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Abstract

In public blockchains, the visibility of pending transactions can lead to suboptimal blockspace

allocation. To mitigate this, users can submit their transactions through private pools to guar-

antee pre-trade privacy, but they still face execution risk. This study shows that incorporating

private pools into public blockchains can reduce allocative inefficiencies and increase overall

welfare. However, private pools cannot completely eliminate frontrunning attacks or achieve

full efficiency, as validators have strong incentives to maintain rents from frontrunning. To

address this, we propose an improvement for the design of private pools that makes it incentive-

compatible for all validators to adopt them, eliminate frontrunning, and achieve efficiency.
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1 Introduction

Blockchain technology has evolved past a platform to support decentralized payment systems

(Nakamoto (2008)). Today, it supports a range of services, including tokenization (Cong et al.

(2020b)), crowdfunding (Gan et al. (2021)), and decentralized finance (Harvey et al. (2021)). The

allocation of transactions to blocks is decided through a fee auction process, which incentivizes

validators to prioritize high fee transactions (Buterin (2015), Nakamoto (2008)). However, the vis-

ibility of pending transactions before confirmation can compromise the efficiency of such allocation

mechanisms.

In public blockchains, the transparent observability of pending transactions creates opportuni-

ties for frontrunning attacks (Park (2021), Daian et al. (2020)). Malicious actors submit their own

transactions with higher fees ahead of the intended victims, "jumping the queue" and prioritizing

their executation. We argue that this frontrunning friction leads to a socially sub-optimal alloca-

tion of blockspace. Empirical evidence shows that losses due to frontrunning attacks reached over

100 million USD by 12/31/2021 (See figure 1b), making it unsafe for users to submit transactions

to a public blockchain. The reduced safety weakens user incentives to submit transactions, and

may result in social inefficiency if valuable transactions are excluded from the blockchain. More-

over, frontrunning transactions transfer wealth from victims to attackers but do not generate any

economic value. As a result, the allocation of blockspace to fronrunning transactions is a social

waste. Empirical estimates indicate that over 30% of existing blocks allocate space to frontrunning

transactions (See figure 1a).

Private transaction submission pools have been proposed as a solution to mitigate frontrun-

ning by creating a private channel for directly submitting transactions to validators and making

them inaccessible to malicious actors. Implementations of private pools, such as those provided

by Flashbots Protects and Eden Network1, aim to mitigate the negative impacts of frontrunning

and maximize welfare (see Daian (2022)). Despite their increasing popularity, it remains uncertain

whether validators, who play a critical role in confirming transactions in public blockchains, will

have adequate incentives to adopt and accept transactions from private pools. The effectiveness of

private pools in mitigating frontrunning and improving welfare is also unclear. This paper investi-
1For an overview of Flashbots relay, refer to https://docs.Flashbots.net/Flashbots-auction/overview/For

an overview of the Eden Network, refer to Piatt et al. (2021).
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(a) Distribution of blocks with frontrunning risk and
attacks (b) Distribution of attack profits from frontrunning

attacks
Figure 1: Analysis of frontrunning attacks on Ethereum blockchain from 3/1/2021 to 4/15/2021.
Panel (a) shows that out of 395,985 total blocks generated, 361,761 blocks contained transactions
subject to frontrunning risk, and 125,126 of these blocks were identified as frontrunning attacks.
Panel (b) displays the distribution of attack profits, with the average profit being approximately
0.19 ETH or $600 as of 12/31/2021, and total losses reaching over $110 million. The data and
methodology used to produce these results are described in the appendix.

gates the welfare implications of incorporating private submission pools into public blockchains and

provides insights into how their market design can be improved to enhance allocative efficiency.

Our findings indicate that, in all equilibria, validators adopt private pools to some extent. The

incorporation of private pools weakly reduces blockspace misallocation and leads to an increase in

aggregate welfare. However, private pools are not able to fully eliminate frontrunning attacks or

attain efficiency in situations where they are not fully adopted. This failure stems from validators

having a strong incentive to preserve rents generated from frontrunning attacks. To tackle this

issue, we offer a proposal to enhance the design of private pools, making it incentive-compatible for

all validators to adopt them, eradicate the frontrunning problem, and attain efficiency.

Our model features three types of agents, namely validators, users, and attackers; and two

pool types, namely a private and a public mempool. Validators have the option to monitor both

pools or just the public one. We consider two groups of users, referred to as frontrunnable and

non-frontrunnable users, who can submit their transactions through either the public or private

pool. Users are heterogeneous in their valuations of transactions. The frontrunnable user is subject

to frontrunning risk when submitting transactions through the public pool, and her transaction

is referred to as the frontrunnable transaction. Attackers compete to frontrun her transaction
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submitted through the public pool.

Transactions in the public pool are visible to all agents, including validators who adopt the

private pool, while transactions in the private pool are only visible to its monitoring validators. The

likelihood of order execution in the private pool is determined by the rate of validator adoption, while

the pool selection of users and attackers affects the benefits derived by validators from monitoring

the private pool.

As the number of validators monitoring the private pool increases, the frontrunnable user is more

likely to submit transactions to the private pool as the risk of the transaction not being observed

by the chain-updating validator, i.e. the execution risk, is outweighed by the advantage of avoiding

frontrunning risk.

Validators monitoring the private pool are constrained to prioritize orders submitted through

this pool. This intensifies a "race to the front" for priority order execution, and attackers will use

both the public and private pools to their advantage. Through the private pool, they gain priority

execution, while the public pool ensures guaranteed execution. The competition between attackers

drives up fees above the minimum requirement for block inclusion, which are passed on to the

validators. The integration of the private pool with the public pool intensifies this competition and

increases the rents extracted by validators in each frontrunning attack.

Validators can observe more transactions by monitoring the private pool, but if too many val-

idators join the private pool, the execution risk in private pool becomes low enough to incentivize

the frontrunnable user to migrate from the public to the private pool. This migration, in turn,

eliminates frontrunning attacks and the associated rents. Thus, it may not be incentive-compatible

for all validators to adopt the private pool.

We then analyze the subgame perfect equilibrium of the game. If the frontrunning issue is

pronounced, the frontrunnable user would not have any incentive to use the public pool, thereby

excluding her transaction from the blockchain in the absence of a private pool option. This results

in inefficiency. The unique subgame perfect equilibrium in this scenario is for the user to submit

their transaction exclusively through the private pool to avoid frontrunning and for all validators to

adopt the private pool in order to monitor the transaction and earn higher fees due to the increased

demand for block space. Because a fully adopted private pool makes it safe for frontrunnable users

to submit transactions, an efficient block space allocation is achieved with a private pool.
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On the other hand, if the frontrunning problem is not significant, multiple equilibria may exist.

One such equilibrium involves some validators not adopting the private pool, leading to a high level

of execution risk and the frontrunnable user submitting their transaction to the public pool despite

the risk of frontrunning. In this case, validators who only observe the public pool would not have

sufficient incentives to also observe the private pool, as doing so would eliminate frontrunning and

result in lost fees from competing attackers. This results in an inefficient block space allocation, as

frontrunning attacks persist, wasting block space.

This adoption failure resembles the classical hold-up problem: the benefit of introducing a private

pool is entirely appropriated by frontrunnable users in the sequential game, leading to a loss for

validators and disincentivizing them to adopt it. To align the incentives of frontrunnable users with

those of validators, we propose a contractual solution where the frontrunnable user ex-ante commits

to pay an additional fee to validators in the private pool for executing her order. We show that this

incentive scheme leads to a unique full adoption efficient equilibrium.

Literature Review. To the best of our knowledge, our paper is the first to explicitly model

the allocative inefficiency caused by frontrunning attacks and evaluate the welfare implications of

incorporating private submission pools into public blockchains.

Our work contributes to existing literature on friction reduction in public blockchains. There

have been several studies on Maximal Extractable Value (MEV) and its mitigation strategies, with

frontrunning profits considered a type of MEV that validators and attackers extract at the expense of

blockchain users (Auer et al. (2022)). Yang et al. (2022) provides a comprehensive overview of MEV

mitigation tools. Park (2021) shows that pricing rules in decentralized exchanges are susceptible

to frontrunning attacks in the form of "sandwich" attacks at Automated Market Makers. Lehar

and Parlour (2023) examine the competition between "good" and "bad" MEV bots and argue that

private settlement can reduce the under-investment problem of "good" MEV bots. Canidio and

Danos (2023) and Gans and Holden (2022) propose alternative mechanisms to address frontrunning

attacks. Our focus is on the welfare implications of private pools and their impact on the allocative

efficiency of blockspace.

Another literature focuses on friction caused by miner collusion and manipulation in the trans-

action fee market (Chung and Shi (2021); Roughgarden (2021); Lehar and Parlour (2020)) and forks
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in Proof-of-Work blockchains (Biais et al. (2019)). These studies abstract from the frontrunning

problem and only consider public transaction submission channels.

Our paper also relates to the existing literature on economic analysis of transaction fee (Huber-

man et al. (2021); Easley et al. (2019)), mining strategies (Capponi et al. (2019); Cong et al. (2020a);

Prat and Walter (2021)), and consensus protocols (Saleh (2020); John et al. (2020); Roşu and Saleh

(2021); Bakos and Halaburda (2021)). While some works focus on block formation mechanisms and

security implications, our study focuses on the economics of transaction submission mechanisms.

Moreover, our work shows that private pools will change transaction fee bidding strategies and

mining strategies as miners gain the option to monitor private pools.

