The Financial (In)Stability Real Interest Rate, r^{**}

Ozge Akinci†*, Gianluca Benigno†*♯, Marco Del Negro†*, Albert Queralto‡
Federal Reserve Bank of New York†, Federal Reserve Board‡, CEPR*, University of Lausanne♯

Financial Stability Considerations for Monetary Policy

Federal Reserve Bank of New York
September 30, 2022

Disclaimer: The views expressed here do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.
Why do we need another *?

• The *natural rate of interest* r^* is associated with the notion of *macroeconomic* stability: the rate consistent with output equaling its natural rate and constant inflation (Wicksell, Woodford, ..., Laubach & Williams, ...)

• This paper introduces r^{**}, the *financial stability interest rate*: the *threshold real rate above which financial instability arises*

• Goal of r^{**}: Map the notion of financial stability onto the interest rate space, and complement r^* as a guide to policy
Outline

1. Illustrate r^{**} in the context of a simple macrofinance model with an occasionally binding financing constraint

2. Discuss the drivers and dynamics of r^{**}
 - e.g., “financial dominance”: persistently low real interest rates trigger financial vulnerability and an eventual drop in r^{**}, which may constrain monetary policy

3. Provide an empirical measure of r^{**}
 - Show that the Fed effectively tracked r^{**} in periods of financial stress
A Model With Financial (In)Stability Regimes
A Model With Financial (In)Stability Regimes

- Dynamic macrofinance model with financial intermediaries that face *agency frictions* in raising funds \(\rightarrow \) (Gertler & Kiyotaki ’10)

- Occasionally binding leverage constraint \(\rightarrow \)
 - *Tranquil times*: dynamics resemble run-of-the-mill DSGE
 - *Financial instability*: financial accelerator, asset fire-sale dynamics

- \(r^{**} \) is the threshold real rate above which financial instability arises:
 \(\rightarrow \) *the real interest rate that makes the financial constraint just bind*

- Use \(r^{**} \) as a *summary statistic for financial stability*, just like \(r^* \) is for macro conditions
The Economy

- Bankers
 - Hold (risky) capital s_t and safe asset b_t

- Households
 - Consume, supply labor, save through bank deposits d_t (interest R_t^d)

- The real interest rate on the safe asset, R_t, follows an exogenous process

→ In the background we will be thinking of monetary policy as determining R_t
Bankers’ Problem

\[V_t(n_t) = \max_{s_t, b_t, d_t} \mathbb{E}_t \Lambda_{t+1} \left[(1 - \sigma) n_{t+1} + \sigma V_{t+1}(n_{t+1}) \right] + \zeta_t b_t \]

\[\zeta_t \rightarrow \text{utility from holding safe asset (KVJ exogenous safety/liquidity shocks/preferences)} \]

subject to

1. **Evolution of net worth:**
 \[n_t = (R_{Kt} - R_{d t-1}) Q_{t-1}s_{t-1} + (R_{t-1} - R_{d t-1}) b_{t-1} + R_{d t-1} n_{t-1} \]

2. **Incentive Constraint:**
 \[V_t(n_t) \geq \Theta(x_t) \left(Q_t s_t + b_t \right), \text{where } x_t = \frac{b_t}{Q_t s_t + b_t} \text{ and } \Theta' < 0, \Theta'' > 0 \]

→ **Occasionally binding** leverage constraint:
 \[\underbrace{\frac{Q_t s_t + b_t}{n_t}}_{\text{leverage}} \leq \underbrace{\frac{V'_t}{\Theta(x_t)}}_{\text{max. leverage}} \]
Financial frictions become more severe when the bankers' portfolio is tilted toward risky assets \rightarrow vulnerabilities \uparrow
Financial (In)Stability Regimes

• When the constraint does not bind (financial stability):
 \[E_t(R_{Kt+1}) \approx R_t + \zeta_t: \text{Spreads are low (mostly determined by the safety/liquidity preference shock)} \]
 • The economy resembles frictionless RBC

• When the constraint binds (financial instability):
 • \(E_t[\Omega_{t+1}(R_{Kt+1} - R_t)] > \zeta_t \rightarrow \text{spreads are large and volatile} \)
 • Responses of the economy to shocks reflect the nonlinear financial accelerator effect:
 \[N_t(\equiv \int n_t) \downarrow \Rightarrow Q_t \downarrow \Rightarrow N_t \downarrow \]
Constructing r**

• If the economy is in the unconstrained/constrained regime: increase/decrease R_t such that the constraint just binds/ceases to bind, given the other state variables

 \Rightarrow r^{**} is a threshold: real interest rate below r^{**} ensures the economy remains in the financial stability regime

• Financial stability rate gap, $r^{**} - r$, depends on the evolution of other state variables, e.g., leverage and the share of risky assets in banks’ portfolio
State dependent IRFs

Financial stability rate gap, $r_t^* - r_t$

Credit spread, $E_t[r_{t+1} - r_t]$
- Shock arrives in tranquil period
- Shock arrives in vulnerable period

Investment, I_t

GDP, Y_t

Real interest rate, r_t

TFP, $\log(A_t)$
Credit spreads and economic activity

- Model captures asymmetries in the relationship between output and credit spreads
Average financial crisis in the model

Credit spread, $E_t[r_{k,t+1} - r_t]$

Safe assets ratio, $x_t = B_t/(Q_t K_t + B_t)$

Investment, I_t

GDP, Y_t

Real interest rate, r_t

TFP, log(A_t)
Dynamics of r**
Dynamics of r^{**}: Impulse responses to low interest rates

- Persistently low rates today cause vulnerabilities to build up → reduce monetary policy space for maintaining "financial stability" in the future
• Low real interest rates today predict search for yield and vulnerabilities (low r**-r) in the future
Measuring r**
The financial stability interest rate r_t^{**} in the data
“Greenspan’s put”
Global Financial Crisis

spreads
effective FFR
r and r**
Conclusion

- Introduce a new concept: r^{**}
 - threshold real interest rate above which the tightness of financial conditions may generate financial instability
 - enables us to translate financial vulnerabilities into an object comparable to the monetary policy rate and to the natural real interest rate

- Thank you for your attention!