When Insurers Exit: Climate Losses, Fragile Insurers, and Mortgage Markets

Pari Sastry Columbia GSB Ishita Sen Harvard Business School Ana-Maria Tenekedjieva Federal Reserve Board

Conclusion

NY Fed-ECB Workshop

June 2024

*Disclaimer: The views expressed do not represent the views of the Federal Reserve System.

Introduction

- ► Unprecedented rise in climate-related property damage.
- ▶ Yet enormous amount of economic activity takes place in the riskiest areas.
- ► Are financial markets providing the right incentives?

Introduction Institutional background 1. Insurance market trends 2. Mortgage market implications Conc

Introduction

- ► Unprecedented rise in climate-related property damage.
- ▶ Yet enormous amount of economic activity takes place in the riskiest areas.
- ► Are financial markets providing the right incentives?

This paper: Mortgage markets (GSEs) mis-calibrate insurance market risks.

- ⇒ Too much credit originated in risky areas.
- \Rightarrow Fragile insurers \rightarrow elevated mortgage delinquencies after disasters.
- ⇒ GSEs (taxpayers) bear large unpriced exposure to insurance risk.

GSEs property insurance requirements

▶ Distribution of physical climate losses through the mortgage market:

HouseholdsLendersGSEsProperty InsurersRating AgenciesHome EquityMortgage OriginationMortgage PurchaseProperty DamageAssess Insurers' Solvency

GSEs property insurance requirements

▶ Distribution of physical climate losses through the mortgage market:

HouseholdsLendersGSEsProperty InsurersRating AgenciesHome EquityMortgage OriginationMortgage PurchaseProperty DamageAssess Insurers' Solvency

▶ Property insurance is **mandatory** to obtain a mortgage.

Distribution of physical climate losses through the mortgage market:

Households	Lenders	GSE s	Property Insurers	Rating Agencies
Home Equity	Mortgage Origination	Mortgage Purchase	Property Damage	Assess Insurers' Solvency

- ▶ Property insurance is **mandatory** to obtain a mortgage.
- ► GSEs' have **Financial Strength Rating** requirements to assess insurers' ability to pay claims.

Rating Agency	Began	Regulated	Fannie Mae	Freddie Mac
AM Best	1899	2007	"B" or better	"B+" or better
S&P Global	1971	2007	"BBB" or better	"BBB" or better
Demotech	1990s	2022	"A" or better	"A" or better

GSEs property insurance requirements

▶ Distribution of physical climate losses through the mortgage market:

Households	Lenders	GSEs	Property Insurers	Rating Agencies
Home Equity	Mortgage Origination	Mortgage Purchase	Property Damage	Assess Insurers' Solvency

- ▶ Property insurance is **mandatory** to obtain a mortgage.
- ► GSEs' have **Financial Strength Rating** requirements to assess insurers' ability to pay claims.

Rating Agency	Began	Regulated	Fannie Mae	Freddie Mac
AM Best	1899	2007	"B" or better	"B $+$ " or better
S&P Global	1971	2007	"BBB" or better	"BBB" or better
Demotech	1990s	2022	"A" or better	"A" or better

▶ Differences in insurers' risk are **not priced** by the GSEs (g-fees, LLPAs).

Institutional background 1. Insurance market trends 2. Mortgage market implications Conclusion

Data

Novel Data: Linking insurance and mortgage markets at a county level for Florida.

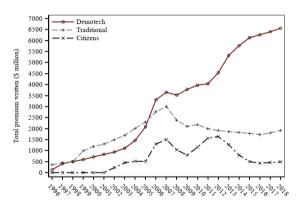
Insurance:

- 1. Florida QUASR: insurer-county-year level data
 - ▶ Premiums, policies, coverage, cancellations, and transfers from 2009 to 2018.
- 2. Annual Insurer Regulatory Filings:
 - ► Balance sheet and Reinsurance
 - Underwriting (by state and business line) and Asset holdings
 - Regulatory examinations and restatements
- 3. Financial Strength Ratings (FSRs): FSRs from AM Best, S&P, and Demotech.