More broadly, in prior work on market design under frictions, Roth (2008) argues that to achieve

efficiency, a market needs to provide thickness (Roth et al. (2004)), overcome congestion (Roth

and Xing (1997)), and be safe for participants (Niederle et al. (2006)). These principles apply to

the design of transaction submission pools for public blockchains, except that agents cannot be

restrained from certain behaviors, such as frontrunning, and are not obligated to participate in

the new mechanisms, such as private pools. Our paper shows how to improve private pool market

design to induce adoption, reduce blockspace waste, and eliminate frontrunning and execution risks,

improving allocative efficiency and making blockchain transactions safer for users.

The paper proceeds as follows. We provide the institutional background of private transaction

pools in Section 2. We develop the game theoretical model in Section 3. We solve for the subgame

perfect equilibrium, and analyze its implications in Section 4. We analyze welfare in Section 5.

Section 6 provides empirical supports for our model implications. Proofs of technical results are

relegated to the Appendix.

2 Institutional Details of Relay Services

In this section, we delve into the intrinsic information leakage issue in public blockchains and the

background information of private transaction pools.
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2.1 Blockchain and Information Leakage

A blockchain is a decentralized ledger technology that operates in a peer-to-peer (P2P) network.

In this network, agents can issue and broadcast their transactions, which are then collected by

validators into blocks. These blocks are added to the existing chain of blocks, forming a chain of

records that is maintained by all agents in the network. Transactions in a blockchain network are

verified and validated through a consensus mechanism, which ensures that all agents agree on the

state of the blockchain.

The cost of executing a transaction on a blockchain network is typically in the form of a trans-

action fee, which is paid to the validator who includes the transaction in the block. The higher the

transaction fee, the more incentivized the validators are to prioritize the transaction in the queue of

pending transactions. This results in a transaction fee auction, where agents bid for the opportunity

to have their transactions executed first. This mechanism ensures that the limited blockspace on the

blockchain is efficiently allocated to transactions that are deemed most valuable by agents Buterin

(2015).

One of the key features of blockchain technology is its transparency, which allows all agents

in the network to observe pending transactions in their own mempools before they are confirmed

and added to the blockchain. However, this transparency can also present a security risk when

blockchains support financial services, such as decentralized finance (DeFi) transactions. In these

cases, attackers can exploit information about pending transactions to execute frontrunning attacks,

which can be costly for agents Eskandari et al. (2019).

Frontrunning attacks can take various forms, including displacement, insertion, and suppression

attacks Torres et al. (2021). A displacement attack occurs when an attacker observes a profitable

transaction from a victim agent and then broadcasts an identical transaction with a higher fee. This

frontrunning transaction will be executed before the victim transaction, allowing the attacker to

earn the profit while the victim transaction fails. An insertion attack involves the attacker observing

a transaction, such as a token buy order in a decentralized exchange (DeX), from a victim agent.

The attacker then broadcasts two transactions: a frontrunning transaction with a higher fee and

a backrunning transaction with a lower fee. The frontrunning transaction buys the same token as

the victim transaction, resulting in a higher execution price for the victim transaction due to price
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impact. After the victim transaction is executed, the price of the purchased token goes up again, and

the backrunning transaction closes the position by selling the token, resulting in a wealth transfer

from the victim agent to the attacker. A suppression attack occurs when an attacker observes a

transaction from a victim agent and then broadcasts transactions with higher fees to prevent the

victim transaction from being included in the block. This type of frontrunning attack is expensive,

as the attacker must use a large amount of blockspace to reach the block capacity limit. Currently,

insertion frontrunning attacks are the most common type of frontrunning in the DeFi space Torres

et al. (2021).

2.2 Relay Services

Relay services represent a form of private transaction submission pool implementation. A centralized

relay service receives transactions from users and forwards them to validators, without broadcasting

them in the peer-to-peer (P2P) network. This arrangement reduces the risk of malicious actors

observing the transactions. Nevertheless, it requires users to trust the centralized relay service,

which oversees all transactions that are transmitted through it.

Empirical evidence suggests that this trust requirement is not problematic in practice. Of

more than two million transactions submitted through private pools, only 8 have been frontrun by

attackers Yang et al. (2022). This validates the frontrunning protection of private pools. The cause

of the 8 frontrunning incidents was forking, whereby the block in which the transaction was included

was uncled. This phenomenon is referred to as the "uncle bandit risk," and it can be mitigated by

carefully verifying parent hashes (see flashbots (2021) for more details).

The first relay service, Flashbots, was established in January 2021. Validators that join Flashbots

prioritize the transactions submitted through the Flashbots relay that have the highest bids by

including them at the top of the block. The order of execution for transactions is established through

a one-round, sealed-bid, first-price auction flashbots (2021). In contrast, transaction fee bidding in

public pools follows an ascending price auction format and may involve multiple rounds of bid

submissions. Additionally, pending transactions and their associated fees are publicly observable.

After the transition of the Ethereum blockchain from Proof-of-Work (PoW) to Proof-of-Stake

(PoS), the implementation of relay services and private pools underwent slight modifications. The

new implementation is known as proposer-builder separation (PBS). First, users no longer send their
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transactions directly to validators, but instead transmit them privately to block builders. Builders

collect transactions from the private channel, as well as the public mempool, and pack them into a

block, which they then forward to validators. Only validators that have adopted the relay service

can receive this block. Second, users are no longer required to trust validators to avoid frontrunning,

as validators must sign a blinded block (which only includes block headers) and pass it on to the

builder to complete the block content. In this manner, the role of block building is delegated from

validators to builders Yang et al. (2022). Figure 2 depicts the different implementations of private

pools before and after the merge.

(a) Before Merge Private Pool

(b) Post Merge Private Pool
Figure 2: 2a depicts the implementation of private pools before the merge, and 2b illustrates the
implementation of private pools after the merge.

3 Model Setup

The model we analyze consists of three periods, indexed by t = 1, 2, 3, and three types of agents:

blockchain users, attackers, and validators. All agents are assumed to be risk-neutral.

Validators. There are N rational and homogeneous validators, each with equal probability, 1
N ,

of appending the next block to the chain. The validator who appends the next block, referred to as

the winning validator, is drawn randomly at the end of period 3. We assume N is sufficiently large.

The winning validator earns transaction fees attached to the included transactions.2 A validator
2The fixed reward is not considered in our analysis as it remains constant regardless of the validator’s adoption

of private pools.
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can include at most B transactions in a block due to limited capacity.

There are two transaction submission channels: public and private pools. In period 1, validators

can choose to adopt the private pool at no cost.3 We denote by M and α = M
N the number

and proportion of validators who adopt the private pool in period 1. All validators can observe

transactions submitted through the public pool, while only those in the private pool can observe

transactions submitted through the private pool.

At the end of period 3, the winning validator selects the B transactions with the highest attached

fees among those he observes, breaking any ties randomly. If the winning validator has joined the

private pool, he is required to prioritize the private pool transactions and execute them in decreasing

order of fees.4 The public pool transactions are then executed in decreasing order of fees. If the

winning validator has not joined the private pool, he executes only the public pool transactions in

decreasing order of fees.

The validator’s adoption decision does not affect his probability of winning the next block, and

he decides whether to adopt the private pool to maximize expected transaction fees, conditional

on winning the next block. The expected transaction fees earned from adopting the private pool

or from monitoring the public pool only are both contingent on the adoption choices of users and

attackers. We denote the expected fee revenue of the winning validator by rprivate(·) if he adopts

the private pool, and by rpublic(·) if he stays on the public pool only.

Users. There are two types of users, whose type depends on the exogenously specified nature of

their transactions. The first type of user is frontrunnable, and her transaction is frontrunnable.

This user receives a private value v0 from executing her transaction, but if her transaction is sent

through the public pool, then with probability p, attackers recognize the frontrunnable nature of

the transaction and front-run it, earning a profit c ≥ 0 and causing a loss of c to the frontrun user.

The second type of users are referred to as non-frontrunnable users, and their transactions

are non-frontrunnable. There are B + 15 non-frontrunnable users, indexed by i ∈ 1, 2, ..., B + 1,

who receive private values vi from executing their transactions. Without loss of generality, we let
3As stated in https://docs.Flashbots.net/Flashbots-auction/miners/faq/, the Flashbots relay is an open-

source software that does not charge for usage.
4This is the requirement imposed by relay services such as Eden and Flashbots.
5The results should remain unchanged if there were more than B + 1 non-frontrunnable users. If there were less

than B + 1 of these users, the analysis in many cases would become trivial because there would be no competition
for block space.
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v1 > v2 > ... > vB+1. We also let v0 > vB−1 and (1 − p)c > vB−1 to rule out trivial cases where

the frontrunnable user or attackers are unable to overbid other users and get on-chain. To rule out

corner cases, we impose the following assumption:

Assumption 1. The difference vB−1 − vB is sufficiently small.6

In period 2, users decide which pools to submit their transactions to. A user can opt to broadcast

her transaction through the public pool, the private pool, or not submit it at all. If a frontrunnable

transaction is submitted through the public pool, it is exposed to the risk of being identified and

front-run by attackers. On the other hand, if a transaction is submitted only through the private

pool, it will not be observed by validators who do not monitor the private pool. The probability

of a transaction being included in the next block is at most α = M
N , and thus the execution risk

is determined by the adoption rate of the private pool among the validators. The frontrunnable

user is indexed as user 0, and we denote the pool chosen by user i (i ∈ I = {0, 1, 2, ..., B + 1}) by

Ci ∈ {Private,Public,None}. Each user i attaches a transaction fee fi to her transaction.

