic impact of oil price fluctuations depends
on the type of shock causing them. I replicate these responses (Kilian (2009) Figure 5) under
TVV-ID in Figure 5, with TVV-ID in blue and Kilian (2009) in gold, dashed. Like the impulse
responses of the three series internal to the SVAR, these are again very similar to those in the
original paper. The economic conclusions remain unchanged: oil supply disruptions may have a
small negative impact on GDP, but little impact on inflation; aggregate demand shocks have a
small stimulatory effect at first, before higher prices have a recessionary impact; oil demand shocks
orthogonal to macroeconomic fundamentals are contractionary and inflationary. This empirical
illustration validates and indeed strengthens the results of Kilian (2009) by establishing that they are
robust to alternative identification assumptions, in particular relaxing sharp recursive assumptions
on the H matrix, and replacing them with estimated zeros. However, the fact that estimates of
the H matrix can be obtained that match existing results (with structural assumptions used only
to interpret the shocks) should not be discounted. The potential to test existing identification
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Figure 4: IRFs are constructed using the estimates based on the AR(1) SV process, replicating the IRFs
from Kilian (2009) Figure 3. 1- and 2- standard deviation confidence intervals are also plotted. The point
estimate is in blue, the confidence intervals in red, and the Kilian (2009) path in gold, dashed. The standard
errors combine Kilian’s (2009) wild bootstrap for the reduced form IRFs with the covariance of the H estimates
(based on sampling distribution), as described in Appendix B.4.

assumptions as overidentifying restrictions is valuable. All identification assumptions are not created
equal, and in other contexts the Cholesky structure is likely to be rejected with the help of TVV-ID.

7 Conclusion

This paper develops a general framework under which latent shocks can be identified via time-varying
volatility. The previous literature offers identification arguments based only on parametric models of
the variance process. In particular, I show that when regime dates are estimated, Rigobon’s (2003)
subsample methodology can suffer from substantial bias. In this context, I offer an identification
argument that makes minimal assumptions on the variances as a stochastic process. This extends
results like those in Sentana & Fiorentini (2001) by freeing the researcher from needing to assume a
particular functional form (or, indeed, any functional form). Then, economic information usually
used to identify the model need only be used to label the shocks. A variety of estimation methods
are proposed. Simulation evidence shows that quasi-likelihood methods based on an auto-regressive
log-variance process work well even when the true process has a different form.

An empirical illustration based on Kilian’s (2009) study of the effects of oil price-driving shocks
on the macroeconomy illustrates a key usage of TVV-ID. By estimating the H matrix, relying
only on the presence of time-varying volatility, I am able to directly test the Cholesky structure
frequently deployed in this literature. I show that TVV-ID produces very similar results to those in
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Figure 5: The IRFs plot the impact of the three oil price shocks on US real GDP and inflation at quarterly
horizons, replicating the IRFs from Kilian (2009) Figure 5. Estimates are based on the AR(1) SV estimator,
with 1- and 2- standard deviations confidence intervals. The point estimate is in blue, the confidence intervals
in red, and the Kilian (2009) path in gold, dashed. The standard errors follow Kilian’s (2009) block bootstrap.

the original paper, and tightly estimates zeros instead of assuming them. In this case, I am able
to validate Kilian’s (2009) results by demonstrating their robustness to identifying assumptions.
However, in other contexts, this will not be the case, and TVV-ID can help to put into sharp relief
those assumptions on the H matrix that ought be deemed unreliable.
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Appendix

A Proofs

Derivation of the simple Rigobon estimator

The conditional variances of the reduced-form innovations are given by Et [⌘t⌘
0
t | �t] = H⌃tH

0, or

Et

⇥
⌘21t | �t

⇤
= �21 +H2

12�
2
2t

Et [⌘1t⌘2t | �t] = H12�
2
2t +H21�

2
1

Et

⇥
⌘22t | �t

⇤
= �22t +H2

21�
2
1.

Divide the data into disjoint subsamples, TA and TB. In the Rigobon context, these represent high
and low volatility regimes. For a random variable xt, define

ETA
[xt] ⌘

1

#TA

X

s2TA

xs,

the mean over the subsample TA, where #TA =

P
s2TA

1. Thus,

ETA

⇥
⌘21t | �t

⇤
= �21 +H2

12ETA

⇥
�22t

⇤

ETA
[⌘1t⌘2t | �t] = H12ETA

⇥
�22t

⇤
+H21�

2
1

ETA

⇥
⌘22t | �t

⇤
= ETA

⇥
�22t

⇤
+H2

21�
2
1,

and similarly for TB. Now, consider how the expectations change between subsamples. Let

�|�t
(·) ⌘ ETA

[· | �t]� ETB
[· | �t] ,

so

�|�t

�
⌘21t

�
=H2

12�|�t

�
�22t

�

�|�t
(⌘1t⌘2t) =H12�|�t

�
�22t

�

�|�t
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⌘22t

�
=�|�t
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�22t

�
.

Finally, define
� (·) ⌘ E

h
�|�2

t
(·)
i
,
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an unconditional expectation over �t. Therefore,

�

�
⌘21t

�
= H2

12�
�
�22t

�
= ETA

⇥
⌘21t

⇤
� ETB

⇥
⌘21t

⇤

� (⌘1t⌘2t) = H12�
�
�22t

�
= ETA

[⌘1t⌘2t]� ETB
[⌘1t⌘2t]

�

�
⌘22t

�
= �

�
�22t

�
= ETA

⇥
⌘22t

⇤
� ETB

⇥
⌘22t

⇤
.

