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1 Introduction

A question remains regarding whether Bitcoin’s limited usage arises due to its infancy

or because of its underlying economic structure. This paper answers that question by

demonstrating that limited adoption constitutes an endogenous characteristic of not

only Bitcoin but also Proof-of-Work (PoW) payments blockchains more generally. We

demonstrate that the economics of PoW payments blockchains make limited adoption an

inescapable equilibrium outcome. Our critique does not apply to other blockchains such

as smart contract platforms and permissioned platforms. As such, our work highlights

the need for research on alternatives in the nascent field of blockchain economics.

PoW dates back to Dwork and Naor (1992) and later gained mainstream atten-

tion when Nakamoto (2008) popularized the concept by employing it to allegedly in-

duce good validator behavior within a permissionless blockchain setting.1,2 Nakamoto

(2008) envisioned a decentralized network that admits free entry and perfect compe-

tition among validators. To achieve that vision while creating appropriate validator

incentives, Nakamoto (2008) specified that agents must solve a verifiable puzzle to up-

date the blockchain.3 Nakamoto (2008) specified the puzzle difficulty as a parameter

so that the block arrival rate (i.e., rate of blockchain updating) may be targeted. The

motivation for this targeting feature arises from the premise that blockchain updates

occurring faster than network latency undermines validators agreeing on ledger con-

tents.4 Narayanan, Bonneau, Felten, Miller, and Goldfeder (2016) argue that the block

rate “should be [targeted as] a fixed amount” because “blocks [coming] very close to-

gether [induces] a lot of inefficiency” due to “latency.” The block arrival rate targeting,

however, artificially constrains ledger space. We demonstrate that this artificial sup-

1Validators on a Proof-of-Work blockchain are called miners.
2A permissionless blockchain constitutes a blockchain that admits free entry with respect to the

validator network.
3The interested reader may consult Biais, Bisière, Bouvard, and Casamatta (2019) for further ref-

erence.
4Network latency references the time required for information to travel across the network.
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ply constraint interacts with network latency and PoW’s permissionless nature to make

limited adoption endemic to PoW payments blockchains.

Due to PoW’s supply constraint, an increase in transaction demand endogenously

generates an increase in fees. That fee increase in turn induces validators to enter the

PoW network. The PoW network expansion then exacerbates network latency and

protracts the validator agreement process. For users, this delay amounts to increased

payment confirmation times which drives users away from the blockchain platform to-

wards traditional payment systems. In equilibrium, the blockchain maintains only users

relatively insensitive to payment confirmation delays. Thus, our analysis demonstrates

that PoW payments blockchains cannot simultaneously sustain large volumes and a

non-negligible payments market share - we term this problem the Limited Adoption

Problem.

To overcome the Limited Adoption Problem, we consider dynamic adjustment of

PoW’s block rate. We find that such an adjustment succeeds only if the blockchain

becomes centralized. If the block rate fails to keep pace with transaction demand, pro-

hibitive wait times drive users from the blockchain. Alternatively, if the block rate

keeps pace with transaction demand, a protracted validator agreement process drives

users away from the blockchain. This reasoning breaks down only if the PoW blockchain

features just one validator. A single validator network allows simultaneously for arbi-

trarily large block rates and an expedient validator agreement process.

The necessity of centralization to break PoW’s Limited Adoption Problem moti-

vates us to consider permissioned blockchains. A permissioned blockchain offers a semi-

centralized setting with neither an artificial supply constraint nor free entry among

validators. We demonstrate that a permissioned blockchain induces lower payment

confirmation times than a PoW blockchain and overcomes the Limited Adoption Prob-

lem. Nonetheless, we acknowledge that a permissioned blockchain may not dominate

a PoW blockchain because malicious validator behavior may arise in equilibrium for a
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permissioned blockchain. We, therefore, turn to examining validator incentives for a

permissioned blockchain.

We begin by analyzing a standard majority rule consensus protocol. Such a protocol

creates a coordination game with multiple equilibria. All validators behave honestly in

one equilibrium and maliciously in another equilibrium. These results arise because a

validator gains from successfully attacking the blockchain but faces a reputational cost

from unsuccessfully attacking the blockchain. The majority-rule consensus protocol thus

raises security concerns for a permissioned blockchain.

To resolve the aforementioned concerns, we propose an alternative consensus proto-

col. That protocol weights votes by each validators’ stake in the cryptocurrency native

to the blockchain. Such a protocol aligns validator incentives in a way that precludes

malicious validator behavior. Validators internalize that prices negatively reflect the

probability that the blockchain incurs a successful attack. An attack equilibrium can-

not exist because validators respond optimally to a potential attack by acquiring a stake

in the cryptocurrency sufficiently large to become marginal and thwart the attack.

A permissioned blockchain with a stake-based consensus protocol escapes the Limited

Adoption Problem and induces honest validator behavior. This has important implica-

tions for the introduction of blockchain as a payment system. While PoW may not be

viable due to the Limited Adoption Problem, a well-designed permissioned alternative

may be suitable for widespread adoption.

This paper relates to a large literature that studies PoW economics and cryptoassets.

Eyal and Sirer (2014), Nayak, Kumar, Miller, and Shi (2015), Carlsten, Kalodner, Wein-

berg, and Narayanan (2016), Biais, Bisière, Bouvard, and Casamatta (2019) and Cong,

He, and Li (2018) analyze PoW mining strategies. Huberman, Leshno, and Moallemi

(2018) and Easley, O’Hara, and Basu (2019) analyze transaction fees and wait times

for users under a PoW protocol. Foley, Karlsen, and Putnins (2019) examine the ex-

tent to which cryptocurrencies facilitate illegal activities. Kroeger and Sarkar (2017),
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Biais, Bisière, Bouvard, Casamatta, and Menkveld (2018), Hinzen (2018), Li, Shin, and

Wang (2018), Liu and Tsyvinski (2018), Makarov and Schoar (2018) and Pagnotta and

Buraschi (2018) study the determinants of cryptoasset prices. Other notable works in-

clude Gandal and Halaburda (2016), Harvey (2016), Abadi and Brunnermeier (2018),

Griffin and Shams (2018) and Jermann (2018).

This paper highlights an important shortcoming of PoW payments blockhains. In

doing so, our work adds to the literature that highlights PoW’s economic limitations.

Budish (2018) argues that the possibility of an attack limits Bitcoin’s economic size.

Yermack (2015) documents exorbitant bitcoin price volatility. Pagnotta (2018) and

Saleh (2018) theoretically demonstrate that PoW contributes to that price volatility;

Saleh (2018) also demonstrates that PoW induces welfare losses.

