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Abstract

Despite a heated debate on the perceived increasing complexity of financial regulation,

there is no available measure of regulatory complexity other than the mere length of

regulatory documents. To fill this gap, we propose to apply simple measures from the

computer science literature by treating regulation as if it was an algorithm—a fixed set

of rules that determine how an input (e.g., a bank balance sheet) leads to an output (a

regulatory decision). We apply our measures both to the stylized regulation of a bank

in a theoretical model and to actual regulatory texts. Our results emphasize that shorter

regulations are not necessarily less complex, as they can also use more “high-level” lan-

guage and concepts. Finally, we propose a protocol to validate our measures experimen-

tally.
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1 Introduction

The regulatory overhaul that followed the great financial crisis has triggered a hefty debate

about the complexity of financial regulation. For instance, Haldane and Madouros (2012)

articulate the view that bank capital regulation has become so complex as to be counter-

productive and likely to favor regulatory arbitrage. The Basel Committee on Banking Su-

pervision itself is aware of the issue, and considers simplicity as a desirable objective, to

be traded off against the precision of regulation (Basel Committee on Banking Supervision

(2013)). In the United States, similar concerns have led to a proposal to exempt small banks

from some rules provided that they appear sufficiently capitalized (see Calomiris (2018) for

a discussion).

While there is a widespread concern that regulation has become too complex, “regulatory

complexity” remains an elusive concept to quantify. An often-used measure is the length of

regulation. For instance, Haldane and Madouros (2012) use the number of pages of the dif-

ferent Basel Accords (from 30 pages for Basel I in 1988 to more than 600 pages for Basel

III in 2014). While illustrative, such a measure is quite crude and difficult to interpret. For

instance, should one control for the fact that Basel III deals with a significantly higher num-

ber of issues than Basel I? Is a longer, but more self-contained regulation more complex,

or simpler? To guide us through such questions, we lack a framework to think about what

complexity means in this context and how it can be measured.

The core idea of this paper is to analyze regulations as algorithms and adapt definitions

and measures of algorithmic complexity developed in computer science to the context of

financial regulation. Indeed, our starting observation is that a regulation can be seen as a list

of instructions and operations that are applied to a set of financial institutions and return

a regulatory action (e.g., a sanction). In other words, regulation can be seen as a program

that takes financial institutions as inputs and returns a regulatory action as an output. We

propose to associate “regulatory complexity” to the complexity of this set of rules, that is, to

the complexity of the associated algorithm.

Among the many measures of algorithmic complexity that have been proposed in the

computer science literature, we focus in this paper on the “Halstead measures”, pioneered
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by Halstead (1977). As we detail in Section 2, these measures rely on a count of the number of

“operators” (e.g., +, −, logical connectors...) and “operands” (variables, parameters...) in an

algorithm, and the measures of complexity aim at capturing the number of operations and

the number of operands used in those operations. As we will show below, in the context of

regulation these measures can help capturing the number of different rules (“operations”) in

a regulation, whether these rules are repetitive or different, whether they apply to different

economic entities or to the same ones, etc.

Our choice of the Halstead measures is motivated by several factors. First, these mea-

sures aim at capturing the “psychological complexity” of an algorithm, i.e., how difficult it is

to understand, which we feel is what the debate on regulatory complexity is mostly about.1

Second, these measures are simple and transparent, and thus well-designed for a “proof of

concept” study showing that applying measures of algorithmic complexity to financial regu-

lation is potentially fruitful. Third, due to their simplicity the computation of these measures

can, to some extent, be automated and generalized to many regulatory texts, so that our ap-

proach can easily be replicated and used by other researchers.

To show the potential of this approach, the paper develops several applications of the

methodology. First, we develop a simple model in which a regulator designs a capital regula-

tion relying on risk buckets, as in Basel I. We can use our measures to compute the complex-

ity of the regulation chosen. We then study the trade-off for the regulator between achieving

a more precise regulation and reducing regulatory complexity, which determines the opti-

mal number of risk-buckets and thus the complexity of the optimal regulation. This exam-

ple shows that our measure can be used in normative models of regulation. For instance,

this allows—in the context of a model—to study whether a complex regulation achieving

the first-best is indeed more desirable than a simpler one that still achieves a high level of

welfare.

Second, we consider the design of risk weights in the Basel I Accords and measure their

complexity. This is a nice testing ground because this part of the regulation is very close to

being an actual algorithm. We compare two different methods: (i) We write pseudo com-

1As we discuss in Section 2, there are other dimensions of algorithmic complexity that one could also apply
to the study of regulation to capture other dimensions, such as the difficulty to implement a regulation.
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puter code corresponding to the instructions of Basel I and measure the algorithmic com-

plexity of this code. That is, we use the Halstead measures of algorithmic complexity literally;

(ii) We analyze the actual text of the regulation and classify words according to whether they

correspond to what in an algorithm would be an operand or an operator, and compute the

same measures, this time trying to adapt them from the realm of computer science to a plain

English text. The measures we obtain using both approaches are highly correlated, from

which we conclude that our measures can be used without actually “translating” a regula-

tory text into a computer code, which is of course a time-consuming task, as they can be

proxied by studying the text directly.

Third, we apply our text analysis approach to the different titles of the 2010 Dodd-Frank

Wall Street Reform and Consumer Protection Act and give some descriptive results on which

titles are more complex according to different dimensions. In particular, we note that some

titles have approximately the same length and yet differ significantly along other measures,

which shows that our measures capture something different from the mere length of a text.

Because the Dodd-Frank Act covers many different aspects of financial regulation, when do-

ing this analysis, we created a large dictionary of operands and operators in financial regula-

tion, which we plan to make available to researchers interested in using these measures on

different texts.

Finally, we plan to provide some experimental validation of the validity of our method-

ology. There is a literature in computer science studying whether different measures of al-

gorithmic complexity correlate with mistakes made by the programmers or the time they

need to code the program (e.g., Canfora et al. (2005)). In the same spirit, we plan to ask stu-

dents to compute regulatory ratios using different Basel-I type rules with different levels of

complexity. We want to test whether our measures are good predictors of mistakes made by

the students and/or of the time they need to perform the computation, whether this pre-

diction depends on the student’s background and training, etc. In this preliminary version,

we only outline an experimental protocol and leave the conduct of the experiment for future

research.
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This paper is part of a growing literature concerned with the market or government fail-

ures created by complexity, in particular “psychological complexity”, i.e., the difficulty for

agents to understand a product, contract, or rule. Hakenes and Schnabel (2012) develop a

model of “capture by sophistication” (Hellwig (2010)) in which some regulators cannot un-

derstand complex arguments and “rubber-stamp” some claims made by the industry so as

not to reveal their lack of sophistication. Asriyan et al. (2018) propose a diametrally opposed

theory in which regulatory complexity obtains in a political economy setting when policy-

makers are more informed about which regulations are necessary and public trust of the pol-

icymaker is high. Empirical measures of complexity would be necessary to test which theory

better explains the data. Rochet (2010) is concerned that regulatory complexity makes regu-

lation opaque to outsiders, so that regulators can become captured by the industry without

any external checks and balances. In a broader context, some papers also study how so-

phisticated agents can strategically exploit complexity to increase their market power (e.g.,

Carlin (2009)). Finally, Arora et al. (2009) argue that computational complexity creates a form

of asymmetric information problem, an example being the pricing of some derivatives.

