Customer Data Access and Fintech Entry: Early Evidence from Open Banking

Tania Babina (Columbia) Greg Buchak (Stanford)

Will Gornall (UBC)

September 22, 2022

Bank-customer interaction generates large volume of data:

- Transaction/repayment/income histories (personal accounts)
- Business sales (payment processing)

Bank-customer interaction generates large volume of data:

- Transaction/repayment/income histories (personal accounts)
- Business sales (payment processing)

Data are used to provide other financial services:

- Modeling customer riskiness (e.g., determining marginal costs)
- Modeling customer demand (e.g., determining optimal markups, customization)

Bank-customer interaction generates large volume of data:

- Transaction/repayment/income histories (personal accounts)
- Business sales (payment processing)

Data are used to provide other financial services:

- Modeling customer riskiness (e.g., determining marginal costs)
- Modeling customer demand (e.g., determining optimal markups, customization)

Potential concern: bank control of data \rightarrow limit financial innovation/competition

Bank-customer interaction generates large volume of data:

- Transaction/repayment/income histories (personal accounts)
- Business sales (payment processing)

Data are used to provide other financial services:

- Modeling customer riskiness (e.g., determining marginal costs)
- Modeling customer demand (e.g., determining optimal markups, customization)

Potential concern: bank control of data \rightarrow limit financial innovation/competition

Evident in uneven fintech growth

- Success information insensitive segments: GSE mortgages, PPP
- Less success in information sensitive segments: Jumbo mortgages
- Exceptions that prove the rule: Ant Group; Square

Open Banking (OB):

Allows competiting banks and fintechs to access to bank customer data

Adopted by ${\sim}40$ countries since 2016

E.g., UK Open Banking Initiative (2017)

E.g., Brazil Joint Resolution CMN-BCB No. 1/20 (2020)

E.g., US: Dodd-Frank Section 1033 (Ongoing!)

Source: Monevo.co.uk, Scott Logic

Open Banking (OB):

Allows competiting banks and fintechs to access to bank customer data

Adopted by ${\sim}40$ countries since 2016

E.g., UK Open Banking Initiative (2017)

- E.g., Brazil Joint Resolution CMN-BCB No. 1/20 (2020)
- E.g., US: Dodd-Frank Section 1033 (Ongoing!)

Regulatory objectives: Innovation, competition, financial inclusion

Open Banking (OB):

Allows competiting banks and fintechs to access to bank customer data

Adopted by ${\sim}40$ countries since 2016

E.g., UK Open Banking Initiative (2017)

- E.g., Brazil Joint Resolution CMN-BCB No. 1/20 (2020)
- E.g., US: Dodd-Frank Section 1033 (Ongoing!)

Regulatory objectives: Innovation, competition, financial inclusion

What happens when you break relationship banks' data monopolies?

Part I. New Data: Open banking policies around the world Detailed database covering largest 168 countries Adopted by 40 countries since 2016 + 40 more in process Significant heterogeneity in implementation

Part I. New Data: Open banking policies around the world Detailed database covering largest 168 countries Adopted by 40 countries since 2016 + 40 more in process Significant heterogeneity in implementation

Part II. New Findings: Open banking policies \rightarrow financial innovation Open banking policies \rightarrow more fintech VC investment

Part I. New Data: Open banking policies around the world Detailed database covering largest 168 countries Adopted by 40 countries since 2016 + 40 more in process Significant heterogeneity in implementation

Part II. New Findings: Open banking policies \rightarrow financial innovation Open banking policies \rightarrow more fintech VC investment

Part III. Model: General-purpose IO-style quantitative model Benefit: Less adverse selection, "better products" → more entry/competition Cost: Broken pooling ("bad types" hurt) & less ex-ante data production (Typically) positive welfare effects

Part I. New Data: Open banking policies around the world Detailed database covering largest 168 countries Adopted by 40 countries since 2016 + 40 more in process Significant heterogeneity in implementation

Part II. New Findings: Open banking policies \rightarrow financial innovation Open banking policies \rightarrow more fintech VC investment

Part III. Model: General-purpose IO-style quantitative model Benefit: Less adverse selection, "better products" → more entry/competition Cost: Broken pooling ("bad types" hurt) & less ex-ante data production (Typically) positive welfare effects Model highlights critical policy question: how is the data used?