This paper also contributes to a growing literature that considers alternatives to PoW

payments blockchains. We provide one of the first analyses of permissioned blockchains

and show that a properly designed consensus protocol yields desirable validator be-

havior. Cao, Cong, and Yang (2018) and Chod, Trichakis, Tsoukalas, Aspegren, and

Weber (2018) predate our work and also study permissioned blockchains but for audit-

ing and supply chain purposes respectively. Cong, Li, and Wang (2018), Sockin and

Xiong (2018), Cong and He (2019) and Cong, Li, and Wang (2019) depart from the

Bitcoin paradigm by examining a blockchain platform that possesses functionality be-

yond payment processing. Falk and Tsoukalas (2018) provide theoretical analysis of

blockchain-based token weighted voting platforms. Chod and Lyandres (2018), Lee, Li,

and Shin (2018), Li and Mann (2018), Malinova and Park (2018), Niessner, Howell, and

Yermack (2018) and Catalini and Gans (2019) study initial coin offerings. Basu, Easley,

O’Hara, and Sirer (2019) propose an alternative fee setting mechanism to that employed

by Bitcoin. Saleh (2019) formally analyzes Proof-of-Stake (PoS) and establishes that

such a protocol induces consensus under certain conditions.

Also notable, there exists a large literature within computer science that studies
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security of various blockchain protocols. Some papers within that literature include

Miller and LaViola (2014), Gilad, Hemo, Micali, Vlachos, and Zeldovich (2017), Kiayias,

Russell, David, and Oliynykov (2017) and Daian, Pass, and Shi (2019). Our paper

differs from those works in that those papers rely upon some exogenous behavioral

assumptions whereas our paper conducts a full equilibrium analysis. Our paper omits

an exogenously-motivated attacker and therefore does not analyze security in the same

sense as the computer science literature.

This paper proceeds as follows. Section 2 presents the PoW model, defines a PoW

Equilibrium and establishes both existence and uniqueness of such an equilibrium. Sec-

tion 3 analyzes payment confirmation times and formalizes the Limited Adoption Prob-

lem. Section 4 discusses permissioned blockchains and offers a stake-based consensus

protocol as an alternative to PoW. Section 5 concludes. All proofs appear in Appendix

B.

2 PoW Model

We model an infinite horizon economy that evolves in continuous time. Our model

consists of a validator network that stores the blockchain and a finite number of potential

blockchain users.

2.1 Users

Our model involves finitely many users, i P t1, ..., Nu. At t � 0, User i learns her

type, ci � U r0, 1s, which remains unknown to others.5 We model user preferences

akin to Huberman, Leshno, and Moallemi (2018) with each user possessing only one

transaction and ci denoting the delay cost for User i.

5We model ci as independent of all else.
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max
fi¥0

R � ci � ErW pfi, f�iq|cis � fi (1)

After learning her type, User i selects a fee level, fi, that solves Problem 1. W pfi, f�iq
represents the time that User i’s transaction earns confirmation whereas R represents the

utility of User i having her transaction processed. If max
fi¥0

R� ci �ErW pfi, f�iq|cis� fi  
0 then User i opts to transact via traditional payment systems rather than on the

blockchain.

2.2 Validators

Because PoW blockchains admit free entry among validators, we determine the number

of validators, V , endogenously. Each potential validator must pay some cost β ¡ 0 to

acquire validation technology and join the network. Each validating node represents a

single computer, and we assume that each computer possesses identical hashing power

so that each validator expects to earn an equal share of fees. We assume validators

possess risk-neutral preferences. Then, free entry yields Equation 2 with V being the

equilibrium number of validators and T corresponding to the set of users who transact

on the blockchain.

V �
Er°

iPT

fis
β

(2)

For exposition, we assume that each block contains only one transaction. We fur-

ther assume that no coinbase transactions exist so that validators receive compensation

exclusively through fees. Validators optimally service transactions in descending fee

order.
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2.3 Blockchain

Blocks arrive according to a (compound) poisson process with rate Λ ¡ 0. We assume

that each arrival occurs at a new block height, but we allow that network latency may

yield multiple blocks at the same height. Multiple blocks at the same height constitute

a fork and correspond to disagreement regarding the blockchain’s content. A fork arises

if different validators solve the same mining puzzle before communicating with each

other. Given an arrival at time t, a poisson process with rate Λ produces at least one

more arrival within the next ∆ time units with probability 1 � e�Λ∆. Accordingly, we

assume that an arrival corresponds to multiple blocks at a given height with probability

1 � e�Λ∆pV q. ∆pV q denotes the latency for a network of size V . We impose ∆p1q � 0,

lim
VÑ8

∆pV q � 8, and ∆1pV q ¡ 0 for V ¡ 1.6

We assume that payments cannot be confirmed during a fork because, in such a case,

validators disagree regarding the ledger’s contents. Once a fork arises, we require a “k-

blocks” rule to resolve the fork. Specifically, we require k consecutive arrivals without

multiple blocks at the same height to return the blockchain to consensus.

2.4 Equilibrium

Definition 2.1. PoW Equilibrium

A PoW Equilibrium is an entrant cut-off, c� P r0, 1s, a fee function, f : r0, 1s ÞÑ R� and

a validator network size, V ¥ 0, given a number of users, N ¥ 2, a blockchain utility,

R ¡ 0, and a block rate, Λ ¡ 0, such that:

(i) @i : fpciq solves Problem 1 with fp0q � 0 for ci ¤ c�

(ii) @i : ci ¤ c� ô max
fi¥0

R � ci � ErW pfi, f�iq|cis � fi ¥ 0

6∆pV q lacks real-world meaning if V P r0, 1q. Nonetheless, we specify @V P r0, 1q : ∆pV q � 0 for
technical reasons. Our results do not depend upon this assumption.
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(iii) W pfi, f�iq �
°

j�i:fi¤fj

Hj � Zi, Hj � exppΛq,ErZis � ΨpΛ, V q.7

(iv) βV � Er°
iPT

fpciqs with T � ti : ci ¤ c�u.

Definition 2.1 defines the equilibrium. Without further reference, we assume that

the blockchain’s stationary distribution characterizes its initial state. The interested

reader may consult Appendix A for the explicit stationary distribution and associated

technical details. Definition 2.1 (i) asserts that users select an optimal fee schedule.

Definition 2.1 (ii) states that a user transacts on the blockchain if and only if she (weakly)

gains utility from transacting on the blockchain relative to traditional payment systems.

Definition 2.1 (iii) characterizes wait times as decoupling into the wait for higher priority

transactions and the wait for fork resolution. Definition 2.1 (iv) imposes no profits for

validators in equilibrium because free entry characterizes the validator network.

Proposition 2.1. Existence and Uniqueness of a PoW Equilibrium

There exists a PoW Equilibrium. There exists no other equilibrium for which f consti-

tutes a strictly increasing and differentiable function. The following conditions charac-

terize the equilibrium:

(A) fpciq � pN � 1q c2i
2Λ

(B) R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ R � c�ΨpΛ, V q � pc�q2pN�1q
2Λ

(C) R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ c� � 1

(D) βV � pN � 1qN pc�q3

6Λ
.