Our paper is also related to a literature in behavioral economics that models economics

agents as computer programs. Rubinstein (1986) studies repeated games played by Turing

machines. The complexity of a player’s strategy is measured by the number of states that

enter the machine, and the outcome of repeated games for instance can change dramati-

cally if players prefer less complex strategies, all else equal, even by an infinitesimal amount.

While the aim and context of this literature are very different, we share the analogy between

economic behaviors and algorithms and the use of an algorithmic measure of complexity.

There is also a growing empirical literature proposing different measures for the com-

plexity of various economic objects, such as financial products (Célérier and Vallée (2017))

and prices (see Ellison (2016) for a survey of the literature on “obfuscation”). There is also a

related literature in law proposing to measure the complexity of legal texts through the num-

ber of references to other legal texts and the position of a particular law in the associated net-

work (e.g., Li et al. (2015)). While all these measures are interesting and complementary, we

believe our approach relying on algorithmic complexity is new and particularly well suited
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to the study of regulatory complexity.

Finally, there is a large literature in computer science proposing different measures of al-

gorithmic complexity, whose application to regulatory complexity could also be considered

in future research. Another very popular measure in this literature is for instance the “cyclo-

matic complexity” of McCabe (1976). We refer the interested reader to Yu and Zhou (2010)

for a recent survey.

2 Framework

2.1 General definitions

Different authors, policymakers and industry participants have different concepts in mind

when referring to “regulatory complexity”, because the term “complexity” is somewhat vague.

In this section we introduce preliminary definitions so as to clarify the different dimensions

of complexity, and introduce the ones we are going to measure in this paper.

We start by making the analogy between regulations and algorithms more precise. The

goal of an algorithm is to solve a “problem” or a “computation”, which in general can be seen

as associating the right “outputs” to elements in a set of “inputs”. In the case of regulation,

the “input” is a regulated entity (e.g., a bank and its balance sheet, characteristics about its

operations, etc.), and the output a regulatory action (letting the bank operate, imposing a

fine, etc.). Formally, we define:

Definition 1. A regulatory problem is a mapping f : E →Σ from the set of regulated entities E

to a set of regulatory actions Σ.

An algorithm is a set of mechanical rules, such that by following them we can compute

f (x) given any input x. Similarly, a regulation is a set of rules that implement the right regu-

latory action to any regulated entity:

Definition 2. A regulation f̃ is a list of elements taken in a vocabulary V . This list of elements

is interpreted through a language, and implements f .
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It is important here to notice that, in the same way that different algorithms can solve the

same problem, different regulations f̃ can solve the same regulatory problem f . To put it

simply, there are many different ways of writing the Basel I Accords that would all lead to the

same computations of capital requirements for any possible bank balance sheet.

Finally, once a particular algorithm to solve a problem has been chosen, the last step

is to actually run the algorithm, which may take more or less time and computing power.

Similarly, following the rules set in a given regulation may be more or less complicated for

the regulatory authority. We call this last step “supervision”:

Definition 3. Supervision is the act of following f̃ to evaluate f (e) for a given entity e ∈ E .

We can now give defining properties of measures of regulatory complexity correspond-

ing to different dimensions. Assume that we have a set F̃ = { f̃1, f̃2..., f̃n} of regulations solving

the same regulatory problem f , and a set E = {e1,e2, ...,em} of regulated entities. Elements

of these sets could be empirically observed (actual regulatory texts, actual banks) or hypo-

thetical (variants on the text, hypothetical banks). Following the previous definitions, we can

define a measure of regulatory complexity and give necessary conditions for different types

of measures as follows:

Definition 4. A measure of regulatory complexity µ is a mapping µ : F̃ ×E →R. Then:

1. If µ is a measure of problem complexity, then µ( f̃ ,e) is constant in f̃ and e.

2. If µ is a measure of psychological complexity, then µ( f̃ ,e) is constant in e but not neces-

sarily in f̃ .

3. If µ is a measure of computational complexity, then µ( f̃ ,e) may depend both on e and

f̃ .

These properties characterize an important distinction between three forms of regula-

tory complexity:

(i) Regulatory complexity may mean that the regulatory problem is complex, e.g., it deals

with many different aspects of a bank’s business, foresees a large number of regulatory ac-

tions, etc. We call this dimension the problem complexity of regulation. Problem complexity

depends on f , but is independent of which regulation f̃ implements f .
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(ii) Regulatory complexity may also mean that the actual regulation used to solve the

regulatory problem is complex, which may be due both to the complexity of the problem f

and to the complexity of the particular f̃ that solves the problem. Following the computer

science literature, we call this dimension the psychological complexity of regulation, as it

reflects the difficulty of understanding a particular solution to a problem.

(iii) Finally, regulatory complexity may mean that applying a regulation to a particular

entity or group of entities is costly in terms of time and resources. The cost can be incurred by

the supervisor (supervision costs) and by the regulated entities (compliance costs). Imagine

for instance a regulation that exempts small banks from most rules. It could then be the

case that the regulatory text is complex, that applying it to large banks is costly, but that

applying it to small banks is simple. Thus, this dimension depends on the entity to which the

regulation is applied. Following again the computer science literature, we call this dimension

the computational complexity of regulation.

Example: Length of bank capital regulation. In the example of capital regulation, a reg-

ulated entity is a bank, represented for instance by a list B of balance sheet items and values.

The regulatory problem is to associate any possible bank balance sheet B to an action, the

simplest ones being for instance “pass” or “fail”, i.e. Σ = {0,1}. Regulation is then a series of

operations on balance sheet items that ends with an outcome σ ∈Σ.

Haldane and Madouros (2012), for instance, measure the complexity of banking regula-

tion by the number of pages of the different Basel Accords. In our framework, the exact text

of the Basel Accords is a particular regulation f̃ to solve an underlying regulatory problem.

The length of the text is a particular measure. Clearly, this measure depends on how the text

is written, but not on which bank we apply the regulation to. In our framework, length is

thus a measure of psychological complexity, but not of problem complexity.

2.2 Halstead Measures

We now develop particular measures of complexity by adapting the work of Halstead (1977).

Since we apply these measures to regulatory texts and not to data on regulated entities, our

aim here is to measure problem complexity and psychological complexity, but not compu-
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tational complexity.