Mortgage:

- 1. HMDA: mortgage originations and sales to GSEs
- 2. McDash: mortgage performance

Institutional background 1. Insurance market trends 2. Mortgage market implications Conc

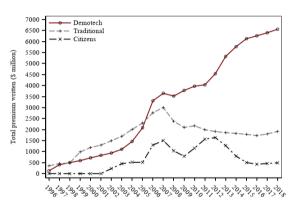

Outline

Empirical results:

- ▶ Part 1: Insurance market trends.
- ► Part 2: Who bears insurance fragility risks?
- ► Part 3: Dissecting GSE risks.
 - ► Implicit transfer (elevated mortgage delinquencies)
 - ► Credit supply distortion (lax screening)

Dramatic growth of fragile insurers

Growth of Demotech insurers


► Large market share also in other risky states.

ntroduction Institutional background 1. Insurance market trends 2. Mortgage market implications Cond

Dramatic growth of fragile insurers

Growth of Demotech insurers

► Large market share also in other risky states.

Fragility of Demotech insurers

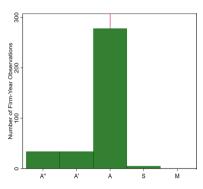
► Higher insolvencies:

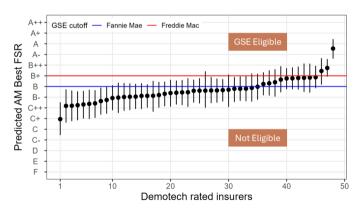
	Demotech	Traditional
No. insurers	80	50
Insolvent	15	0
% insolvent	19%	0.0%

- Underwrite in riskier areas, less diversified, less capitalized, lower quality reinsurers.
- ► High consumer complaints, face lax regulation.

Demotech insurers receive inflated ratings

Demotech ratings

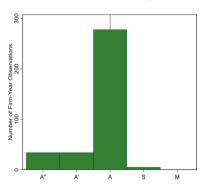

A vast majority of Demotech insurers receive an A (Exceptional) rating \rightarrow meet GSE eligibility.


ntroduction Institutional background 1. Insurance market trends 2. Mortgage market implications Conclus

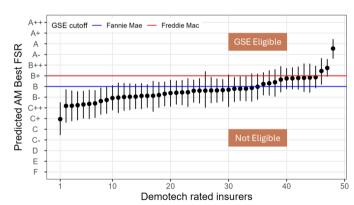
Demotech insurers receive inflated ratings

Demotech ratings

Counterfactual AM Best ratings



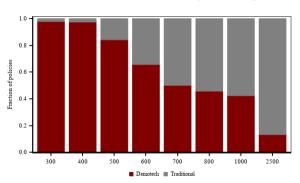
A vast majority of Demotech insurers receive an A (Exceptional) rating → meet GSE eligibility.


ntroduction Institutional background 1. Insurance market trends 2. Mortgage market implications Conclus

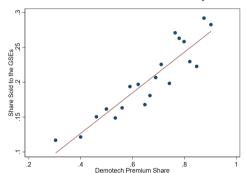
Demotech insurers receive inflated ratings

Demotech ratings

Counterfactual AM Best ratings



- A vast majority of Demotech insurers receive an A (Exceptional) rating → meet GSE eligibility.


ntroduction Institutional background 1. Insurance market trends 2. Mortgage market implications Conclus

Who bears insurer fragility risk?

Demotech market share by Coverage

Demotech market share and GSE purchases

▶ Demotech insurers dominate the conforming (GSE eligible loans) segment.

Are lenders aware of insurance counterparty risk? Test: Depopulation

Empirical challenge: High risk borrowers are more likely insured by Demotech insurers.

Citizens depopulation natural experiment:

- ► Citizens → Florida's government backed insurer-of-last-resort.
- ▶ Depopulation: Large program to transfer policies to private insurers (>850K b/w 2009-18).
- ▶ Only Demotech insurers participated (39/40).
- lacktriangle Participating insurers have higher insolvency rates and counterfactual AM Best rating \sim C++.
- ▶ Advantage: Shift from a high quality to a low quality insurer for the same borrower.
- ► Test: After the Depopulation, do lenders sell mortgages they had previously retained?

Depopulation test: $log(GSE)_{c,t} = \alpha + \beta log(Depopulated)_{c,t} + \gamma_c + \delta_t + X_{ct}\Gamma + \varepsilon_{c,t}$.

	log(GSE)	
	(1)	(2)
log(Depopulated)	0.0343**	0.0331**
	(0.0157)	(0.0162)
County FE	Υ	Υ
Year FE	Υ	Υ
Controls	N	Υ
Sample Period	2009-2018	2009-2018
Number of Observations	619	618
Adjusted R-squared	0.974	0.974

- ▶ log(GSE) \$ value of seasoned mortgages sold to GSEs.
- log(Depopulated) policies transferred from Citizens to

Challenges:

▶ Lenders retain few mortgages, and those retained are the best quality: $\beta \approx 0$.

