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Abstract. This paper considers point and interval estimation of the autoregressive

parameter in a nearly-integrated �rst-order autoregression. Under a local-to-unity

parameterization, we provide conditional inference procedures based on the Gaussian

su�cient statistics. These procedures are optimal in terms of concentration around

the true parameter value within a class of conditional estimators. Additionally, the

proposed estimators minimize expected loss across a wide range of loss functions. We

also generalize the method for models with a nonzero mean and for higher-order autore-

gressions.

1. Introduction

This paper is concerned with inference on the autoregressive parameter, � , in a nearly-

integrated �rst-order autoregression (AR (1)). The degree of persistence in an autore-

gressive process is of practical importance in macroeconomics and �nance where highly-

persistent series appear as both independent and dependent variables in many models.

Although the primary focus in the econometrics literature has been on tests of the unit-

root hypothesis1, a variety of point and interval estimators have been proposed. In

general, these estimators do not enjoy explicit optimality properties2. In this paper,

we propose con�dence bounds and an associated median-unbiased estimator for the au-

toregressive parameter which enjoy optimality properties within a class of conditional

procedures.
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A nearly-integrated AR(1) is characterized by a value of � close to 1. Thus, we adopt

a local-to-unity parameterization, which re-parameterizes the autoregressive parameter,

� as �n (c) = 1 + c/n, where c, the local-to-unity parameter, is now of interest3. The

restriction of � to an n�1-neighborhood of unity (a unit root) is motivated from two

di�erent perspectives: �rst, there is strong empirical evidence that many economic and

�nancial time series are highly persistent, suggesting that the value of � is equal to or

near unity (Nelson and Plosser (1982), Schotman and van Dijk (1991)); second, it is well

known that asymptotic results in an AR(1) model are discontinuous at � = 1, and this

re-parameterization leads to asymptotic results which are continuous in the parameter

c. Moreover, asymptotic theory based on the local-to-unity parameterization provides a

better approximation for modest sample sizes when � is close to 1 despite the fact that

standard asymptotic theory is available.

We restrict ourselves to methods based on the output from a least-squares regression

(i.e., the Gaussian su�cient statistics). We then proceed conditionally on either of the

two su�cient statistics. In one case this involves conditioning on the observed Fisher

information. In the other case, the conditional procedure is asymptotically equivalent

to procedures which condition on the (properly-scaled) �nal observation of the series.

This has particular relevance to the problem of forecasting where the last observation is

generally treated as �xed and so conditional procedures may be appealing. A variety

of authors have considered predictive inference conditional on the �nal observation of an

AR(1) process (see the discussion in Section 3). Our procedure satis�es this requirement

asymptotically and enjoys optimality properties within this class of conditional proce-

dures. Finally, conditioning on either of these statistics serves the purpose of removing

the natural curvature in the Gaussian AR(1) exponential family and allows us to develop

optimal procedures.

Many authors have proposed point and interval estimators for autoregressive models

under a variety of assumptions with, or without imposing a local-to-unity parameteriza-

tion. A common approach is to use knowledge of the distributions of available estimators

or test statistics and invert these distributions to construct suitable estimators4. The

work that is closest in spirit to the present paper is that of Stock (1991), Hansen (1999),

and Elliott and Stock (2001). In a local-to-unity setting, Stock (1991) proposed interval

estimators based on the inversion of the augmented Dickey-Fuller test statistic, while

Elliott and Stock (2001) considered both sequential interval estimators and asymptoti-

cally valid interval estimators choosing to invert candidate test statistics with good power

3See Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987), and Chan (1988).
4These include Dufour (1990), Stock (1991), Kiviet and Phillips (1992), Rudebusch (1992), Andrews
(1993), Andrews and Chen (1994), Hansen (1999), and Elliott and Stock (2001).
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properties. Meanwhile, Hansen (1999) introduced a \grid bootstrap" interval estima-

tor which provides correct asymptotic coverage regardless of whether the autoregressive

model is highly-persistent or not. Also, in a related context, Andrews (1993) constructs

an exactly median-unbiased estimator of � based on inversion of the distribution of the

least-squares estimator under the assumption of Gaussian errors. Our approach is simi-

lar to these papers. The primary di�erence is that although no uniformly most powerful

test exists in general (and consequently no optimal con�dence interval based on its in-

version), by proceeding conditionally we are able to construct a uniformly most powerful

conditional test statistic. This statistic may be inverted to obtain a median-unbiased

point estimator and con�dence bounds that are optimal in terms of concentration around

the true parameter value within a certain class of conditional estimators. We will show

that this property implies that the estimators minimize expected loss for a wide range of

loss functions.

Median-unbiased estimators have the appealing property that the parameter of interest

is overestimated or underestimated with about the same probability. This is particularly

desirable in the case of an AR(1) as the least-squares estimator is well known to su�er

downward bias especially when the autoregressive parameter is near 1. Additionally,

median-unbiased estimators are equivariant to any monotonic transformation and so

we may provide median-unbiased estimators for other magnitudes of interest. This is

an appealing property as errors in estimation may be magni�ed when forming other

expressions of interest (Patterson (2000)). Finally, these inference procedures have

correct coverage both conditionally and unconditionally and so we provide alternative

options to existing unconditional techniques.

To enable computation of our estimators we provide asymptotic formulas for the rele-

vant density and distribution functions. Thus, our estimators may be implemented with

straightforward numerical methods. Preliminary Monte Carlo evidence suggests that

the procedure is on par with existing procedures for modest sample sizes. In addition,

we are able to generalize the results to incorporate higher-order autoregressions with a

non-zero mean. However, a drawback to our proposed procedure is that it does not

retain its optimality properties in the presence of a linear time trend.

The paper is organized as follows. Section 2 introduces the model under study and

describes the �nite-sample properties of the model and sets the stage for the discussion of

the asymptotic results. Section 3 reviews the asymptotic properties of our procedure. In

Section 4 we consider generalizations of the main results to higher-order autoregressions

with a non-zero mean and discuss other points of interest. We evaluate the methods
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introduced relative to popular competitors in a Monte Carlo experiment summarized in

Section 5. Section 6 concludes. All proofs are provided in an Appendix.

2. Model & Finite-Sample Theory

We observe a univariate time series X := (X1; : : : ; Xn) generated as,

(2.1) Xt = �Xt�1 + "t, t = 1; : : : ; n,

where � 2 (�1; 1] is the parameter of interest and f"tg are a sequence of unobserved i:i:d:
mean-zero error terms. In addition, we make the following assumptions.