This provides simple expressions for the difference across subsamples of the unconditional expectation
of ⌘t⌘0t. Assuming that �

�
�22t

�
6= 0, H12 can be identified in closed form:

ETA
[⌘1t⌘2t]� ETB

[⌘1t⌘2t]

ETA

⇥
⌘22t

⇤
� ETB

⇥
⌘22t

⇤
=

H12�
�
�22t

�

�

�
�22t

�
= H12.

Derivation of Proposition 1

Proof. I start with
Et,s [⇣t | �t,Ft�1] = L (H ⌦H)G�2t .

Since vt was shown to be a martingale difference sequence and Vart (vt) < 1 (Assumption 3.2),

Covt,s (vt, vs) = 0, s 6= t.

This also implies that in the signal-noise decomposition, Equation (6), vt is white noise. Using this
fact, Assumption 2, Assumptions 3.1-2, and the decomposition of ⇣t above, it is immediate that, for
s 6= t,

Et,s

�
⇣t⇣

0
s

�
= L (H ⌦H)GEt,s

h
�2t �

20
s

i
G0

(H ⌦H)

0 L0

+ L (H ⌦H)GEt,s

⇥
�2t v

0
s

⇤
+ Et,s

h
vt�

20
s

i
G0

(H ⌦H)

0 L0. (13)

By the law of iterated expectations, Assumption 1.1 implies that

Et,s

⇥
⌃t | �2s

⇤
= Et,s

⇥
"t"

0
t | �2s

⇤
, t � s.

This, in turn, by the law of iterated expectations, implies that

Et,s

h
vec

�
"t"

0
t � ⌃t

�
�2

0
s

i
= 0, t � s.

Thus, setting t > s, the third term in (13) vanishes, leaving

Et,s

�
⇣t⇣

0
s
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h
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Finally, I can rewrite (14) as

L (H ⌦H)

⇣
GEt,s

h
�2t �

20
s

i
G0

+GEt,s

⇥
�2t vec

�
"s"
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0 L0

= L (H ⌦H)G ˜Mt,s (H ⌦H)

0 L0
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h
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20
s

i
G0

+ Et,s

⇥
�2t vec ("s"

0
s � ⌃s)

0⇤. ˜Mt,s is an n ⇥ n2 matrix. Proposition 1
then follows directly.

Derivation of Proposition 2

Proof. It is necessary to show that given Assumption 4, Et,s

⇥
�2t vec ("s"

0
s � ⌃s)

0⇤
= Et,s

⇥
�2t u

0
s

⇤

⇥G0 where us = matdiag ("s"
0
s � ⌃s). Assumption 4 states that Et,s

h
�2it

⇣
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0
s � ⌃s

⌘i
is diagonal

for all i = 1, 2, . . . , n. Therefore, Et,s

⇥
�2t vec ("s"

0
s � ⌃s)

0⇤ has columns of zeros except for those
pertaining to a diagonal element of ("s"

0
s � ⌃s)

0, i.e. for j = 1, 2, . . . , n, column j + (j � 1)n

is equal to Et,s

h
�2t

⇣
"2js � �2js

⌘i
. Now by the definition of G, AG0 takes the jth column of the

n ⇥ n matrix A , j = 1, 2, . . . , n, and places it in column j + (j � 1)n of a matrix of zeros.
Therefore, if the jth column of A is equal to Et,s

h
�2t

⇣
"2js � �2js

⌘i
for all j = 1, 2, . . . , n, then

AG0
= Et,s
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G0 as desired. Proposition 2 follows from re-writing the two

terms of (13) in this way, and summing to yield ˇMt,s.

Proof of Theorem 1

I begin by proving two lemmas for properties of the singular value decomposition (SVD).

Definition 1. Define

1. U1DUU
0
2 = V , a reduced SVD, V n1 ⇥ n2, DU d⇥ d,

2. Ci is a full rank matrix, mi ⇥ ni,mi � ni,

3. F = C1V C 0
2, non-defective.

Lemma 1. There exists a matrix �1 such that CU1�1 is an orthogonal matrix of singular vectors
from a SVD of F .

Proof. Define Q1R1 = CU1, a reduced QR decomposition, and similarly for CU2. Then F =

Q1R1DUR
0
2Q

0
2. R1 is d ⇥ d and full rank since, given CU1 is full rank d, it has no zeros on the

diagonal (Trefethen & Bau (1997), Exercise 7.5). Now define W1DRW
0
2 = R1DUR

0
2, another SVD;

then F = (Q1W1)DR (W 0
2Q

0
2) is a reduced SVD (it is easily shown DR are singular values of F ,

and the corresponding vectors are clearly orthogonal). Thus write Q1R1
�
R�1

1 W1
�
= Q1W1 so

�1 = R�1
1 W1, which is guaranteed to exist.
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Definition 2. Define
S1DSS

0
2 = F , a reduced SVD

Lemma 2. The SVD of F is unique up to rotations characterized by F = S1T1DST2S
0
2 where Ti is

orthogonal

Proof. The singular values, DS , are unique, singular vectors corresponding to non-repeated values are
unique up to sign, and the space of vectors corresponding to k repeated singular values corresponds
to linear combinations of any k such vectors. Thus F = (S1T1)DS (T2S

0
2) characterizes any reduced

SVD as Ti can incorporate any such sign changes or linear combinations. Since SiTi must be
orthogonal, T 0

iS
0
iSiTi = Id. Then since Si is orthogonal, T 0

iTi = Id, so Ti is orthogonal.

