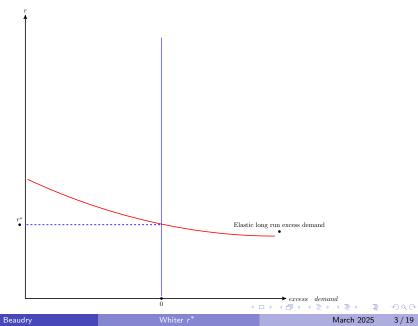
Is r^* a good guide for policy?

Paul Beaudry, Vancouver School of Economics, UBC, Canada

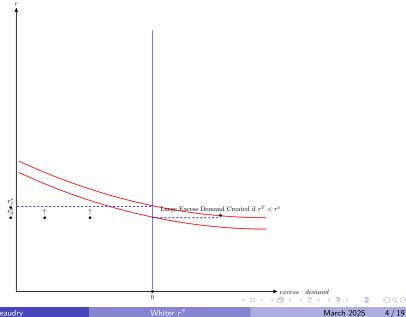
NY Fed Symposium

В		

Introduction


• Consider policy rule of form

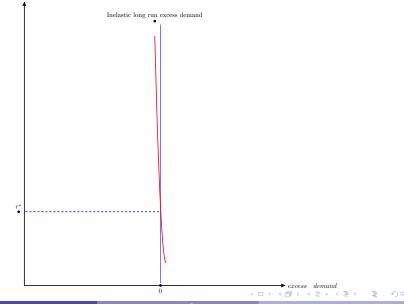
 $i_t = r^T + \pi^T + \dots$ response to current conditions....


- where r^{T} is the CB's view of r^{*}
 - if policy anchored on $r^T \neq r^*$ for a long time, would this cause a big problems?
 - Would we likely notice such an error quickly (ex: would Laubach-Williams provide a good signal)?
- Common perception: this would cause substantial imbalance between demand and supply, and should be apparent quickly.
- Why: Long run excess demand curve thought to be very elastic (possibly infinite)

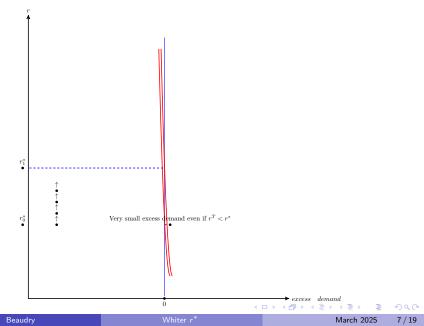
イロト イヨト イヨト イヨト

Long Run Excess demand: elastic case

Long Run Excess demand if $r^T \neq r^*$



Beaudry


Alternative

- Long term excess demand curve possibly very inelastic (more inelastic than short run).
- If so, precise knowledge of r* may be quasi-irrelevant, even if r* is quite variable. Ballpark may be sufficient.
- Central Bank could be playing a coordinating device role
- This could help explain set puzzles

Long Run Excess demand and r^{T} ; elastic case

Long Run Excess demand and r^{T} : coordination?

Puzzles that may suggest coordination role

- Monetary policy decisions have strong effects on long-term real rates (Cochrane & Piazzesi, 2002; Hanson & Stein, 2015; Nakamura & Steinsson, 2018, Bianchi et al., 2022)
 - Most intriguing Hillenbrand (2023): entire post-80s decline in long-term rates has occurred in narrow windows around FOMC dates

Hillenbrand (2023)

(A) 3-day window around FOMC meetings

(B) Days outside 3-day FOMC window

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A

What do we know about slope of long run excess demand?

- In work with Paolo Cavallino (BIS), Tim Willems (BoE) we have been looking into this issue
 - Is the elasticity of long run excess demand with respect to r^T likely big or small?
- Paper entitled "Monetary policy along the yield curve: Why can central banks affect long-term real rates?"

Slope of long run excess demand

- Analyzing long run excess demand curve requires
 - allowing that activity may remain influenced by MP even in the long run (ultra Keynesian question)
 - Perspective requires including long term saving/consumption forces
 - In particular, need to go beyond inter-temporal substitution and include lower frequency forces such retirement savings, retirement spending and bequests.

