Monetary Policy: Supply Shocks in Network Economies

Jennifer La'O

November 4, 2022

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Monetary Policy and Supply Chains

• How should monetary policy be conducted when:

- the economy consists of multiple, heterogeneous sectors
- there is a complex network of intermediate good trade across sectors

heterogeneous productivity (supply) shocks hitting these sectors

Supply Shocks

Supply Chain disruptions are important

In the last week, did this business have domestic supplier delays? (percentage saying yes)

Sources: U.S. Census Bureau; CEA Calculations.

Council of Economic Advisors Report; June 17, 2021

Overview: the standard model

• In the standard NK model, in response to productivity shocks:

- optimal for monetary policy to stabilize the aggregate price level
- ▶ why? price stability preserves productive efficiency and implements the first best
- "Divine Coincidence" Blanchard and Gali (2007)
- price stability minimizes both inflation and the "output gap"
- target is straightforward in the model: aggregate price level = average price across firms

Monetary policy with supply chains?

• does it remain optimal to stabilize an aggregate price level?

- if so, what is the appropriate aggregate price index?
 - ▶ overall measures of consumer prices? e.g. CPI, PCE
 - measures of producer prices? e.g. PPI
 - ▶ indices that exclude food and energy categories? e.g. Core measures
 - ▶ how should we account for changes in the relative size of sectors? e.g. healthcare and services

Multi-Sector NK Models

• two-sector: Erceg, Henderson, Levin (1999), Aoki (2001), Woodford (2003), Benigno (2004), Woodford (2010)

- multi-sector: Mankiw and Reis (2003), Eusepi, Hobijn, Tambalotti (2011)
- w/intermediate good trade: Basu (1995), Huang and Liu (2005)
- key lessons from this literature:
 - stabilize "sticky" sectors
 - stabilize upstream sectors
 - intermediate good trade can amplify frictions

Multi-Sector NK Models

• two-sector: Erceg, Henderson, Levin (1999), Aoki (2001), Woodford (2003), Benigno (2004), Woodford (2010)

- multi-sector: Mankiw and Reis (2003), Eusepi, Hobijn, Tambalotti (2011)
- w/intermediate good trade: Basu (1995), Huang and Liu (2005)
- key lessons from this literature:
 - stabilize "sticky" sectors
 - stabilize upstream sectors
 - intermediate good trade can amplify frictions

Multi-Sector Horizontal Economy

Figure: Horizontal Economy

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Optimal monetary policy: stabilize stickier sectors

why?

- ▶ if only one sector is sticky, it is optimal to stabilize price of that one sector (Aoki, 2001)
- ▶ such a policy leads to no price dispersion in the sticky sector, and all other sectors adjust flexibly
- ▶ in general, stickier sectors: greater potential for relative pricing errors and greater price dispersion

- principle of "sticky-price stabilization," first proposed by Goodfriend and King (1997)
- later formalized in: Aoki (2001), Woodford (2003), Benigno (2004), Woodford (2010), Mankiw Reis (2003), Eusepi, Hobijn, Tambalotti (2011)

But what about supply chains?

• the horizontal economy has no input-output linkages

• how does the input-output structure of the economy affect optimal monetary policy?

• the following results are based on my paper:

"Optimal Monetary Policy in Production Networks" with Alireza Tahbaz-Salehi

- static environment
- production: n sectors indexed by $i \in I \equiv \{1, \dots, n\}$
 - continuum of identical firms within a sector, indexed by $k \in [0,1]$
 - \blacktriangleright firms produce differentiated goods \rightarrow monopolistic competitors

Technology

• production function of firm k in sector i

$$y_{ik} = z_i \ell_{ik}^{\alpha_i} \prod_{j \in I} x_{ij,k}^{a_{ij}}$$

• vector of sectoral productivity shocks

$$z = (z_1, \ldots, z_n)$$

• input-output matrix

$$A = [a_{ij}]$$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

CES Aggregation and Preferences

• for every sector $i \in I$, CES aggregator firm

$$y_i = \left(\int_0^1 y_{ik}^{\frac{\theta_i - 1}{\theta_i}} dk\right)^{\frac{\theta_i}{\theta_i - 1}}$$

• representative household: consumes sectoral goods, supplies labor

U(C) - V(L)

$$C = \mathcal{C}(c_1,\ldots,c_n)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Nominal Rigidity = Informational Friction

- firm managers make their nominal pricing decision under incomplete information
- managers face uncertainty over sectoral supply shocks

 $z = (z_1,\ldots,z_n)$

• firm manager in sector i is either "inattentive" or "attentive" to z

learns z perfectlywith prob ϕ_i does not learn zwith prob $1 - \phi_i$

- $\phi_i \in [0,1]$ is the *degree of price flexibility* of industry *i*
 - $\phi_i = 1$ is full price flexibility

Consider first the Flexible-Price economy

• for a moment abstract from nominal rigidities:

$$\phi_i = 1, \qquad \forall i \in I$$

- under flexible prices, we have the typical input-output network model:
 - ▶ efficient economies: Long and Plosser (1983), Acemoglu et al (2012), Baqaee and Farhi (2019), ...
 - ▶ markups and misallocation: Jones (2013), Baqaee and Farhi (2020), Bigio and La'O (2020), ...

・ロト・西ト・市・・市・ うらの

Domar Weights = sales shares

• define the equilibrium Domar weight of sector *i* as:

$$\lambda_i \equiv \frac{p_i y_i}{PC}$$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

• Domar weights are equilibrium sales shares of GDP

Hulten's Theorem

Theorem

(Hulten, 1978) To a first-order approximation around efficiency, aggregate TFP satisfies

$$d\log TFP \approx \sum_{i\in N} \lambda_i d\log z_i$$

• λ_i : sufficient statistic for the first-order effect of a sectoral productivity shock on aggregate TFP

• with Cobb-Douglas technology, this is both exact and global:

$$\log TFP = \sum_{i \in N} \lambda_i \log z_i$$

robust finding that Domar weight = sectoral "importance"

Consider now the full model with sticky prices

Our Main Result

Theorem

(La'O and Tahbaz-Salehi, 2022) The optimal monetary policy is a price index stabilization policy:

$$\sum_{i\in I} \psi_i^* \log p_i = 0$$
 with $\sum_{i\in I} \psi_i^* = 1,$

with optimal weights $(\psi_1^*, \ldots, \psi_n^*)$ that satisfy:

- ψ_i^* is increasing in λ_i (Domar weight)
- ψ_i^* is decreasing in ϕ_i (price flexibility)

General principles for monetary policy in production networks

• optimal monetary policy stabilizes an aggregate price index

- the optimal price index places greater weight on:
 - larger, more upstream sectors as measured by their Domar weights
 - stickier sectors

- synthesis and generalization of the main lessons from the two previous sets of literature
 - see also Rubbo (2022) for how network flattens the Phillips curve

Quantitative Illustration

- we calibrate the model:
 - BEA US input-output tables
 - data on sectoral price stickiness (PPI): Pasten, Schoenle, and Weber (2019)
- we find modest welfare improvements from adopting the optimal policy
- optimal price index:
 - greater weight on service sectors, healthcare, and some manufacturing
 - less weight on oil & gas, energy, and food (because these are fairly flexible)

Optimal Price Index

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Thank You!