Assumption 1. The initial condition satis�es X0 = x0 = 0.

Assumption 2. The sequence of error terms satisfy "t �iid N (0; �2) for t = 1; : : : ; n

where �2 2 (0;1) is a known parameter.

In later sections we will relax these assumptions. As discussed in the introduction we

also introduce to the model the local-to-unity parametrization,

�n (c) := 1 + cn
�1, c 2 C := R�.

We restrict � to an n�1-neighborhood of unity (a unit root)5. Under these assumptions

the joint distribution of the observed time series may be written as,

(2.2) fX (x; c) = � (x) exp

�
cTn (x)�

1

2
c2Un (x)

�
,

(2.3) Tn (x) =
1

n�2

Xn

t=1
xt�1�xt, Un (x) =

1

n2�2

Xn

t=1
x2t�1.

By the factorization criterion the su�cient statistics are Tn (X) and Un (X). Since we

have assumed that �2 is known, we have two su�cient statistics but only one parameter.

Thus, the distribution of X is a member of a (2; 1)-curved exponential family (Efron

(1975, 1978), Barndor�-Nielsen and Cox (1994)). Curved exponential families generally

do not possess a complete su�cient statistic or a monotone-likelihood ratio (MLR). These

properties are the primary source of optimality results in full exponential families. For

example, in the model under study, Elliott et al. (1996) showed that there does not

exist a uniformly most powerful test, even asymptotically, for tests of the unit-root null

5The speci�c choice of localizing sequence, n�1, ensures that the ratio of likelihoods for any two values
of c 2 C in model (2.1) weakly converges to a random variable which is itself a likelihood ratio. This
property is referred to as contiguity and is essentially an asymptotic version of absolute continuity. This
enables us to utilize the limits of experiments approach to characterize the asymptotic properties (see
Le Cam (1982), Jeganathan (1995), Le Cam and Yang (2000)). It also allows us to demonstrate key
properties of our methods in the �nite-sample case, and draw clear analogies in the case of large samples.
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hypothesis c = 0. Elliott and Stock (2001) showed that this result generalizes so that

there does not exist an optimal interval estimator for c. The approach taken in this

paper is to remove the curvature by conditioning on one of the two su�cient statistics.

This allows us to recover the MLR property which leads directly to a uniformly most

powerful conditional test statistic. We may then invert this test statistic to construct

interval estimators.

We might consider conditioning on either Tn (X) or Un (X) (the observed Fisher infor-

mation). The results of this section are similar for either choice and so we will provide

results for conditioning on Tn (X). We will postpone the discussion of motivation for this

conditioning until later sections. In Section 3 we will discuss motivation for conditioning

on Tn (X) and later in Section 4 we will discuss conditioning on Un (X).

In Lemma 2 (in the Appendix) we show that the conditional density of Un (X) given

Tn (X) is of the form,

(2.4) fn (unj tn; c) = gn (c; tn) exp

�
�1
2
c2un

�
fn (unj tn; 0) .

Since c � 0, this family of conditional densities has a monotone-likelihood ratio in un.

It is this property that allows us to construct con�dence bounds (and median-unbiased

estimators) with demonstrable optimality properties (Pfanzagl (1970, 1979)). Suppose

we observe Sn (X) := (Un (X) ; Tn (X)) = (un; tn) then we will show that, ĉn;1��, the

solution to the equation6,

(2.5) Fn (unj tn; ĉn;1��) =
Z un

0

fn (wj tn; ĉn;1��) dw = 1� �,

is the uniformly most accurate lower con�dence bound conditional on Tn (X) = tn for c

with con�dence coe�cient 1� �. Alternatively we may write,

(2.6) ĉn;1�� (un; tn) := fc : Fn (unj tn; c) = 1� �g .

The inversion of the conditional distribution function that is used in equations (2.5)

and (2.6) may be summarized as follows: �rst, the conditional distribution function,

Fn (unj tn; c), will be shown to be continuous and strictly increasing and so we may de�ne
the conditional quantile function q1�� (tn; c) by the requirement Fn (qn;1�� (tn; c)j tn; c) =
1��; secondly, by the aforementioned MLR property, c 7! qn;1�� (tn; c) is strictly increas-

ing (see Lemma 4 in the Appendix) and so we may de�ne our estimator, ĉn;1�� (un; tn)

by the requirement qn;1�� (tn; ĉn;1�� (un; tn)) = un. Then we have that,

(2.7) Pc;n ( ĉn;1�� (Un (X) ; Tn (X)) � cj tn) = Pc;n (Un � qn;1�� (tn; c)j tn) = 1� �,

6Throughout the text, expressions involving conditonal expectations will be understood to hold almost
surely.



6 RICHARD K. CRUMP

where Pc;n is the probability measure associated with the distribution of X with true

parameter value c7. The �rst equality follows by the de�nition of ĉn;1�� (un; tn) and

the second equality follows by the de�nition of qn;1�� (tn; c). Equation (2.7) implies

that ĉn;1�� (Sn (X)) is a valid lower-con�dence bound for the parameter c conditional on

Tn (X) = tn. In fact, by the law of iterated expectations, ĉn;1�� (Sn (X)) is also a valid

lower con�dence bound unconditionally8.

Uniformly most accurate lower con�dence bounds are characterized by their concen-

tration below the true parameter value. More speci�cally,

(2.8) Pc;n f ĉn;1�� (Sn (X)) � rjTn (X)g � Pc;n f~cn;l (X) � rjTn (X)g , r < c,

for all c 2 C, where ~cn;l (x) is any other lower con�dence bound with con�dence coe�cient
1 � � conditional on Tn (X) = tn. In words, equation (2.8) says that among all lower

bounds with conditional con�dence coe�cient 1 � �, ĉn;1�� has the property that it

minimizes the conditional probability of underestimating the true parameter value, c;

ĉn;1�� is most concentrated below the true parameter value of any lower con�dence

bound in this class. Equation (2.8) also implies that the unconditional probability of

underestimating c is minimized, but again in the class of conditional lower con�dence

bounds. We might alternatively be interested in ranking lower con�dence bounds by the

expected loss from underestimating c. Consider the following class of loss functions:

De�nition 1. Let L be the class of loss functions `c (�) : R! R+, c 2 C which satis�es
`c (d) = L (c; d� c) where L (c; 0) = 0, and for each c, L (c; d� c) is nondecreasing in

d� c for d� c > 0 and nonincreasing in d� c for d� c < 09.