Proposition 2.1 establishes existence and uniqueness of a PoW Equilibrium. This

result ensures coherence of the subsequent discussion.

7ΨpΛ, V q � ErW pfi, f�iq | ci � c�s. For more detail we refer the interested reader to Appendix A.

8



3 PoW Results

Having established existence and uniqueness of a PoW Equilibrium, we turn to analyzing

the properties of that equilibrium. Section 3.1 analyzes payment confirmation times.

Section 3.2 establishes the Limited Adoption Problem and related results.

3.1 Payment Confirmation Times

We define Wi � ErW pfi, f�iq | cis as the expected confirmation time for User i if she uses

the blockchain. Equation 3 decomposes payment confirmation times into three parts.8

pN � 1q pc��ciq
Λ

refers to the expected service time for higher priority users. 1
Λ

equals the

expected service time for User i. τpΛ, V q denotes the expected fork resolution time.9

Wi � pN � 1qpc
� � ciq

Λ
� 1

Λ
� τpΛ, V q (3)

Fork resolution time constitutes a feature distinct from a traditional setting. This

feature arises because blockchain payment confirmation requires agreement by all valida-

tors within the network. That agreement becomes harder to achieve when blocks arrive

quickly relative to the time needed for a given validator to communicate her ledger to

the network. Accordingly, disagreement arises more frequently as the network grows

or as the block rate rises so that increasing the block rate need not expedite confor-

mation times. In the absence of forks, confirmation times decrease as the block rate

rises. Nonetheless, in the presence of forks, as the block rate rises so too does the fork

frequency which counteracts the aforementioned effect.

Proposition 3.1. Payment Confirmation Lower Bound

Network latency bounds below all user payment confirmation times pi.e., @i : Wi ¥
τpΛ, V q ¥ ∆pV qq.

8Equation 3 follows from Definition 2.1 (iii) and Proposition 2.1 (A)
9The interested reader may consult Appendix A for further detail regarding τpΛ, V q.
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Proposition 3.1 asserts that PoW induces a strictly positive lower bound for confir-

mation times. Intuitively, a slow block rate yields a low fork frequency whereas a fast

block rate yields a high fork frequency. Since forks delay validator agreement, arbitrarily

fast payment confirmation cannot obtain for a decentralized PoW blockchain.

Proposition 3.2. Arbitrarily Large Marginal Payment Confirmation Time

All user payment confirmation times diverge as demand diverges pi.e., @i : lim
NÑ8

Wi � 8q.
This result holds in particular for the highest priority user, i.e., i such that ci � c�.

Next, we turn our attention to how payment confirmation times vary with increases

in transaction demand. Proposition 3.2 asserts that payment confirmation times diverge

for all users, including the highest priority user, as transaction demand grows.10

A PoW blockchain imposes an artificial supply constraint via a fixed block rate.

As transaction demand rises, the artifical supply constraint induces higher fees which

in turn causes more validators to enter the network. The larger validator network in-

creases network latency which in turn increases fork frequency and yields arbitrarily

large payment confirmation times even for the highest priority user. Although the high-

est priority user receives service first (with probability one), her expected confirmation

time diverges because expected fork resolution time diverges.

3.2 Limited Adoption Problem

The aforementioned elongated payment confirmation times have important implications

regarding the viability of a PoW payments blockchain. Specifically, a PoW payments

blockchain cannot simultaneously sustain a large volume and a non-negligible market

share. Proposition 3.3 formalizes that result which we term the Limited Adoption

Problem.

10We refer to User i such that ci � c� as the highest priority user. Any such user receives service
first with probability one.
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Proposition 3.3. Limited Adoption Problem

Adoption decreases as demand rises pi.e., c� decreases in Nq. Moreover, the blockchain

faces limited adoption pi.e., lim
NÑ8

c� � 0q.

Section 3.1 demonstrates that increases in transaction demand eventually yield in-

creases in expected confirmation times for all blockchain users. These increased payment

confirmation times drive users from the blockchain to traditional payment systems. If

the blockchain sustains a large volume, then congestion induces fees which leads to

validator entry. That validator entry prolongs payment confirmation times and thereby

drives away all but the most dogmatic blockchain fanatics (i.e., Users i such that ci ¤ c�).

Therefore, PoW payments blockchains such as Bitcoin cannot obtain widespread adop-

tion; rather, limited adoption constitutes an intrinsic and endogenous characteristic of

such blockchains.11

One may conjecture that a relaxation of PoW’s artificial supply constraint (i.e.,

increasing Λ) solves the Limited Adoption Problem. Proposition 3.4, however, demon-

strates that such an approach succeeds only in so far as it induces centralization. This re-

sult arises because relaxing PoW’s artificial supply constraint implies a faster block rate

which in turn increases disagreement among validators because blocks arrive too rapidly

relative to network latency. A faster block rate paradoxically eventually increases wait

times by prolonging the validator agreement process. This difficulty may be overcome

only if the network possesses one validator which eliminates the need for communication

among validators. Thus, even allowing dynamic supply achieves widespread adoption

only at the expense of decentralization. The notion of sacrificing decentralization to

obtain widespread adoption motivates one alternative solution: a semi-centralized per-

missioned blockchain. We analyze that setting in Section 4.

Proposition 3.4. Impossibility of Decentralization and Scalability

11Our result highlights that, for example, theories attributing Bitcoin’s limited adoption to its infancy
fail to account for intrinsic economic limitations of the platform.
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For exposition, we assume that lim
NÑ8

Λ and lim
NÑ8

c� exist. The blockchain necessarily

faces either centralization pi.e., lim sup
NÑ8

V ¤ 1q or limited adoption pi.e., lim
NÑ8

c� � 0q.

Our results may be interpreted as an economic parallel of Vitalik Buterin’s Blockchain

Trilemma.12 Buterin’s Trilemma pits decentralization, scalability and security against

one another. Our analysis assumes security and demonstrates that a secure PoW pay-

ments blockchain cannot simultaneously achieve both scalability and decentralization.

Proposition 3.3 demonstrates that a secure PoW payments blockchain cannot scale in the

sense that such a blockchain cannot realize high transaction volumes and non-negligible

payments market share. Proposition 3.4 then highlights that increasing the blockchain’s

throughput resolves the scalability issue only if that increased throughput induces cen-

tralization. Hence, a PoW payments blockchain cannot simultaneously achieve decen-

tralization, scalability and security as Buterin suggested.

Proposition 3.5. No Latency, No Problem

Both widespread adoption pi.e., lim
NÑ8

c� ¡ 0q and decentralization pi.e., lim
NÑ8

V � 8q
can be obtained simultaneously under the counterfactual assumption of no latency pi.e.,

∆pV q � 0q.

Before transitioning to a discussion surrounding permissioned blockchains, we offer

a final PoW result to demonstrate the importance of network latency in generating our

results. Proposition 3.5 assumes, counterfactually, that network latency does not exist

(i.e., ∆pV q � 0) and thereby overcomes the Limited Adoption Problem. Widespread

adoption becomes possible for a decentralized PoW system in the absence of latency

which establishes that latency constitutes a critical factor for our results.