Results:

► GSE purchases ↑ by 1.8% (9% of average) due to insurance counterparty risk.

Identifying assumptions:

- Depopulation timing is exogenous: not correlated with a decline in borrower quality.
 - \rightarrow Schedule is pre-determined.
 - ightarrow Insurer unlikely to choose low quality borrowers.

1. **Implicit Transfer**: Lenders offloading \rightarrow Risks migrating to the GSEs.

2. **Distortion**: Lax screening \rightarrow Too much credit supply in the conforming segment.

Quantifying GSE exposures: two channels

- 1. **Implicit Transfer**: Lenders offloading \rightarrow Risks migrating to the GSEs.
 - ► Outcome: mortgage default.
 - ▶ Measurement: What is the additional default from fragile insurance for the same borrower?
- 2. **Distortion**: Lax screening \rightarrow Too much credit supply in the conforming segment.

Quantifying GSE exposures: two channels

- 1. **Implicit Transfer**: Lenders offloading \rightarrow Risks migrating to the GSEs.
 - Outcome: mortgage default.
 - ▶ Measurement: What is the additional default from fragile insurance for the same borrower?
- 2. **Distortion**: Lax screening \rightarrow Too much credit supply in the conforming segment.
 - Outcome: mortgage denials.
 - Measurement: How many fewer mortgages originated if banks could not offload insurance risk?

- ▶ Whether mortgage denials vary by insurer risk differentially in jumbo vs. conforming loans?
- ► Assumption: Jumbo (what is retained) → efficient benchmark.

	Mortgage D	enied (Y/N)
	(1)	(2)
jumbo=1	-0.0265*	-0.0279*
	(0.0152)	(0.0144)
Demotech Premium Share	-0.0166	-0.0152
	(0.0164)	(0.0161)
jumbo=1 \times Demotech Premium Share	0.0526**	0.0521**
	(0.0208)	(0.0201)
County FE	Υ	Υ
Year FE	Υ	Υ
Controls	N	Υ
Number of Observations	2,275,138	2,250,777
Adjusted R-squared	0.0112	0.0131

- ► Denials insensitive to insurer quality for conforming loans.
- ► But sensitive in the jumbo segment (more Demotech more likely to deny).
- ▶ GSE risk \rightarrow credit supply expansion in the conforming segment.

Serious delinquency after Hurricane Irma (Transfer)

- ► Hurricane Irma hit Florida in Sep 2017. Triggered significant insurer insolvencies.
- ▶ **Event study:** Serious Delinq_{c,t} = β (Post Irma_t × Insolvent Insurer Share_c) + FE + controls + $\varepsilon_{c,t}$.

	Seriously Delinquent Rate					
	(1)	(2)	(3)	(4)	(5)	(6)
Post Irma $=$ 1 $ imes$ Log Damages	0.000919** (0.000345)	0.000653** (0.000289)			0.000635** (0.000294)	0.000450* (0.000267)
Post Irma=1 $ imes$ Insolvent Insurer Shares			0.106*** (0.0291)	0.0760*** (0.0242)	0.0853*** (0.0280)	0.0612** (0.0241)
County FE	Υ	Υ	Υ	Υ	Υ	Υ
Year-Month FE	Υ	Υ	Υ	Υ	Υ	Υ
Number of Observations	1250	3800	1250	3800	1250	3800
Adjusted R-squared	0.773	0.813	0.780	0.814	0.788	0.815
Time Period	9/2016-	9/2016-	9/2016-	9/2016-	9/2016-	9/2016-
	9/2018	12/2022	9/2018	12/2022	9/2018	12/2022

▶ Delinquencies \uparrow by \sim 20 bps due to direct damage. Further \uparrow by \sim 26 bps due to insurer fragility

Sastry (Columbia), Sen (HBS) & Tenekedjieva (FRB)

11 / 13

Estimating GSEs' climate and insurance market exposures

Expected Losses =
$$\underbrace{\delta_B LGD_B}_{\text{Baseline}}$$
 + $\underbrace{P_H(\delta_{DIR} + \delta_{INS})LGD_H}_{\text{Hurricane}}$.