L is the class of monotone loss functions discussed in, for example, Andrews and

Phillips (1987) and Lehmann and Romano (2005, 76). In this class the distinguishing

characteristic is that loss is nondecreasing as an estimator takes on values farther away

from the true value of the parameter. We also allow the loss function to vary with

the value taken on by the parameter c10. In order to focus on the loss only from

underestimating c we may construct the loss function `�c (d) = `c (d) 1 fd < cg where
`c 2 L. Because the uniformly most accurate con�dence bound is most concentrated

7We follow the analagous subscript convention for the expectation operator.
8The corresponding results for upper bounds follow analogously and so in the sequel we will, without
loss of generality, only provide results for lower con�dence bounds.
9We are actually able to generalize the class of loss functions to include dependence on the statistic
Tn (X). We omit this generalization for notational clarity and revisit this issue in Remark 2.
10For example, the class includes weighted squared error loss, `c (d) = w (c) (d� c)2 where the weight
function is positive and �nite but may take on di�erent values according to the value of c. L also
includes a variety of asymmetric loss functions such as linear exponential loss (linex loss), `c (d) =
b [exp fa (d� c)g � a (d� c)� 1] where a 6= 0 and b > 0.
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below c, it has the property that it minimizes expected loss for any `�c (d) constructed

from `c 2 L. This is summarized in the following theorem.

Theorem 1. Suppose Assumptions 1 & 2 hold and 0 < � < 1/ 2. Then, the solution

to equation (2.5), ĉn;1�� (Sn (X)) is the uniformly most accurate lower con�dence bound

for c, conditional on Tn (X) with con�dence coe�cient 1� �. Moreover, we have that,

Ec;n
�
`�c
�
ĉn;1�� (Sn (X))

���Tn (X)� � Ec;n [`
�
c (~cn;l (X))jTn (X)] ,

where ~cn;l (x) is any other lower con�dence bound with con�dence coe�cient 1 � � con-

ditional on Tn (X), `
�
c (d) = `c (d) 1 fd < cg and `c (�) 2 L.

A corollary to Theorem 1 is that if we combine this result with the analogous result for

upper con�dence bounds with each having con�dence coe�cient 1/ 2 then the bounds

coincide and the estimator ĉn := ĉn;1=2 is median unbiased. Speci�cally, ĉn satis�es,

Pc;n f ĉn (Sn (X)) � cjTn (X)g � 1/ 2 and Pc;n f ĉn (Sn (X)) � cjTn (X)g � 1/ 2:

Median-unbiased estimators have the appealing property that the parameter of interest

is overestimated or underestimated with about the same probability. Moreover, in

perfect analogy with the summary of uniformly most accurate lower and upper con�dence

bounds, ĉn is most concentrated around c among all estimators which are conditionally

(on Tn (X)) median unbiased. Then applying Theorem 1 we have (see Remark 3 in the

Appendix) that

Ec;n [`c (ĉn (Sn (X)))jTn (X)] � Ec;n [`c (~cn (X))jTn (X)]

for all `c 2 L, where ~cn (X) is any other estimator which is median unbiased conditional
on Tn (X).

By the equivariance property of median-unbiased estimators we may also construct

corresponding optimal median-unbiased estimators for other parameters of interest such

as �, or the cumulative impulse-response function, (1� �)�1, which are monotone func-

tions of the parameter c. This is an appealing property as errors in the estimate of c may

be more pronounced when forming other expressions of interest, as discussed in Patterson

(2000). Again, these estimators possess optimality properties only in the class of estima-

tors which are median unbiased conditional on the statistic Tn (X), however they retain

the property of median unbiasedness when considered as unconditional estimators.
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3. Asymptotic Theory

In this section we characterize the asymptotic properties of the model in equation (2.1).

The results will be based on the joint and conditional distribution of the asymptotic

counterparts to the su�cient statistics Sn (X).

Lemma 1. Suppose Assumptions 1 & 2 hold. Then, (Un; Tn) )c (U
c; T c) =: Sc where

U c =

Z 1

0

Bc (r)
2 dr, T c = cU c +

Z 1

0

Bc (r) dB (r) ,

and fBc (r) ; 0 � r � 1g is de�ned by the stochastic di�erential equation, dBc (r) = cBc (r) dr+

dB (r) with Bc (0) = 0, where fB (r) ; 0 � r � 1g is a standard Brownian motion.

The random process fBc (r) ; 0 � r � 1g is known as the Ornstein{Uhlenbeck process
and is the continuous time analogue to a highly-persistent autoregression. In Lemma

1, )c indicates weak convergence with respect to the probability measure Pc;n. In the

special case of a random walk (c = 0) we will drop the superscript so we have, (Un; Tn)

)0 (U; T ) =: S. The properties of model (2.1) for �xed n suggest that we might

generate an asymptotic version of Theorem 1 by constructing our estimator as in equation

(2.5), but with Fn (unj tn; c) replaced by the conditional distribution function of U c given
T c. To do so we must �rst demonstrate that the exponential family representation is

maintained in the limit.

Lemma 2. Suppose Assumptions 1 & 2 hold.

(1) The joint distribution of Sc = (U c; T c) is a (2; 1)-curved exponential family with

density,

f (u; t; c) = exp

�
ct� 1

2
c2u

�
f (u; t; 0) ,

where f (u; t; 0) is the density of Sc when c = 0.

(2) For c < 0, the conditional distribution of U c given T c = t is an exponential family

with density,

f (uj t; c) = g (c; t) exp

�
�1
2
c2u

�
f (uj t; 0) ,

where,

g (c; t) = �c exp

�
� c
2
+
c� 2

2
� � 2

2�2c

�
�2c � 1

��
, �2c =

exp (2c)� 1
2c

,
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f (uj t; 0) = exp
�
1

2
� 2
� 1X

j=0

(�� 2)j

j!

1X
k=0

�
j + 1

2

�
kp

�k!
u�

1
2(

5
2
+j) �

exp

(
�� (j; k; �)

2

16u

)
D3=2+j

�
� (j; k; �)

2
p
u

�
,

is the conditional distribution of U given T = t when c = 0 and

� (j; k; �) = 1 + � 2 + 4 (j + k) , � 2 = 2t+ 1.