Our results highlight that limited adoption constitutes an endogenous and endemic

characteristic of PoW payments blockchains. PoW combines an artificial supply con-

12The interested reader may consult https://github.com/ethereum/wiki/wiki/Sharding-FAQs

for further details.
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straint, free entry among validators and network latency that collectively make the sys-

tem intrinsically impractical for widespread adoption. Our results do not argue against

the potential for blockchain more broadly. In fact, we subsequently offer an alternative

blockchain solution that overcomes the Limited Adoption Problem.

4 A Permissioned Alternative

Section 3 highlights that a PoW payments blockchain must centralize to overcome the

Limited Adoption Problem. In this section, we consider a natural semi-centralized

alternative: a permissioned blockchain. Section 4.1 formally puts forth the permissioned

blockchain model. Section 4.2 establishes benefits of permissioned blockchains relative

to PoW blockchains.

Nonetheless, those benefits are insufficient for blockchain to be viable. Typically,

establishing blockchain security constitutes a necessary condition for blockchain viabil-

ity. We consider that topic for permissioned blockchain in Sections 4.3 and 4.4. Section

4.3 introduces a standard consensus protocol and demonstrates that this protocol may

incur successful attacks. Section 4.4 introduces an alternative protocol that overcomes

both the Limited Adoption Problem and blockchain attacks.

4.1 Permissioned Blockchain Model

We model users as in Section 2 since the blockchain itself does not affect transaction

demand. Unlike Section 2, we exogenously specify a set of validators, VP P N.13 All

transactions enter at t � 0 at a single node so that all validators observe the full set

of transactions by t � ∆pVP q. As with a PoW setting, validators instantly validate

transactions. However, unlike a PoW setting, they need not solve any puzzle to partake

in the consensus process so that no artificial supply constraint exists.

13For exposition, we impose VP ¥ 3 in the equilibrium analysis.

13



PoW attempts to create incentives for validators not to maliciously attack the

blockchain. Thus, in offering an alternative, we focus on not only user adoption and

wait times but also validator incentives. Validator i selects ai P t0, 1u with ai � 0 corre-

sponding to malicious behavior and ai � 1 corresponding to honest behavior. Malicious

behavior yields some profit, Π ¡ 0, if the attack succeeds. In contrast, a failed attack

imposes a cost, κ ¡ 0, on a malicious validator. For simplicity, we assume that an honest

validator earns neither a profit nor a loss. The success of an attack depends upon the

blockchain’s consensus protocol which we discuss later in this section.

A permissioned blockchain may possess a cryptocurrency which enables a blockchain

designer to shape validator incentives. We invoke a cryptocurrency when designing our

own consensus protocol and denote Validator i’s holding of that cryptocurrency by

αi P R.

We define a consensus protocol as a function ω : t0, 1uVP � RVP ÞÑ tp P r0, 1sVP :
VP°
i�1

pi � 1u with ωi corresponding to the probability that Validator i’s ledger becomes the

consensus ledger.14 We further define Γpa1, ..., aVP , α1, ..., αVP q �
VP°
i�1

ωipa1, ..., aVP , α1, ..., αVP q ai.
Γ gives the probability that the blockchain does not sustain a successful attack.

Saleh (2019) demonstrates that a cryptocurrency’s price depends upon validator

behavior on the associated blockchain. Taking such a premise as given, we assume that

P∆pVP q � PH if the blockchain sustains no successful attack and P∆pVP q � PL otherwise

with Pt, t P t0,∆pVP qu, denoting the time-t cryptocurrency price and PH ¡ PL ¡ 0.

Definition 4.1. Permissioned Equilibrium

A Permissioned Equilibrium is an entrant cut-off, c�P P r0, 1s, a cryptocurrency price,

P0, a set of validator decisions, taiuVPi�1 P t0, 1uVP and a set of validator cryptocurrency

holdings, tαiuVPi�1 P RVP , given a validator network size, VP ¥ 3, a number of users,

N ¥ 2, a blockchain utility, RP ¡ 0, and a consensus protocol, ω, such that:

14The consensus protocol that we characterize arises as a simplification of the more general construct,
specialized for our particular setting.
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(i) @i : ci ¤ c�P ô RP � ci∆pVP q ¥ 0

(ii) pai, αiq P arg sup
pa,αq

Φpa, α; a�i, α�iq
with Φpa, α; a�i, α�iq � pΠ�pΠ�κqErΓpa, a�i, α, α�iqsqIa�0�αpErP∆pVP qs�P0q

(iii) P0 � ΓPH � p1� ΓqPL.

Definition 4.1 defines a Permissioned Equilibrium.15 Definition 4.1(i) asserts that

a user employs the blockchain if and only if she (weakly) gains from employing the

blockchain instead of a traditional payment system. Definition 4.1 (ii) requires that

validators act optimally. We assume that all agents possess risk neutral preferences

with perfect patience so that Definition 4.1 (iii) constitutes a necessary condition for

equilibrium.

4.2 Permissioned Blockchain Benefits

Proposition 4.1. Lower Payment Confirmation Times

For any PoW protocol, there exists a permissioned blockchain which induces (weakly)

lower payment confirmation times.

Section 3 demonstrates that PoW suffers from large payment confirmation times.

This issue arises due to an artificial supply constraint and network latency which can

be exacerbated by the permissionless nature of a PoW blockchain. A permissioned

blockchain that omits PoW’s artificial supply constraint enables lower payment confir-

mation times. Proposition 4.1 formalizes that assertion.

Proposition 4.2. No Limited Adoption Problem

In any Permissioned Equilibrium, widespread adoption (i.e., lim
NÑ8

c�P � mint RP

∆pVP q
, 1u ¡

0) obtains.

15For exposition, we restrict our attention to pure strategies.
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Section 3 establishes that PoW faces the Limited Adoption Problem. Proposition

4.2 highlights that a permissioned blockchain does not face that problem. This result

arises because the lack of an artificial supply constraint facilitates timely service even

for high transaction volumes. Thus, as Proposition 4.2 avers, a permissioned blockchain

may obtain widespread adoption.

4.3 Majority Rule Consensus

Definition 4.2. Majority Rule Permissioned Equilibrium (MRPE)

A Majority Rule Permissioned Equilibrium (MRPE) is a Permissioned Equilibrium such

that voting power is equally distributed among the majority.16 More formally, ωi �
It|Sai | ¡ |S1�ai | _ |Sai | � |S1�ai | ^ ai � 0u � 1

|Sai |
. Moreover, Sa � ti : ai � au.

Lemma 4.3. Majority Rule Permissioned Equilibrium pMRPEq
For a Majority Rule Permissioned Equilibrium pMRPEq, the blockchain sustains a suc-

cessful attack if and only if malicious validators weakly outnumber honest validators pi.e.