► Approach: Extrapolate from the delinquency dynamics during Irma.

1. Insurance market trends

Assumption: Similar insurance fragility patterns for every hurricane.

	No hurricane	Hurricane
Probability (1)	73%	27%
Default rate ⁽²⁾	1.2%	1.7%
Loss given default ⁽³⁾	40%	40%
Loan size	\$100	
Expected loss	\$ 0.53	
Expected loss (hurricane)	\$ 0.05	
% losses (hurricane)	9.6%	
Contribution of insurance fragility	57%	

▶ ~10% of GSE losses are due to climate, due in large part to local insurance market fragility.

Sources: (1) CAT 3/4 hurricanes in FL. US National Hurricane Center (2023); (2) Our estimates; (3) An and Cordell (2019), Fig. (2019)

Conclusion

This paper: Mis-calibrated GSE insurance requirements \rightarrow growth of fragile insurers.

- ► GSEs bear large unpriced exposure to climate due to insurance risk → taxpayer externality.
- lacktriangle Too much GSE mortgage origination in risky areas ightarrow distorted credit supply.

Conclusion

Appendix

1. Conforming Loans Default in Fragile Areas After Irma

Event study design: Defaults_{$l,c,t} = <math>\beta_1$ (Post Irma_t × Insurance Fragility_c) + FE + controls + $\varepsilon_{l,c,t}$.</sub>

	$\pm~10\%$ of the CLL	
	Conforming	Jumbo
Post Irma × Insurance Fragility	0.068**	-0.032
	(0.030)	(0.046)
Loan controls	Yes	Yes
County Fixed Effect	Yes	Yes
Time Fixed Effect	Yes	Yes
Origination Fixed Effect	Yes	Yes
Observations	122,785	17,105
Adjusted R ²	0.011	0.027

- Insurance fragility: Ex-ante market share of insolvent insurers.
- ► Controls: FICO, DTI, LTV, Post × Log(damages).

Predictions:

In fragile areas: Conforming (=Demotech): $\beta_1 > 0$. Jumbo (=Traditional): $\beta_1 \approx 0$.

Results:

► Defaults ↑ **27 bps** for **conforming** loans due to insurance fragility (70% of baseline).

Robustness:

 Conforming loans in high insolvent areas not negatively selected.

2. Excess Credit Supply in the Conforming Segment After Irma

Event study design: $Y_{l,c,t} = \beta_1(\text{Post Irma}_t \times \text{Insurance Fragility}_c) + FE + controls + \varepsilon_{l,c,t}$.

	\pm 10% of the CLL				
	New Policies S	hare - Demotech	Mortgage Denied (Y/N)		
	Conforming	Jumbo	Conforming	Jumbo	
Post Irma × Insurance Fragility	2.109***	-1.907**	-0.221	0.498**	
	(0.622)	(0.951)	(0.164)	(0.215)	
County FE	Υ	Υ	Υ	Y	
Year FE	Υ	Υ	Υ	Υ	
Controls	N	N	Υ	Υ	
Number of Observations	265	254	25,571	10,118	
Adjusted R-squared	0.768	0.730	0.0231	0.0349	
Sample	County-year		Loan application-level		

- ▶ Insurance fragility: Ex-ante market share of insolvent insurers.
- ► Controls: DTI, log income, Post × Log(damages).

Predictions:

▶ Demotech Share of New Policies: Conforming: $\beta_1 > 0$. Jumbo: $\beta_1 < 0$.

Mortgage Denials: Conforming: $\beta \approx 0$. Jumbo: $\beta_1 > 0$.

Results:

- ▶ Jumbo denials ↑ by ~2pp due to lender screening fragile insurers.
- ► No screening in the conforming segment where Demotech share of new policies grows

Estimating GSE risks from insurance market fragility

Approach: extrapolate from the default and denial dynamics during Irma.

Implicit transfer

$$\mathbb{E}(\mathsf{Losses}) = \underbrace{\delta_B L G D_B}_{\mathsf{Baseline}} + \underbrace{P_H P_{\mathsf{INS}}(\delta_{\mathsf{INS}}) \times L G D_H}_{\mathsf{Insurance Fragility}}$$

- ► **Assumption**: Similar insurance fragility patterns.
- ► P_H = 27%; P_{INS} = 4%; δ_{INS} = 27.
- ► $\delta_B = 39$, $LGD_{B,H} = 40\%$.
- ▶ 16% of GSE losses are due to insurance fragility.