User i selects the submission pool Ci and attached fee fi to maximize her expected payoff:

Ui = E [1Executed,i(vi − fi)− c1frontrun,i] ,

where 1Executed,i is an indicator function for the event that the transaction submitted by user i

is included in the block by the validator, and 1frontrun,i is an indicator function for the event that

the transaction submitted by user i is front-run by attackers. In case of a tie, we assume that users

will prefer the public pool. This assumption is justified by the fact that submitting transactions

through private pools, such as Flashbots Protect, typically requires more sophistication, while the

public mempool generally has a more user-friendly interface.

Attackers. In the system, there are two competing attackers, indexed by j ∈ J = {1, 2}. The

attackers monitor the public pool for frontrunnable transactions and aim to exploit them, resulting

in a profit c ≥ 0. If a frontrunnable transaction is present in the public pool, both attackers will

identify it with probability p.
6If there are sufficient transactions, i.e., B is large enough, and the private values that users receive from executing

these transactions are drawn from an i.i.d bounded distribution, then the expectation of the difference between the
Bth order statistic and the (B − 1)th order statistic is sufficiently small.
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At the beginning of period 3, each attacker decides which pool(s) to submit their order if they

have identified a frontrunnable transaction. If an attacker chooses to submit the order to both

pools, they will provide the same nonce for both transactions. Since each nonce can only be used

once, at most one of the two transactions will be executed.

We denote the pool chosen by attacker j as Vj ∈ {Public,Private,Both}. The transaction fee

bid by attacker j in the private pool is denoted by fDj , while the fee bid in the public pool is

denoted by fLj . Attacker j chooses the pool and fee to maximize their expected payoff:

Aj = E [1wins,j1frontrun,0(c− fexecuted,j)] ,

where 1wins,j is the indicator function for the event "attacker j’s order is executed before the

other attacker’s order", and fexecuted,j is the transaction fee paid by attacker j. The tie-breaking

rule for attackers is as follows: "both pools" is their preferred choice, followed by the "public pool",

and finally the "private pool".

Transaction Fee Bidding. The order is executed by the attacker who submits the highest trans-

action fee. The transaction fee bidding mechanisms in the public and private pools differ. In the

public pool, commonly referred to as Priority Gas Auctions (PGA), the transaction fee bidding is a

variant of an English auction, an open-outcry ascending-price auction. The main difference is that

the transaction fee bidding in the public pool ends randomly when the validator decides the new

block and stops receiving new transactions.

In period 3, if both attackers submit their orders to the public pool, there is either one round

or two rounds of bidding with equal probability, and either attacker could be the first mover with

equal probability. In each round, only one attacker moves, and the bid increment must be larger

than ϵ. All bids in the public pool are visible to both attackers.

To minimize downside risk, attackers deploy a smart contract, which would terminate the trans-

action if the attack no longer exists. In such a case, the transaction is deemed as failed and the

corresponding fee is negligible and assumed to be equal to zero in our model.

The transaction fee bidding in the private pool is a one-round, sealed-bid, first-price auction,

where all bidders only submit their bids once to the relay, without leaking any information to other
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bidders. If two attackers submit the same order, the transaction submitted by the attacker who

attaches the highest fee will be selected by the validators.

Equilibrium. We solve for the subgame perfect equilibrium (SPE) of the game described above.

The strategy profile consists of the private pool’s adoption decisions by validators, the pool selection

and transaction fee bidding strategies of users, and the pool selection and transaction fee bidding

strategies of attackers. The strategy of user i is a mapping from the private pool’s adoption rate

by validators, α, to her pool choice Ci and transaction fee bid fi. The strategy of attacker j is a

mapping from the private pool’s adoption rate by validators, α, and users’ actions, (Ci, fi), i ∈ I, to

his selected channel Vj and transaction fees submitted in each pool fDj , fLj . A symmetry restriction

is imposed such that the strategies used by both attackers are identical.

4 Model Analysis

In this section, we provide a comprehensive analysis of our model, beginning with a discussion of

how frontrunning leads to sub-optimal backspace allocation in the absence of a private pool option.

We then proceed to solve for the subgame perfect equilibrium (SPE) of the game, taking into

account the presence of the private pool. Our analysis includes an examination of the pool selection

strategies of both attackers and users, followed by a study of the equilibrium adoption rate of the

private pool by validators.

4.1 Allocative Inefficiency without a Private Pool

In this subsection, we investigate the allocative inefficiencies that result from frontrunning attacks

in the absence of a private pool. Aggregate welfare is defined as the sum of the expected payoffs of

all participants, including validators, users, and attackers. It is important to note that the profits of

attackers and fee revenue of validators are transfers of wealth from users, and the transaction fees

paid by attackers to validators are merely a portion of the profits that attackers extract from users.

As a result, aggregate welfare is equal to the sum of the private values earned by users executing

transactions in the blockchain.

An efficient allocation is achieved when blockspace is assigned to users with the highest valuations
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for their transactions, resulting in aggregate welfare of
∑B

i=0 vi. The allocation of blockspace in a

public pool-only system is hampered by two inefficiencies: transaction exclusion and blockspace

waste. Firstly, the elevated frontrunning risk deters frontrunnable users from submitting their

transactions, leading to the exclusion of valuable transactions from the blockchain and the allocation

of blockspace to users with lower private values, ultimately reducing social welfare. Secondly, even

if a frontrunnable user does submit their transaction, it can be front-run by attackers, resulting in a

wealth transfer and taking up blockspace that could have been utilized by transactions with higher

private values. The following example further illustrates these sources of inefficiencies.

Example. Suppose that the block capacity is B = 3, and there are four transactions with values

v0 > v1 > v2 > v3. Let the first transaction be frontrunnable and the rest non-frontrunnable. The

efficient allocation of blockspace, which maximizes aggregate welfare, is shown in Table 1a. However,

this efficient allocation may not be achievable due to the two inefficiencies caused by frontrunning

risk. Table 1b shows the inefficiency caused by transaction exclusion when frontrunning risk is

severe (p ∗ c > v0). In this case, the frontrunnable transaction (v0) will not submit, and blockspace

will be allocated to transactions with lower values, v1, v2, v3. Table 1c shows the inefficiency caused

by blockspace waste where the frontrunning attack transaction takes up valuable blockspace. The

attack transaction does not add value but merely transfers an amount c from the frontrunnable

user, so the first two slots combined only contribute v0 to the aggregate welfare. In this case, only

two slots are allocated to economically meaningful transactions, and the aggregate welfare is only

v0 + v1.

The following proposition formally characterizes the allocative inefficiency in the absence of a

private pool:

Proposition 1 (Only Public Pool Benchmark). With only a public pool, there is a threshold c1 ≥ 0

such that:

1. If c > c1, the frontrunnable user does not submit their transaction and the aggregate welfare

in the equilibrium is
∑B+1

i=1 vi.

2. If c ≤ c1, the frontrunnable user submits their transaction to the blockchain and it gets front-

run by attackers, resulting in an aggregate welfare in the equilibrium of
∑B−1

i=0 vi.
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(a) Efficient Allocation

Position Transaction

1 v0
2 v1
3 v2

Total v0 + v1 + v2

(b) Transacation Exclusion

Position Transaction

1 v1
2 v2
3 v3

Total v1 + v2 + v3

(c) Blockspace Waste

Position Transaction

1 c
2 v0 -c
3 v1

Total v0 + v1

Table 1: This table illustrates the two sources of blockspace allocation inefficiency. Table 1a shows
the efficient allocation where the aggregate welfare is maximized. Table 1b illustrates the ineffi-
ciency due to transaction exclusion, which occurs when frontrunning risk is severe (c > v0). In
this scenario, the frontrunnable transaction is not submitted, and blockspace is allocated to trans-
actions with lower values. Table 1c illustrates the inefficiency due to blockspace waste, where the
first blockspace is taken by the attack transaction. In this case, only two slots are allocated to
economically meaningful transactions.

This proposition shows that if the frontrunning problem is severe (c > c1), it is not incentivized

for the frontrunnable user to submit their transaction, as the cost of being front-run outweighs the

benefit of executing the transaction. In this case, inefficiency arises (
∑B+1

i=1 vi <
∑B

i=0 vi) due to the

exclusion of the transaction from the blockchain. On the other hand, if the frontrunning problem

is not too severe (c ≤ c1), the frontrunnable user will still submit their transaction despite the

frontrunning risk. In this case, inefficiency arises (
∑B−1

i=0 vi <
∑B

i=0 vi) because one blockspace is

wasted on the frontrunning attack.

4.2 Pool choice of attackers

We analyze the equilibrium with the presence of the private pool by first considering the pool

choice strategies of attackers. For any adoption rate α of the private pool, we only consider the

case where the frontrunnable user chooses the public pool. This consideration suffices because if the

frontrunnable user were to submit through the private pool, her transaction would be unobservable

by attackers and they would not be able to front-run her. We denote f (B) as the Bth largest fee

submitted by users in period 2.

In order to prioritize their execution, both attackers will use both the private and public pools.

The private pool provides prioritized execution, as transactions submitted through it are placed

at the top of the block by participating validators. However, relying solely on the private pool

carries execution risk, as some validators may not observe transactions submitted through it. Thus,
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attackers also submit their transactions to the public pool to ensure execution. The following

proposition characterizes the pool choice and fee-bidding strategies of attackers in equilibrium.