Definition 3. Define

1. In particular, C1 = (H ⌦H)G, n2 ⇥ n with rank n,

2. G is a selection matrix such that vec (ADA0
) = (A⌦A)Gdiag (D),

3. ˆS1 = C1U1�1T1, an arbitrary reduced SVD of F ,

4. V is n⇥ n2 and has no scalar multiple rows,

5. rank (V ) � 2.

Proposition 4. H is uniquely determined from the equations F = C1V C 0
2 provided V has no scalar

multiple rows.

Proof. U1 is n⇥d. Note CU1 =

h
vec

⇣
Hdiag

⇣
U

(1)
1

⌘
H 0

⌘
, . . . , vec

⇣
Hdiag

⇣
U

(d)
1

⌘
H 0

⌘i
, where d � 2.

By the scalar multiples condition on V , for any column j of H, there exists at least one pair k, l such
that U

(l)
1,j/U

(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., d, i 6= j. By an argument due to Sims (2014), H(j)

is unique up to scale and sign as the right eigenvector of Hdiag
⇣
U

(l)
1

⌘
H 0

⇣
Hdiag

⇣
U

(k)
1

⌘
H 0

⌘�1

corresponding to the jth eigenvalue. The same argument applies to C ˜U1 where ˜U1 = U1�1T1,
provided ˜U1 has no scalar multiple rows. To establish this, take any two rows in U1 that are not
scalar multiples; multiplying by full-rank �1 cannot decrease their rank (so they do not become
scalar multiples). The same holds true for multiplication by the orthogonal T1. Thus H remains the
unique solution to C ˜U1.

Proposition 4 is re-written in economic terms to yield Theorem 1.

Proof of Corollary 1

Proof. Corollary 1 follows directly from Proposition 4 above for any column j for which a pair k, l

exists such that U
(l)
1,j/U

(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., d.
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Proof of Theorem 2

Proof. Theorem 2 is based on the argument underlying Proposition 4. Note that the vectorization
of Et [⇣t] is given by vech (HEt [⌃t]H

0
), an additional equation of the form found in CU1. Define

U1,MDMU 0
2,M = Mt,s and ˆM =

h
U1,M Et

⇥
�2t
⇤ i

. Then there is an additional column over which

to find a k, l pair for j such that ˆM
(l)
j / ˆM

(l)
i 6= ˆM

(k)
j / ˆM

(k)
i for all i = 1, 2, ..., d i 6= j. The condition

on Mt,s ( V in Proposition 3) guaranteeing this is augmented to require no scalar multiple rows
in

h
Mt,s Et

⇥
�2t
⇤ i

. Note that this logic can be extended to adding additional autocovariances,
etc., in each case making the length of the rows that must not be scalar multiples longer and thus
decreasing the plausibility of the condition failing.

Proof of Corollary 2

Proof. The result is immediate given that, if H is identified, a moment of "t, g ("t), is identified as
g
�
H�1⌘t

�
. By the condition of the corollary, these moments are sufficient to identify the parameters

✓.

Remark. The condition of the corollary is not particularly restrictive. If conditional heteroskedasticity
is not present, obtaining moments is further simplified as autocovariances of ⇣t do not depend on
past shock values, so

Covt,s
�
�2t ,�

2
s

�
= Es


vec

⇣
H�1⌘t⌘

0
t

�
H 0��1

⌘
vec

⇣
H�1⌘s⌘

0
s

�
H 0��1

⌘0�
.

Depending on the functional form, a normality (or similar) assumption on "t may be required to
back out the variance of ⇣t, although obtaining the variance may not be necessary for identification
of the underlying parameters. GARCH parameters are known to be identified from moments of "t.
It is a matter of algebra to show that the same is true for other processes, such as the AR(1) log
SV process. For example, under the assumption of stationarity and normal innovations, properties
of the lognormal distribution dictate that the autoregressive parameter, and thus the innovation
variance, is identified from the first and second autocovariance of �2t , dimension by dimension. From
there, it is possible to back out means and innovation covariances using additional moments.

Asymptotic properties of the hybrid GARCH estimator

The form of the hybrid GARCH estimator is described in (12). I now establish the asymptotic
properties of this estimator. Define the filtration Ft�1 =

�
�21, "1, "2, . . . , "t�1

 
, F0 = �21 = µ.

Stacking (12) gives
�2t = �2t (µ,Ft�1) , t = 1, 2, . . . , T,
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where µ = (µ1, . . . µn)
0. Using a QML approach, µ can be estimated simultaneously with the free

elements of H. I consider the working densities corresponding to

"t | Ft�1 ⇠ N
�
0, H⌃t (µ,Ft�1)H

0� , t = 1, 2, . . . T, (15)

recalling ⌘t = H"t and ⌃t (µ,Ft�1) = diag
�
�2t (µ,Ft�1)

�
. It is straightforward to maximize the

joint quasi-likelihood for t = 1, 2, . . . , T with respect to µ and H. In order to obtain the asymptotic
properties of this procedure, I turn to the QML literature, following White (1982). For a discussion
of GARCH estimation via QML, see Bollerslev & Wooldridge (1992); Normandin & Phaneuf (2004)
consider the present problem, where multiple series are related by H, using maximum likelihood.