Γ � It|S1| ¡ |S0|uq.

Definition 4.2 specializes Definition 4.1 to a standard permissioned blockchain pro-

tocol. This standard permissioned blockchain protocol determines blockchain updates

by a simple majority rule. Lemma 4.3 formalizes that assertion.

As established by Proposition 4.2, a majority rule permissioned blockchain overcomes

the Limited Adoption Problem. Nonetheless, the viability of a blockchain requires also

that it overcomes attacks. We discuss this issue subsequently.

Proposition 4.4. Honest MRPE

There exists an MRPE in which all validators behave honestly and the blockchain does

not sustain a successful attack pi.e., @i : ai � 1,Γ � 1q.
16In case of a tie, we treat the malicious validators as the majority.
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Proposition 4.4 establishes the existence of an equilibrium in which all validators

behave honestly. This result arises because a single validator cannot successfully attack

the blockchain by behaving maliciously if all other validators behave honestly. Malicious

behavior yields a cost to reputation with no off-setting gain so that honest behavior

constitutes the unique best response to all other validators behaving honestly.

Proposition 4.5. Malicious MRPE

There exists an MRPE in which all validators behave maliciously and the blockchain

sustains a successful attack pi.e, @i : ai � 0,Γ � 0q.

Proposition 4.5 establishes the existence of a second equilibrium in which all valida-

tors behave maliciously. This result arises because a single validator cannot unilaterally

thwart a blockchain attack by behaving honestly. Honest behavior forgoes a reward from

colluding to attack the blockchain when all other validators behave maliciously. Conse-

quently, malicious behavior constitutes the unique best response to all other validators

behaving maliciously.

Proposition 4.5 raises concern about employing a permissioned blockchain with a

majority rule consensus protocol. Ideally, we wish a blockchain to both overcome the

Limited Adoption Problem and possess no equilibria in which a blockchain attack suc-

ceeds. Section 4.4 offers an alternative protocol that achieves both the desired goals.

4.4 Stake-Based Consensus

Definition 4.3. Stake-Based Permissioned Equilibrium (SBPE)

A Stake-Based Permissioned Equilibrium (SBPE) is a Permissioned Equilibrium such

that voting power is equally distributed among the validators with majority stake.17

More formally, ωi � ItTai ¡ T1�ai _ Tai � T1�ai ^ ai � 0u � 1
|Sai |

with Ta �
°
iPSa

α�i .

17In case of a tie, we treat the malicious validators as having the larger stake.
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Lemma 4.6. Stake-Based Permissioned Equilibrium pSBPEq
For a Stake-Based Permissioned Equilibrium pSBPEq, the blockchain sustains a success-

ful attack if and only if the cumulative stake of malicious validators weakly outweighs

that of honest validators pi.e., Γ � ItT1 ¡ T0uq.

Definition 4.3 specializes Definition 4.1 to a permissioned blockchain protocol that

we reference as a stake-based protocol. This protocol determines blockchain updates by

majority stake rather than majority rule. Lemma 4.6 formalizes that result.

Proposition 4.7. Honest SBPE

There exists an SBPE in which all validators behave honestly and the blockchain does

not sustain a successful attack pi.e., @i : ai � 1,Γ � 1q.

Proposition 4.7 establishes the existence of an equilibrium in which all validators

behave honestly. This equilibrium arises for similar reasons as that described within

Proposition 4.4, so we omit further discussion.

Proposition 4.8. No Malicious SBPE

There exists no SBPE in which an attack succeeds with strictly positive probability pi.e.,

Γ � 1 for all equilibriaq.

Proposition 4.8 highlights the non-existence of an equilibrium in which a blockchain

attack succeeds. This result arises because a single validator may become marginal by

acquiring a sufficiently large stake. Since a validator’s profit varies with her cryptocur-

rency position, she opts to become marginal and prevent a blockchain attack if she

believes that an attack succeeds otherwise. Thus, a blockchain attack cannot succeed in

equilibrium. A stake-based permissioned blockchain overcomes both blockchain attacks

and the Limited Adoption Problem.
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5 Conclusion

PoW blockchains have been envisioned as alternatives to traditional payment systems.

While individual vendors have adopted some PoW payment platforms, no such platform

has obtained widespread adoption. We demonstrate that this lack of widespread adop-

tion constitutes an endemic property of PoW payments blockchains. PoW imposes an

artificial supply constraint on transactions. As transaction demand grows, fees increase

endogenously. Due to the permissionless nature of PoW blockchains, more validators

engage in the validation process. That entry expands the network size thereby protract-

ing the consensus process and generating increased payment confirmation times. Thus,

only users extremely insensitive to wait-times transact via the blockchain in equilibrium.

A PoW payments blockchain therefore cannot simultaneously sustain large volumes and

a non-negligible market share - we term this result the Limited Adoption Problem.

We consider permissioned blockchains as an alternative to PoW blockchains. For

any PoW blockchain, there exists a permissioned blockchain that dominates the PoW

blockchain in terms of payment confirmation times. Permissioned blockchains, how-

ever, may generate malicious validator behavior. In fact, under a simple permissioned

consensus protocol, an equilibrium with malicious validator behavior and a successful

blockchain attack exists. We propose an alternative protocol that overcomes this un-

desirable feature. This protocol employs a cryptocurrency native to the blockchain to

align validator incentives such that a blockchain attack cannot succeed in equilibrium.

This paper has important policy implications. It directly concerns adoption of

blockchain as a payment system. The Limited Adoption Problem makes PoW blockchains

impractical for widespread adoption as a payment system. Our work highlights the need

for research examining alternative protocols.
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Appendices

A CTMC Blockchain Model

We model the blockchain as a Continuous Time Markov Chain (CTMC), tXtut¥0, with

states x P X � t0, 1, ..., ku with x   k denoting that the blockchains last x heights

contain single block and x � k denoting the complement. Given the discussion in

Section 2, x   k corresponds to the blockchain being in the midst of a fork and x � k

corresponds to the complement. This section offers background results including the

stationary distribution and sojourn times.

Formally, the CTMC rate matrix, Q P RX�X , characterizes our model. For expo-

sition, we define ppx, yq � 1 � e�xy and abuse notation by setting p � ppΛ,∆pV qq �
1 � e�Λ∆pV q P p0, 1q. Then, @x P X{t0, ku : Qx,x � �Λ, @x P X{t0u : Qx,0 � Λp,

@x P X{tku : Qx,x�1 � Λp1 � pq, QK,K � �Λp, Q0,0 � �Λp1 � pq and all other entries

equal 0.

Lemma A.1. Stationary Distribution

tπxuxPX corresponds to the unique stationary distribution with @x   k : πx � pp1 � pqx

and πk � p1� pqk

Proof.

Any stationary distribution, π̃ P RX , must satisfy π̃Q � 0. The result follows from

algebra.