The following proposition characterizes the pool choice and fee bidding strategies of attackers

in equilibrium:

Proposition 2 (Pool Choice and Fees Bidded by Attackers). In equilibrium, two attackers send

transactions to both the public and private pools. Both attackers truthfully bid c in the private pool,

as this secures their prioritized execution. However, in the public pool, their strategy depends on the

value of f0. If f0 < c − ϵ, one attacker will place an opening bid of max(f (B), f0) + ϵ, and then

increment their bid by the minimal amount ϵ in each subsequent bidding round. If f0 ≥ c − ϵ, the

attackers will not bid in the public pool.

The different auction forms in the private pool and public pool also play a crucial role. In

the private pool, the seal-bid, first-price auction form makes attackers bid their true value of the

transaction, which is equal to their frontrunning profits. This results in high transaction fees being

bid by attackers in the private pool.

In contrast, in the public pool, the pay-as-bid, first-price auction form leads to a different bidding

strategy by attackers. They will always increase their bids slightly in each round of the auction,

and will not bid their true value. The fees paid by attackers in the public pool will be lower than in

the private pool, but still higher than the minimum required value to guarantee their transaction’s

execution by the validators.

As a result, the introduction of the private pool exacerbates the competition among attackers,

leading to higher transaction fees being paid, which are then earned by the winning validator as

part of their miner extractable value (MEV). This highlights the fact that validators benefit from

the frontrunning, as they earn a portion of the MEV for each frontrunning opportunity.

4.3 Pool Choice of Users

The strategy of the frontrunnable user is analyzed based on the exogenously specified relay adoption

rate α. The choice between the private pool and public pool presents a straightforward trade-off

for the user: while the private pool eliminates the risk of frontrunning, it exposes the user to the

risk of transaction execution. Unlike attackers, the user does not submit through the private pool
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to outbid competitors, but rather to avoid frontrunning. If the adoption rate of validators for the

private pool is high enough, the execution risk is low, and the user will choose the private pool. The

following proposition characterizes the user’s pool choice strategy in equilibrium:

Proposition 3 (Pool Choice of Frontrunnable User). There is a critical threshold 0 ≤ λ ≤ 1 such

that the frontrunnable user will choose the private pool for her transaction if and only if α > λ.

4.4 Validators’ Adoption and Equilibrium

We analyze the equilibrium adoption rate of the private pool by validators, α∗ = M∗

N , and charac-

terize the SPE.

For any α = M
N > 0, transactions submitted through the private pool can only be observed by

validators who adopt it and may come with a high transaction fee. Thus, if the actions of users and

attackers are fixed, each individual validator has an incentive to adopt the private pool:

rprivate(α) ≥ rpublic(α). (1)

However, not all validators may adopt the private pool in equilibrium. A high adoption rate of

the private pool could reduce the expected payoff for validators as the frontrunnable user may route

her transaction to the private pool if the execution risk is low, reducing frontrunning opportunities

and MEV extracted by validators, and they may also receive fewer transaction fees from users due

to less block space competition.

In equilibrium, validators in the private pool have no incentive to exit, that is,

rprivate(
M∗

N
) ≥ rpublic(

M∗ − 1

N
) or M∗ = 0, (2)

and validators in the public pool have no incentive to adopt the private pool, that is,

rpublic(
M∗

N
) ≥ rprivate(

M∗ + 1

N
) or M∗ = N. (3)

We characterize the SPE of our game with the following proposition. We refer to the equilibrium

where the adoption rate of the private pool is α∗ = 1 as the full adoption equilibrium, the equilibrium
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where the adoption rate α∗ ∈ (0, 1) as the partial adoption equilibrium, and the equilibrium where

the adoption rate α∗ = 0 as no adoption equilibrium.

Proposition 4 (Characterization of the Equilibrium ). Let c1 be the critical threshold identified in

Proposition 1. The following statements hold for the SPE of the game:

1. There exists a full adoption equilibrium where α∗ = 1, and the frontrunnable user selects the

private pool, while the attackers do not submit attack orders.

2. If c ≤ c1, there exists a partial adoption equilibrium where 0 < α∗ < 1, the frontrunnable user

submits her transaction through the public pool, and the attackers send their orders to both

pools.

The private pool will be, at least partially, adopted by validators, and the equilibrium outcome

is contingent on the severity of the front-running problem.

Consider the case where the front-running problem is severe (c > c1). According to proposition

1, without a private pool, the frontrunnable user is not incentivized to submit transactions to the

blockchain due to the high front-running risk, leading to inefficiency. The introduction of a private

pool provides the frontrunnable user with the option to submit her transaction privately, and in

the unique SPE, all validators adopt the private pool in order to observe and earn the transaction

fee from the frontrunnable user. This eliminates the inefficiency resulting from the exclusion of the

frontrunnable user’s transaction and results in an efficient block space allocation.

Now consider the scenario where the front-running problem is not too severe (c ≤ c1). As

per Proposition 1, even without the private pool, the frontrunnable user would still submit her

transaction to the blockchain despite the front-running risk, leading to inefficiency due to wasted

block space. In this case, a partial adoption equilibrium exists, where only a fraction of validators

adopt the private pool, resulting in high execution risk. To avoid the high execution risk, the

frontrunnable user submits her transaction through the public pool, and front-running attacks

persist. The inefficiency caused by wasted block space remains in the partial adoption equilibrium,

resulting in an inefficient allocation even with the presence of the private pool.

Validators have an incentive to maintain the front-running attacks because it allows them to

earn extra fees from the fee bidding war of attackers and from other users due to the increased
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demand for block space caused by the front-running attacks. The marginal validators who only

monitor the public pool have no incentive to adopt the private pool and observe more transactions.

This is because if an additional validator monitors the private pool, the execution risk at the private

pool would become too low, leading users to submit transactions through the private pool instead

of the public pool. This would effectively eliminate front-running and reduce the fees earned by all

validators, lowering their revenue.

5 Welfare Implications

In this section, we examine the implications of the addition of a private pool to the public blockchain

on overall welfare and investigate ways to enhance the current market design of the private pool

to attain efficiency. Additionally, we assess the impact on the welfare of individual participants,

blockchain congestion, and transaction fees.

5.1 Aggregate Welfare and Blockspace Allocation

Proposition 5 illustrates the impact of incorporating a private pool on aggregate welfare:

Proposition 5 (Aggregate Welfare). The following statements hold:

1. A private pool weakly increases aggregate welfare.

2. Aggregate welfare is maximized when all validators adopt the private pool.

3. If c > c1, the unique full adoption equilibrium is socially efficient. If c ≤ c1, any partial

adoption equilibrium is not socially efficient.

This result can be understood as follows. By having both a private and a public pool, users

have the option to send their transactions privately, thus eliminating the inefficiency caused by

transaction exclusion and resulting in higher aggregate welfare. However, if only a fraction of

validators adopt the private pool, inefficiency due to block space waste from front-running attacks

remains in the partial adoption equilibrium.

The maximum aggregate welfare can only be achieved if front-running risk is fully mitigated.

If all validators adopt the private pool, the frontrunnable user can submit her transaction pri-

vately without facing execution risk, thus eliminating front-running risk and blockspace waste, and
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achieving the socially optimal allocation of block space, where the block only includes the B users’

transactions with the highest private values.

Inefficient partial adoption equilibrium occurs because the marginal validator does not want to

forego the rent earned from MEV. Despite there being no investment required for validators to adopt

the private pool, the cause of partial adoption equilibrium resembles the classic hold-up problem.

Validators do not fully adopt the private pool (sellers under-invest) despite it being socially sub-

optimal because the gains from adoption (investment) would be appropriated by the frontrunnable

users (buyers), effectively reducing the validators’ (selles’) revenue.

This misalignment of incentives between validators and the front-runnable user can be resolved

through a contract that requires users to pay an additional fee for each order executed through the

private pool. This way, validators will be incentivized to adopt the private pool, leading to a full

adoption equilibrium and maximizing aggregate welfare.

Proposition 6 (Attaining Full Adoption). There exists a value θ ≥ 0 such that if the frontrunnable

user pre-commits to paying a fee θ to any validator who executes her transaction sent through the

private pool, then:

1. A full adoption equilibrium is attained, and the aggregate welfare is maximized.

2. The expected payoff of all validators strictly increases.

3. The expected payoff of the frontrunnable user does not decrease.

In the partial adoption equilibrium, the total loss suffered by the frontrunnable user due to

front-running, c, is equal to the total MEV extracted by validators and attackers. The portion of

the MEV earned by validators, m, is in the form of fees paid by attackers, and the rest, c −m, is

captured by attackers. The frontrunnable user is willing to pay as much as c to eliminate front-

running risk, and validators are willing to fully adopt the private pool if the benefit of doing so is

greater than m.

By pre-committing to paying a fee θ > m to any validator who executes her trade sent through

the private pool, the frontrunnable user incentivizes all validators to adopt the private pool, maxi-

mizing aggregate welfare. As long as θ < c, the frontrunnable user’s expected payoff increases.
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This contract can be implemented through a reward pool, which is a smart contract that allows

users to deposit tokens voluntarily. Validators who join the relay service and successfully mine

a block including transactions sent through the relay can claim the tokens in the reward pool.

Private pools can also charge users flat fees for each successfully executed transaction. In this way,

frontrunnable users can pay for their pre-trade privacy and incentivize validators to adopt private

pools.

