Discussion of:

Open Banking Under Maturity Transformation

by Itay Goldstein, Chong Huang, and Liyan Yan
Open banking

- At first glance, open banking sounds very appealing
 - borrowers develop a history that shows their creditworthiness
 - but only one bank sees this history → monopoly pricing
 - letting more banks see the history → competition
 - removes monopoly rents, more efficient outcomes

- What are the possible downsides or concerns?
 - One possibility: idiosyncratic interpretation of the data
 - if banks’ algorithms give different scores to a borrower ⇒ winner’s curse
 - implication: more competitors may not lead to better outcomes
 - most optimistic bank is more likely to be wrong
 - leads banks to be more cautious (when seeing a good signal)
 - winner’s curse offsets some (all?) benefits of competition

What’s not to like?
Open banking

- At first glance, open banking sounds very appealing
 - borrowers develop a history that shows their creditworthiness
 - but only one bank sees this history → monopoly pricing
 - letting more banks see the history → competition
 - removes monopoly rents, more efficient outcomes

- What are the possible downsides or concerns?

- One possibility: idiosyncratic interpretation of the data
 - if banks’ algorithms give different scores to a borrower ⇒ winner’s curse
 - implication: more competitors may not lead to better outcomes
 - most optimistic bank is more likely to be wrong
 - leads banks to be more cautious (when seeing a good signal)
 - winner’s curse offsets some (all?) benefits of competition
Open banking

- At first glance, open banking sounds very appealing
 - borrowers develop a history that shows their creditworthiness
 - but only one bank sees this history → monopoly pricing
 - letting more banks see the history → competition
 - removes monopoly rents, more efficient outcomes

- What are the possible downsides or concerns?

- One possibility: idiosyncratic interpretation of the data
 - if banks’ algorithms give different scores to a borrower ⇒ winner’s curse
 - implication: more competitors may not lead to better outcomes
 - most optimistic bank is more likely to be wrong
 - leads banks to be more cautious (when seeing a good signal)
 - winner’s curse offsets some (all?) benefits of competition

What’s not to like?
This paper

- Investigates the effects/desirability of open banking ...
- ... taking seriously the idea that the lenders are *banks*
 - offering loans of some maturity, while issuing debt of shorter maturity
 - funding cost is sensitive to the risk the bank is taking

Brief recap of the model

- Borrowers have a project that will succeed or fail
- Banks issue deposits, can lend or hold a risk-free asset
- Bertrand-like competition
 - each bank announces and interest rate (or “no offer”)
 - borrowers pick the lowest rate (⇒ first-price, common value auction)
This paper

- Investigates the effects/desirability of open banking ...

- ... taking seriously the idea that the lenders are banks
 - offering loans of some maturity, while issuing debt of shorter maturity
 - funding cost is sensitive to the risk the bank is taking

Brief recap of the model

- Borrowers have a project that will succeed or fail
- Banks issue deposits, can lend or hold a risk-free asset
- Bertrand-like competition
 - each bank announces and interest rate (or “no offer”)
 - borrowers pick the lowest rate (⇒ first-price, common value auction)
Key feature: bank creditors observe outcome of the auction
 - interest rate on deposits resets accordingly

Compare two regimes

- Closed banking: incumbent bank has informative signal
 - entrant bank has no signal (uninformed)
 - assume $E[PV]$ of lending is <0 if no signal

- Open banking: both banks receive (independent) signals
 - that is, they have different algorithms for predicting repayment
 - give idiosyncratic interpretations of the same data
Key feature: bank creditors observe outcome of the auction
- interest rate on deposits resets accordingly

Compare two regimes

- Closed banking: incumbent bank has informative signal
 - entrant bank has no signal (uninformed)
 - assume $E[PV]$ of lending is <0 if no signal

- Open banking: both banks receive (independent) signals
 - that is, they have different algorithms for predicting repayment
 - give idiosyncratic interpretations of the same data
Results

- Moving to open banking has mixed effects
 - Closed banking:
 - uninformed bank never lends
 - informed bank lends if signal is good; takes all of the surplus
 - Open banking:
 - borrowers are better off, but total expected output is lower
 - banks become more cautious in bidding; may make “no offer” even if they receive a good signal
 - because of the winner’s curse ...
 - ... which is “exacerbated by banks’ maturity transformation”
 - Interesting! want to focus on understanding this last point
Results

