“Inclusion and Democratization Through Web3 and DeFi?
Initial Evidence from the Ethereum Ecosystem”
by Lin William Cong, Ke Tang, Yanxin Wang, Xi Zhao

Discussant: Agostino Capponi
Columbia University

The Third New York Fed Conference on FinTech:
Wholesale Digital Assets
September 23, 2022
Outline

1. The Promise of DeFi
2. Overview of Results
3. Comments
4. Summary
What problems is decentralized finance (DeFi) solving?

Widely believed that DeFi has potential to

- Improve the transparency of the financial system
- **Reduce intermediation costs**
- **Improve accessibility and financial inclusion**
- Reduce social costs and negative externalities imposed by traditional centralized institutions

Question: are DeFi and its underlying blockchain technologies realizing this potential?

- **This paper.**
The Promise of DeFi

Diagnosis DeFi Inefficiencies

- The Potential of DeFi can only be realized through an iterative, long-term process:
 - diagnoses the inefficiencies in the current design (This paper)
 - finds out the underlying sources (e.g. information leakage, fee mechanisms)
 - further improves the ecosystem (e.g. better design of consensus protocols)

1. Potential Ideas & prototypes

2. Diagnosis & Evaluation

3. Better Designs

Blockchain
DeFi
This paper:

- Documents empirical regularities of the current system:
 1. centralization in mining power and wealth
 2. transition of Ethereum blockchain from a payment system to infrastructure for DeFi and other Dapps
 3. high intermediation costs for small users

- Examines the welfare impact of policies:
 1. EIP-1559 Fee Mechanism: reduce centralization
 2. Airdrop: improve financial inclusion
Wealth and Mining Centralization

- Centralization is an important concern
 - On Sept. 15, Ethereum transitioned to proof-of-stake (PoS)
 - **This paper:** Ethereum ownership is highly concentrated
 - Concentration of ownership and validation power will likely stay under PoS
 - Expected rewards and probability of being selected to append the next block are proportional to stakes
 - **Barrier for small stakers:**
 - Required minimum of 32 ETH to stake solo, otherwise stake through staking pools or centralized intermediaries (which is costly)
 - Would PoS increase concentration? Will small ETH owners become even smaller, and large owners even larger?
The paper finds that transactions on Ethereum shifted from P2P payments to Dapps.

Off-chain activity: a large portion of transactions are still processed off-chain through centralized intermediaries:

- Most transactions still go through centralized exchanges.
- The address and wallet associated with centralized exchanges have large wealth and have many transactions.
- A significant portion of miners’ rewards is earned through Flashbots, an off-chain platform for MEV auctions. (Capponi, Jia, Wang, 2021)
- How many transactions are settled off-chains? Which users use off-chain transactions more? What does it mean for financial inclusion?

Terminology: Layer-2 tokens vs ERC20 tokens?
Gas fees only depend on the complexity of the transaction.

- Borrowing 2,000 ETH and 0.002 ETH take a similar amount of gas.

This paper: Using Dapps or blockchains can be too expensive for smaller users, which hinders financial inclusion.

Question: How to reduce the cost for small users?

- Scalability is the key: Layer 2? Sharding?

Minor suggestion: this paper measures relative cost using \(\frac{\text{gas cost}}{\text{value}} \). Is the value of a DeFi transaction always observable?

- E.g., what is the value of a flashloan? Is it really zero? What about personal benefits?

- In table 2, the mean cost ratio of tokens is \(5.29 \times 10^{29} \). Is the value of some transactions being underestimated?
Summary

- Very timely and interesting paper, first of its kind
- Quantify concentration and inefficiencies in Ethereum blockchain.
- Few minor comments:
 - Define the value of a DeFi transaction
 - Distribution of ownership in EOA addresses. How about Ethers in contract accounts and exchange accounts?
 - Double check table 4, columns (3) and (4), as the regression results are identical.
 - Some graphs should be better explained (e.g. Figure 6)
Thank You!