Define ✓ as µ, plus the non-diagonal elements of H, with ✓ 2 ⇥. Let the true joint distri-
bution of ⌘t be G over ⌦ with Radon-Nikodym density g (⌘t | Ft�1; ✓). Denote the model joint
density, the multivariate normal density implied by (15), as f (⌘t | Ft�1; ✓). Define LT (✓) =

1
T

PT
t=1EG [log f (⌘t | Ft�1; ✓)], where EG [·] denotes the unconditional expectation with respect

to G. It is well known that maximizing LT (✓) with respect to ✓ is equivalent to minimizing the
Kullback-Leibler distance with respect to ✓. Denote ✓⇤ as the unique maximizer of LT (✓). The
sample counterpart of LT (✓) is ¯LT (⌘t; ✓) =

1
T

PT
t=1 log ft (⌘t | Ft�1; ✓) with maximizer ˜✓T .

Consistency: To establish the consistency of ˜✓T for ✓⇤ as T ! 1, I make the following assump-
tions.

Assumption 5.

1. ⇥ is compact,

2. EG (log g (⌘t)) < 1,

3. 0 < �21 < 1,

4. ¯ � 0,¯⌥ � 0, ¯ +

¯

⌥ < 1.

Assumption 5.3-4 imply that the path of �2t is strictly bounded away from zero and is finite
with probability one. This means that f is measurable in ⌘t for all ✓ 2 ⇥ in addition to being
continuous in ✓ for all ⌘t 2 ⌦. Further, EG |ft (⌘t | Ft�1; ✓)| < 1 for all t = 2, 3, . . . , T since
sup⌘t|⌘t�1

|f (⌘t | Ft�1; ✓)| < 1. Together with Assumption 5.2, this last fact guarantees that the
Kullback-Leibler distance is well-defined. Identification of a unique ✓⇤ 2 ⇥ that minimizes the
Kullback-Leibler distance is established by the main theorems of this paper. This completes the
necessary conditions to apply Theorem 2.2 of White (1982), which yields a strong consistency result:

˜✓T
a.s.! ✓⇤

This shows that the QML estimator is a strongly consistent estimator for the minimizer of the
Kullback-Leibler distance.
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Asymptotic normality: To characterize the asymptotic distribution of ˜✓T , I impose further
assumptions on ✓⇤:

Assumption 6.

1. ✓⇤ is a regular point of D (✓) = EG

⇥
r2

log f (⌘t | Ft�1; ✓)
⇤
,

2. B (✓) = EG

⇥
r log f (⌘t | Ft�1; ✓)r log f (⌘t | Ft�1; ✓)

0⇤ is invertible.

The definition of f as a multivariate normal (with Assumption 5.2-3) satisfies the further
properties assumed in White (1982): r log f (⌘t | Ft�1; ✓) is a measurable function of ⌘t for each
✓ 2 ⇥; continuously differentiable in ✓ for each ⌘t 2 ⌦, the sample space; and |D (✓)| and |B (✓)|
are integrable with respect to G for all ⌘t and ✓ 2 ⇥. Then, under Assumption 6, White (1982)
Theorem 3.2 gives p

T
⇣
˜✓T � ✓⇤

⌘
d! N (0, C (✓⇤)) ,

CT

⇣
˜✓T

⌘
a.s.! C (✓⇤) element by element,

where C (✓⇤) = D (✓⇤)�1B (✓⇤)D (✓⇤)�1. This offers asymptotic normality of the estimator at the
Kullback-Leibler minimizing value ✓⇤. The natural sample counterparts can be used for inference.
In the case that there exists a ✓0 such that ft (⌘t | Ft�1; ✓0) = gt (⌘t | Ft�1) for all t = 1, 2, . . . , T ,
then C (✓⇤) simplifies to the Cramér-Rao lower bound, C (✓0) = �D (✓0)

�1.

B Considerations for application

B.1 Labeling

In the text, I provide a sketch of possible labeling assumptions for the structural shocks, or,
equivalently, identified columns of the H matrix. I develop them in more detail here, with examples.
First, consider assumptions that map at most one shock to a label. Note that if a researcher intends
to label all shocks, not just a single policy shock of interest, some of these assumptions may map one
shock to multiple labels. Examples are framed in the setting of a standard three-variable monetary
policy VAR.

1. Stock (2008) introduces the “external instruments” framework. He shows that, for an instrument
Zt, if E [Zt"jt] = 0 for j 6= i, and non-zero for j = i, the ith column of H is identified. To
label the shock series, rather than Stock’s sharp exogeneity assumption, it is possible to use
the weaker assumption that Zt is better predicted by the shock series of interest than any of
the others. Thus, for the simple regression Zt = �i"it + ⌫t, assume var

(

Ẑi
t)

var(Zt)
>

var
(

Ẑj
t )

var(Zt)
where

ˆZi
t =

ˆ�i"it, or vice versa. For example, “the monetary policy shock should better explain
innovations to the price of interest rate futures than the unemployment or inflation shock.”

2. Similar to external instruments, zeroth (or higher) order forecast error variance decomposition
(FEVD) can be used if a researcher thinks that the shock of interest is a stronger driver of an
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internal regressor than any of the others. For example, “if monetary policy decisions are rarely
dominated by simultaneous movements in macro variables, a greater share of variation in the
residual of the interest rate series should be predicted by the monetary policy shock than the
unemployment or inflation shocks at a contemporaneous horizon.”