5.2 Who Benefits from the Private Pool?

In this section, we analyze the impact of the private pool on the welfare of different parties involved

in the blockchain, including users, validators and attackers. We define the welfare of validators as

the total expected transaction fees paid by users and attackers, and the welfare of attackers as the

sum of their expected payoffs.

To analyze the individual’s welfare, we consider the equilibrium with the lowest validators’ adop-

tion rate of the private pool among all equilibria. This choice is based on the following reasoning:

we start with the scenario where all validators are in the public pool. If some validators find it

profitable to adopt the private pool, they will do so, and the migration of validators from the public

to the private pool continues until a stable state is reached, where all validators in the public pool

have no incentive to adopt the private pool, and all validators in the private pool are better off not

leaving it.

Proposition 7 (Welfare of validators, user, and attackers). The introduction of a private pool in-

creases the welfare of validators, reduces the welfare of attackers, increases the expected payoff of the

frontrunnable user, and decreases the expected payoff of non-frontrunnable users i, i = 1, ..., B − 2.

The increase in welfare for validators can be attributed to two factors: an increase in MEV

extracted, and an increase in transaction fees due to a higher demand for block space. The private

pool exacerbates competition between attackers and increases MEV, as discussed in Proposition 2.

This reduces the welfare of attackers as a higher portion of their profits is transferred to validators

who adopt the private pool. Additionally, the private pool may incentivize the frontrunnable user

to submit her transaction, thereby increasing the demand for block space and validators’ revenue

from fees.
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The expected payoff of the frontrunnable user increases because she can now hide the content

of her transaction. However, this increase is not strict at partial adoption equilibrium. On the

other hand, the expected payoff of most non-frontrunnable users decreases as their transaction fees

increase with the introduction of a private pool, as discussed in the following Proposition:

Proposition 8 (Transaction Fees). The option of using the private pool increases the minimum fee

required to guarantee the execution of a transaction.

The above proposition highlights that, despite increasing welfare, the introduction of a private

pool may have the potential to increase blockchain congestion and transaction fees. One might

expect transaction fees to decline as the private pool reduces the block space used by attackers, but

our analysis shows otherwise. As indicated in part 1 of Proposition 4, the private pool may result

in more frontrunnable transactions, driving up demand for block space and ultimately leading to

higher transaction fees.

6 Empirical Analysis

In this section, we present empirical support for the predictions of our model. Section 6.1 outlines

the key predictions of the model. In Section 6.2, we describe the data used in our analysis. Section

6.3 defines the key variables and presents stylized facts. Finally, in Section 6.4, we present our

empirical results.

6.1 Testable Implications

Our model has made several predictions on the impact of private pools in public blockchains. These

predictions include (1) the adoption of private pools by validators, attackers and users under certain

conditions, (2) the changes in the welfare of market participants with the incorporation of private

pools, and (3) the limitations of private pools in fully eliminating frontrunning and blockspace waste.

The implementation of Flashbots private pools provides us with the opportunity to empirically verify

the following predictions:

1. At least a fraction of validators will adopt the private pool (see Proposition 4), and validators

utilizing the private pool will have higher expected payoffs than those remaining in the public
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pool (See equation (1)).

2. Attackers adopt private pools, but their payoffs decrease due to intensified competition, as

implied by Proposition 7.

3. Under high frontrunning risk, users are incentivized to submit transactions through the private

pool (see Proposition 4).

4. The incorporation of a private pool into the public blockchain does not decrease inefficiency

caused by blockspace waste (see Proposition 4).

6.2 Data

To support our empirical analysis, we utilize transaction-level data from Uniswap and Sushiswap

to identify frontrunning attacks. We run our own Ethereum node and use a modified geth client to

export all transaction receipts that triggered a swap event in the smart contract of either Uniswap or

Sushiswap. Our dataset covers the period from block number 10000835 (created on May 4, 2020) to

block number 12344944 (created on April 30, 2021) and includes transaction details such as slippage

threshold, gas used, and gas price. We follow the method outlined in Wang et al. (2022) to identify

frontrunning attacks and calculate their revenues.

In addition, we collect data on transactions submitted through the Flashbots private pool to

validators via the API services provided by Flashbots. Our data collection period starts from

February 11, 2021 (when the first Flashbots block was mined) and ends on July 31, 2021, to

eliminate the influence of the new fee mechanism introduced by EIP 1559 after August 2021.

Finally, we source Ethereum block data from Blockchair (available at https://gz.blockchair.

com/ethereum/blocks/) covering the period from May 1, 2020 to July 31, 2021, including the gas

fee revenues earned by validators.

6.3 Definition and Stylized Facts of Key Variables

In this section, we outline the main variables used in our statistical analysis and present some

empirical regularities observed in our dataset.

Adoption Rate of the Private Pool by Validators. We calculate the adoption rate of the
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Flashbots private pool in day t as the ratio of the number of blocks mined in day t that contain

Flashbots transactions and the total number of blocks mined in day t.

Validators’ Revenue per Block. The revenue earned by validators per block is composed of

the transaction fees paid by transactions submitted through both the private pool and the public

mempool. Specifically, if a validator mines a block containing transactions submitted through the

Flashbots private pool, the revenue includes the fees from these transactions as well as those from

the public mempool. On the other hand, if a block only contains transactions submitted through the

public mempool, then the revenue is solely derived from the transaction fees of these transactions.

The fixed block reward is not included in our measure of validators’ revenue.

Cost-to-Revenue Ratio for Frontrunning Attackers. In our analysis, we quantify the cost-

to-revenue ratio for each frontrunning attack we identify by dividing the transaction fee paid by the

attacker by the revenue generated from the frontrunning attack. The higher the cost-to revenue

ratio, the more portion of frontrunning profits are appropriated by validators for each frontrunning

attack. Both the transaction fee and the revenue are expressed in the unit of Ether.

Probability of being Frontrun for User Transactions. For each transaction submitted

through the public mempool, we determine its frontrunnability and whether it has been frontrun

using the methodology outlined in Appendix B.2. At a very high-level, we define a transaction as

frontrunnable if it is profitable to frontrun and then backrun such transaction given the transaction

fee paid this transaction, the trade size, and the slippage tolerance of this transaction. We identified

a transaction as being frontrun if there exists an attacker who first frontrun this transaction and

then backrun transaction and made a positive profit. The probability of being frontrun in the

public pool in a given day t is calculated as the number of transaction that are actually frontrun

by attackers in that day divided by the number of all frontrunnable transactions submitted to the

public pool on that day.

Proportion of User Transactions Sent Through the Private Pool. For each transaction

submitted through the Flashbots private pool, we examine whether it would be frontrunnable if

submitted through the public mempool. The proportion of user transactions sent through the

private pool in day t is calculated as the number of frontrunnable transactions submitted through

Flashbots during day t divided by the number of all frontrunnable transactions submitted in both

the private and public pool during that day.
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Figure 3: Adoption Rate of Flashbots Private
Pool.
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Figure 4: Proportion of Validators’ Rev-
enue Extracted from Flashbots Private Pool
Transactions.

Figure 5: Panel (a) - top left: Distribution of the Cost-to-Revenue Ratio of Attackers in the Public
Mempool Before the Introduction of Flashbots. Panel (b) - top right: Distribution of the Cost-
to-Revenue Ratio of Attackers on Flashbots private pool. Panel (c) - bottom: Distribution of the
Cost-to-Revenue Ratio of Attackers in the Public Mempool After the Introduction of Flashbots.
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N Mean SD 10th 50th 90th
Panel A: Validators Data

Daily Private Pool Adoption Rate 171 0.343 0.239 0.01 0.346 0.613
Revenues of Validators Monitoring Private Pool (ETH) 377,366 0.972 17.82 0.235 0.606 2.2
Proportion of Revenue from Private Transactions (ETH) 377,366 0.139 0.148 0.024 0.086 0.326
Revenues of Validators Monitoring only Public Mempool (ETH) 2,582,015 1.161 9.585 0.231 0.832 2.36

Panel B: Attackers Data
Frontunning Profit of Attackers Using Private Pool (ETH) 29,465 0.248 0.495 0.042 0.125 0.497
Transaction Cost of Attackers Using Private Pool (ETH) 29,465 0.182 0.363 0.032 0.092 0.371
Cost-to-revenue Ratio of Attackers Using Private Pool 29,465 0.755 0.151 0.51 0.801 0.901

Frontunning Profit of Attackers Using Public Pool (ETH) 394,239 0.204 0.571 0.033 0.091 0.408
Frontunning Profit of Attackers Using Public Pool (ETH) 394,239 0.04 0.093 0.004 0.023 0.069
Cost-to-revenue Ratio of Attackers Using Public Pool 394,239 0.309 0.239 0.021 0.261 0.662

Panel C: Users Data
Daily Probability of Being Attacked for Users in Public Pool 80 0.165 0.034 0.120 0.165 0.209
Daily Proportion of Frontrunnable Transactions Sent to Private Pool 80 0.033 0.038 0 0.01 0.09

Table 2: Summary Statistics

Stylized Facts and Descriptive Statistics. Our data is summarized in Table 2, which

provides a range of summary statistics. In Panel A, we examine the daily adoption rate of the private

pool by validators and their resulting revenues. The estimated daily adoption rate of the Flashbots

private pool is plotted in Figure 3. The average adoption rate by validators is approximately

35%, which supports our model’s implication that the private pool is being partially adopted. For

validators who participate in the Flashbots private pool, Figure 4 plots their proportion of revenue

extracted from private pool transactions. It is evident that transaction fees from the private pool

contribute a non-trivial portion (around 15%) of the revenues for validators who monitor it. As

expected, the proportion of fee revenue from the private pool increases with its adoption rate, as

low adoption by validators likely leads to low adoption by users. (See Proposition 3).