D� (z) is the parabolic cylinder function
11 and (�)k is the Pochhammer symbol,

(�)k := � (� + k)/ � (�) where �; � + k 62 Z�= f0g.

The similarities between Lemma 7 (in the Appendix) and Lemma 2 are clear. The

main di�erence is that in the limit we are able to characterize the asymptotic counterparts

of gn (c; tn) and fn (unj tn; c) in a tidy form. Unfortunately, there does not seem to be a

comparable expression for the conditional distribution function F (uj t; c) as for f (uj t; c)
except in the special case when c = 0.

Remark 1. In the unconditional case, even asymptotically, there does not exist a UMP

one-sided test of the null hypothesis c = 0 versus the alternative of c < 0. However, in

the conditional case the asymptotically UMP one-sided test rejects for small values of the

statistic U c. The proof of Lemma 2 may be altered slightly to show that the conditional

distribution function, F (uj t; 0), has the following form,

F (uj t; 0) = 2 exp

�
� 2

2

� 1X
j=0

(�� 2)j

j!

1X
k=0

�
j + 1

2

�
kp

�k!
u�(j=2+1=4) �

exp

(
�� (j; k; ; �)

2

16u

)
Dj�1=2

�
� (j; k; ; �)

2
p
u

�
.

Thus, if we observe (U c; T c) = (u; t) we may construct the approximate p-value for the

asymptotic unit-root test by F (uj t; 0).

In perfect analogy with equation (2.5) we may de�ne ĉ1�� as the solution to,

(3.1) F (uj t; c) =
Z u

�1
f (wj t; c) dw = 1� �,

and for the special case of the median-unbiased estimator, ĉ := ĉ1=2. In practice, we will

have to calculate this integral numerically. However, the double sums in the de�nition

of the density converge quickly and the density is su�ciently well-behaved that this does

not pose a signi�cant problem.

11See Borodin and Salminen (2002, 639-40).
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By Itô's Lemma, T c may also be written as T c = (Bc (1)
2�1)=2 which is the continuous-

time analogue to,

2�2Tn (x) =
x2n
n
� 1

n

Xn

t=1
(�xt)

2 =
x2n
n
� �2 + op (1) ,

which implies that conditioning on T c is the asymptotic analogue to conditioning on the

appropriately scaled squared value of the �nal observation of the series Z2n, where Zn :=

Xn/ (�
p
n)) Bc (1). A symmetry argument can be made to show that conditioning on

Bc (1)
2 involves no loss of information relative to conditioning on Bc (1); in other words

the conditional distribution of U c given Bc (1) is identical to the conditional distribution

of U c given Bc (1)
2 (see Remark 4 in the Appendix). From this result we may show

that asymptotically it makes no di�erence whether we condition on Zn or Tn (X) and

so the large-sample analogue of the small-sample results from Section 2 become relevant

to the case of conditioning on the (properly-scaled) �nal observation. In order to avoid

complications having to do with conditional convergence we follow Jansson and Moreira

(2006) and note that ~cn satis�es,

Ec;n [ (1 f~cn (Sn (X)) � cg � (1� �))jZn] = 0,

if and only if,

(3.2) Ec;n [(1 f~cn (Sn (X)) � cg � (1� �))h (Zn)] = 0; 8h 2 Cb (R) ,

where Cb (R) is the class of all bounded, continuous real-valued functions on R. Corre-
spondingly, we say that the sequence f~cng is a conditional asymptotic lower con�dence
bound if it satis�es,

(3.3) lim
n!1

Ec;n [(1 f~cn (Sn (X)) � cg � (1� �))h (Zn)] = 0 8h 2 Cb (R) .

That we might consider inference in a �rst-order autoregressions conditional on the

�nal observation has been pointed out at least as early as Phillips (1979)12. Phillips

(1979) observes that \...it is this case which is of most interest since, in practice, we do

forecast with given �nal period values of the endogenous variables." Speci�cally, forecasts

for model (2.1) are generally constructed treating the �nal observation, Xn, as �xed and

so it may be argued that conditional inference is more representative of the \experiment"

actually conducted. The following theorem shows that the solution to equation (3.1)

12A number of authors have considered predictive inference conditional on the �nal observation in au-
toregressive models. See Stine (1987), Kabaila (1993), Breidt et al. (1995), Barndor�-Nielsen and Cox
(1996), Kabaila (1999), Gospodoniv (2002), and Vidoni (2004). In a related context, Elliott (2006)
explored the role of the �nal observation when a practitioner is pre-testing for a unit root.
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enjoys asymptotic optimality properties in the class of sequences of estimators which

satisfy equation (3.3).

Theorem 2. Suppose Assumptions 1 & 2 hold, 0 < � < 1/ 2, and f~cn (�)g is a sequence
of estimators which satisfy equation (3.3) and are uniformly tight. Then,

lim inf inf
n!1

Ec;n [`
�
c (~cn (Sn (X)))] � lim

n!1
Ec;n [`

�
c (ĉ1�� (Sn (X)))] = Ec [`

�
c (ĉ1�� (S

c))] ,

where `�c (d) = `c (d) 1 fd < cg, `c (�) 2 L, and `c (�) is bounded and discontinuous on a
set of probability zero.

Theorem 2 is the asymptotic analogue to Theorem 1. However, in the asymptotic

case we may no longer consider the entire class L, but instead only those loss functions
which are bounded and continuous with probability one. However, if we choose `c (d) =

1 fd � rg where r < c then we have that ĉ satis�es,

(3.4) lim inf
n!1

Pc;n (~cn (Sn (X)) � r) � lim
n!1

Pc;n (ĉ1�� (Sn (X)) � r) = Pc (ĉ (S
c) � r) ,

which may be compared to equation (2.8). Equation (3.4) says that in the class of

estimators that are conditional (on Zn) asymptotic lower con�dence bounds as de�ned

by equation (3.3), ĉ1�� is asymptotically most concentrated below the true parameter

value, c. Moreover, we may follow the same logic as in Section 2 to show that ĉ is

the (conditional) median-unbiased estimator which is asymptotically most concentrated

around c.