I. Institutional background—data collection

Approach:

- Hand-collect regulatory details for 168 countries (99% of GDP)
- Official documents > law firm documents > news/industry reports
- Cross-check versus mechanized Google search & third-party database

I. Institutional background—data collection

Approach:

Hand-collect regulatory details for 168 countries (99% of GDP) Official documents > law firm documents > news/industry reports

Cross-check versus mechanized Google search & third-party database

Collect and standardize information on:

Regulator type; OB mandate (innovation; competition; inclusion) Implementation dates / current status Requirements (e.g., who must share data; API standardization) Scope (e.g., covered products; includes payment initiation)

I. Institutional background—global adoption

Open banking status as of October 2021

I. Institutional background—global adoption over time

Major OB policy passage

II. Does open banking "cause' financial innovation'?

Panel event study:

$$\textit{FintechVC}_{it} = \sum_{k \neq 0} \beta_k \times \textit{OBLag}(k)_{ikt} + \textit{Country}_i + \textit{Region}_{rt} + \epsilon_{it}$$

Panel regression:

$$FintechVC_{it} = \beta \times OB_{it} + Country_i + Region_{rt} + \epsilon_{it}$$

- *FintechVC_{it}*: Log fintech deals + 1; possibly in a subcategory (e.g., loans)
- $OBLag(k)_{ikt}$: OB implemented k years ago
- OB_{it} : OB implemented at t
- Country_i: country FE; Region_{rt}: region-by-time fixed effects
- Use only countries with ≥ 5 fintech deals prior to the sample ($\leq\!2010)$
- Cluster-robust standard errors at country-level, EU treated as single country

II. VC fintech funding—fintech VC deals

II. VC fintech funding—fintech VC dollars

II. VC fintech funding

- Stronger policies show stronger effects:

Required sharing; standardized technical specs; more products

- Results survive many robustness checks
- Results show up for all types of fintech VC, except crypto

II. VC fintech funding

- Stronger policies show stronger effects:

Required sharing; standardized technical specs; more products

- Results survive many robustness checks
- Results show up for all types of fintech VC, except crypto

	Alternative lending	Consumer finance	Financial IT	Payments	Regtech	Wealth management	Digital assets
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
After OB initiative	0.737* (0.355)	0.693** (0.260)	0.760*** (0.230)	0.654 (0.407)	0.709*** (0.135)	0.624* (0.329)	0.022 (0.279)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	231	231	231	231	231	231	231
Adjusted R ²	0.866	0.835	0.877	0.863	0.876	0.875	0.828

Results by fintech product type:

III. Model: Offer quantification of OB across key uses of consumer data

Model captures three key aspects of OB:

- Heterogeneous consumers \leftarrow this is what data are informative about
- Different firms have different access to consumers' data (banks vs. fintechs)
 - Relationship banking: single bank observes customer-level data
 - Open banking: all banks/fintechs observe customer-level data
- Speaks to main goals of OB: entry/innovation, competition, and financial inclusion

III. Model: Offer quantification of OB across key uses of consumer data

Model captures three key aspects of OB:

- Heterogeneous consumers \leftarrow this is what data are informative about
- Different firms have different access to consumers' data (banks vs. fintechs)
 - Relationship banking: single bank observes customer-level data
 - Open banking: all banks/fintechs observe customer-level data
- Speaks to main goals of OB: entry/innovation, competition, and financial inclusion

Setup: IO/BLP with rich consumer heterogeneity, designed for quantification:

- Key innovation: data informative about consumer heterogeneity
 - Nests two key conceptions of data: marginal cost and demand (product customization)
- Main estimation object is distribution of consumer heterogeneity
- Validate model with reduced form results (increased entry)

III. Model overview

Consumers:

Period 1, buy "data generating product" (e.g., bank account)

