Implications of Climate Change for Monetary Policy

James H. Stock Economics Department and Harvard Kennedy School Vice Provost for Climate and Sustainability Harvard University

Exogenous climate change shocks, endogenous responses, and monetary policy

b) Change in global surface temperature (annual average) as observed and

simulated using human & natural and only natural factors (both 1850-2020)

Changes in global surface temperature relative to 1850-1900

a) Change in global surface temperature (decadal average) as **reconstructed** (1-2000) and **observed** (1850-2020)

A. Role of monetary policy in climate arena

- Climate => monetary policy
- Monetary policy => climate policy (not Fed)

B. Three risks (Carney 2015) (exogenous disturbances)

1. Physical risks

- Extreme weather (storms, floods, etc.)
- Crop failures
- Productivity, health, & mortality impacts
- Sea level rise
- Climate migration
- .

2. Transition risks

- Asset revaluation
- Energy price volatility
- Sectoral reallocation/dislocation
- Food price volatility
- Policy risks
- Political risks
- •
- 3. Liability risks (will not discuss)
- C. Macro consequences (endogenous response)
- 1. Low frequency
- 2. Business cycle frequency

Timeline of physical and transition risks

Macro impacts

Macro consequences (endogenous response)

1. Low frequency

- Long run productivity growth
- Patterns & location of innovation
- *R**, *u**, *π**

Business cycle frequency 2.

- Physical disruptions (heat waves, storms, etc.)
- Direct effects of transition policy on real activity & inflation
 - Carbon price •
 - Carbon tax •
 - Cap & trade •
 - Implicit carbon price (regulatory) •
 - Border carbon adjustment
 - Technology policy
 - Weeds (e.g., grid reliability)

Food price volatility

Timeline of physical and transition risks

Macro impacts

Macro consequences (endogenous response)

1. Low frequency

- Long run productivity growth
- Patterns & location of innovation
- R*, u*, π*

2. Business cycle frequency

- Physical disruptions (heat waves, storms, etc.)
- Direct effects of transition policy on real activity & inflation
 - Carbon price
 - Carbon tax
 - Cap & trade
 - Implicit carbon price (regulatory)
 - Border carbon adjustment
 - Technology policy
 - Weeds (e.g., grid reliability)

3. The transition will not be easy or neat

- Inefficient transition policy risks (policy uncertainty,...)
- Transitional fossil fuel price volatility ("non-transition" risk)
- Political risk (impacted communities & populism in US; climate migrations; political economy of O&G companies...)
- Geopolitical risk (China & metals? Petro-states (Russia) in decline? Governance of solar geo?)
- Wild stuff: unknown unknowns
- Think 1970, 1973-4, 1990, & 2020, not 2001 or 2008

Transition policy case study #1: carbon tax*

Data set:

- EU + Iceland + Norway + Switzerland (n = 31)
 - all countries in the European ETS
 - Of which, 15 also have a carbon tax, almost entirely on emissions not covered by the ETS (surface transport)
- Annual, 1985 2018; World Bank, Eurostat, IEA, Norway, Ireland
 - EU ETS started in 2005
- **Method:** LP, identified by tax rate being predetermined administratively **Key points:**
- Negligible effect on GDP or employment
 - Some evidence of benefits higher if CT is accompanied by revenue recycling
- Small effect on emissions
 - Consistent with other studies (Green [2021])
 - In line with elasticity of demand for petroleum
 - But emissions effect would be much larger in US power sector
- Monetary policy implication:
 - Boring (but effective) climate policy lets monetary policy be boring too.

Caveats:

- Aggregate effect masks sectoral & regional reallocation & job loss/gain
- Possibly greater macro costs from cap & trade system (EU ETS Känzig 2021), perhaps b/c of price volatility, perhaps sectoral coverage

*G. Metcalf & JH Stock, "The Macroeconomic Impact of Europe's Carbon Taxes," AEJ-Macro (forthcoming)

Transition policy case study #2: Climate policy uncertainty

Data set:

- Climate policy uncertainty index (CPU): Gavriilidis (2021); cf Engel et al (2020)
 - Akin to Baker-Bloom-Davis Economic Policy Uncertainty construction
 - News articles including climate terms and policy terms and uncertainty
 - 8 (2) newspapers: 2000m1-2021m12 (1984m1-2020m12)
 - Policy news spikes include: Kyoto, Fuel economy rules, Clean Power Plan, Trump withdrawal from Paris, etc.
 - Correlation with BBD EPU : 0.07 (8-paper) and 0.02 (2-paper) (!)

Method: LP & SVAR

 Identification: CPU is CMI given contemporaneous control variables: BBD-EPU, IP, unemployment rate, PCE inflation, WTI price, 90-day T-bill rate
 Caveats: Usual BBD EPU caveats

Effect of climate policy shock on PCE inflation CIRF for 1 std dev shock to CPU2,1985m3 - 2019m12

Transition policy case study #3: "Non-transition" policy & FF price volatility

Ukraine, natural gas prices, & cyclical implications of fossil fuel price shocks for US

Three regimes in US gas markets:

- I. <= ~2009: growing & large imports
- II. 2010 2016: Fracking & "locked in"
- III. 2016 present: LNG exports

Quantities

Cheniere Sabine Pass Train 1 was placed into service May 2016.

Transition policy case study #3: "Non-transition" policy & FF price volatility

Ukraine, natural gas prices, & cyclical implications of fossil fuel price shocks for US

Three regimes in US gas markets:

- I. <= ~2009: growing & large imports
- II. 2010 2016: Fracking & "locked in"
- III. 2016 present: LNG exports

Discussion

- Henry Hub & EU gas prices are currently *not* linked
 - Liquifaction + transport + regasification
 ≈ \$4-7/mmBTU
- But suppose:
 - Russian gas partially shut in over 5-year horizon
 - Expansion of US LNG export capacity & EU liquefaction capacity
- ⋟ \$5-6 US gas?
- Volatile oil prices for the foreseeable future?
- Volatile US gas prices for the foreseeable future?
- Oil price shocks will impact power & industrial sectors?
- Greater macro (business cycle) exposure to oil price shocks?

Correlation between *n*-week pct change of Brent crude & Henry Hub gas

	2-week	4-week
I. 2000-2009	0.28	0.21
II. 2010-April 2016	0.08	0.03
III. May 2016-present (x 2020)	0.18	0.22

Concluding remarks: Macro climate risks

5.0

2.5

1960

Shaded areas indicate U.S. recessions

1970

1980

1990

Source: U.S. Bureau of Labor Statistics

2000

2010

myf.red/g/Phe7

2020

Summary

- 1. The transition is likely to be neither efficient nor smooth
 - Policy choices/non-choices
 - Political/geopolitical stresses
- 2. These difficult-to-predict transition risks could pose significant challenges for macro management & monetary policy.