- Moving to open banking has mixed effects

 - Closed banking:
 - uninformed bank never lends
 - informed bank lends if signal is good; takes all of the surplus

 - Open banking:
 - borrowers are better off, but total expected output is lower
 - banks become more cautious in bidding; may make “no offer” even if they receive a good signal
 - because of the winner’s curse ...
 - ... which is “exacerbated by banks’ maturity transformation”

- Interesting! want to focus on understanding this last point
An alternative starting point

Consider three different versions of the model

1. Bankers lend their own funds
2. Banks are funded with long-term debt
3. Banks are funded with short-term debt

- In each case, what are the effects of moving to open banking?
- What is the relationship between cases 1 and 3?
1) Bankers lend their own funds

- Suppose bankers have deep pockets
 - divide their funds between lending and the risk-free asset

- Closed banking:
 - uninformed bank will never bid (expected payoff is always < 0)
 ⇒ informed bank is a monopolist
 - lends following good signal, takes all of the surplus

- Open banking:
 - mixed results because the winner’s curse appears
 - banks with a good signal may not bid with positive probability
 - resulting allocation may be less efficient (maybe?)
 ⇒ winner’s curse offsets the benefits of competition
1) Bankers lend their own funds

- Suppose bankers have deep pockets
 - divide their funds between lending and the risk-free asset

- Closed banking:
 - uninformed bank will never bid (expected payoff is always < 0)
 ⇒ informed bank is a monopolist
 - lends following good signal, takes all of the surplus

- Open banking:
 - mixed results because the winner’s curse appears
 - banks with a good signal may not bid with positive probability
 - resulting allocation may be less efficient (maybe?)
 ⇒ winner’s curse offsets the benefits of competition
1) Bankers lend their own funds

- Suppose bankers have deep pockets
 - divide their funds between lending and the risk-free asset

- Closed banking:
 - uninformed bank will never bid (expected payoff is always < 0)
 ⇒ informed bank is a monopolist
 - lends following good signal, takes all of the surplus

- Open banking:
 - mixed results because the winner’s curse appears
 - banks with a good signal may not bid with positive probability
 - resulting allocation may be less efficient (maybe?)
 ⇒ winner’s curse offsets the benefits of competition
2) Banks are funded by long-term debt

- Now suppose banks have issued long-term debt at fixed rate
 - and have limited liability ⇒ risk shifting shifting motive (sounds bad)
 - but risk-shifting can have positive effects here

- Closed banking:
 - the uninformed bank may now be willing to bid with some probability
 - because part of the loss in the bad state falls on creditors
 - which disciplines the informed bank → borrowers get some of the surplus

- Open banking:
 - banks bid more aggressively than when using own funds
 - each bank bids if (and only if) it sees the good signal

 ⇒ risk-shifting mitigates the winner’s curse, promotes competition
2) Banks are funded by long-term debt

- Now suppose banks have issued long-term debt at fixed rate
 - and have limited liability \Rightarrow risk shifting shifting motive (sounds bad)
 - but risk-shifting can have positive effects here

- Closed banking:
 - the uninformed bank may now be willing to bid with some probability
 - because part of the loss in the bad state falls on creditors
 - which disciplines the informed bank \Rightarrow borrowers get some of the surplus

- Open banking:
 - banks bid more aggressively than when using own funds
 - each bank bids if (and only if) it sees the good signal

 \Rightarrow risk-shifting mitigates the winner’s curse, promotes competition
2) Banks are funded by long-term debt

- Now suppose banks have issued long-term debt at fixed rate
 - and have limited liability ⇒ risk shifting shifting motive (sounds bad)
 - but risk-shifting can have positive effects here

- Closed banking:
 - the uninformed bank may now be willing to bid with some probability
 - because part of the loss in the bad state falls on creditors
 - which disciplines the informed bank → borrowers get some of the surplus

- Open banking:
 - banks bid more aggressively than when using own funds
 - each bank bids if (and only if) it sees the good signal
 ⇒ risk-shifting mitigates the winner’s curse, promotes competition
3) Banks are funded by short-term debt

- Interest rate on debt is reset after results of auction are known
 - so that creditors are indifferent between the debt and outside option
 - undercuts bank’s ability to shift risk onto creditors

- Results are similar to the first case

- Closed banking: exactly the same
 - informed bank bids if signal is good; takes all of the surplus