For exposition, we uniformize our CTMC. We let tYtutPN denote the associated Dis-

crete Time Markov Chain (DTMC) and P P RX�X denote the associated transition

matrix. Then, Xt � YNptq with tNptqut¥0 being a Poisson Process with rate λV .

Lemma A.2. Fork Resolution Times

We define Tk � inftt P N : Yt � ku. Then, The expected block heights until fork
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resolution, sx � ErTk|Y0 � xs, conditional upon initial state, x P X, satisfies @x P X :

sx � p1� s0pq 1�p1�pqk�x

p
@x P X so that s0 � 1�p1�pqk

pp1�pqk
.

Proof.

We prove the result by induction. sk�j � p1 � s0pq
j�1°
i�0

p1 � pqi holds for j � 1 by

definition. Then, sk�pj�1q � 1 � p1 � pqsk�j � ps0 � p1 � s0pq
pj�1q�1°
i�0

p1 � pqi with the

last equality following from the inductive hypothesis. The conclusion then follows from

algebra.

Subsequently, we provide results useful for establishing existence of a PoW equilibria.

Lemma A.3. Monotone Fork Resolution Times

@x P X{tku : sx ¡ sx�1 ¥ 0

Proof.

We prove the result by induction. By definition, @x P X{tku : sx � 1�p1�pqsx�1�ps0

so that s0 ¡ s1 follows by taking x � 0. Then, by induction, sx � 1�p1�pqsx�1�ps0 ¡
1� p1� pqsx�1 � psx which implies sx ¡ sx�1 as desired. @x P X{tku : sx�1 ¥ 0 follows

from sK � 0.

Hereafter, we define @x P X : sxpΛ,∆pV qq � sxppq � sxpppΛ,∆pV qqq and abuse

notation by using sx to mean the multivariate function. Similarly, we define @x P X :

πxpΛ,∆pV qq � πxppq � πxpppΛ,∆pV qqq and abuse notation by using πx to mean the

multivariate function.

Lemma A.4. Monotone Fork Resolution Derivatives

@x P X{tku : Bsx
BΛ

¡ Bsx�1

BΛ
¥ 0, Bsx

B∆pV q
¡ Bsx�1

B∆pV q
¥ 0

Proof.

We prove the result by induction. By definition, @x P X{tku : sx � 1�p1�pqsx�1�ps0 so

that s0 � eΛ∆pV q�s1 so that Bs0
BΛ
¡ Bs1

BΛ
follows immediately. Then, sx � 1�e�Λ∆pV qsx�1�
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p1�e�Λ∆pV qqs0 so that Bsx
BΛ

� e�Λ∆pV q Bsx�1

BΛ
�∆pV qe�Λ∆pV qps0�sx�1q�p1�e�Λ∆pV qqBs0

BΛ
¡

Bsx�1

BΛ
with the last inequality following by induction and Lemma A.3 which implies

Bsx
BΛ

¡ Bsx�1

BΛ
as desired. @x P X{tku : Bsx�1

BΛ
¥ 0 follows from BsK

BΛ
� 0. Symmetry of

the functions, tsXuxPX , implies @x P X{tku : Bsx
B∆pV q

¡ Bsx�1

B∆pV q
¥ 0 which completes the

proof.

We define τ � Er
Tk°
t�1

Ats as the expected fork resolution time under the stationary dis-

tribution with tAtu8t�1 independent and exponentially distributed with parameter Λ and

initial distribution tπxuxPX . Then, by definition, τ � τpΛ,∆pV qq � °
xPX

sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qq.

Lemma A.5. Lower Bound for τ

τpΛ,∆pV qq ¥ ∆pV q eΛ∆pV qk�1
Λ∆pV q

Proof.

τpΛ,∆pV qq ¥ ∆pV q s0pΛ,∆pV qq
Λ∆pV q

π0pΛ,∆pV qq � ∆pV q eΛ∆pV qk�1
Λ∆pV q

as desired.

We define ΨpΛ, V q � τpΛ,∆pV qq� 1
Λ

which equates with the expected wait time for

the marginal user (i.e., Type ci � c�). Then, trivially, BΨ
BV
� BΨ

BV
.

Lemma A.6. Increasing Wait Time in V

@V 1 ¡ V ¥ 0 : ΨpΛ, V 1q �ΨpΛ, V q � τpΛ, V 1q � τpΛ, V q ¡ 0

Proof.

ΨpΛ, V 1q �ΨpΛ, V q
� τpΛ, V 1q � τpΛ, V q
� °

xPX

t sxpΛ,∆pV 1qq
Λ

πxpΛ,∆pV 1qq � sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qqu
¥ °

xPX

sxpΛ,∆pV 1qq�sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qq

� °
xPX

1
Λ

V 1³
V

Bsx
B∆pV q

∆1pvqdv πxpΛ,∆pV qq
¡ 0
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Lemma A.7. Zero Wait

τpΛ, 0q � 0

Proof.

τpΛ, 0q � skpΛ, 0q � 0

B Proofs

Proposition 2.1 Existence and Uniqueness of a PoW Equilibrium

There exists a PoW Equilibrium. There exists no other equilibrium for which f consti-

tutes a strictly increasing and differentiable function. The following conditions charac-

terize the equilibrium:

(A) fpciq � pN � 1q c2i
2Λ

(B) R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ R � c�ΨpΛ, V q � pc�q2pN�1q
2Λ

(C) R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ c� � 1

(D) βV � pN � 1qN pc�q3

6Λ

Proof.

For coherence of our discussion, we must specify an initial distribution for our Blockchain

CTMC model. We specify that distribution as the stationary distribution. The inter-

ested reader may consult Appendix A for details. For exposition, we define Ṽ pN,Λ, βq �
pN�1qN

6βΛ
and V �pN, c�,Λ, βq � pN�1qNpc�q3

6βΛ
.

As a preliminary step, we rule out the existence of any equilibrium such that c� � 0.

By contradiction, we suppose there exists an equilibrium such that c� � 0. Definition

2.1 (iii) implies max
fi¥0

R� ci � ErW pfi, f�iq|cis � fi ¥ R� cipNΛ � τpΛ, V qq � fpciq so that

Definition 2.1 (ii) yields @ci ¡ 0 : R�cipNΛ �τpΛ, V qq�fpciq ¤ 0. Then, right-continuity
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of f at 0 and Definition 2.1 (i) imply R ¤ 0 which yields a contradiction and thereby

eliminates such an equilibrium.

Problem 1 and Definition 2.1 (i) yield max
fi¥0

R � ci
pN�1q

Λ
Ppfpcjq ¥ fi ^ c� ¥ cjq �

ciΨpΛ, V q� fi. fpciq being a strictly increasing function enables us to rewrite the latter

problem as max
fi¥0

R� ci pN�1q
Λ

maxtc�� f�1pfiq, 0u� ciΨpΛ, V q� fi. Differentiability of f

then yields cipN�1q
Λ

1
f 1pf�1pfiqq

� 1 as a first-order condition for ci P p0, c�q. In equilibrium,

fi � fpciq so that the latter condition simplifies to cipN�1q
Λ

� f 1pciq which in turn implies

fpciq � pN � 1q c2i
2Λ

over f P r0, c�s when imposing fp0q � 0 and continuity of f . This

result demonstrates that Proposition 2.1 (A) is necessary for the class of equilibria

considered. Sufficiency for satisfying Definition 2.1 (i) follows from negativity of the

objective’s second derivative for Problem 1.