Remark 2. As discussed in Section 2, we may generalize the class of loss function we

consider to include dependence on the su�cient statistic Tn (X). In particular, because

of the asymptotic equivalence between conditioning on Tn (X) and Zn, we may consider

loss functions of the form, ~̀c (d; z) where ~̀c (0; z) = 0, ~̀c (d; 0) = 0 and for �xed c and z;
~̀
c (d; z) is nondecreasing in d� c for d� c > 0 and nonincreasing in d� c for d� c < 0.
Then, we may alter the proof of Theorem 2 to obtain,

lim inf
n!1

Ec;n

h
~̀�
c (~cn (Sn) ; Zn)

i
� lim

n!1
Ec;n

h
~̀�
c (ĉ1�� (Sn) ; Zn)

i
,

where ~̀�c (d; z) =
~̀
c (d; z) 1 fd < cg. In particular, a reasonable metric to compare fore-

casts of an autoregressive series would be to rank forecast procedures by the concentration

of the normalized prediction error, ec (d; Zn) := (d� c)Zn, around the value of zero.

Thus, we would consider loss functions of the form, ~̀c (d; z) = 1 fec (d; z) � r0g where
r0 < 0, which yields,

lim inf
n!1

Pc;n [ec (~cn (Sn) ; Zn) � r0] � lim
n!1

Pc;n [ec (ĉ1�� (Sn) ; Zn) � r0] .
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Thus ĉ1�� produces a predictive lower bound that is most concentrated below a normal-

ized prediction error of zero among sequences of estimators which satisfy equation (3.3).

Correspondingly, ĉ is the median-unbiased estimator that most concentrates the normal-

ized prediction error around zero in the class of asymptotic conditional median-unbiased

procedures.

4. Discussion and Extensions

Before considering possible extensions of the procedures introduced in this paper we

show that we may replace �2 with a consistent estimator without compromising the

asymptotic results. If we de�ne the feasible counterpart of Sn (X) as

Ŝn
�
X; �̂2

�
:=
�
Ûn
�
X; �̂2

�
; T̂n

�
X; �̂2

��
,

where we have replaced �2 in equation (2.3) by a consistent estimator �̂2.

Theorem 3. Suppose Assumptions 1 & 2 hold, 0 < � < 1/ 2, and that �̂2 is any

consistent estimator of �2. Then,

lim
n!1

Ec;n[`
�
c(ĉ1��(Ŝn(X; �̂

2)))] = Ec [`
�
c (ĉ1�� (S

c))] ,

where `�c (d) = `c (d) 1 fd < cg, `c (�) 2 L, and `c (�) is bounded and discontinuous on a
set of probability zero.

4.1. Conditioning on Expected Information. As mentioned in Section 2 we may

also remove the curvature in the curved exponential family by conditioning on the su�-

cient statistic Un (X) (or in the asymptotic case, U
c). In the �nite-sample case this is

equivalent to conditioning on the observed Fisher information. An appealing property of

proceeding under this conditioning strategy is that we may now consider nearly-explosive

models (� slightly above or equal to unity) as well, since we no longer require a sign re-

striction on c to obtain optimality results (i.e., C = R). However, we no longer have

a clear motivation for the conditioning other than for the explicit goal of removing the

curvature in the model. Unfortunately, the conditional density does not appear to have

a tidy form as in Lemma 2 and so we must use the general formula,

f (tju; c) = f (u; t; c)R1
�1 f (u; t; c) dt

,

where the form of f (u; t; c) may be found in Remark 5 in the Appendix. An initial

numerical inspection of the properties of this estimator suggest that the numerical prop-

erties are unstable and so we leave it to future research.
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4.2. AR(p+ 1) with Unknown Mean. In this section we generalize model (2.1) to ac-

commodate more realistic circumstances. To di�erentiate this section from the previous

sections we now observe a univariate time series Y = (Y1; : : : ; Yn), generated as,

(4.1) Yt = �+ Ut, (1� �L)  (L)Ut = "t, t = 1; : : : ; n,

where � 2 R is the mean parameter, � 2 (�1; 1] is the parameter of interest, f"tg are
a sequence of unobserved i:i:d: mean-zero error terms, and L is the lag operator13. In

addition to Assumption 2 we make the following assumptions,

Assumption 3. The pth degree polynomial  (z) = 1�1z�� � ��pzp satis�es  (z) 6= 0
for all z 2 C such that jzj � 1.

Assumption 4. The initial conditions satisfy U�i = op (
p
n) for i = 0; : : : ; p.

Assumption 3 implies that if � = 0 then f (L)Utg is causal with respect to f"tg
(i.e.,  (L) may be inverted to produce an in�nite-order moving average process with

absolutely-summable (and one-summable) coe�cients). Thus, Yt is an AR(p+ 1) process

with nonzero mean and (possibly) one unit-root.

The next step is to discuss the localization techniques we utilize in this section. We fol-

low the presentation in Jansson (2008), implementing the local-to-unity parameterization

as in the previous sections along with,

(4.2) � = �n (m) = �0 +m,  (L) = n (L; �1; : : : ; �p) = 0 (L) + n�1=2� (L) ,

where 0 (L) = 1� 0;1L� � � � � 0;pLp is a known lag polynomial, � (L) = ��1L� � � � �
�pL

p, and (m;�0)0 = (m;�1; : : : ; �p)
0 are unknown nuisance parameters. Without loss of

generality we may assume that �0 = 0.

Let Pc;m;�;n and P0;0;0;n denote the distribution of (Y1; : : : ; Yn) under the localization

parameters (c;m; �) and (0; 0; 0), respectively. Also, let OPc;m;�;n (1) and oPc;m;�;n (1)

indicate that a sequence is Op (1) and op (1) with respect to the sequence of probability

measures fPc;m;�;ng. Under this speci�cation we have,

Lemma 3. Suppose Assumptions 2, 3, & 4 hold in model (4.1).

(1) The log-likelihood ratio satis�es,

L (c;m; �)� L (0; 0; 0)

= cTn (y)�
1

2
c2Un (y)�mV1n (y)�

1

2
m2V2 + �0W1n (y)�

1

2
�0W2n (y)� + oP0;0;0;n (1) ,

13We discuss the case of a linear time trend, Yt = �+ �t+ Ut, later in this section.
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where

Tn (y) =
1

�2n

nX
t=p+2

xt�1�xt, Un (y) =
1

�2n

nX
t=p+2

x2t�1,

�2V1n (y) = y1 +

pX
j=1

�x1+j0;j, �2V2 = 1 +

pX
j=1

20;j,

W1n (y) =
1

�2n1=2

nX
t=p+2

(�yp;t�1)
0�xt, W2n (y) =

1

�2n

nX
t=p+2

(�yp;t�1) (�yp;t�1)
0 ,

and

�yp;t�1 = (�yt�1; : : : ;�yt�p)
0 , xt =

�
0 (L)

Lt

�
�
Ltyt,

where [A (L)]� is de�ned to be the lag polynomial with terms containing nonneg-

ative powers of L dropped.