- Open banking:
 - banks bid less aggressively (i.e., may not bid following good signal)

- If risk-shifting mitigates the winner’s curse ...
 - ... then short-term debt that disciplines banks brings the curse back
 - another way to see the main message of the paper (I think)
3) Banks are funded by short-term debt

- Interest rate on debt is reset after results of auction are known
 - so that creditors are indifferent between the debt and outside option
 - undercuts bank’s ability to shift risk onto creditors

- Results are similar to the first case

- Closed banking: exactly the same
 - informed bank bids if signal is good; takes all of the surplus

- Open banking:
 - banks bid less aggressively (i.e., may not bid following good signal)

- If risk-shifting mitigates the winner’s curse ...
 - ... then short-term debt that disciplines banks brings the curse back
 - another way to see the main message of the paper (I think)
3) Banks are funded by short-term debt

- Interest rate on debt is reset after results of auction are known
 - so that creditors are indifferent between the debt and outside option
 - undercuts bank’s ability to shift risk onto creditors

- Results are similar to the first case

- Closed banking: exactly the same
 - informed bank bids if signal is good; takes all of the surplus

- Open banking:
 - banks bid less aggressively (i.e., may not bid following good signal)

- If risk-shifting mitigates the winner’s curse ...
 - ... then short-term debt that disciplines banks brings the curse back
 - another way to see the main message of the paper (I think)
Three questions
Models 1 and 3

- How similar/different are models 1 and 3?
 - for closed banking in this setting, results are identical (I think)
 - for open banking, they are ... similar?

Put differently:

- Is the ability to shift risk the only reason the maturity of debt matters for this issue?
 - do other mechanisms that limit risk sharing lead to same outcome?
 - can we just study model 1?

- Or does the maturity of debt matter in other ways?
 - i.e., ways that my simple narrative above misses
Models 1 and 3

- How similar/different are models 1 and 3?
 - for closed banking in this setting, results are identical (I think)
 - for open banking, they are ... similar?

Put differently:

- Is the ability to shift risk the only reason the maturity of debt matters for this issue?
 - do other mechanisms that limit risk sharing lead to same outcome?
 - can we just study model 1?

- Or does the maturity of debt matter in other ways?
 - i.e., ways that my simple narrative above misses
Aggregate vs. idiosyncratic risk

- Bank lends to many borrowers in the model
 - but their returns are perfectly correlated
 ⇒ bank is looking at borrower data to forecast macro variables

- I would expect borrower data to be most informative about individual creditworthiness
 - what I did in the past tells you a lot about me ...

- Is there a version of this model with heterogeneous borrowers?
 - winner’s curse involves getting a bad pool of borrowers
 - which would increase the probability of bank failure (as here)

- Seems more complicated ...
 - would it matter for the results? Perhaps not.
Aggregate vs. idiosyncratic risk

- Bank lends to many borrowers in the model
 - but their returns are perfectly correlated
 ⇒ bank is looking at borrower data to forecast macro variables

- I would expect borrower data to be most informative about individual creditworthiness
 - what I did in the past tells you a lot about me ...

- Is there a version of this model with heterogeneous borrowers?
 - winner’s curse involves getting a bad pool of borrowers
 - which would increase the probability of bank failure (as here)

- Seems more complicated ...
 - would it matter for the results? Perhaps not.
Other mechanisms

- Open banking has two potential benefits in this model
 - competition may reallocate surplus toward borrowers
 - generating a second signal provides more information

- What type of institution(s) would best harness these benefits?

- A mechanism design problem
 - have both banks report their signal ⇒ assign an allocation
 - if both report $H \rightarrow$ randomly assign loan to one bank (at some R)
 - if either reports $L \rightarrow$ no loan is made

- I think this mechanism uniquely implements the efficient allocation

- How could it be decentralized?
 - what type(s) of regulation might be helpful?
Other mechanisms

- Open banking has two potential benefits in this model
 - competition may reallocate surplus toward borrowers
 - generating a second signal provides more information

- What type of institution(s) would best harness these benefits?

- A mechanism design problem
 - have both banks report their signal \Rightarrow assign an allocation
 - if both report H \Rightarrow randomly assign loan to one bank (at some R)
 - if either reports L \Rightarrow no loan is made

- I think this mechanism uniquely implements the efficient allocation

- How could it be decentralized?
 - what type(s) of regulation might be helpful?