In order to apply this approach, we need to consider a regulation f̃ as an (ordered) list

of “words” (elements in a language) f̃ = {w1, w2...wN }, in which we can classify the wi into

two lists: a list of N1 operators and a list of N2 operands, with N1 +N2 = N . We also define

O = {o1,o2...oη1 } andΩ= {ω1,ω2...ωη2 }, the sets of all operators and operands that appear in

f̃ . η1 is the total number of unique operators, and η2 the total number of unique operands.

Using Halstead’s definitions, operands in an algorithm are “variables or constants” and

operators are “symbols or combinations of symbols that affect the value or ordering of an

operand”. Consider for instance the following “pseudo-code” to compute the absolute value

of a number:

if x ≥ 0 , y = x

if x < 0 , y =−x

In this code, the operators are if, ≥,<,=,−, and the operands are x, y,0. We have η1 = 5, N1 =
7,η2 = 3, N2 = 8. A simple measure of complexity, corresponding to the length, is simply the

total number of operators and operands, called the volume:2

Definition 5. The volume V of regulation f̃ is equal to N1 +N2.

The volume is a (simple) measure of psychological complexity. How can one obtain a

measure of problem complexity, without knowing all the possible f̃ that implement f ? Hal-

stead’s answer is to look at the theoretically shortest program that can solve the problem, in

the best possible programming language. Defining this algorithm is actually simple. Going

back to our example of the absolute value, the shortest possible program is:

y = abs(x)

This is the shortest because any program to compute the absolute value of a number

would need to specify the input, the output, an assignment rule, and an operation (here, an

2The approach in Halstead (1977) is slightly more complicated than what we present here, as Halstead wants
a measure that does not depend on the alphabet used to code the program. We abstract from this problem,
which we don’t think is first-order in the context of regulation.
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operation that already exists in the programming language). More generally, for any prob-

lem, the shortest program would still contain a minimum number of operands η∗2 that rep-

resent the number of inputs and outputs of the program. All the operations transforming

the inputs into outputs would already be part of the language as a single built-in function.

The number of operators is then η∗1 = 2, and the number of operands η∗2 . The volume of this

minimal program, called potential volume, is thus:

Definition 6. The potential volume V ∗ of f̃ is equal to 2+η∗2 .

Importantly, if one assumes that the list of inputs and outputs never includes some un-

necessary ones, V ∗ will be independent of f̃ . That is, V ∗ is a measure of problem complexity.

An interesting question to ask is whether an algorithm is close to the shortest algorithm

or not. Adapting Halstead (1977), we define the level of an algorithm as:

Definition 7. The level L of f̃ is equal to V ∗
V = 2+η∗2

N1+N2
.

To better understand what the level captures, we can write:

1

L
= η1 +η2

2+η∗2
× N1 +N2

η1 +η2
. (1)

The first term in this product reflects the number of operations performed instead of using

a “built-in” operation, and the number of unnecessary operands that are introduced (e.g.,

intermediary results). The second term is simply the average number of repetitions of the

same elements in the program.

We think the measure L has a nice interpretation in the context of regulatory complex-

ity. If L is high (close to 1) this means that the regulation has a very specific vocabulary, a

technical jargon, that is opaque to outsiders. Conversely, a low value of V means that the

regulation starts from elementary concepts and operations. In particular, a low value of V

means that η1 is greater than 2, so that the representation of regulation defines auxiliary

functions (operators) in terms of more elementary ones.

Under this interpretation, we can see that there is a very intuitive trade-off between vol-

ume and level. One can make the regulation shorter by using a more specialized vocabulary,
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but this is going to increase the level and make the regulation more opaque. Conversely, one

can make regulation more accessible or self-contained by defining the specialized words in

terms of more elementary ones, but the cost is a greater length. To capture this trade-off, we

assume that psychological complexity can be captured by a cost of complexity function:

Definition 8. The cost of complexity C (V ,L) is increasing in both V and L.

In particular, in the following applications we will compute both V and L and illustrate

that it can be informative to compute the level as a second dimension of complexity on top

of the volume, or length, of the regulation.

3 A model of coarse capital requirements

In this section we introduce a very simple model of bank capital requirements in which we

use the Halstead approach to measure the complexity of regulation. The outcome of the

model is an optimally coarse capital regulation relying on a finite number of risk buckets,

whose number depends negatively on the cost of complexity.

3.1 The banking model

Consider a bank with 1 in assets, that can be financed either with deposits D or equity E . In

case the bank fails, depositors are reimbursed by the government using public funds, which

have a marginal cost of 1+λ. These losses can be mitigated by asking the bank to use more

equity, but we take as given that equity has a marginal social cost of 1+δ.

There is a continuum x ∈ [0,1] of asset types. The bank starts with an asset of type x,

drawn from the uniform distribution over [0,1]. With probability p, the economy is growing

and asset x pays r (x). With probability 1−p, the economy enters a recession and the asset

pays only 1− x, i.e., the bank makes a loss of x on its investment. If E < x the bank defaults,

and the government has to repay D − (1−x) = x −E to the depositors.

For a given level of equity E and an asset type x, total welfare writes as:

pr (x)+ (1−p)[1−x −λmin(x −E ,0)]−δE . (2)
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We want to derive a regulation that maximizes total welfare. As pr (x)+(1−p)(1−x) is exoge-

nously given, we can consider the following objective function:

W (E , x) =−λ(1−p)min(x −E ,0)−δE . (3)

As long as E < x, we have ∂W /∂E = λ(1−p)−δ. We assume this quantity to be positive: the

social cost of capital is lower than the expected gain of reducing losses to the public sector.

It is then clear that the optimal regulation would be to have E∗(x) = x for any x, so that the

bank never defaults. Total expected welfare would then be:

∫ 1

0
W (x, x)d x =

∫ 1

0
−δxd x =−δ

2
. (4)

Such a regulation requires to associate a continuum of different asset types to different levels

of capital, which may be very complex, and hence costly.

We assume instead that the regulator defines different buckets, that is, intervals [ai ,bi ]

such that if x ∈ [ai ,bi ] then E ≥ Ei . As we show in the Appendix A, for a given interval [a,b]

the optimal capital requirement E∗
a,b is given by:

E∗
a,b = b −δ b −a

λ(1−p)
. (5)

Note that we indeed have a ≤ E∗
a,b ≤ b. This means that banks with assets x close to a will

be over-capitalized (they have more capital than what is necessary to sustain the losses x),

while banks with assets x close to b will be undercapitalized (they default with probability

1−p).

We obtain that the optimal welfare over interval [a,b] is given by:

Wa,b(E∗
a,b) = δ(b −a)

[
δ(b −a)

2λ(1−p)
−b

]
. (6)

Using this expression, we can determine the optimal intervals chosen by the regulator. As

shown in the Appendix, if the regulator uses I intervals it is actually optimal to split [0,1] into
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I intervals of equal length, and we compute that total welfare is given by:

W (I ) =
I−1∑
i=0

Wi /I ,(i+1)/I (E∗
i /I ,(i+1)/I ) =−δ

2
− δ

2Iλ(1−p)
[λ(1−p)−δ]. (7)

Total welfare is thus increasing in I , and converges to the continuous case −δ/2 as I →+∞.