3. In a Rigobon sub-sample setting, or indeed that considered by Sims (2014), it is generally
assumed that a certain series exhibits a larger variance change from the low-volatility sub-
sample to the high-volatility sub-sample. Similarly, a researcher can rank various moments of
the shock series volatilities. It is important to first normalize these series, as their scale will
vary depending on the ordering (and thus normalization) in H. For example, “the volatility
process of the monetary policy shock has higher variance than the unemployment or inflation
shocks due to slowly changing structural factors impacting the latter variables.”

4. Restricting one or more elements of the column of interest, H(i), yields identification as it is
then clear that the shock series corresponding to the restricted column of the matrix is the
relevant one. For example, “the contemporaneous response of the unemployment rate to the
monetary policy shock is zero (or has some fixed relationship to other coefficients).” Note that
while this carries the flavor of Cholesky decomposition, it is weaker, as it requires only one
assumption on the column of interest.

5. Conversely, imposing assumptions on all other columns of H, denoted H(�i), means that the
shock corresponding to the unrestricted column is that of interest. For example, “apply a
partial-Cholesky decomposition imposing no relative ordering between unemployment and
inflation but ordering the interest rate last.” This is similar to the “Slow-R-Fast” scheme.

If such assumptions are deemed too stringent, a weaker class of assumptions may yield a mapping of
multiple shocks to a single label. Assumptions thus limiting the identified set include the following:

1. In a weaker version of 3, a partial ordering of higher moments can perform a similar role. For
example, “the variance of the unemployment shock should be lower than that of the monetary
policy shock,” or “the volatility of the unemployment shock should have lower variance over
the business cycle than that of the interest rate shock.”

2. If there is information similar to that in 5, but inadequate to impose restrictions on all columns
of H(�i), it is still possible to limit the identified set. For example, “unemployment does not
respond contemporaneously to the interest rate shock, but there are no restrictions on inflation
or the interest rate.” This still leaves two columns that could correspond to the interest rate.

3. The researcher may think that the response of a variable to its own named shock should be
larger than the response of any other variable to that shock. Significantly, similar reasoning
applies to Impulse Response Functions (IRFs), which can be directly computed and compared
from the candidate H matrices and used in the labeling procedure. Alternatively, some other
ordering could be imposed on these objects. For example, “the monetary policy shock must
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have a larger impact on the interest rate residual than on any other series.” Note, that this
sometimes maps multiple columns to a single label, particularly if the units of the data are not
comparable/normalized.

4. Imposing sign restrictions on H(i) or rows of H (or, again, more intuitively, IRFs) can also rule
out shock labelings deemed to be unreasonable. This is much the same as the sign restrictions
identification literature pioneered by Uhlig (2005), only here it is a final step towards point
identification, not the sole basis for identifying an uncountable set of candidate H matrices.
For example, one could assume relatively liberally, that “the instantaneous response of inflation
to the interest rate shock is positive for unemployment and negative for inflation,” which might
hold true for multiple identified shock series.

5. It is often appealing to impose magnitude restrictions on H(i) or rows of H (or, again, more
intuitively, IRFs). Generally, certain scales of response are simply unrealistic. Since in practice
there are often very small responses of some residuals to some shocks, any ordering that
normalizes by such an element in a given column yields unrealistically large responses for other
variables. For example, a researcher could assume something like “the instantaneous response
of unemployment to a unit interest rate shock has magnitude less than 5 standard deviations.”

6. Finally, the Sims (1980) and Blanchard & Quah (1989) logic for short-run and long-run
restrictions can be extended. If no candidate ordering of columns match these assumptions
exactly, the researcher can choose the columns whose implications are closest to the assumptions
under some norm. For example, “after 16 quarters, the cumulative response of inflation to a
unit monetary policy shock is zero.”

B.2 Weak Identification

Any discussion of identification must be tempered by the possibility of weak identification when
estimation may be based on small samples. While there is now a clear understanding of the problems
posed by weak identification, beginning with Stock & Wright (2000), there remains much work to be
done to develop methods in more complex settings in terms of both testing for identification and
conducting robust inference. For example, Andrews (2017) presents possible the first comprehensive
approach suited to GMM.

It is important to note potential sources of weak identification in this setting. Naturally, near-zero
variation in the volatilities destroys the identifying variation that this scheme seeks to exploit. This
is the leading case of weak identification. Similarly, if the variation in volatilities is small relative to
that of the i.i.d. disturbances each period, identification will be difficult in small samples. The other
threat is from the “scalar multiples” problem highlighted in Theorems 1 and 2. While this seems
unlikely to hold in population, it may be the case that the differences are negligible and hard to
estimate in small samples. If two shocks’ variances follow a common persistent factor (with some
transient noise), the autocovariance matrix would have two rows very close to proportional to each
other. This would lead to a breakdown of the identifying argument.
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It is easy enough to test whether these pathologies exist using conventional methods. For example,
it is possible to test the null hypothesis that the autocovariance matrix of �2t is equal to zero at
an arbitrary level of significance, or that its rows are related by scalar multiples. However, the
challenge in this literature has been to assess what the appropriate critical values are in each setting
for such tests. What is the mapping between the size of a test on such parameters and the bias of
the estimates of interest, or the size distortion of tests on those parameters? This is what Stock &
Yogo (2002) accomplish for IV, but it is generally an open question.