Our setup to examine issue

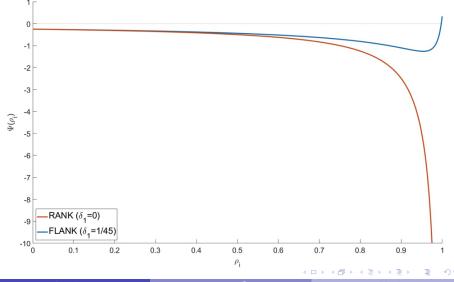
- Build Finitely-Lived Agent New Keynesian model (FLANK)
- Blanchard-Yaari + retirement state (as in Gertler 1999)
 - Measure 1 of households who work \rightarrow retire \rightarrow die
 - Working households retire with prob δ_1
 - Retired households die with prob δ_2

- Embed in otherwise standard NK setup
- Only unintended bequests in baseline

Model - log-linear equilibrium

• The baseline log-linearized equilibrium without capital

$$\begin{split} \hat{y}_t &= (1 - \gamma) \, \hat{c}_t^w + \gamma \hat{c}_t^r \\ \hat{c}_t^r &= \hat{q}_t + \frac{1}{\sigma} \hat{\Gamma}_t \end{split}$$


$$\begin{aligned} \hat{q}_t &= -\mathbb{E}_t \hat{r}_{t+1} + \beta \left(1 - \mu\right) \mathbb{E}_t \hat{q}_{t+1} \\ \hat{\Gamma}_t &= (\sigma - 1) \mathbb{E}_t \hat{r}_{t+1} + \beta \left(1 - \delta_2\right)^{\frac{1}{\sigma}} \mathbb{E}_t \hat{\Gamma}_{t+1} \end{aligned}$$

$$\hat{c}_t^w = (1 - \delta_1) \left(\mathbb{E}_t \hat{c}_{t+1}^w - \frac{1}{\sigma} \mathbb{E}_t \hat{r}_{t+1} \right) + \delta_1 \left(\hat{q}_t + \frac{1}{\sigma} \hat{\Gamma}_t \right)$$

$$\hat{\pi}_t = \kappa \hat{y}_t + \beta \mathbb{E}_t \hat{\pi}_{t+1}$$
$$i_t = (1+\phi) \mathbb{E}_t \hat{\pi}_{t+1} + \varepsilon_t^i$$

→ ∃ → 4

Effect as we vary the persistence of deviation: RANK vs FLANK

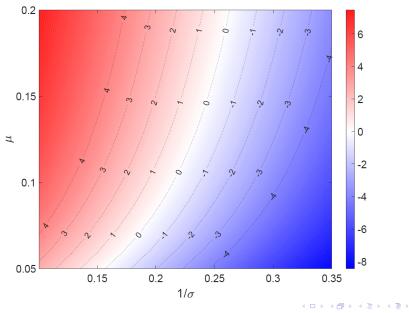
Beaudry

March 2025 14 / 19

Determinants of excess demand when $r^T \neq r^*$

- When r ≠ r* permanently, the general equilibrium determination of activity driven by
 - the average MPC our of wealth
 - 2 Times financial wealth a

$$Y = m\overline{p}c * a$$


 $\bar{mpc} = [\chi(1-\beta(1-\delta_1)(1+r)^{\frac{1}{\sigma}}\delta_1^{-\frac{1}{\sigma}} + (1-\chi)(1-\delta_1)^{1/\sigma}][(1+r)^{\frac{\sigma-1}{\sigma}} - (1-\delta_2)^{\frac{1}{\sigma}}\beta^{\frac{1}{\sigma}}],$

• As $\frac{1}{\sigma}$ goes to zero, in GE activity determined by wealth-flow

$y \approx ra$

- In data, y highly correlated with wealth flow, but not wealth
- Why may $\frac{\partial y}{\partial r}$ be small? Close offsetting effects if $a \approx \frac{d}{r}$ and IES small

Quantifying effect of persistent (.99) $r^L = r^* + 1\%$

Beaudry

Whiter r

March 2025 16 / 19

Robustness to extensions

- Physical capital: holding c cst, $\frac{\partial y}{\partial r} > 0$
- Hand to mouth: Literature has taught that optimizers drive the aggregate. Here, activity driven by the anxious rich
- Bequests. Will act in similar direction if caring about flows

Laubach-Williams estimation of r*

- When departing from canonical Euler equation we show that estimates of r^{*} are a linear combination of actual r^{*} and the central banks perception of r^{*} (r^T).
- In particular, the weights depend on slope of long run excess demand.
- If long run excess demand very elastic, works well
- If slope small, mainly reflects own belief.

Conclusions

- Is *r*^{*} a good guide for policy?
- Maybe not very important for inflation stabilization, as being 100-200bps above or below may not create much imbalance
- Having a ballpark knowledge of r* may be sufficient
- Instead, monetary policy could involve a coordination role about long term rates in wide interval around theoretical r*
- Additional implications for financial stability and inequality.
- View consistent with a set of patterns and puzzles; more exploration/consideration needed !