Without any cost of complexity, it would be optimal to define as many risk buckets as possi-

ble.

3.2 Complexity of the risk-buckets

Let us now estimate the complexity of the regulation for a given number I of intervals. In

general, such a regulation can be written as follows:

• if x ≥ 0 and x < x̄1 then E ≥ E∗
1

• if x ≥ x̄1 and x < x̄2 then E ≥ E∗
2

• ...

• if x ≥ x̄I−1 then E ≥ E∗
I

This regulation uses the following operands: x (2I − 1 times), 0 (once), x̄1, x̄2, x̄I−1 (twice

each), E (I times), and E∗
1 ,E∗

2 ...E∗
I (once each). The total number of operands is thus N2 =

6I − 2, the total number of unique operands η2 = 2I + 2. For the operators, we have “if”

(I times), “≥” (2I times), “≤” (I − 1 times), and “then” (I times). This gives us N1 = 5I − 1

operators in total, and η1 = 4 unique operators.

The total volume of the regulation is thus V (I ) = N1 +N2 = 11I −3 and increases linearly

in I . The potential volume is V ∗ = 2+η∗2 = 2I +4, and the level is:

L(I ) = V ∗

V
= 2I +4

11I −3
. (8)

In particular, the level is decreasing in I . It can also be decomposed as:

L = 2+η2

η1 +η2
× η1 +η2

N1 +N2
= 2I +4

2I +6
× 2I +6

11I −3
. (9)
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The first term measures the drop in level due to relying on basic operators instead of having

a built-in function. This ratio increases in I . The second term in the inverse of the number

of repetitions in the program and decreases in I . Thus, L decreases in I due to the fact that

its structure is very repetitive. Figure 1 illustrates these facts by plotting the volume and the

level as functions of I .
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Figure 1: Volume and Level as a function of I .

3.3 Optimal Regulation

The optimal regulation should take into account both the impact on economic welfare and

the cost of regulatory complexity. The optimal number of risk buckets is given by:

I∗ = ar g max
I

W (I )−C (V (I ),L(I )). (10)

The first-order condition can be expressed as:

δ[λ(1−p)−δ]

2λ(1−p)
× 1

I∗2
−11C1(V (I∗),L(I∗))+ 50

(11I∗−3)2
C2(V (I∗),L(I∗)) = 0. (11)

In particular, as C1 and C2 are assumed to be positive, unless C1 converges to 0 when V goes

to infinity the optimal number of intervals is finite. In other words, a coarse regulation is

optimal because it reduces complexity, despite being less efficient from an economic per-

spective. The optimal number of intervals I∗ results from a trade-off between increasing

welfare, reducing volume (which increases in I ), and reducing level (which decreases in I ).

In particular, depending on the shape of the cost function it is possible that increasing I
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actually decreases complexity for some values of I .

4 Basel I

We now apply our measure empirically to an actual text, the 1988 Basel I Accords (Basel Com-

mittee on Banking Supervision (1988)). We focus on Annex 2, “Risk weights by category of

on-balance-sheet asset". As we will illustrate below, this is a natural starting point because

this part of the regulation can easily be described as an algorithm. This allows us to com-

pute our measures based both on an algorithmic representation of Basel I and on the actual

text. We then compare the results obtained in both cases and conclude that the text-based

method is a good proxy for the more literal application of measures of algorithmic complex-

ity.

4.1 Basel I as an algorithm

The Basel I Accords are a 30-page long text specifying how to compute a bank’s capital ratio.

This is done by mapping different asset classes to different risk buckets, and different capital

instruments to different weights. The regulation then compares the risk-weighted sum of

assets to the weighted sum of capital, and the ratio has to be higher than 8%. As this suc-

cinct description makes clear, Basel I is easily described as an algorithm. We actually wrote

“pseudo-code" that implements the computation of risk-weighted assets described in the

Annex 2 of the text, i.e., our code maps a bank balance sheet to total risk-weighted assets

under Basel I. We give this program in Appendix B. In this section, we briefly explain the

structure of the code and give the measures based on the program.

Annex 2 of the Basel I text is a list of balance sheet items associated with different risk

weights (5 different risk-weights in total). For instance, in the 20% risk-weight category we

have “Claims on banks incorporated in the OECD and loans guaranteed by OECD incorpo-

rated banks". In our code this is translated into:

if ((ASSET_CLASS == "claims" and ISSUER == "bank" and ISSUER_COUNTRY == "oecd")

or (ASSET_CLASS == "loans" and GUARANTOR == "bank" and GUARANTOR_COUNTRY == "oecd")
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) then:

risk_weight = 0.2;

We can easily identify the operands and operators in such a piece of code, and compute

our measures of complexity. The operands are the different asset classes (e.g., ASSET_CLASS,

claims), attributes (e.g., ISSUER_COUNTRY, GUARANTOR), values of those attributes (e.g., oecd,

bank), and risk-weights (e.g., risk_weight, 0.2). The operators are if, and, or, else, ==, >,

<=, and !=. Given our algorithmic representation of Basel I, we find that N1 = 172, N2 =
184,η1 = 8,η2 = 45.

These numbers are by themselves not very interesting, as we have no benchmark to com-

pare them to. We can go further by computing how much the regulation of different asset

classes contributes to the total. In Table 1, we report the values of V , V ∗, and L for each of

the 19 items in covered by Basel I, as well as the total. Moreover, we compute the “marginal

contribution to level” of each item by computing the (relative) difference between the actual

total level and what total level would be if we took out the part of the algorithm dealing with

this item.

In particular, the table reveals that the different items are very hetreogeneous in terms of

their contributions to the total level. If we look at the extreme cases, excluding item 3d for

instance would reduce total level by 12%, whereas excluding item 4a would increase the total

level by 6%. Interestingly, the correlation between total volume and the contribution to level

is extremely small (−0.03). Thus, what the contribution to level captures is not that longer

items reduce the total level of regulation, but rather that some items mostly use operands

and operators that are also used elsewhere in the text, whereas other items introduce many

new terms (in particular, item 3d).

Finally, one last interesting exercise is to compute how the different measures evolve as

the code considers additional items. In order to do this, we compute our measures for an

hypothetical regulation with only the first asset class, then the first two, the first, three, etc.

Figure 2 below plots how V ,V ∗, and L evolve.

As can be seen on the figure, each new item increases volume by 21 units on average, but

potential volume only by 2. As a result, the level of regulation decreases with almost every
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Table 1: Complexity measures for the items in Appendix 2 of Basel I - Algorithm.