Excess origination

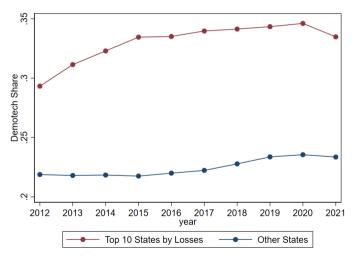
Excess loans =
$$\frac{N_{Conf}}{N_{Jumb}} \left(\underbrace{\frac{\alpha^{C}}{\alpha^{J}}}_{\text{Observed}} - \underbrace{\frac{\alpha^{C}}{\alpha^{J} + \alpha^{\Delta}}}_{\text{Efficient}} \right)$$

- ► **Assumption**: Jumbos → efficient benchmark.
- \bullet $\alpha^{J} = 84\%$, $\alpha^{\Delta} = 2.7\%$, $\alpha^{C} = 87\%$.
- $ightharpoonup \sim 1$ excess conforming per 2 jumbo applications
 - \rightarrow 9k loans, \$2Bn excess origination per year.

Homeowners vs. Flood

	Homeowners insurance	Flood insurance
1. Who sells	Private sector	Government
2. Coverage sold per year	>\$15 trillion	\$1 trillion
3. % of losses (natural disasters)	93%	100%
4. Risks covered	All perils except flood	Flood
5. Take up	85%	< 20%
6. Mortgage requirements	Mandatory for all homeowners	Mandatory only in high risk zones
7. GSE requirements	FSR based	N/A

Data


Insurance:

- 1. Florida QUASR: insurer-county-year level data
 - ▶ premiums, policies, coverage, cancellations, and transfers from 2009 to 2018.
- 2. Annual Insurer Regulatory Filings:
 - ► Balance sheet
 - Asset holdings
 - ► Underwriting by state and business line
 - ► Reinsurance
 - Regulatory examinations and restatements
- 3. Financial Strength Ratings (FSRs): FSRs from AM Best, S&P, and Demotech.

Mortgage:

- 1. HMDA: mortgage originations and sales to GSEs
- 2. McDash: mortgage performance

Demotech market share across US states

Counterfactual AM Best ratings of Demotech insurers

Step 1: AM Best rating replication model.

► Mapping observable insurer characteristics to AM Best FSRs.

$$AMBFSR_{it} = \alpha + \beta \bar{\mathbf{X}}_{it} + \epsilon_i \tag{1}$$

- ► Choosing characteristics:
 - Literature: measures of insurers' risk and capitalization from Koijen and Yogo (2015).
 - ► LASSO regression.
 - ► AM Best factors from publicly available reports.
- \blacktriangleright Model explains $\sim 60\%$ of the variation in AM Best FSRs. \blacktriangleright Predictive model \blacktriangleright Distribution

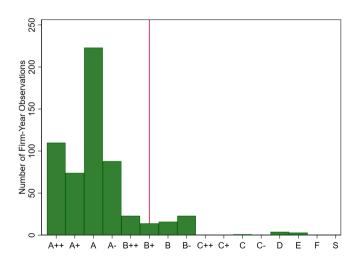
Step 2: Predict counterfactual ratings of Demotech insurers

► For the last year an "A" or higher rating was assigned by Demotech.

$$\widehat{AMBFSR}_{DEM} = \widehat{\alpha} + \widehat{\beta} \mathbf{X}_{DEM}$$
 (2)

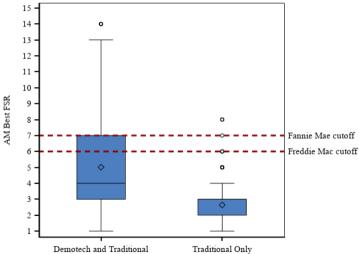
► Construct confidence intervals numerically using bootstrapping.

Note: 1,000 predicted values simulated for each model. Dots = average, bars = 90% confidence interval.