Period 2, buy "data using product" (e.g., mortgage, financial advice)

Characteristics $\chi_i \sim dF(\chi_i)$, e.g., marginal cost, customization, willingness to pay

III. Model overview

Consumers:

Period 1, buy "data generating product" (e.g., bank account)

Period 2, buy "data using product" (e.g., mortgage, financial advice) Characteristics $\chi_i \sim dF(\chi_i)$, e.g., marginal cost, customization, willingness to pay

Banks:

Period 1, supply "data generating product" and learn about consumer Period 2, supply "data using product", using data from period 1 product

III. Model overview

Consumers:

Period 1, buy "data generating product" (e.g., bank account)

Period 2, buy "data using product" (e.g., mortgage, financial advice) Characteristics $\chi_i \sim dF(\chi_i)$, e.g., marginal cost, customization, willingness to pay

Banks:

Period 1, supply "data generating product" and learn about consumer Period 2, supply "data using product", using data from period 1 product

Fintechs:

Period 2, supply "data using product", competing with banks May or may not observe consumer data from period 1 Fixed cost of entry + zero-profit condition pins down entry

III. Data use period: Product pricing and customization

Consumers: explicitly model three types of consumer heterogeneity

- Determining marginal costs: e.g., default probability
- Product customization: e.g., financial advice/wealth management product
- Determining willingness to pay: e.g., search propensity

III. Data use period: Product pricing and customization

Consumers: explicitly model three types of consumer heterogeneity

- Determining marginal costs: e.g., default probability
- Product customization: e.g., financial advice/wealth management product
- Determining willingness to pay: e.g., search propensity

Firms (banks and fintechs): assume differentiated Bertrand competition

- When consumer data observed, set product price/product characteristic per-customer
- When consumer data <u>unobserved</u>, set one pooling price/characteristic

III. Data use period: Product pricing and customization

Consumers: explicitly model three types of consumer heterogeneity

- Determining marginal costs: e.g., default probability
- Product customization: e.g., financial advice/wealth management product
- Determining willingness to pay: e.g., search propensity

Firms (banks and fintechs): assume differentiated Bertrand competition

- When consumer data observed, set product price/product characteristic per-customer
- When consumer data <u>unobserved</u>, set one pooling price/characteristic

Two calibrations based on financial products

- 1. Mortgage (Buchak et al. 2018): high marginal costs variation
- 2. Financial advice (Di Maggio et al. 2021): high customization variation

III. Increase in fintech entry and consumer welfare, decrease in bank profit

Consumer outcomes by their marginal cost: Mortgages

III. Interpretation

Effect of transitioning to open banking depends on the TYPE of customer data:

Data on product customization needs \rightarrow better products

 \rightarrow entry + competition + welfare

Data on customer marginal cost \rightarrow less adverse selection against fintechs \rightarrow entry + competition + most expensive customers buy less

Data on willingness to pay \rightarrow more price discrimination by fintechs \rightarrow entry + competition + willing to pay customers buy less

III. Interpretation

Effect of transitioning to open banking depends on the TYPE of customer data:

Data on product customization needs \rightarrow better products

 \rightarrow entry + competition + welfare

Data on customer marginal cost \rightarrow less adverse selection against fintechs \rightarrow entry + competition + most expensive customers buy less

Data on willingness to pay \rightarrow more price discrimination by fintechs \rightarrow entry + competition + willing to pay customers buy less

Short- vs. long-term effects:

Short-term: consumer welfare typically increases in aggregate Long-term: less data/financial services if consumers do not internalize value of data

Conclusion

Open banking: On the way to adoption in 80+ countries Empower consumers to share their banking data with fintechs Alters relationship between consumer, bank, and bank's competitors

Opening financial data \rightarrow financial innovation

Significant inflows of VC funding to related startups (e.g., lending, financial advice) Implementation details matter: weak OB policies ineffective

Policy evaluation: Discussion misses two key tradeoffs

Distributional consequences: innovation potentially at odds with inclusion

Ex-ante data production: may reduce data production/financial service provision

 \longrightarrow must understand how data is used!