The methodological frontier can be assessed by estimation approach. Andrews (2017) provides a
2-step method to assess the strength of identification in a GMM setting. Essentially, this involves
computing a robust confidence set and a strong identification confidence set, and comparing them.
Conventional weak identification analysis is based on the CUE estimator, largely because this permits
the use of convenient �2 critical values. However, given the recency of Andrews’ work, no studies
have yet applied it in a numerically challenging high-dimensional setting. As discussed in Section
B.3, the CUE estimator is frequently unstable in this highly non-linear context, with the weighting
matrix frequently near-singular. Since the construction of a robust set generally requires repeated
optimization over a fine grid, this is a substantial problem. Methods to compute alternative critical
values based on GMM estimators using other alternative, simpler weighting matrices can mitigate
these problems. However, further work is required to establish the conditions under which conclusions
based on such alternative tests can be extrapolated back to estimators using more complex weighting
matrices. As an econometric problem in its own right, this is outside the scope of the current paper.
Because the difficulty in applying the Andrews methods arises in the construction of the robust set,
it also rules out robust inference on estimated parameters for the time being.

In the maximum likelihood context, Andrews & Mikusheva (2015) offer a method to assess
strength of identification via the deviation of two alternative estimates of the Fisher information.
However, the current setting is again more complicated than those considered in that paper. Moreover,
instead of actual maximum likelihood, here it is approximated via MCMC. This means that the
theoretical results of Andrews & Mikusheva (2015) cannot be trivially extended.

Work is even more nascent in the Bayesian context for assessing the strength of identification.
The most relevant work is Müller (2012), but again, this provides less insight into the MCMC
methods I must adopt.

In sum, weak identification tests and robust inference remain an unsolved problem in this setting.
This is regrettable, as in proposing a new method of identification, it is important to assess the
strength of the identifying variation it exploits in practice. With future work, this will hopefully
become possible. For now, results are carefully compared across estimation strategies in an effort to
gauge, in the absence of strong identification, to what extent minor functional form assumptions or
particular estimation approaches shape the findings. Encouragingly, evidence from the simulation
study, calibrated to the empirical application, suggests that identification is strong, even in a shorter
sample (and, to some extent, even when the identifying variation is highly reduced).
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B.3 Practical points on estimation methods

B.3.1 Quasi-likelihood based inference

As noted in the text, simulation evidence recommends the use of quasi-likelihood based inference in
this setting. The drawback of any likelihood-based approach is the necessity of specifying a law of
motion for the structural variance. Unfortunately, since the variance path is unobserved, evaluating
the likelihood is a problem requiring difficult integration in each time period over all possible past
values of �2t . Based on the chosen likelihood function, numerical integration allows the model to be
estimated via Markov Chain Monte Carlo (MCMC).21

For the purposes of this paper, Hamiltonian MCMC is adopted, implemented via the MatlabStan
package. The Stan software offers interfaces for virtually all commonly-used statistical packages,
and is highly recommended for applied work. An advantage of Stan’s Hamiltonian MCMC is that it
chooses the tuning parameters of the MCMC adaptively during the warm-up period, increasing the
odds of obtaining well-behaved chains. This means that the researcher need only supply Stan with a
file describing the model and parameters to be estimated and the data. Sample files for the models
used in this paper will be made available on my website.

A researcher should, in general, consider multiple chains to avoid local minima (since each chain
is random, they take different paths). However, different chains may converge to different parameter
values that are observationally equivalent, but correspond to different labelings of the columns of H ,
or alternate between labelings during the chain. It is thus essential to inspect the chains and label
the shock series estimated by each chain separately before combining the chains to compute overall
estimates, to avoid averaging over different labelings of the columns of H. Some experimentation is
necessary, depending on the dimension and distribution of data, to determine how many iterations
are needed for both warmup and convergence to the stationary distribution. The main results in
my empirical application are based on five chains of 10,000 iterations, each with a 2500-iteration
warm-up. If the researcher has priors over the model parameters, these can be incorporated to
perform fully Bayesian inference on the parameters of interest. These can easily be appended to a
Stan model file. As with any Bayesian estimation problem, care must be taken to choose priors with
suitable properties.22

These methods have the advantage of directly computing a distribution of values for the filtered
volatility path, which is a potentially interesting object in itself. For example, plotting the paths
of the volatility of monetary policy shocks and inflation over time can suggest whether periods
of economic turmoil were driven by dramatic movements in inflation or systematically precarious

21Maximum likelihood can be well approximated by MCMC methods, as discussed in Flury & Shephard (2011).
This is the case when MCMC has flat priors on the parameters and the posterior is concentrated around its mode.
Convergence results for this methodology can be found in e.g. Fernandez-Villaverde, Rubio-Ramirez, & Santos (2006),
Fernandez-Villaverde & Rubio-Ramirez (2007), Ackerberg, Geweke, & Hahn (2009), and Douc, Moulines, & Stoffer
(2014) (Sections 2-3), amongst others.

22In contexts where some off-diagonal elements of the H matrix are thought to be small, a moderately strong prior
has the additional advantage of making it more likely that multiple chains result in the same shock ordering. This
occurs because an ordering placing a relatively small element on the diagonal (which is normalized to unity) will
inflate the off-diagonal elements of that column, which is discouraged by the prior.
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policy-making, in a way that the previous custom of simply looking at implied realized shocks (with
constant volatility) cannot. The downside is the additional burden on the researcher to specify a
functional form.