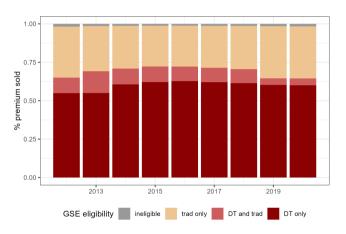

AM Best rating replication model (panel)

	AM Best ratingit		
	(1)	(2)	(3)
% bonds in NAIC 3+	0.838		
	(1.362)		
% assets in equities	-1.185**		-1.127**
	(0.569)		(0.561)
No. states selling HO	-0.012***	-0.011**	-0.012***
	(0.005)	(0.004)	(0.004)
% of assets in the group	0.012***	0.009***	0.012***
	(0.003)	(0.002)	(0.003)
% premium from HO	0.024***	0.023***	0.024***
	(0.003)	(0.003)	(0.003)
Leverage ratio	-5.474***		-5.591***
	(1.461)		(1.447)
Leverage ratio ²	8.838***	3.644***	8.921***
	(1.578)	(0.572)	(1.571)
Log(Assets)	-1.584***	-0.520***	-1.572***
	(0.482)	(0.050)	(0.481)
Log(Assets) ²	0.042**		0.042**
	(0.018)		(0.018)
Log(RBC ratio)	-0.276***	-0.095	-0.286***
	(0.100)	(0.093)	(0.099)
Loss Ratio (Florida)	0.478***	0.388***	0.491***
	(0.140)	(0.141)	(0.138)
% premiums reinsured	1.505***	2.177***	1.529***
	(0.332)	(0.287)	(0.330)
Constant	17.550***	8.446***	17.579***
	(3.537)	(1.289)	(3.535)
Variable choice	All	Lasso	Selected
Observations	589	589	589
R ²	0.588	0.564	0.588
Adjusted R ²	0.580	0.558	0.580

▶ Back



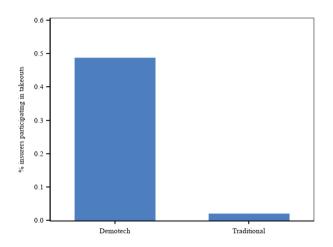
AM Best FSRs distribution



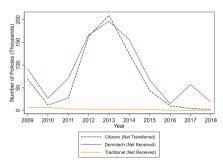
Ratings shopping (suggestive evidence)

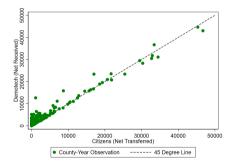
GSE ineligible insurers have minimal market shares

► GSE ineligible insurers have minimal market shares. ► Back


Insurance regulation

(a) Regulatory supervision over time	2009-2013	2014-2018	Difference
	(1)	(2)	(1) - (2)
Likelihood of exam in a year (%) % insurers ever restated	36.2	28.1	8.1
	34.4	24.6	9.8
% exams with restatements	37.6	21.3	16.3**
(b) Regulatory supervision across insurers	Demotech	Traditional	Difference
	(1)	(2)	(1) - (2)
Likelihood of exam in a year (%) % insurers ever restated % exams with restatements	32.6	25.7	6.9
	35.5	28.6	6.9
	30.8	21.4	9.4
(c) Consumer complaints	Demotech (1)	Traditional (2)	Difference (1) - (2)
Share of complaints	87.9	12.1	75.9***
Likelihood of any complaints in a year (%)	79.7	48.5	31.2***

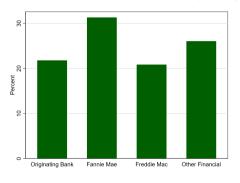

Demotech insurers dominate the depopulation program

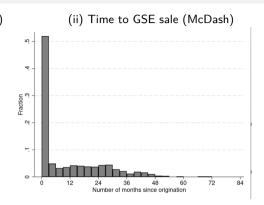


- ▶ 40 insurers participate, of which 39 are Demotech.
- ▶ Participating insurers have higher insolvency rates and counterfactual AM Best rating ~C++.
- Depopulation: shift from a **high** quality to a **low** quality insurer.