To establish existence and uniqueness of an equilibrium, we must establish the exis-

tence of some V ¡ 0 and c� P r0, 1s such that Definitions 2.1 (ii) and (iv) hold.

For c� P p0, 1q, Definition 2.1 (iv) equates with V �pN, c�,Λ, βq � V . Moreover, the

continuous and strictly decreasing nature of max
fi¥0

R�ci �ErW pfi, f�iq|cis�fi in ci implies

R � c�ΨpΛ, V q� pc�q2pN�1q
2Λ

via Definition 2.1 (ii). Thus, existence and uniqueness equates

with finding a unique solution, c� P p0, 1q, to R � c�ΨpΛ, V �pN, c�,Λ, βqq � pc�q2pN�1q
2Λ

�
Gpc�;N,Λ, βq. Lemma A.7 yields Gp0;N,Λ, βq � 0   R so that if Gp1;N,Λ, βq �
ΨpΛ, pN�1qN

6βΛ
q � N�1

2Λ
¡ R then continuity and strict monotonicity of G in c� imply

existence and uniqueness of an equilibrium with c� P p0, 1q and V � V �pN, c�,Λ, βq.
To conclude, we need demonstrate only non-existence of an equilibrium with c� � 1 if

ΨpΛ, pN�1qN
6βΛ

q� N�1
2Λ

¡ R and existence of a unique equilibrium with c� � 1 otherwise. If

c� � 1 then V � pN�1qN
6βΛ

uniquely satisfies Definition 2.1 (iv) so that R ¥ ΨpΛ, pN�1qN
6βΛ

q�
N�1
2Λ

by left-continuity of max
fi¥0

R� ci �ErW pfi, f�iq|cis � fi and Definition 2.1 (ii). Thus,

no equilibrium with c� � 1 exists if R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

. Existence of a unique

equilibrium with c� � 1 follows because c� � 1 and V � pN�1qN
6βΛ

satisfy all conditions

for Definition 2.1 and all other choices for V violate Definition 2.1 (iv).
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Proposition 3.1 Payment Confirmation Lower Bound

Network latency bounds below all user payment confirmation times pi.e., @i : Wi ¥
τpΛ, V q ¥ ∆pV qq.

Proof.

Follows immediately from Lemma A.5

Lemma B.1. Increasing V

V increases in N and lim
NÑ8

V pNq � 8

Proof.

If R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

then dV
dN

¡ 0 follows from Proposition 2.1 (D). Oth-

erwise, Proposition 2.1 (B) and (D) imply R � 3

b
6βΛV
NpN�1q

ΨpΛ, V q � 3

b
9β2V 2pN�1q

2ΛN2 �
HpV,N ; β,Λq � HpV,Nq. Proposition 2.1 implies the existence of a non-negative func-

tion V pNq that uniquely satisfies R � HpV pNq, Nq. By the implicit function theorem,

dV
dN

� � BH
BN
BH
BV

¡ 0 which in turn implies the existence of lim
NÑ8

V pNq. 0 ¤ lim
NÑ8

V pNq   8
implies lim

NÑ8
HpV,Nq � 0 so that lim

NÑ8
HpV,Nq � R ¡ 0 yields the desired conclu-

sion.

Proposition 3.2 Arbitrarily Large Marginal Payment Confirmation Time

All user payment confirmation times diverge as demand diverges pi.e., @i : lim
NÑ8

Wi � 8q.
This result holds in particular for the highest priority user, i.e., i such that ci � c�.

Proof.

Proposition 3.1 yields Wi ¥ ΨpΛ, V q ¥ τpΛ, V q ¥ ∆pV q so that Lemma B.1 and

lim
VÑ8

∆pV q � 8 delivers the result.

Proposition 3.3 Limited Adoption Problem

Adoption decreases as demand rises pi.e., c� decreases in Nq. Moreover, the blockchain

faces limited adoption pi.e., lim
NÑ8

c� � 0q.
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Proof.

Proposition 2.1 and Lemma B.1 imply that c� decreases in N so that lim
NÑ8

c� P r0, 1s ex-

ists. lim
NÑ8

c� P p0, 1s implies lim
NÑ8

tc�ΨpΛ, V q� pc�q2pN�1q
2Λ

u � 8 so that lim
NÑ8

tc�ΨpΛ, V q�
pc�q2pN�1q

2Λ
u � R   8 via Proposition 2.1 (B) yields lim

NÑ8
c� � 0 as desired.

Proposition 3.4 Impossibility of Decentralization and Scalability

For exposition, we assume that lim
NÑ8

Λ and lim
NÑ8

c� exist. The blockchain necessarily

faces either centralization pi.e., lim sup
NÑ8

V ¤ 1q or limited adoption pi.e., lim
NÑ8

c� � 0q.

Proof.

Formally, we consider a sequence of parameters tpNn,Λn, R, βqunPN with R, β ¡ 0, 2 ¤
Nn Õ 8 and lim

nÑ8
Λn being well-defined in R. Then, following Proposition 2.1, there

exists a sequence tpc�n, VnqunPN such that pc�n, Vnq corresponds to the equilibrium solution

for a model with parameters pNn,Λn, R, βq.
We proceed by contradiction. We assume that L � lim sup

nÑ8
Vn ¡ 1 andM � lim

nÑ8
c�n ¡

0. We take a subsequence, tpNnj
,Λnj

, c�nj
, Vnj

qujPN, such that @j : Vnj
¥ 1�L

2
. Then,

Proposition 2.1 (B) and (C) yield Λnj
¥ pc�nj

q2pNnj�1q

2R
so that lim

jÑ8
Λnj

� 8. Lemma

A.5 and Proposition 2.1 (B) - (C) then give R ¥ c�nj
∆pVnj

q eΛnj ∆pVnj q�1
Λnj ∆pVnj q

so that mono-

tonicity of ∆ coupled with @j : Vnj
¥ 1�L

2
yields R ¥ c�nj

∆p1�L
2
q eΛnj ∆p 1�L

2 q
�1

Λnj ∆p 1�L
2
q

. Finally,

invoking lim
jÑ8

Λnj
� 8 gives R ¥ lim

jÑ8
c�nj

∆p1�L
2
q eΛnj ∆p 1�L

2 q
�1

Λnj ∆p 1�L
2
q
� 8 delivering the desired

contradiction and thereby completing the proof.