The asymptotic properties of MCMC estimation remain difficult to derive in more complicated
models. As such, I unaware of any derived for models having the complexity displayed here (although
they have for univariate SV models). General discussion of such asymptotic theory can be found
in Douc, Moulines & Stoffer (2014), Sections 2-3, Fernandez-Villaverde, Rubio-Ramirez, & Santos
(2006), and Fernandez-Villaverde & Rubio-Ramirez (2007).

Müller (2013) offers an analog to QML inference in the posterior sampling context. If the
model is misspecified, posterior sampling will be from a likelihood with a different shape to the
true density. In this case, a sandwich estimator can be employed, which weakly improves both
frequentist and Bayesian risk. Müller’s ⌃M/T can be estimated with the sampling covariance
from the MCMC. The score can be evaluated based on draws of �21:T obtained conditional on the
estimated parameters, as recommended for high-dimensional parameter models in Section 6 of his
paper. The long-run covariance of the score can then be estimated using a HAC estimator, like the
equal-weighted-periodogram advocated in Chapter ??. Standard errors following this approach were
constructed but not reported for the empirical illustration; naturally, they are more conservative,
and those computed simply from the sampling distribution of the MCMC procedure already fail to
reject the Cholesky structural assumptions.

B.3.2 GMM

While GMM (or minimum distance) seems a natural choice to implement TVV-ID, its merits must
be carefully weighed. It has the advantage of being entirely non-parametric. It can be applied
without making any further assumptions on the process �2t ; the matrix Mt,s is simply estimated as a
nuisance matrix. GMM in this context can be built around an autocovariance (likely the first) which,
as argued above, absent some specific deficiencies, is sufficient to provide identification. However,
estimation can be improved by exploiting additional moments. For instance, the mean of ⇣t, the
covariance Et [⌘t⌘

0
t], contains much information, even if that information alone could not identify

H.23 Also recall that additional moments reduce the possibility of weak or non-identification, as
discussed in Theorem 2. For standard GMM asymptotic results to apply, the �2t process must
additionally be second-order stationary.

GMM presents a difficult high-dimensional optimization problem. For example, a standard
3�dimensional VAR leaves 27 parameters to estimate provided a single autocovariance and the
mean of ⇣t are used (as is the case in simulations and unreported applications in this paper). The
parameter space can be reduced by making additional assumptions on the volatility processes, but
a key virtue of TVV-ID (and a GMM implementation in particular) is avoiding such assumptions.
Given the high dimension of this problem and the degree of non-linearity, the optimization can be

23The same is true of the variance of ⇣t if a non-Gaussianity assumption is imposed, in keeping with Gouriéroux &
Monfort (2014).
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numerically challenging with many highly pronounced local minima (as opposed to a flat objective
function). Regardless of the optimization routine used, it is difficult to be certain a minimum is
global, and results are highly dependent on start-values. This is particularly true given the numerical
instability introduced with attractive forms of weighted GMM, for example the efficient continuously
updated estimator (CUE). This estimator frequently involves the inversion of a nearly singular
matrix on each iteration. If care is not taken, minimization can result in a negative value of the
objective function by virtue of a non-positive definite weighting matrix. These numerical issues are
the least appealing feature of GMM estimation in this setting. Nevertheless, the simulation study in
Section 5 shows that GMM can perform quite well for larger sample sizes. Given the appeal of this
completely non-parametric approach, it should be considered in such settings.

Unlike in many other identification schemes common in SVARs, TVV-ID is highly overidentified;
as such, it is possible to conduct standard misspecification tests on various aspects of the model.
For example, a J�test could be used to detect instability in H . Another advantage of GMM is that
it admits established parameter stability tests, like the sup-Wald etc. tests of Andrews (1993).

B.3.3 GARCH

With my new results demonstrating identification for any functional form (that implies an auto-
covariance), it is worth reconsidering the role GARCH can play. Since identification is no longer
reliant on GARCH assumptions in the knife-edge sense of Sentana & Fiorentini (2001), GARCH
can be evaluated in terms of how well it describes the data (see e.g. Diebold & Lopez (1995), Kim,
Shephard, & Chib (1998), or Barndorff-Nielsen & Shephard (2002) for a comparison of functional
forms) and its performance in simulation. Second, since it is now possible to identify and estimate a
model using multiple functional forms (via the likelihood approaches discussed above), it is possible
to directly evaluate whether assuming a restrictive form like GARCH has a significant impact on the
results obtained. In practice, the GARCH model is easily estimated in this context using maximum
likelihood as in Normandin & Phaneuf (2014), and others. Under the standard GARCH assumptions
on parameters and distributions, the usual maximum likelihood asymptotics apply; this is also
a trivial extension of the QML discussion in Section 4.2. In simulation, the GARCH estimator
performs worse than the hybrid GARCH method in some settings. Primarily, this is due to excess
mass around zero in the distribution of the estimator and difficulty handling (stationary) DGPs
whose GARCH approximation may appear non-stationary. It is likely that this results from the
estimation routine being driven to local minima at the upper bound of the parameter space (the
explosive region), forcing H estimates to zero. Hybrid GARCH does not suffer from this weakness
due to the selection of those parameters via calibration.

B.4 Standard errors

Each of the estimation approaches proposed in the text comes with its own method to compute
standard errors for the H matrix and other parameters. However, in general, the innovations on
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which this analysis is based have to be computed based on data, as in a VAR. Given this fact, it is
worthwhile discussing the construction of standard errors.