Citizens to Demotech policy flows

- ► **Assumption:** Policies transferred to Demotech insurers come from Citizens.
 - ► Challenge: we observe total transfers at an insurer-county-year level; not policy level data.
 - Almost one-for-one relation between policies transferred from Citizens to policies received by Demotech insurers

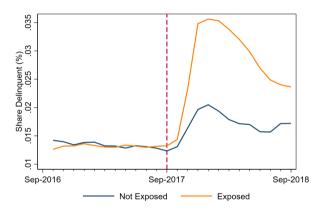




On-balance sheet conforming loans (Back)

(i) Share of conforming mortgages retained/ sold (HMDA)

- ► Significant heterogeneity in time-to-securitization for conforming loans (Keys, Seru & Vig, 2012)
- ► Time-to securitization is longer for better mortgages (Adelino, Gerardi & Hartman-Glaser, 2019)
- ▶ Banks retain higher share of conforming loans when capital improves (Buchak, Matvos, Piskorski & Seru, 2022)


Effect of depopulation on number of loans securitized

	(1)	(2)	(3)
Depopulated Policies	0.0639***	0.0714***	0.0623***
	(0.00913)	(0.00971)	(0.00847)
Year FE	N	Υ	N
Controls	N	N	Υ
Sample	2009-2018	2009-2018	2010-2018
Obs	670	670	596

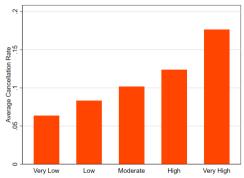
Num GSE_{c,t} =
$$\alpha + \beta$$
 Num Depopulated_{c,t} + $\delta_t + X_{ct}\Gamma + \varepsilon_{c,t}$

► Magnitudes: 6 out of 100 depopulated policies are sold to GSEs. Assuming banks retain 20% of mortgages → purchase rate of 30%. ► Back

Delinquency trends by exposure to Irma

- ► Serious delinquencies: 90+ DPD, foreclosures, REO.
- ► Exposed: Counties receiving Presidential disaster declaration. ► Back

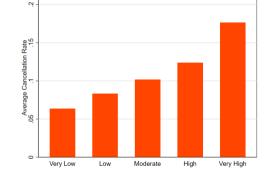
Demotech insurers have lower premiums


	Premium		Premium growth	
	(1)	(2)	(3)	(4)
Demotech	69.66***	-38.08**	0.0002	-0.013***
	(11.3)	(18.2)	(0.002)	-0.002
Year FE	Y	Y	Y	Y
County FE	N	Y	N	Υ
Risk controls	N	Υ	N	Υ
N	46,313	46,311	39,555	39,554

$$Y_{i,c,t} = \beta Demotech_i + \delta_t + \delta_c + \Gamma Risk controls_{i,c,t} + \varepsilon_{i,c,t}$$

- ▶ On average higher because they serve riskier housholds. Lower after controlling for risk.
- ► Magnitudes: Demotech policies are \$38 cheaper and premium growth is 1.3% lower per year (controlling for risk using coverage as a proxy). ► Back

Traditional insurers exit after climate events



(ii) Event study: hurricane Irma

Traditional insurers exit after climate events

(ii) Event study: hurricane Irma

	Cancellation Rate			
	(1)	(2)	(3)	(4)
Post_ <i>Irma</i> × Traditional	0.119*** (0.0194)	0.0993*** (0.0184)	0.326*** (0.0241)	
$Post_Irma imes Traditional imes High Risk$				0.0796** (0.0319)
County FE	Y	Y	Y	N
Year FE	Y	Υ	Υ	N
Insurer FE	Y	Υ	Υ	N
County-Year FE	N	N	N	Υ
Insurer-Year FE	N	N	N	Υ
County-Insurer FE	N	N	N	Υ
Observations	18414	17083	1330	18050
Adj R-squared	0.0822	0.0906	0.109	0.422
Sample	All	Low Risk	High Risk	All

► High cancellations, particularly in riskier counties which rise even further after natural disasters.

Demotech insurers are worse on observables (1/3)

1. Riskier liabilities: Demotech insurers underwrite more in high risk counties.

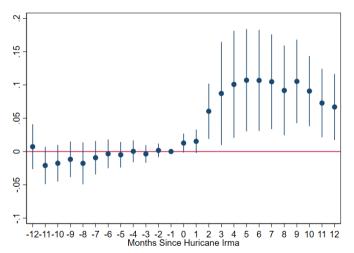
	Share underwritten in high risk counties			
	Premiums			
	(1)	(2)	(3)	
Demotech	0.0242***	0.0243***	0.0215**	
	(0.00505)	(0.00488)	(0.00504)	
Observations	924	924	924	
Adjusted R^2	0.022	0.025	0.017	
year_fe	Υ	Υ	Υ	

Note: High risk counties are those classified by FEMA as being in risk categories 3, 4, and 5.