In Panel B of Table 2, we present the stylized facts regarding the profit and cost of attackers.

The data reveals that roughly 30,000 frontrunning attacks were conducted through the Flashbots

private pool, constituting approximately 20% of all frontrunning attacks (totaling around 170,000)

during the analyzed period. It is noteworthy that, considering only 35% of blocks are appended by

validators monitoring the private pool, even if attackers utilized both the private pool and public

mempool equally for each transaction, only 35% of frontrunning attacks would have taken place

through the private pool. This observation supports the conclusion that attackers indeed adopt the

private pool.

To provide further insight, we plot the distribution of the cost-to-revenue ratios of attackers
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in Figure 5. A comparison of Panels (a) to (c) shows that the cost-to-revenue ratio for attackers

executing their frontrunning activities through the Flashbots private pool is significantly higher

compared to those using the public mempool. This is consistent with our prediction in 2 that

attackers are willing to submit higher transaction fees in the private pool. Figure 6 displays the

daily average cost-to-revenue ratio of attackers in both the public mempool and Flashbots private

pool.

In Panel C of Table 2, we present data on users’ pool choice and their estimated probability

of being frontrun. Figure 7 plots users’ probability of being frontrun in the public pool (red) and

the proportion of their transactions submitted through Flashbots (black). The graph supports our

model’s prediction that higher frontrunning risks incentivize users to use the private pool.
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Figure 6: Daily Average Cost-to-Revenue
Ratio of Attackers. The blue dotted line
represents attackers in the public mem-
pool before the introduction of Flashbots.
The black dashed line represents attack
transactions executed through the Flash-
bots private pool. The orange solid line
represents attack transactions executed
through the public mempool after the in-
troduction of Flashbots.
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Figure 7: Black Solid Line: Daily Aver-
age Probability of a Frontrunnable Trans-
action Being Attacked in the Public
Pool. Red Dotted Line: Daily Proportion
of Frontrunnable Transactions Submitted
Through Flashbots Private Pool.

6.4 Empirical Results

In this section, we present empirical evidence that supports the main testable implications of our

model.
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6.4.1 Validators’ Revenue.

To assess the impact of participating in the Flashbots private pool on validators’ revenue, we

estimate the following linear model:

MinerRevenuet = γt + ρ11Private + ϵt, (4)

where t indexes the date, MinerRevenuet is the revenue of the miner per block, γt is the day fixed

effects, 1Private is a dummy variable for blocks mined by validators participating in the Flashbots

pool, and ϵt is an error term. Our standard errors are clustered at the day level. The coefficient ρ1

measures the change in revenue per block after a miner joins Flashbots.

Table 3 shows the results of our regression analysis. The estimates indicate that, on average,

validators who participate in the Flashbots private pool earn an additional 0.16 ETH per block

compared to those who only monitor the public pool. This finding is in line with our model

prediction that the expected payoff of validators who adopt the private pool is higher than that of

validators who stay on the public pool. The coefficient estimates are statistically and economically

significant.

Table 3: Results from regressing a binary variable indicating whether or not the miner of the block
joins Flashbots on revenue from mining the block. The regression data covers the period from Nov
1, 2020 to July 31, 2021. Day fixed effects are included for all regressions. Standard errors are
clustered at the day level. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dependent variables: Validator’s Revenue per Block

Intercept 1.21∗∗∗

(0.06)
Private 0.16∗∗∗

(0.032)

Day fixed effects? yes
Observations 1,762,017

R2 0.02

6.4.2 Intensified Fee Bidding War of Attackers

We estimate two linear models to compare the cost-to-revenue ratio of attackers before and after

the introduction of the Flashbots private pool. The models are specified as follows:
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Table 4: Results from regressing the cost-to-revenue ratio of attackers on a dummy variable equal
to one after the introduction of Flashbots and zero otherwise, and another dummy variable equal to
one if the attack order has been submitted through Flashbots and zero otherwise. The data covers
the period from May 4, 2020 to Jul 31, 2021. Asterisks denote significance levels (***=1%, **=5%,
*=10%).

Dependent variables: Cost-to-Revenue Ratio
(a) (b)

Intercept 0.300∗∗∗ 0.300∗∗∗

(0.001) (0.001)
After 0.091∗∗∗ 0.013∗∗∗

(0.001) (0.001)
Private 0.441∗∗∗

(0.002)

Observations 428,685 428,685
R2 0.03 0.19

CostRevRatio = ρ21After + ϵ, (5)

CostRevRatio = ρ31After + ρ41Private + ϵ, (6)

where CostRevRatio is the cost-to-revenue ratio of attackers, 1After is a dummy variable equal

to one after the introduction of Flashbots and zero otherwise, 1Private is a dummy variable equal

to one for transactions submitted through Flashbots and zero for transactions sent through the

public mempool, and ϵ is an error term. The coefficient ρ2 quantifies the difference in the cost-

to-revenue ratio of attackers before and after the introduction of Flashbots private pool, while ρ4

quantifies the difference between the cost-to-revenue ratio of attackers who submit through the

public mempool and attackers who send transactions through Flashbots private pool, after the

introduction of Flashbots.

The results in Table 4 (a) demonstrate that the average cost-to-revenue ratio of attackers in-

creased by approximately 0.09 after the introduction of Flashbots private pool, which represents

a nearly a third increase compared to the average cost-to-revenue ratio prior to the introduction

of Flashbots (around 0.3). This suggests that validators have appropriated a larger portion of the

frontrunning profit, which is consistent with the predictions of our model.
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The results in Table 4 (b) indicate that the average cost-to-revenue ratio for attackers who

utilized the Flashbots private pool is 0.44 higher compared to those who only submitted their

transactions through the public mempool. The cost-to-revenue ratio for attackers in the public

pool, on the other hand, remains largely unchanged from before the introduction of the private

pool. This implies that the increase in the cost-to-revenue ratio after the introduction of Flashbots

is primarily due to the use of the private pool by attackers. The results also show that approximately

75% of the profits generated from these attacks are appropriated by validators, which is more than

double the appropriation of attackers’ profits in the public pool (around 30%). These findings are

both statistically and economically significant.

Our regression results support the notion that the introduction of the private pool has intensified

fee bidding wars between attackers and increased their costs. Attackers bid at higher levels in the

private pool, which in turn reduces their welfare.

6.4.3 When will Users Choose Pivate Pool?

We estimate the following linear model to measure the relationship between users’ probability of

being frontrun and their choice of public versus private pools:

ProportionPrivate = κFrontrunProb+ ϵ, (7)

ProportionPrivate is the proportion of frontrunnable transactions sent through Flashbots, FrontrunProb

is the probability of being frontrun for transactions sent through the public mempool venue, and

ϵ is an error term. The coefficient κ quantifies the sensitivity of users’ choice of pools (Flashbots

versus public mempool) to the frontrunning risk faced by users.

Table 5 indicates that an increase in the probability of being frontrun in public pool is positively

correlated (60% correlation) with a higher proportion of users’ transactions sent through Flashbots.

A 1% increase in the probability of being frontrun is associated with a 0.6% increase in the proportion

of frontrunnable transactions submitted through Flashbots. The coefficient estimates indicate that

these relationships are statistically and economically significant.

In summary, Table 5 supports our model implication that frontrunnable users migrate from the

public to private pools when they face higher frontrun risk.
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Table 5: Results from regressing the proportion of frontrunnable transactions sent through Flashbots
on the probability of being frontrun. The data covers a sample period from Feb 11, 2020, to May
1, 2021. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dependent variables:
Proportion of Transactions Through Flashbots

Intercept -0.066∗∗

(0.18)
Probability of Being Frontrun 0.605∗∗∗

(0.010)

Observations 80
R2 0.3

7 Conclusion

The usage of private pools exposes users to execution risk, but also allow them to protect the

content of their transactions which are sent privately to validators and not broadcast in the public

mempool. We have shown that private pools are welfare enhancing because they increase the

amount of blockspace assigned to value generating transactions, and thus result in a higher allocative

efficiency. However, our analysis shows that private pools neither necessarily eliminate frontrunning

risk nor reduce the transaction costs on blockchain. This is the case because rent-seeking validators

are relucant to forgo their huge rents extracted from attackers. Existing empirical evidence is

supportive of such prediction. In the period between May 2020 and April 2021, frontrunning

attacks have generated MEV above 100 million USD, of which around 35% has been extracted

by validators. This is also the reason why relay services are referred to as “Frontrunning as a

service (FaaS)" instead of “Frontrunning prevention service”. Essentially, a private pool provides

an efficient, transparent platform for attackers to extract MEV, which exacerbates the arms race

between attackers and redistributes higher MEV to validators. However, it has not achieved its

intended purpose of eliminating or mitigating frontrunning.

We have presented a solution to achieve full adoption and eliminate frontrunning. Such a solution

requires users to credibly commit to paying an additional fee to validators for executing their orders

privately. Alternative solutions to the frontrunning problem would be to reshape the communication

mechanism between nodes, such as encrypting the mempool, or change the transaction ordering

mechanism, for example introducing fair sequencing of orders. Whether a contractual solution such
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as the one proposed in this paper would be more effective than a solution at the protocol level is

left for future research.
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A Technical Results and Proofs

Proofs of Proposition 2. If the frontrunnable user does not submit to the blockchain or submit to

the private pool, then the attackers will have no user to front-run, and thus they will not submit

any transactions.