(2) Under the measure P0;0;0;n we have,

(Un (y) ; Tn (y)))(0;0;0) (U; T ) ,

V1n (y))(0;0;0) V1 � N (0; V2) , V2 :=
1

�2

"
1 +

pX
j=1

2j;0

#
,

W1n (y))(0;0;0) W1 � N (0;W2) , W2n (y) =W2 + oP0;0;0 (1)

W2 := E
h�
0 (L)

�1 "p;t�1
� �
0 (L)

�1 "p;t�1
�0i
,

where

"p;t�1 = ("t�1; : : : ; "t�p)
0 ,

and f(U; T ) ; V;W1g are pairwise independent.
(3) The sequences of probability measures Pc;m;�;n and P0;0;0;n are contiguous.

As a result of this lemma and Lemma 10 (in the Appendix), it makes no di�erence

asymptotically whether we assume that the value of the mean, �, or the coe�cients of the

lag polynomial,  (L), are known. This allows us to easily generalize the analogous opti-

mality results from Section 3 to model (4.4). Because we have locally re-parameterized

the parameters (�; ) the results are local in nature. In order to establish global results

we may use discretized estimators of (�; ), where the discretization is based on the ap-

propriate neighborhood as a function of n14. In the case of � we may take advantage of

the fact that,

y1 = �+ "1,

14For a more detailed description of the role of discretization see Le Cam and Yang (2000).
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to choose �̂ = y1. In the case of  (L) the appropriate re-parameterization was with

respect to n�1=2 and so the appropriate discretization is to utilize a n1=2-consistent es-

timator as our initial estimator and then choose the point on the grid, n�1=2Zp clos-
est to the value of this estimator; denote this estimator by ̂ (L). Thus we de�ne

Ŝn (Y ) := (Ûn (Y ) ; T̂n (Y )) where

T̂n (y) =
1

�̂2n

nX
t=p+2

x̂t�1�x̂t, Ûn (Y ) =
1

�̂2n

nX
t=p+2

x̂2t�1,

and x̂t = ̂ (L) (ŷt � �̂). Thus, we may proceed similarly as in Section 3. The counter-

part to equation (3.3) is,

(4.3) lim
n!1

Ec;m;�;n [(1 f~cn (Sn (Y )) � cg � (1� �))h (Zn)] = 0 8h 2 Cb (R) ,

where Zn is de�ned as in Section 3. It is important to note that, unlike in Section 3,

we are no longer considering procedures which condition on the �nal observation of the

observed series, (Y1; : : : ; Yn). Instead we are conditioning on the demeaned series less its

linear projection, Xn = 0 (L) (Yn � �). However, this series satis�es (1� �L)Xn = "n

just as in the preceding sections. Thus, we may generalize Theorem 2.

Theorem 4. Suppose Assumptions 2, 3, & 4 hold in model (4.1), 0 < � < 1/ 2 and let

f~cn (�)g be a sequence of estimators which satisfy equation (4.3). Then,

lim inf
n!1

Ec;m;�;n

h
`�c

�
~cn

�
Ŝn (Y )

��i
� lim

n!1
Ec;m;�;n

h
`�c

�
ĉ1��

�
Ŝn (Y )

��i
= Ec;m;� [`

�
c (ĉ1�� (S

c))] ,

where `�c (d) = `c (d) 1 fd < cg, `c (�) 2 L, and `c (�) is bounded and discontinuous on a
set of probability zero.

4.3. Linear Time Trend. A drawback to our procedure is that the optimality results

of the paper do not extend to the case of the linear time trend. Let our observed data

be generated by the model,

(4.4) Yt = �+ �t+ Ut, (1� �L)  (L)Ut = "t, t = 1; : : : ; n,

with the localization,

� = �n (b) = �0 +
0 (1)p

n
b,
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where, without loss of generality, we set �0 = 0. Now, rather than the term cTn (y) �
1
2
c2Un (y) as in Lemma 3 we have,

cTn (y)�
1

2
c2Un (y) + b

"
1

�2
p
n

nX
t=p+2

�c

�
t� 1
n

�
�xt � c

1

�2n3=2

nX
t=p+2

�c

�
t� 1
n

�
xt�1

#
,

where �c := 1 � cr. After conditioning on the term Tn (y), the likelihood ratio will no

longer be monotone with respect to the parameter c. This certainly does not preclude

the construction of a conditional estimator, however it will no longer enjoy any optimality

properties. This result is analogous to the case of point testing the null hypothesis of

a unit root (c = 0), versus a one-sided alternative (�c < 0) (see Elliott et al. (1996)). In

this case, the power envelope is unchanged when a mean or serial correlation in the error

terms is added, but is lowered when a linear time trend is accommodated.

5. Monte Carlo Evidence

We explored the performance of our estimator relative to popular competitors in a

Monte Carlo experiment. The data were generated from equation (2.1) using an initial

condition of x0 = 0 and iid standard normal errors. We considered two choices for the

sample sizes, n = 200 and n = 500. The other procedures we considered were ordinary

least-squares { denoted by "OLS", the grid-� estimator of Hansen (1999) to produce a

median-unbiased estimator15 { denoted by "HAN", and the inversion of the P (c; 0; �c)

statistic as discussed in Elliott and Stock (2001) to produce a median-unbiased estimator

{ denoted by "ES", and ĉ (un; tn) { denoted by "HAT". It is important to emphasize

that none of the alternative procedures considered are in the class of median-unbiased

estimators conditional on the statistic Tn (X) or its asymptotic counterpart. Instead this

simulation study is meant to assess the unconditional performance of the HAT estimator

relative to popular competitors. To compare performance, we calculated average mean-

square error of the parameter estimation error, �̂�� and average mean-square prediction
error, (�̂� �)xn over 1; 000 simulations. The results may be found in Tables 1 � 4 at
the end of the paper.