Item V V ∗ L Contribution to
level (in %)

1a 4 4 1.00 -1.14
1b 19 10 0.53 -5.64
1c 15 9 0.60 -4.40
1d 11 7 0.64 -3.19
2a 40 12 0.30 -12.66
3a 64 12 0.19 -8.95
3b 23 11 0.48 -6.91
3c 31 13 0.42 -9.54
3d 39 13 0.33 -12.30
3e 7 6 0.86 2.33
4a 16 9 0.56 6.43
5a 8 6 0.75 -0.12
5b 15 10 0.67 -4.40
5c 19 11 0.58 -5.64
5d 11 8 0.73 3.40
5e 15 7 0.47 4.49
5f 7 5 0.71 2.33
5g 11 8 0.73 3.40
5h 1 2 2.00 -0.28

Total 356 47 0.13

Figure 2: Incremental complexity measures for the items in Appendix 2 of Basel I.
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new item. This figure illustrates the repetitive nature of the Basel I definition of risk-weights.

4.2 A textual analysis of Basel I

We now repeat the same analysis of the Appendix 2 of Basel I, but relying this time on the

actual text and not on our “translation” into code. We want to classify as “operands" the

words that have the same function as operands in the program, and similarly for operators.

This is not a completely trivial task and there is some judgement involved, as the logic of the

text in plain English and the logic of the algorithm are a bit different. In particular, the text

leaves some elements implicit, whereas the algorithm has to be explicit about all the steps of

the computation.

We classify as operators all the words or combinations of words that correspond to op-

erations or logical connections, such as “and” or “excluding”. Operands are all the words

that correspond to economic entities (e.g., “bank” or “OECD”), concepts (e.g., “maturity” or

“counterparty”), and values (e.g., “one year"). Using this approach, we classify 72 unique

words out of the 86 words vocabulary used by the text. The remaining words are used for

grammatical reasons and do not really correspond to operands or operators (e.g., “by”, “on”,

“the”, etc.), hence we don’t take them into account. Table 2 gives the top 10 operands and

operators that we identify in the text.

Table 2: Top 10 words in each category, Appendix 2 of Basel I.

Operands Operators

claims 15 and 12
banks 10 other 6
OECD 10 or 4
central 9 outside 4

guaranteed 6 excluding 2
incorporated 5 non 2

currency 4 unless 2
entities 4 up to 2

governments 4 above 1
sector 4 all 1

We then reproduce Table 1 using the measures based on our text analysis. The patterns
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are quite similar to those observed in the algorithmic version. We next turn to comparing

the two approaches more systematically.

Table 3: Complexity measures for the items in Appendix 2 of Basel I - Text analysis.

Item V V ∗ L Contribution to
level (in %)

1a 1 3 3.00 -0.40
1b 16 13 0.81 -6.87
1c 9 8 0.89 -3.75
1d 15 13 0.87 -6.41
2a 15 14 0.93 -6.41
3a 22 18 0.82 0.41
3b 14 11 0.79 -5.96
3c 34 18 0.53 -14.29
3d 17 15 0.88 -7.33
3e 5 7 1.40 1.98
4a 21 18 0.86 6.60
5a 5 7 1.40 -0.71
5b 14 14 1.00 -5.96
5c 19 15 0.79 -6.84
5d 9 11 1.22 -1.02
5e 8 7 0.88 2.12
5f 12 9 0.75 1.85
5g 10 9 0.90 1.30
5h 3 3 1.00 -1.22

Total 283 83 0.29

4.3 Comparison

To compare the measures obtained with the algorithmic approach and the text analysis, we

compute the correlation between the values of V , V ∗, L, and contribution to level in the

two cases. Moreover, since each item itself is not a functioning code (for instance the text of

item 1a is only one word, “Cash”), the level sometimes returns a value above 1, which is in

principle not possible. Thus, we also introduced the “capped level”, which is the minimum

of 1 and the level. Table 4 gives the correlation coefficients for the different measures, as well

as the Spearman rank correlation coefficients.

The correlation coefficients we obtain are quite large, which shows that the text-based
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Table 4: Correlation coefficients and Spearman rank correlation coefficients between the
measures based on the algorithm and the measures based on the text.

Correlation Rank correlation

V 0.64 0.83
V ∗ 0.85 0.83
L 0.33 0.62

Contribution
to level 0.79 0.79

Capped L 0.53 0.62

analysis and the algorithm-based analysis are capturing similar patterns, especially if one

focuses on ordinal comparisons. The highest correlation we obtain is for V ∗, which is natu-

ral since it relies on counting the unique economic concepts used by the regulation, which

have to be more or less the same in the text and in the code (the difference coming from the

fact that the code needs to be a bit more explicit). The volume is less correlated, and as a

result the level (equal to V /V ∗) shows a lower correlation, but still a high rank correlation of

0.62. Focusing on the contribution to total level instead of the level itself seems to improve

the correlation between the two measures, presumably because implicitly this measure neu-

tralizes the difference of “styles” between the text and the code.

Overall, we conclude from this comparison that measures of regulatory complexity re-

lying on a text analysis can be a good proxy for the more theoretically founded measures

based on the algorithmic version, especially if one focuses on ordinal comparisons and on

volume, potential volume, and contribution to total level. Given this result, we now apply

the text-based approach to a more comprehensive regulatory text.

5 Complexity of the Dodd-Frank Act

5.1 Methodological issues

One of the benefits of the Halstead measures as implemented by the text analysis approach

of Section 4.2 is that they can be applied automatically to a regulatory text, without having
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to first “translate” the text into a proper algorithm or to analyze the text manually. The only

thing that is needed is a vast dictionary of regulatory terms, with a classification of words

into operators and operands.

To start building such a dictionary and illustrate the applicability of our approach, we

compute our complexity measures for the different titles of the 2010 Dodd-Frank Act. There

are two reasons for this choice. First, the Dodd-Frank Act is one of the key regulations intro-

duced after the financial crisis, which has triggered a lot of debates, in particular regarding

its perceived complexity. Second, this text touches upon a wide range of issues in finance, so

that by classifying the words of the Dodd-Frank Act we hope to create a relatively complete

dictionary that can be used for many other regulatory texts.

There are also some drawbacks of using the Dodd-Frank Act as an example. First, the Act

uses a lot of external references. As an example, Section 201 (5) reads as follows:

(5) COMPANY. - The term “company” has the same meaning as in section 2(b) of the Bank

Holding Company Act of 1956 (12 U.S.C. 1841(b)), except that such term includes any com-

pany described in paragraph (11), the majority of the securities of which are owned by the

United States or any State.

How should one deal with such a case? A possible solution would be to include the text

referenced in the example as being implicity part of the Act. However, with such an approach

we would quickly run into the “dictionary paradox” (every reference refers to other texts). In-

stead, and more consistent with the Halstead approach, we consider that if a legal reference

is mentioned it is part of the “vocabulary” one has to master in order to read the Act. It is not

clear however if such references should be counted as operands or operators. We chose not

to count them in our measures, but including them does not qualitatively change the results

we report below.