If the Bth largest bid submitted by users in period 2, f (B), is larger than or equal to c− ϵ, then

both attackers will not submit. This is because the cost of getting on the blockchain will be larger

than the gain from executing a frontrunning attack.

We then consider the case where users submit to the blockchain through the public pool, and

f (B) < c − ϵ. We also only consider the case where both attackers observe the frontrunnable

user’s transaction, otherwise, there will be no frontrunning in period 3. We first outline all six

potential equilibrium outcomes for the pool selection of attackers. We then solve for the equilibrium

transaction fee bidding strategies in all six cases. Finally, we solve for the equilibrium venue selection

strategies of attackers.

There are six potential equilibrium outcomes for attackers’ pool selection: (1) Both attackers

choose the private pool; (2) One attacker chooses the private pool, and the other attacker chooses

the public pool; (3) One attacker chooses the private pool, and the other attacker chooses both

private and public pool; (4) One attacker chooses the public pool, and the other attacker chooses

both public and private; (5) Both attackers choose the public pool; (6) Each attacker chooses both

public and private pool.

Case 1: Both attackers choose the private pool. Since it is a seal-bid, first-price auction

for a constant value c, both attackers bid c in equilibrium. Note that no matter how large the

frontrunnable user bids in the public pool, transactions submitted through the private will always

have priority execution when the block is appended by a validator monitoring the private pool.

Consequently, the attackers can still successfully frontrun by bidding c even if the frontrunnable

user bids f0 > c.

Case 2: one attacker chooses the private pool, and the other attacker chooses the

public pool. As there is no competition for execution in the private pool, the attacker will bid

the lowest bid to get on chain f (B) + ϵ in the private pool when he observes an attack opportunity.
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In the public pool, the other attacker will bid f0 + ϵ if f (B) ≤ f0 < c − ϵ, in order to outbid the

frontrunnable user. However, if the transaction cost, f0+ ϵ, exceeds the gain from the attack, c, the

attacker will not bid in the public pool. If f (B) > f0 the attacker will bid only f (B) + ϵ.

Case 3: One attacker chooses the private pool, and the other attacker chooses both

the private and public pools. Both attackers bid c in the private pool. They bid truthfully in

the private pool because this is a sealed-bid first-price auction, where both bidders have the same

constant valuation of c. As for the attacker submitting to both pools, he will bid f0+ϵ in the public

pool if f (B) < f0 < c− ϵ, f (B) + ϵ in the public pool if f (B) ≥ f0, and not bid in the public pool if

f0 > c− ϵ.

Case 4: one attacker chooses the public pool, and the other attacker chooses both

private and public pool. We first consider the strategy of the attacker who submits transactions

to both public and private pools. In the private pool, this attacker always bids f (B) + ϵ due to the

absence of competition.

In the public pool, the attackers’ strategy is influenced by the value of f0. One attacker will

always submit an opening bid equal to f0 + ϵ in the public pool if vB−1 < f0 < c− ϵ, and equal to

vB−1 + ϵ in the public pool if vB−1 > f0. No attacker will bid in the public pool if f0 ≥ c − ϵ. If

the auction lasts a single round, then the attacker who submits the opening bid wins the auction.

If the auction lasts two rounds, then another attacker also joins in the auction. The later attacker

will submit a bid ϵ higher than the previous bid.

Case 5: both attackers choose the public pool. If both attackers choose the public pool,

their bidding strategy is the same as in Case 4.

Case 6: both attackers choose both public and private pools If both attackers choose both

public and private pools, they all bid truthfully in the private pool. This is because the bidding

mechanism is a sealed-bid, first-price auction where both attackers have the same valuation. In the

public pool, they all use the same bidding strategy as in Case 4.

We then calculate the expected equilibrium payoff of each attacker for all six cases, and construct

the following payoff matrices.
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If f (B) ≥ f0, the payoff matrices of both attackers are as follows:

A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),

(1− α)(c− (f (B) + ϵ))

0,

(1− α)(c− (f (B) + ϵ))

Public (1− α)(c− (f (B) + ϵ)),

α(c− (f (B) + ϵ))

1
2
(c− (f (B) + 2ϵ)),

1
2
(c− (f (B) + 2ϵ))

1
2
(1− α)(c− (f (B) + 2ϵ)),

1
2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

All (1− α)(c− (f (B) + ϵ)),
0

1
2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ)),

1
2
(1− α)(c− (f (B) + 2ϵ))

( 1
2
(c− (f (B) + 2ϵ))(1− α)),

( 1
2
(c− (f (B) + 2ϵ))(1− α))

In this case, it is easy to check that the unique symmetric nash equilibrium for this subgame

is achieved when both attackers use both the private and the public pool. When both attackers

use the private pool only, both of their payoffs are zero, and both attackers can deviate to either

using the public pool only or using both pools and have a strictly better payoff. This is because

α(c − (f (B) + ϵ)) > 0,∀α > 0 and (1 − α)(c − (f (B) + ϵ)) > 0, ∀α < 1. When both attackers use

the public pool only, any attacker can profitably deviate to using both pools. This is because the

payoff of using both pools is strictly higher:

1

2
(c− (f (B) + 2ϵ)) <

1

2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

When both attackers are using both pools, they do not have any profitable deviation.

If f (B) < f0 < c− ϵ, the payoff matrices of both attackers are as follows:

A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Public
0,

α(c− (f (B) + ϵ))

1
2
(c− (f0 + 2ϵ)),

1
2
(c− (f0 + 2ϵ))

1
2
(1− α)(c− (f0 + 2ϵ)),

1
2
(c− (f0 + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

All (1− α)(c− (f0 + ϵ)),
0

1
2
(c− (f0 + 2ϵ))(1− α) + α(c− (f (B) + ϵ)),

1
2
(1− α)(c− (f0 + 2ϵ))

( 1
2
(c− (f0 + 2ϵ))(1− α)),

( 1
2
(c− (f0 + 2ϵ))(1− α))

In this case, following the same procedure as the previous case, we can easily verify that the

unique symmetric nash equilibrium for this subgame is achieved when both attackers use both the

private and the public pool.

If f0 > c − ϵ, the payoff matrices of both attackers are as follows. It is easy to check that the

symmetric Nash equilibria are achieved when both attackers use the private pool or when both

attackers use both pools.
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A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Public
0,

α(c− (f (B) + ϵ))

0,
0

0,

α(c− (f (B) + ϵ))

All 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Proof of Proposition ??. If the frontrunnable user chooses the private pool, her optimal fee will be

vB + ϵ, and her expected payoff is

α(v0 − (vB + ϵ)).

This is because she does not face frontrunning risk, so she only has to bid a sufficiently high fee

to ensure that she will get on the chain. In this way, her optimal choice is to “barely" outbid the

Bth user. Note that the optimal fee choice of user i, i = 1, 2, ..., B − 1 will also be vB + ϵ.

We then show that if instead, the frontrunnable user chooses the public pool, her optimal fee

will be vB−1 + ϵ, and her expected payoff is

(v0 − c ∗ p− (vB−1 + ϵ))).

If she chooses a fee below vB−1, she would not get on the chain and have a lower payoff −c ∗ p.

If she chooses any fee f0 in between vB−1 + ϵ and c − ϵ, her payoff will be (v0 − c ∗ p − f0)) <

(v0−c∗p−(vB−1+ϵ))). If she chooses a fee above c−ϵ, then her payoff will be (v0−c∗α∗p−f0)) <=

(v0− c ∗α ∗ p− c+ ϵ)) < v0− c ∗ p− (vB−1+ ϵ)). This is because we assume (1− p) ∗ c > vB−1. The

above argument shows that the optimal fee of the frontrunnable user in the public pool is vB−1+ ϵ.

Note that the optimal fee choice of user i, i = 1, 2, ..., B − 2 will also be vB−1 + ϵ.

Comparing the payoff in the two cases, that is, using public pool and using the private pool, we

have that the frontrunnable user chooses the public pool if and only if α > λ =
v0−c∗p−(vB−1+ϵ))

v0−(vB+ϵ)

Proof of Proposition 1. Suppose α = 0. If the frontrunnable user submits through the public pool,

then the payoff of the frontrunnable user is

v0 − c ∗ p− (vB−1 + ϵ)).
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The quantity above is positive if and only if c < c1 =
1
p(v0−(vB−1+ϵ)). If it is positive, then the

frontrunnable user will submit her transaction. Otherwise, she will not submit to the blockchain.

Proof of Proposition 4. If c > c1, the frontrunnable user will only use the private pool. This is

because the payoff received from submitting through the public channel is v0−c∗p−(vB−1+ϵ)) < 0,

while the payoff from submitting through the private pool is α(v0 − (vB−1 + ϵ)) ≥ 0.

Validators who monitor the public pool only earn rlit(α) = vB+1 + ϵ + (B − 1)(vB + ϵ) after

validating a block. Consider a marginal validator with small mass 1
N > 0 who migrates from the

public to the private pool. The payoff of each such validator is rprivate(α + 1
N ) = B(vB + ϵ) >

vB+1 + ϵ+ (B − 1)(vB + ϵ). In equilibrium, all validators monitor the private pool.