In general, for values of � away from unity, the HAT estimator performs poorly. Recall

that the conditional distribution function which is inverted to construct ĉ, relies on the

local-to-unity weak limits of the su�cient statistics (Un; Tn). Thus, for � far away from

unity, when the local-to-unity parameterization is inappropriate, this choice is not suited

for the data-generating process. This also occurs with the ES estimate, whose properties

15The grid�t procedure performed similarly to the grid-� procedure and so we omit these results to
conserve space. Also, as pointed out in footnote 3 of Hansen (1999) for i:i:d: Gaussian errors Hansen's
grid-� proceure corresponds to Andrews (1993) procedure.
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are based on the local-to-unity asymptotic theory, albeit to a lesser degree than in the

case of the HAT estimator. Although not surprising, it is an unappealing property of

these two estimators.

In Tables 1� 2 the average MSE for the parameter estimation error has been summa-
rized for both sample sizes. In the case of n = 200; ES has the lowest mean-square error

for values of � near 1, however as expected, as � moves away from 1, OLS dominates the

other estimators. The HAT estimator performs relatively poorly for the smaller sample

size, but improves appreciably for n = 500. For the larger sample size, ES performs

the best for � = 1, while no estimator dominates in the range of � 2 f0:99; 0:95; 0:90g.
Again, as the theory would suggest, OLS performs well when the value of � moves away

from 1.

The results for the average mean-square prediction error may be found in Tables 3�4.
The results follow a similar pattern as in the �rst two tables. ES performs the best for

higher values of � and OLS performs best for lower values of � (although as n increases

the range of dominance for ES is shortened). When we move to the larger sample size

we see again that the HAT estimator's relative performance improves.

These preliminary simulation results suggest that the HAT estimator is on par with

its competitors when the value of � is close to one, but does not perform well when � is

away from unity.

6. Conclusion

This paper has proposed an alternative interval and point estimator for the local-to-

unity parameter in a nearly-integrated �rst-order autoregression. The estimators have

correct coverage (and are median-unbiased) both conditionally and unconditionally and

are optimal in a speci�c class of conditional procedures. In particular, we have shown

that this class of estimators is asymptotically equivalent, under local-to-unity asymptotic

methods, to those procedures which condition on the �nal observation of the series. We

have also generalized the results to consider higher-order autoregressive processes with

a non-zero mean. A possible avenue for future research is whether me might generalize

the results to a wider class of error distributions such as those distributions which may

be represented as a scale mixture of normal random variables.
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7. Appendix

7.1. Appendix A: Preliminary Lemmas.

Lemma 4. Suppose Assumptions 2, 1 hold. Then,

(1) the family, ffn ( �j tn; c) : c 2 Cg has strictly increasing likelihood ratios.
(2) w 7! Fn (wj tn; c) is continuous and strictly increasing for every c 2 C, tn 2 R.
(3) c 7! Fn (wj tn; c) is continuous and strictly decreasing for every w 2 W, tn 2 R,

where W = f ~w : 0 < F ( ~wj tn; c) < 1g.
(4) c 7! qn;1�� (tn; c) is continuous and strictly increasing.

Proof. (1) By Lemma 7,

f (wj tn; c2)/ f (wj tn; c1) = (gn (c2; tn)/ gn (c1; tn)) exp
�
� w

�
c22 � c21

��
2
	
,

which is strictly increasing in w for c1 < c2. (2) Now �x c 2 C. For any w 2 R, and
sequence wm ! w with wm 2 R, 8m 2 N we have,

lim
m!1

F (wmj tn; c) = lim
m!1

Z wm

�1
f (!j tn; c) d! = lim

m!1

Z 1

�1
1(�1;wm] f!g � f (!j tn; c) d!,

which by the dominated convergence theorem yields,

lim
m!1

F (wmj tn; c) =
Z 1

�1
lim
m!1

1(�1;wm] f!g f (!j tn; c) d! = F (wj tn; c) .

Thus, F (wj tn; c) is a continuous function in w. F (wj tn; c) is strictly increasing by
absolute continuity with respect to Lebesgue measure. (3) Fix w 2 R. By Lehmann

and Romano (2005, Theorem 2.7.1), F (wj tn; c) is a continuous function in c. By

Lehmann and Romano (2005, Corollary 3.2.1) c 7! F (wj tn; c) is strictly decreasing for
any point w 2 W . (4) follows by (2) and (3). �

Lemma 5 (Lehmann and Romano (2005, Prob 3.44)). Let L (�; �) be nonnegative and

nonincreasing in its second argument for � < �, and equal to 0 for � � �. If � and ��

are two lower con�dence bounds for � such that

(7.1) P� f� � �0g � P� f�� � �0g for all �0 � �;

then

(7.2) E� [L (�; �)] � E� [L (�; �
�)] .

Proof. We follow the hint in Lehmann and Romano (2005) and de�ne two cumulative

distribution functions,

G (u) =
P� f� � ug
P� f�� � �g , G� (u) =

P� f�� � ug
P� f�� � �g , u < �,
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and G (u) = G� (u) = 1 for u � �. Then G (u) � G� (u) by equation (7.1) for all u and

E� [L (�; �)] = P� f�� � �g
Z
L (�; u) dG (u)

� P� f�� � �g
Z
L (�; u) dG� (u)

= E� [L (�; �
�)] .

The inequality follows by Lemma 6 below since u 7! L (�; u) is nonincreasing. �

Remark 3. By similar steps as in the proof of Lemma 5 we may show the analogous

result for the uniformly most accurate upper bound. When both the upper and lower

uniformly most accurate con�dence bounds have con�dence coe�cient equal to 1/ 2 then

the bounds coincide; call this estimator �̂. Clearly, �̂ is median unbiased and satis�es,

E�[`�(�̂)] � E� [`� (�
�)] ,

for all `� (�) 2 L� (de�ned analogous to L), and any other median-unbiased estimator ��.

Lemma 6 (Lehmann and Romano (2005, Prob 3.40)). G0, G1 are two cumulative

distribution functions on the real line, then G1 (x) � G0 (x) for all x if and only if

E0 (X) � E1 (X) for any nondecreasing function  .

Proof. Suppose that G1 (x) � G0 (x) for all x. Then, by Lemma 3.4.1 in Lehmann

and Romano (2005) there exists two nondecreasing functions g0 and g1, and a random

variable V , such that g0 (v) � g1 (v) for all v and the distributions of g0 (V ) and g1 (V )

are G0 and G1, respectively. Thus,

E0 [ (X)] = EV [ (g0 (V ))] � EV [ (g1 (V ))] = E1 [ (X)] .