Proposition 3.5 No Latency, No Problem

Both widespread adoption pi.e., lim
NÑ8

c� ¡ 0q and decentralization pi.e., lim
NÑ8

V � 8q
can be obtained simultaneously under the counterfactual assumption of no latency pi.e.,

∆pV q � 0q.

Proof.

Formally, we take a sequence of parameters tpNn, R, βqunPN such that R, β ¡ 0, 2 ¤
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Nn Õ 8 and construct a sequence tΛnu8n�1. Then, we provide a sequence tpc�n, VnqunPN
such that pc�n, Vnq corresponds to equilibrium solutions for a model with parameters

pNn,Λn, R, βq. We demonstrate that, given our choice, tΛnu8n�1, lim
nÑ8

c�n ¡ 0 and

lim
nÑ8

Vn � 8 if ∆pV q � 0 (i.e., no latency). Note that this result does not contradict

Proposition 3.4 as all parts of the paper (except this proposition) preclude ∆pV q � 0

(i.e., we assume existence of network latency outside of this proposition).

Let Λn � Nn�1
2

. Let c�n � mintcn, 1u with cn being the unique positive solution

for R � cn
Λn

� c2
n and let Vn � Nnpc�q3

3
. Then, tpc�n, VnqunPN satisfies all conditions

from Definition 2.1 thereby constituting an equilibrium for tpNn, R, βqunPN. Moreover,

lim
nÑ8

c�n � c� � mint?R, 1u ¡ 0 and lim
nÑ8

Vn � 8 as desired.

Proposition 4.1 Lower Payment Confirmation Times

For any PoW protocol, there exists a permissioned blockchain which induces (weakly)

lower payment confirmation time.

Proof.

Let VP � V . Then, the result follows from Proposition 3.1.

Proposition 4.2 No Limited Adoption Problem

In any Permissioned Equilibrium, widespread adoption (i.e., lim
NÑ8

c�P � mint RP

∆pVP q
, 1u ¡

0) obtains.

Proof.

RP � ci∆pVP q decreases in ci so that Definition 4.1 (i) implies c�P � mint RP

∆pVP q
, 1u so

that lim
NÑ8

c�P � mint RP

∆pVP q
, 1u follows trivially.

Lemma 4.3 Majority Rule Permissioned Blockchain Equilibrium (MRPBE)

For a Majority Rule Permissioned Blockchain Equilibrium (MRPBE), Γ � Ip|Sp1q| ¡
|Sp0q|q
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Proof.

Γpxq �
VP°
i�1

ωipxqai �
°
iPS1

ωipxq � Ip|Sp1q| ¡ |Sp0q|q

Proposition 4.4 Honest MRPBE

There exists an MRPBE in which all validators behave honestly and the blockchain does

not sustain a successful attack

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,

P0 � PH and @i : pai, αiq � p1, 0q. In such an equilibrium, all validators behave honestly

since @i : ai � 1 and Γ � 1 so that the blockchain does not sustain a successful attack.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 4.1 (i) and P0 �

PH satisfies Definition 4.1 (iii). As such, to prove the result, we need only demonstrate

that @a P t0, 1u, α P R : Φp1, 0; a�i, α�iq ¥ Φpa, α, a�i, α�iq with @j � i : paj, αjq �
p1, 0q. VP ¥ 3 implies Γ � 1 so that a P t0, 1u, α P R : Φpa, α; a�i, α�iq � �κIa�0 ¤ 0 �
Φp1, 0; a�i, α�iq as desired.

Proposition 4.5 Malicious MRPBE

There exists an MRPBE in which all validators behave maliciously and the blockchain

sustains a successful attack

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,

P0 � PL and @i : pai, αiq � p0, 0q. In such an equilibrium, all validators behave mali-

ciously since @i : ai � 0 and Γ � 0 so that the blockchain sustains a successful attack

with probability 1.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 4.1 (i) and P0 �

PL satisfies Definition 4.1 (iii). As such, to prove the result, we need only demonstrate

that @a P t0, 1u, α P R : Φp0, 0; a�i, α�iq ¥ Φpa, α, a�i, α�iq with @j � i : paj, αjq �
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p0, 0q. VP ¥ 3 implies Γ � 0 so that a P t0, 1u, α P R : Φpa, α; a�i, α�iq � ΠIa�0 ¤ Π �
Φp0, 0; a�i, α�iq as desired.

Lemma 4.6 Stake-Based Permissioned Equilibrium (SBPE)

For a Stake-Based Permissioned Equilibrium pSBPEq, the blockchain sustains a success-

ful attack if and only if the cumulative stake of malicious validators weakly outweighs

that of honest validators pi.e., Γ � ItT1 ¡ T0uq.

Proof.

Γpxq �
VP°
i�1

ωipxqai �
°
iPS1

ωipxq � Ip
°
iPS1

α�i ¡
°
iPS0

α�i q

Proposition 4.7 Honest SBPE

There exists an SBPE in which all validators behave honestly and the blockchain does

not sustain a successful attack pi.e., @i : ai � 1,Γ � 1q.

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,

P0 � PH and @i : pai, αiq � p1, Π
PH�PL

q. In such an equilibrium, all validators behave

honestly since @i : ai � 1 and Γ � 1 so that the blockchain does not sustain a successful

attack.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 4.1 (i), and

P0 � PH satisfies Definition 4.1 (iii). As such, to prove the result, we need only

demonstrate that @a P t0, 1u, α P R : Φp1, Π
PH�PL

; a�i, α�iq ¥ Φpa, α, a�i, α�iq with

@j � i : paj, αjq � p1, Π
PH�PL

q. We define α � ΠpVP�1q
PH�PL

¥ 2Π
PH�PL

¡ 0.

Then, @a P t0, 1u, α P R :

Φpa, α; a�i, α�iq
¤ maxt sup

α� α
Φpa, α�; a�i, α�iq, sup

α�¥α
Φpa, α�; a�i, α�iq u

¤ maxt�κIa�0,maxt0,Π� pPL � PHqα� u u
¤ 0
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Φp1, Π
PH�PL

; a�i, α�iq � 0 completes the proof.

Proposition 4.8 No Malicious SBPE

There exists no SBPE in which an attack succeeds with strictly positive probability pi.e.,

Γ � 1 for all equilibriaq.

Proof.

We proceed by contradiction. We assume that there exists an equilibrium in which

an attack succeeds with strictly positive probability (i.e., Γ   1). Via Lemma 4.6,

Γ   1 ùñ Γ � 0 which in turn implies P0 � PL via Definition 4.1 (iii). Then, defining

α� �
°

jPS0,j�1

αj �
°

jPS1,j�1

αj � 1 implies sup
pa,αq

Φpa, α; a�1, α�1q ¥ sup
α¥α�

Φp1, α; a�1, α�1q �
sup
α¥α�

αpPH � P0q so that P0 ¥ PH constitutes a necessary condition for equilibrium.

PH ¡ PL � P0 ¥ PH gives the desired contradiction thereby completing the proof.
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