A second issue is that the Dodd-Frank Act is a high-level text which in many instances

mandates regulatory agencies to draft more precise regulations, or sets how to organize those

regulatory agencies. Title X for instance sets up the Bureau of Consumer Financial Protection

(BCFP) and the rules it must follow. In line with the framework of Section 2, this can be

considered as a regulation where the regulated entity is the BCFP itself. However, one must
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keep in mind that measuring the complexity of the rules organizing the BCFP is of course

something different from the complexity of the regulations written or applied by the BCFP.

The text of the Dodd-Frank Act being much longer, richer, and less close to an algorithm

than the Appendix 2 of Basel I, we need to refine our classification of words. We define two

categories of operators: (1) logical operators are all the words indicating an operation, a con-

dition, a negation, etc. ; (2) regulatory operators are words indicating that regulation affects

the behavior of a regulated entity. We also define three categories of operands: (1) economic

operands are all words referring to an economic entity or concept, or an economic action; (2)

attributes are values given to some economic operands or qualifiers; (3) legal references are

titles of other laws and regulatory texts. We provide a list of the most frequent words of each

type below. Finally, words that cannot be classified include function words which mainly

have a grammatical function, and other words.

5.2 Results

Applying the same approach as in 4.2 to the 16 Titles of the Dodd-Frank Act plus its introduc-

tion, we create a dictionary containing: 667 operators (374 logical connectors and 293 reg-

ulatory operators), 16,474 operands (12,910 economic operands, 560 attributes, and 3,004

legal references), as well as 711 function words and 291 other, unclassified words (that is, we

classified 98.4% of the 18,143 unique words used in the Dodd-Frank Act). Table 5 shows the

top 10 words in each category as well as the number of occurrences:

Similarly to what we did in Section 4.2, we now compute different measures for the differ-

ent titles of the Dodd-Frank Act. As we are particularly interested in comparing volume and

level, Figure 5.2 gives a scatter plot showing these two measures for each title. As we see on

the graph, there is a negative correlation between level and volume, but these two measures

are not perfectly correlated. There are 9 titles with less than 5000 words and different levels,

and 9 titles with a level between 0.15 and 0.275 and very different volumes. Thus, these two

measures are capturing different dimensions.

It is also instructive to decompose the level as suggested in Section 2.2: the inverse of level

is the product of the number of repetitions in the text and the number of extra operators.
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Table 5: Top 10 words in each category, entire Dodd-Frank Act.

Operands Operators

Economic Attributes Regulatory Logical

financial 2325 7 5438 shall 3601 or 181077
mission 2191 2 4747 require 1546 not 1963

ban 1493 9 2584 establish 632 including 762
amend 1382 10 968 required 586 provided 465

form 1362 appropriate 829 determine 541 subject to 464
action 1345 15 776 enforce 432 non 448
bank 1244 20 616 prescribe 421 include 361
ring 1172 necessary 311 designated 405 whether 285
use 1170 directly 190 established 287 except 255
date 1116 prudent 181 apply 239 more 248
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Table 6 below gives the volume of each title, the inverse of level, and the decomposition. The

table illustrates that there is very little variation in the number of extra operations, so that

the heterogeneity in levels is mostly driven by the number of repetitions.

Table 6: Measures and decomposition of level, titles of the Dodd-Frank Act.

Title number Volume 1/Level Extra Operations Repetitions

0 587 1,93 1,08 1,79
1 9905 4,20 1,08 3,88
2 14602 5,26 1,08 4,89
3 7164 3,59 1,07 3,37
4 1793 2,64 1,11 2,38
5 3212 2,70 1,08 2,50
6 7396 3,81 1,08 3,52
7 29882 6,88 1,07 6,46
8 3632 3,62 1,10 3,29
9 24790 4,80 1,06 4,51

10 30112 5,33 1,06 5,04
11 3104 2,88 1,10 2,62
12 709 2,10 1,08 1,95
13 497 2,49 1,10 2,27
14 15022 4,08 1,07 3,82
15 1915 2,39 1,08 2,22
16 49 2,33 1,38 1,69

Total 154371 9,37 1,04 9,01

In addition to these results, in order to perform our analysis we created a dictionary of

18,143 different words, which can be used to compute complexity measures on other reg-

ulatory texts. In the future, we plan to make this dictionary available online, as well as the

interface we used to classify the words in the first place. We hope that through this collab-

orative tool other studies of regulatory complexity will be conducted, so that for instance

the complexity of different types of regulation or regulations in different countries can be

compared.
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6 Experiments

6.1 Motivation

The last step of our analysis is to use experiments, with a twofold objective:

First, while our measures are based on a (simple) theory of what regulatory complexity

means, they are necessarily somewhat arbitrary and it is necessary to prove that they are

indeed useful to capture some dimensions of regulatory complexity. In computer science,

complexity measures are tested by asking different programmers to write the same code.

It is then easy to check whether the mistakes they make or the time they take to perform

the task are correlated with different measures of complexity. In the same vein, we want to

ask experimental subjects to compute some regulatory ratios and see if the quality of their

output is correlated with our measures of regulatory complexity.

Second, since it is clear that regulatory complexity is a multidimensional object, we want

to shed some light on how these different dimensions inetract with each other. Formally, re-

call that we assumed the cost of complexity to depend on volume and level through a func-

tion C (V ,L). We would like to know more about the shape of this function, which can be

done by estimating the “marginal rate of substitution” between V and L. In particular, some

papers in the theoretical literature implicitly assume a Leontief function: agents are able to

understand up to a certain level of complexity, and then don’t understand at all. We can

test this hypothesis. We can also study the heterogeneity of the function C among our ex-

perimental participants, and how it is determined for instance by background, education,

professional experience, etc.

6.2 Experimental protocol

Our experiments rely on asking subjects to compute a Basel I style capital ratio, based on

regulations written as in Section 4. In each experiment, the subject is shown a “regulation”

(a set of instructions involving different asset classes, characteristics, risk weights, etc.) and

a bank balance sheet. The subject is asked to compute the bank’s risk-weighted assets fol-

lowing the instructions. We record the numerical value entered by the subject and the time
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taken to answer the question.

To generate a set of reasonable instructions of varying complexity, we wrote an algorithm

that ”randomly” generates regulations akin to those in Basel I. For our random regulation to

have the same structure as the Basel I regulation text (see Section 4.1), we decide upfront

on the number of IF-THEN-ELSE clauses we want to have. As with the actual Basel I regu-

lation, we use 6 clauses in total. Within each clause, the algorithm then selects a number of

random conditions (smaller or equal than some fixed positive bound, in our case 10). Each

condition consists of operators and operands, e.g. ASSET_CLASS == ’’cash’’ that can be

combined by AND and OR statements. We use only operands and operators that also exist in

the Basel I regulation. Operands in our random regulation generator can take exactly the val-

ues they can take in the original Basel I text. For example, ASSET_CLASS can take the values

{cash, claim, loan, premises, plant, equipment, real_estate,

other_fixed_assets, other_investments, capital_instruments}. Different assets can

have attributes, e.g. a claim can have (among other attributes) a ISSUER and a DENOMINATION.