For SVARs, it is a familiar result that the asymptotic covariance matrix of moments for the
autoregressive coefficients and the covariance decomposition (the estimation of the H matrix) has a
block diagonal structure, see e.g. Lütkepohl (2006). This extends to reduced-form IRF coefficients,
which also have a block diagonal structure with respect to the covariance decomposition block. This
follows from a delta method argument, since the reduced-form IRF coefficients are functions of just
the autoregressive coefficients. As this can greatly simplify the computation of standard errors, it is
important to verify that this result still holds for identification arguments based on higher moments,
as employed here. First, consider GMM (with the assumption of fourth-order stationarity of �t for
expositional simplicity). The off-diagonal blocks take the form
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where the last equality follows from the fact that ⌘u is uncorrelated across time, and thus, asymp-
totically, has zero covariance with the autocovariance of ⌘t⌘0t. In other words, the lower block
is a minimum distance problem, and, in expectation, the value of any population moments are
uninformative for ⌘u beyond its mean-zero property: E [⌘u | ⌘t⌘0t, Yu�j ] = 0, j = 1, 2, . . . , J .

This remains the case if the second stage – the covariance decomposition – is obtained via a
log-likelihood instead of moments, provided ⌘t is symmetrically distributed. It is required that
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for all t = 1, 2, . . . , T and lags j = 1, 2, . . . , J , where f (⌘t | ✓) is a likelihood. If f (⌘t | ✓) depends
on ⌘t only through even moments of ⌘t (as in a multivariate normal), and so ⌘t is symmetrically
distributed, then the result follows from E [⌘t | ⌘s⌘0s, Yt�j ] = 0, j = 1, 2, . . . , J for all t, s, and similar
conditions if the distribution involves higher moments. The same holds if the log-likelihood f (⌘t | ✓)
is replaced by a log-posterior f (✓ | ⌘t) with the same forms of dependence on ⌘t. The block-diagonal
structure is then carried forward into any IRF variance-covariance matrix.

MCMC draws from an approximation to the posterior f (✓ | ⌘t). As argued above, in the exact
maximization of the posterior, the covariance of the structural parameter estimates with the reduced-
form parameter estimates is block diagonal. If MCMC is carefully constructed so as to yield a good
approximation to the posterior, then the covariance of the MCMC draws of ✓ with the reduced-form
parameters will also be approximately zero. The IRF covariance can be constructed using the
delta method from a block diagonal matrix formed from the covariance of the reduced-form VAR
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coefficients, and the covariance obtained for H via MCMC.

B.5 GARCH parameters

In order to implement the hybrid GARCH estimation approach, it is necessary to have a set of
standard GARCH parameters appropriate to the setting at hand. Note that these values will likely
depend on the type of variables considered and in particular the frequency of the observations. As
with any persistent process, more frequent observations will exhibit much stronger autocovariance
than more distant ones. For this paper, values were calculated based on the 128 monthly macro
variables from 1959 to 2018 included in McCracken & Ng’s FRED-MD database. As the literature
applying GARCH in these settings tends to model each structural variance as an independent
GARCH(1,1) process, with no relation across variables, estimation occurred separately for each of the
128 series, standardized for comparison. While I am interested in fitting a GARCH(1,1) to structural
shocks, these are not observed. Instead, I calculate the residuals from an AR(12) process. Since
these are simply linear combinations of underlying structural shocks, it is assumed that the GARCH
parameters estimated will be representative of any GARCH dynamics displayed in innovations to
macro variables more generally. Table 7 displays the mean parameter values obtained across the
series fitting into each of the sub-groups used by McCracken & Ng – first overall estimates, then
each economic category. Note that for 22 of the series, the model could not successfully be fitted
due to missing data. The sub-division of estimates provided can be helpful to economists who are
working with data corresponding to a particular category. For the purposes of this paper’s simulation
study, the overall estimates are the most relevant, as analysis proceeds on economy-wide factors. In
addition, Figure 6 displays the distribution of estimated parameters for the overall dataset.

Table 7: Estimates of GARCH(1,1) parameters for macroeconomic data

Category n µ (1�  �⌥)  ⌥

Overall 106 0.1097 0.6048 0.2476

Output and income 16 0.2870 0.3638 0.3207

Labor market 28 0.1251 0.5542 0.2683

Housing 4 0.0391 0.4243 0.1989

Consumption, orders, and inventories 4 0.3036 0.4034 0.1572

Money and credit 10 0.0989 0.5484 0.3470

Interest and exchange rates 21 0.0033 0.8028 0.1941

Prices 39 0.0253 0.7690 0.2017

Stock market 3 0.0600 0.8002 0.1435

Mean GARCH(1,1) parameters calibrated from AR(12) innovations from 128 monthly macro time series from
McCracken & Ng FRED-MD database. The time series used are the residuals from an AR(12) estimated
variable-by-variable on standardized data.
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Figure 6: Distribution of GARCH(1,1) parameters calibrated from AR(13) innovations 120 monthly macro
time series. Categories follow those used in BBE. The time series used are the residuals from an AR(13)
estimated variable-by-variable.

C Online Appendix

Additional materials, including discussion of filtering algorithms, infill asymptotic approaches, and
full simulation results, can be found at

https://scholar.harvard.edu/files/daniellewis/files/TVVID_OA.pdf
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