Demotech insurers are worse on observables (2/3)

2. **Poor diversification:** Demotech insurers are significantly less diversified across geographies, business lines, and group structure.

	Demotech (1)	Traditional (2)	Difference (1) - (2)
No. states selling HO	3.45	27.7	-24.2***
	(0.73)	(2.87)	
% of insurers selling in only 1 state	0.56	0.1	0.46***
	(0.06)	(0.04)	
% premium from HO	0.70	0.24	0.45***
	(0.03)	(0.03)	
No. insurers in the group	5.9	18.5	-12.6***
	(1.0)	(2.2)	
% belonging to a 2 or less insurer group	0.46	0.04	0.42***
	(0.06)	(0.03)	



Demotech insurers are worse on observables (3/3)

3. **Solvency and reinsurance:** Demotech insurers have less capital relative to risks, rely more on reinsurance, and have riskier and concentrated reinsurance relationships.

	Demotech (1)	Traditional (2)	Difference (1) - (2)
(a) Balance sheet and solvency			
Assets (\$ million)	312.4 (150.4)	3914.6 (1020)	-3602.3***
RBC ratio	`2173 [°] (517.1)	`3790 [°] (876.3)	-1617*
(b) Reinsurance			
% premiums reinsured	0.47 (0.03)	0.15 (0.04)	0.32***
% reinsurance partners rated above A	0.33 (0.01)	0.39 (0.04)	-0.07*
Fraction of premiums ceded to largest partner	0.13 (0.02)	0.04 (0.01)	0.09***

Dynamic treatment effect of insurer insolvencies

Conforming loans default more after storms

	Share Seriously	Delinquent (%)		
	(1)	(2)	(3)	(4)
conforming=1	0.00732***	0.00561***	0.00791***	-0.0233
	(0.000987)	(0.00152)	(0.00132)	(0.0214)
post_irma=1 × conforming=1	0.0213***	0.0357***	0.0470***	-0.0200
	(0.00177)	(0.0121)	(0.00433)	(0.0951)
post_irma=1 × log_damages	0.000807***	0.00226	0.000874	0.0224
	(0.000283)	(0.00150)	(0.000587)	(0.0135)
Constant	0.00325***	0.0181***	0.0125***	0.0462
	(0.000904)	(0.00267)	(0.00285)	(0.0455)
County FE	Y	Y	Y	Y
Year-month FE	Υ	Υ	Υ	Υ
Number of Observations	Υ	Y	Υ	Y
Adjusted R-squared	1Y	FULL	FULL	FULL
Sample	FULL	FULL	Insolvency Exposure (top 25%)	Insolvency Exposure (bottom 25%)
N	2250	6840	2812	988
r2_a	0.806	0.385	0.843	0.273

- ► Conforming loans default more after Irma than jumbo loans, over the short and long-term
- ► This result is driven by counties exposed to the insolvent insurers

Climate Risk in Florida

- ► Climate refers to the average weather conditions of a place/region over a long period (NOAA).
- ▶ "Climate losses" refers to the property damage caused by climate events (e.g. hurricanes).
- ► There is heterogeneity across Florida in terms of climate risk exposure (FEMA).
- ► Tropical hurricanes in the Atlantic basin have increased in intensity since 1980 (Emmanuel, Nature, 1987; Emmanuel, Nature, 2005; Sobel et al., Science, 20106; Guzman and Jiang, Nature Communications, 2021; Garner, 2023, Scientific Reports; IPCC, 2023; Wehner and Kossin, 2024).
 - ► Large debate over attribution to global warming

Mortgage Default in Florida

Recourse:

- ► FL: recourse state that requires judicial foreclosure and ruling on deficiency
- ► Deficiency = Unpaid balance max(fair market value of the property, foreclosure sale price)
- ▶ In practice deficiency judgments happen rarely (Ghent and Kudylak, RFS, 2011).
 - ► Recourse does not impact default propensities for Fannie/Freddie
 - ► Loans are explicitly non-recourse for FHA/VA

Forbearance:

- ▶ GSEs extend "forbearance" to borrowers after disasters for 3 months (typical) 12 months
 - ► A temporary reduction or suspension in monthly mortgage payments
 - ► Can include non-reporting of missed payments to credit bureaus
- ► GSEs has various options for repayment of the unpaid amount
 - reinstatement after forbearance; gradual repayment over 12 months after forbearance; deferral to the end of the loan; permanent loan modification