In Appendix C we show an example of such a randomly generated regulation. For our exper-

iments, we can now draw on a large library of randomly generated regulations that partici-

pants have to evaluate.

We plan to run the following experiments:

1. Backtesting. Our first step is to check that our measures can explain the performance

of the participants to the experiment. So as not to introduce any bias when selecting which

instructions to give to the participants, we create a program that generates random instruc-

tions to compute risk-weighted assets in a format similar to the Basel I text studied in Section

4 (we manually check that the instructions make sense, e.g., they do not contain contradic-

tory rules), and a bank balance sheet. Each participant is given a different set of instructions

and a bank balance sheet and computes the bank’s risk-weighted assets. We then regress

measures of the participant’s performance on different measures of complexity. In particu-

lar, we are interested in testing whether measures based on the level have explanatory power

over volume. In addition, we can check whether the impact of complexity is different for

participants with different backgrounds.
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2. Disentangling psychological complexity from computational complexity. To study

the difference between these two forms of complexity, we compare three different treat-

ments: (1) The subject is shown a regulation with five different asset classes, and a bank

balance sheet containing non-zero values for all five asset classes; (2) The subject is shown

the same regulation, but the bank balance sheet contains only three asset classes out of five;

(3) The subject is shown a regulation with three asset classes, and the bank balance sheet

contains the same three asset classes.

The idea of this experiment is that treatments (1) and (2) should differ in their compu-

tational complexity but not in their psychological complexity, conversely (2) and (3) have

the same computational complexity but different levels of psychological complexity. Using

these two comparisons we can disentangle the role of psychological complexity and com-

putational complexity in explaining the different mistakes made in a regulation with three

asset classes relative to a regulation with five asset classes.

3. Disentangling problem complexity from psychological complexity. Here our idea is

to compare different regulations solving the same problem. In order to do so we will compare

the performance of the participants when the regulation is given in different formats: (1) A

high-level format, e.g., “Commercial loans have a risk-weight of X%, which is reduced to Y%

if the maturity is less than Y and the counterparty is located in an OECD country.” (2) A

low-level format, e.g., “Commercial loans with a maturity of more than Y have a risk-weight

of X%. Commercial loans with a counterparty not located in an OECD country have a risk-

weight of X%. Commercial loans with a maturity less than Y and a counterparty located in

an OECD country have a risk-weight of Y%.”

The idea of this experiment is that treatments (1) and (2) have the same potential volume

V ∗ and solve the same regulatory problem. Differences in outcomes can thus only come

from psychological complexity. Note that since V ∗ is the same in both cases, the fact that

regulation (2) is longer implies that it has a lower level. Observing that subjects perform

better on regulation (2) would validate the idea that the level captures a dimension of com-
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plexity different from volume and from problem complexity.

4. Shape of the function C . To estimate how a lower level can substitute for a lower vol-

ume, we start with a first regulation (1) characterized by a volume V1 and a level L1. We then

keep the level constant and increase the volume by 25%, giving a second regulation (2) char-

acterized by (V2,L2) = (1.25V1,L1). We then gradually decrease the level, keeping the volume

constant, with regulations (V3,L3), (V4,L4), etc., until we reach the same outcome (within

some confidence bounds). At the end of this process, we have two regulations characterized

by (V1,L1) and (1.25V1,Ln) such that C (V1,L1) = C (1.25V1,Ln). The outcome of this process

gives us an estimate of the rate of substitution between level and volume. In addition, we

can study how this rate of substitution varies across subjects, depending on their studies,

professional experience, background, etc.

7 Conclusion

This paper is based on the idea that a financial regulation can be seen as an algorithm that

applies a set of instruction to a regulated entity in order to return a regulatory action. The

study of regulatory complexity can then be conducted using tools from computer science

and aimed at capturing the complexity of algorithms.

The present work is only a first step in applying this new approach to the study of regu-

latory complexity, and is meant as a “proof of concept”. We show how some of the simplest

measures of regulatory complexity can be applied to financial regulation, in different con-

texts: (i) a theoretical model of capital regulation, in which we can compute a theoretically

optimal regulation taking into account the cost of its complexity; (ii) an algorithmic “trans-

lation” of the Basel I Accords; (iii) the original text of the Basel I Accords; (iv) the original text

of the Dodd-Frank Act; (v) experiments using artificial “Basel-I like” regulatory instructions.

While the results we present are very preliminary, we believe they are encouraging and

highlight several promising avenues for future research. First, the dictionary that we created

will allow other interested researchers to compute various complexity measures for other

regulatory texts and compare them to those we produced for Basel I and the Dodd-Frank
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Act. Moreover, the dictionary can be enriched in a collaborative way. Such a process would

make the measures more robust over time and allow to compare the complexity of different

regulatory topics, different updates of the same regulation, different national implementa-

tions, etc. This can also serve as a useful benchmarking tool for policymakers drafting new

regulations. Second, the conceptual framework and the experiments we propose to sepa-

rate three dimensions of complexity (problem, psychological, computational) can be used

for other measures than ours, and give a framework to conduct “horse races” between differ-

ent measures of complexity. Finally, our measures could be used in empirical studies aiming

at testing what is the impact of regulatory complexity, and in particular testing some of the

mechanisms that have been proposed in the theoretical literature.
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A Proof of Section 3

Proof of (5). For a given E ∈ [a,b], total welfare is given by:

Wa,b(E) =
∫ b

a
[−λ(1−p)min(x −E ,0)−δE ]d x (12)

= −λ(1−p)
∫ b

E
(x −E)d x −δE(b −a) (13)

= −λ(1−p)
(b −E)2

2
−δE(b −a). (14)

Maximizing this quantity with respect to E gives the desired result.

Proof that intervals optimally have the same length. Consider the case of two intervals,

[0, x̄] and [x̄,1]. Total expected welfare is then given by:

W0,x̄(E∗
0,x̄)+Wx̄,1(E∗

x̄,1) = δx̄

[
δx̄

2λ(1−p)
− x̄

]
+δ(1− x̄)

[
δ(1− x̄)

2λ(1−p)
−1

]
(15)

= δx̄(1− x̄)
λ(1−p)−δ
λ(1−p)

− δ

2λ(1−p)
[δ−2λ(1−p)]. (16)

We immediately see that the optimal x̄ is equal to 1/2, that is, the two intervals are symmetric.

Consider now any number I of intervals. Following the same approach it is easily proved

that all intervals must have the same length, so that the I intervals are [0,1/I ], [1/I ,2/I ]...[(I−
1)/I ,1]. The i +1-th interval has a welfare of:

Wi /I ,(i+1)/I (E∗
i /I ,(i+1)/I ) = δ

I

[
δ

2Iλ(1−p)
− i +1

I

]
(17)

= δ

I 2

[
δ−2λ(1−p)

2λ(1−p)
− i

]
. (18)

We use this expression to compute (7).