If c ≤ c1, we can show that ⌊Nλ⌋ is a equilibrium, and it is easy to verify that the other

equilibrium is 1.

At ⌊Nλ⌋, consider a marginal validator with sufficiently small mass 1
N > 0 monitoring the

private pool. The payoff of each such validator is equal to (B − 1)(vB−1 + ϵ) + c ∗ p+ (1− p)vB−1.

If these validators migrate to only monitor the public pool, their payoff from the public pool is

(B − 1)(vB−1 + ϵ) + (vB−1 + 2ϵ) < (B − 1)(vB−1 + ϵ) + c ∗ p + (1 − p)vB−1. Hence, there is no

incentive for them to migrate.

Consider a marginal validator with sufficiently small mass 1
N > 0 who only monitor transactions

through the public pool. Their payoff is equal to (B−1)(vB−1+ ϵ)+(vB−1+2ϵ). If they migrate to

monitor transactions submitted through the private pool, their payoff is equal to rprivate(
⌊Nλ⌋
N + 1

N ) =

B(vB + ϵ) < (B − 1)(vB−1 + ϵ) + (vB−1 + 2ϵ). There is no incentive for them to migrate. This is

because if α > λ, the frontrunnable user migrates to the private pool, and there is no longer a

frontrunning attack.

At ⌊Nλ⌋, the frontrunnable user still submits to the public pool as shown in Proposition ??,

and the attackers submit to both public and private pools as shown in Proposition 2.

Proof of Proposition 8. If c > c1, the frontrunnable trader does not submit transactions at all,

thus the minimum fee that guarantees the execution of a transaction is vB and the total fee of all

transactions is B · (vB+1 + ϵ). With a private pool, the execution fee increases to (vB + ϵ), while

the total fee increases to B · (vB + ϵ).
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If c ≤ c1, the minimum fee that guarantees the execution of a transaction is always (vB−1 + ϵ).

Proof of Proposition 7. We compare the welfare of validators, frontrunnable users, and attackers

separately, with and without a private pool. We first consider the case where c < c1.

Without a private pool, the expected payoff of the frontrunnable user before the private pool is

allowed is

v0 − (vB−1 + ϵ)− c

.

The expected payoff of the winning validator is

(vB−1 + ϵ) ∗ (B − 1) + (vB−1 + 2ϵ)

.

The expected payoff of attackers is

1

2
(c− (vB−1 + 2ϵ))

.

The expected payoff of all non-frontrunnable users is

B−2∑
i=1

vi − (vB−1 + ϵ) ∗ (B − 2)

.

Then, we consider the welfare of different stakeholders in SPE.

When α∗ = ⌊λN⌋, the frontrunnable user selects the public pool and the attackers select both.

The expected payoff of the frontrunnable user is v0 − (vB−1 + ϵ) − c. The payoff of the winning

validator is (vB−1 + ϵ) ∗ (B − 1) + c if she monitors the private pool. The expected payoff of the

winning validator is (vB−1 + ϵ) ∗ (B − 1) + (vB−1 + 2ϵ) if she monitors the public pool only. The

payoff of attackers is (12(c− (vB−1+2ϵ))(1−α)). The expected payoff of all non-frontrunnable users
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is
∑B−2

i=1 vi − (vB−1 + ϵ) ∗ (B − 2).

We then consider the case where c > c1. Without a private pool, the expected payoff of the

frontrunnable user before the private pool is allowed is 0, as she will not submit her transaction to

the blockchain. The expected payoff of the winning validator is

(vB+1 + ϵ) ∗B

. The expected payoff of attackers is 0. The expected payoff of all non-frontrunnable users is

B∑
i=1

vi − (vB+1 + ϵ) ∗B

.

Then, we consider the welfare of different stakeholders in SPE.

When α∗ = 1, the frontrunnable user selects the private pool. The expected payoff of the

frontrunnable user is v0 − (vB + ϵ). The payoff of the winning validator is (vB + ϵ) ∗B. The payoff

of attackers is 0. The expected payoff of all non-frontrunnable users is
∑B−1

i=1 vi− (vB + ϵ) ∗ (B− 1).

It is easy to verify that the payoff of validators and frontrunnable users indeed increases, while the

welfare of other agents decreases.

Proof of Proposition 5. The aggregate welfare of all stakeholders is the sum of the valuations of

transactions included in the block.

If c > c1, then the frontrunnable trader does not submit transactions without the option of

a private pool. Therefore, the aggregate social welfare of stakeholders is
∑B

i=1 vi. Because full

adoption is the only equilibrium in this scenario, the aggregate social welfare will increase to
∑B−1

i=0 vi

after allowing for a private pool.

If c ≤ c1, the expected aggregate social welfare of stakeholders without a private pool is
∑B−2

i=0 vi.

The expected aggregate social welfare of stakeholders if a private pool is allowed is still
∑B−2

i=0 vi

Therefore, the possibility of a private pool weakly raises aggregate welfare in all equilibria.

If the private pool is fully adopted, the sum of valuations of transactions included in the block

is
∑B−1

i=0 vi, and the maximized aggregated welfare is achieved. If a private pool is only partially
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adopted, an attack transaction is included in the block, and the aggregate welfare is only
∑B−2

i=0 vi.

Proof of Proposition 6. If c > c1, there exists a unique full adoption equilibrium at which the

aggregate welfare is maximized. The required payment is then zero.

If c ≤ c1, there exists a partial adoption equilibrium. At this equilibrium, the adoption rate of

the private pool is α∗ = λ. At equilibrium, the expected attack loss of the frontrunnable user is

c. c is also the sum of the expected attack revenues of the two attackers. The sum of expected

transaction fees paid by two attackers is (1− α∗)(vB−1 + 2ϵ) + α∗c.

If the frontrunnable user commits to pay θ = c to the validator who executes her order in the

private pool. When (vB−1 + ϵ) − (vB + ϵ) is sufficiently small, rprivate(λ + 1
N ) = B(vB + ϵ) + c >

(B−1)(vB−1+ϵ)+(vB−1+2ϵ) = rlit(λ+
1
N ). In this way, a marginal validator will move to monitor

the private pool, and any partial adoption equilibrium does not exist. In addition, the frontrunnable

user is not worse off after making the payment.
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B Empirical Methodology

B.1 Frontrunning attacks

In this section, we explain the methodology used to identify frontrunning attacks. We identify a

two-legged trade (TA1, TA2) as a frontrunning attack, and a transaction TV as the corresponding

victim transaction, if the following conditions are met:

1. TA1 and TA2 are included in the same block, and TA1 is executed before TA2. TA1 and TA2

have different transaction hashes.

2. TA1 and TA2 swap assets in the same liquidity pool, but in opposite directions. The input

amount for the swap in TA2 is equal to the output amount of the swap in TA1. In this way,

the transaction TA2 closes the position built up in the first leg TA1.

3. TV is executed between TA1 and TA2. TV swaps assets in the same liquidity pool as TA1 and

TA2. TV swaps assets in the same direction as TA1.

4. Every transaction TA2 is mapped to exactly one transaction TA1.

There exists frontrunning attacks where TA1 and TA2 are placed in different blocks. However,

attackers normally prefer to include TA1 and TA2 in one block to minimize inventory risk. Nonethe-

less, the above procedure allows us to find a lower bound for the number of frontrunning attacks.

The revenue of a frontrunning attack is the difference between the output of TA2 and the input of

TA1, and the profit is the revenue minus the gas fee paid for these two transactions.

B.2 Frontrunnable Transactions

In this section, we provide that methodology to identify transactions vulnerable to frontrunning

attacks. Observe that not all frontrunnable transactions are exploited by attackers.

There were 17, 644, 672 transactions in the given time frame. The input token of 9, 003, 759 of

these transactions is ETH. We only focus on those transactions. This is because most attackers are

bots, and only conduct attacks where ETH serves as input token. For each transaction, we calculate

the optimal revenue that an attacker can attain by frontrunning this transaction. If the revenue is

positive, then we identify this transaction as frontrunnable.
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A swap transaction often has a slippage tolerance threshold m which specifies the minimum

amount of output token to be received in the transaction. If the price impact of the frontrunning

transaction TA1 is too large, the slippage tolerance threshold of the victim transaction TV may be

triggered and TV will automatically fail. In this case, the attack will not be profitable. This is why

we have to account for the slippage tolerance threshold for each swap transaction in our calculation.

Formally, let v be the amount of input token specified in the victim transaction TV , and m the

minimum amount of output token to be received. Let x be the amount of input token swapped

in the frontrunning transaction TA1. Let r1 and r2 represent the liquidity reserves of input token

and output token in the pool. The transaction fee in Uniswap and Sushiswap is 0.3%. The victim

transaction will not fail if

v · 0.997 · (r2 − x·0.997·r2
r1+0.997·x)

(r1 + x) + 0.997 · v
≥ m.

We solve the largest x that satisfies the above inequality. The result can be written as

maxInputA1(r1, r2, v,m) =
5.01505 · 10−7 · t√

m
− 1.0015r1 − 0.4985v,

where

t =
√
9000000r21m+ 3976036000000r1r2v − 5964054000r1mv + 988053892081mv2.

The maxInputA1 is the largest trade size of transaction TA1 such that TV will not fail. We can

then calculate the output amount in the second leg of the attack TA2 which closes the position built

up in TA1. TV is frontrunnable if the constructed frontrunning attack yields a positive revenue. In

total, we identify 3, 612, 343 frontrunnable transactions with ETH as the input token.
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