B Basel I Algorithm

In the following, we provide a description of the Basel I regulation in the form of a stylized

algorithm. We use pseudo code that simply captures the logical flow of the instructions in

Basel I.
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IF (

ASSET_CLASS == ’’cash’’ OR

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’central governments’’ OR ISSUER == ’’central banks’’) AND

DENOMINATION == ’’national’’ AND

FUNDING_CURRENCY == ’’national’’

) OR

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’central governments’’ OR ISSUER == ’’central banks’’) AND

ISSUER_COUNTRY == ’’oecd’’

) OR

ASSET_CLASS == ’’claims’’ AND (

(COLLATERALIZED == ’’oecd’’ OR GUARANTEED == ’’oecd’’)

)

) THEN:

risk_weight = 0.0;

ELSE IF (

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’public-sector entities’’ AND ISSUER_COUNTRY == ’’domestic’’) AND

(ISSUER != ’’central governments’’ AND ISSUER_COUNTRY == ’’domestic’’)

) OR

ASSET_CLASS == ’’loans’’ AND (

(GUARANTEED == ’’public-sector entities’’ AND GUARANTEED_COUNTRY == ’’domestic’’) AND

(GUARANTEED != ’’central governments’’ AND GUARANTEED_COUNTRY == ’’domestic’’)

)

) THEN:

risk_weight = national_discretion;

ELSE IF (

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’IBRD’’ OR ISSUER == ’’IADB’’ OR ISSUER == ’’AsDB’’ OR ISSUER == ’’AfDB’’ OR

ISSUER == ’’EIB’’) OR

(GUARANTEED == ’’IBRD’’ OR GUARANTEED == ’’IADB’’ OR GUARANTEED == ’’AsDB’’ OR

GUARANTEED == ’’AfDB’’ OR GUARANTEED == ’’EIB’’) OR
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(COLLATERALIZED == ’’IBRD’’ OR COLLATERALIZED == ’’IADB’’ OR COLLATERALIZED == ’’AsDB’’ OR

COLLATERALIZED == ’’AfDB’’ OR COLLATERALIZED == ’’EIB’’)

) OR

ASSET_CLASS == ’’claims’’ AND ( // 3b

(ISSUER == ’’bank’’ AND ISSUER_COUNTRY == ’’oecd’’)

) OR

ASSET_CLASS == ’’loans’’ AND (

(GUARANTEED == ’’bank’’ AND GUARANTEED_COUNTRY == ’’oecd’’)

) OR

ASSET_CLASS == ’’claims’’ AND ( // 3c

(ISSUER == ’’bank’’ AND ISSUER_COUNTRY != ’’oecd’’ AND ASSET_MATURITY <= 1)

) OR

ASSET_CLASS == ’’loans’’ AND (

(GUARANTEED == ’’bank’’ AND GUARANTEED_COUNTRY != ’’oecd’’ AND ASSET_MATURITY <= 1)

) OR

ASSET_CLASS == ’’claims’’ AND ( // 3d

(ISSUER == ’’public sector entities’’ AND ISSUER != ’’central governments’’ AND

ISSUER_COUNTRY == ’’oecd’’ AND ISSUER_COUNTRY != ’’domestic’’)

) OR

ASSET_CLASS == ’’loans’’ AND (

(GUARANTEED == ’’public sector entities’’ AND GUARANTEED != ’’central governments’’ AND

GUARANTEED_COUNTRY == ’’oecd’’ AND GUARANTEED_COUNTRY != ’’domestic’’)

) OR

ASSET_CLASS == ’’cash’’ AND ( // 3e

CASH_COLLECTION == ’’in process’’

)

) THEN:

risk_weight = 0.2;

ELSE IF (

ASSET_CLASS == ’’loans’’ AND

(LOAN_SECURITY == ’’mortgage’’ AND (PROPERTY_OCCUPIED == ’’owner’’ OR

PROPERTY_OCCUPIED == ’’rented’’))

) THEN:

risk_weight = 0.5;
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ELSE IF (

ASSET_CLASS == ’’claims’’ AND (

ISSUER == ’’private sector’’

) OR

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’banks’’ AND ISSUER_COUNTRY != ’’oecd’’ AND ASSET_MATURITY > 1)

) OR

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’central governments’’ AND ISSUER_COUNTRY != ’’oecd’’ AND

DENOMINATION != ’’national’’ AND FUNDING_CURRENCY != ’’national’’)

) OR

ASSET_CLASS == ’’claims’’ AND (

(ISSUER == ’’commercial companies’’ AND ISSUER_OWNER == ’’public sector’’)

) OR

(ASSET_CLASS == ’’premises’’ OR ASSET_CLASS == ’’plant’’ OR ASSET_CLASS == ’’equipment’’ OR

ASSET_CLASS == ’’other fixed assets’’) OR

(ASSET_CLASS == ’’real estate’’ OR ASSET_CLASS == ’’other investments’’) OR

ASSET_CLASS == ’’capital instruments’’ AND (

(ISSUER == ’’banks’’ AND DEDUCTED_FROM != ’’capital’’)

)

) THEN:

risk_weight = 1.0;

ELSE:

risk_weight = 1.0;

C Randomly Generated Regulations

IF (

ASSET_CLASS == ’’real_estate’’ OR

ASSET_CLASS == ’’other_investments’’

) THEN:

risk_weight = 0.0;

ELSE IF (
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ASSET_CLASS == ’’other_investments’’ OR

ASSET_CLASS == ’’real_estate’’ OR

ASSET_CLASS == ’’capital_instruments’’ AND

(ISSUER == ’’central governments’’ AND ISSUER == ’’AsDB’’) OR

ASSET_CLASS == ’’real_estate’’ OR

ASSET_CLASS == ’’plant’’

) THEN:

risk_weight = 0.2;

ELSE IF (

ASSET_CLASS == ’’other_fixed_assets’’

) THEN:

risk_weight = 0.2;

ELSE IF (

ASSET_CLASS == ’’plant’’ OR

ASSET_CLASS == ’’real_estate’’ OR

ASSET_CLASS == ’’other_fixed_assets’’ OR

ASSET_CLASS == ’’plant’’ OR

ASSET_CLASS == ’’claim’’ OR

(COLLATERALIZED == ’’IADB’’ AND COLLATERALIZED == ’’oecd’’ OR COLLATERALIZED == ’’AsDB’’

AND COLLATERALIZED == ’’IADB’’ AND COLLATERALIZED == ’’AsDB’’

OR COLLATERALIZED == ’’EIB’’)

) THEN:

risk_weight = 0.2;

ELSE IF (

ASSET_CLASS == ’’cash’’ OR

ASSET_CLASS == ’’real_estate’’ OR

ASSET_CLASS == ’’premises’’ OR

ASSET_CLASS == ’’equipment’’ OR

ASSET_CLASS == ’’equipment’’ OR

ASSET_CLASS == ’’plant’’

) THEN:

risk_weight = 0.2;

ELSE:

risk_weight = 1.0;
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