Now suppose that,

E0 [ (X)] � E1 [ (X)]

for any nondecreasing function  (�). Choose  (z) = 1 � 1 fz � xg and the result
follows. �

7.2. Appendix B: Proofs.

Lemma 7. Suppose Assumptions 1 & 2 hold.

(1) The joint distribution of Sn (X) := (Tn (X) ; Un (X)) is a (2; 1)-curved exponential

family with density,

fn (un; tn; c) = exp

�
ctn �

1

2
c2un

�
fn (un; tn; 0) ,

where fn (tn; un; 0) is the density of Sn (X) when c = 0.
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(2) The conditional distribution of Un (X) given Tn (X) = tn is an exponential family

with density,

fn (unj tn; c) = gn (c; tn) exp

�
�1
2
c2un

�
fn (unj tn; 0) ,

where gn (c; tn) is chosen to satisfy
R
R+ fn (unj tn; c) dun = 1.

Proof of Lemma 7 . Lemma 7 follows by equation (2.2) and by Lehmann and Romano

(2005, Lemma 2.7.2). �

Proof of Theorem 1. By Lemma 4, F (wj tn; c) is continuous in both w and c when the
other is �xed. Thus, by Corollary 3.5.1 of Lehmann and Romano (2005) the solution

to equation (2.5) is the uniformly most accurate con�dence bound for c 2 C conditional
on Tn (X) = tn at the con�dence level 1 � �. Since the previous part of the proof was

restricted to the partition Tn (X) = tn, to complete of the proof note that (w; tn) 7!
F (wj tn; c) is jointly measurable so that (un; tn) 7! ĉn;1�� (un; tn) is jointly measurable.

For the second part of the theorem, let ~cl (x) be any other lower con�dence bound with

con�dence coe�cient 1�� conditional on Tn (X) = tn. Next, de�ne the two conditional

distribution functions,

Ĝ (r) =
Pc;n f ĉ1�� (Sn (X)) � rjTn (X)g

Pc;n f~cl (X) � cjTn (X)g
, ~G (r) =

Pc;n f~cl (X) � rjTn (X)g
Pc;n f~cl (X) � cjTn (X)g

,

for r < c and Ĝ (r) = ~G (r) = 1 for r � c. Thus, following the proof of Lemma 5, for

`c (�) 2 L,

Ec;n [`
�
c (ĉ1�� (Sn (X)))jTn (X)] = Pc;n f~cl (X) � cjTn (X)g

Z
`�c (r) d

~G (r)

� Pc;n f~cl (X) � cjTn (X)g
Z
`�c (r) d

~G (r)

= Ec;n [`
�
c (~cl (X))jTn (X)] ,

and the result follows. �

Proof of Lemma 1: Lemma 1 follows by weak convergence results in Phillips (1987). �

The proofs of Theorems 2 and 3 are greatly simpli�ed by using the limits of experiments

approach as introduced in Section 2. To use this approach we �rst must show that the

sequence of probability measures fPc;ng is contiguous with respect to the sequence of
probability measure fP0;ng.

Lemma 8. Suppose Assumptions 1 & 2 hold. Then, the sequence of probability measures

fPc;ng is contiguous with respect to the sequence of probability measure fP0;ng.
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Proof of Lemma 8. By Theorem 1 in Le Cam and Yang (2000, 36) it is su�cient to show

that under Pn,

log
dPc;n
dPn

)0 log
dPc
dP
,

where the weak limit is the log-likelihood ratio for some experiment. By equation (2.2)

and Lemma 1 we have that,

(7.3) log
dPc;n
dPn

= cTn (X)�
1

2
c2Un (X))0 cT �

1

2
c2U .

The right-hand side of equation (7.3) is, by Theorem 7.15 of Lipster and Shiryaev (2001,

279-80), the likelihood ratio of fBc (r) : 0 � r � 1g as de�ned in Lemma 1. �

Remark 4. If we consider the Laplace transform16, then since Bc (0) = 0, fBc (r) ; 0 � r � 1g =d
f�Bc (r) ; 0 � r � 1g, and we have for { > 0,

E [exp f�{UcgjBc (1) = a] = E [exp f�{UcgjBc (1) = �a] ,

for some a 2 R. Thus,

E [exp f�{UcgjBc (1) = a] = E
�
exp f�{UcgjBc (1)2 = a2

�
,

by the law of iterated expectations.

Proof of Lemma 2. Lemma 8 establishes contiguity of the relevant sequences of prob-

ability measures and Lemma 1 yields Sn (X) )0 S. Thus we may apply Le Cam's

Third Lemma (Proposition 1 in Le Cam and Yang (2000, 40)) with the local-to-unity

parameterization which yields,

f (u; t; c) = exp

�
ct� 1

2
c2u

�
f (u; t; 0) .

For part (2), we �rst apply Lemma 2.7.2 in Lehmann and Romano (2005, 48). Next

we �nd explicit forms for g (c) and f (uj t; 0). By L�evy (1951) we have,

E0 [exp f�{UgjB (1) = � ] =

 p
2{

sinh
�p
2{
�!1=2 exp��� 2

2

�p
2{ coth

�p
2{
�
� 1
��

;

where � 2 R and recall that (U;B (1)) are (U c; Bc (1)) with c = 0 (i.e., functionals of a
standard Brownian motion). Recall that

sinh (z) =
1� exp f�2zg
2 exp f�zg , coth (z) = 1 +

2 exp f�2zg
1� exp f�2zg ,

16For nonnegative random variables we may consider the Laplace transform rather than the characteristic
function without any loss of generality. See, for example, Kallenberg (2002).
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and so, �
z

sinh (z)

�1=2
exp

�
�a

2

2
(z coth (z)� 1)

�
=

�
2z exp f�zg
1� exp f�2zg

�1=2
exp

�
a2

2
� a2

2
z

�
exp

�
�a2 z exp f�2zg

1� exp f�2zg

�
,

which by expanding the exponential function becomes,

=
p
2 exp

�
a2

2

� 1X
j=0

(�a2)j zj+1=2
j!

exp
n
�z
�
2j + 1

2
+ a2

2

�o
(1� exp f�2zg)j+1=2

=
p
2 exp

�
a2

2

� 1X
j=0

(�a2)j

j!

1X
k=0

�
j + 1

2

�
k

k!

�
zj+1=2 exp

�
�z
�
2 (j + k) +

1

2
+
a2

2

���
.

If we plug in z =
p
2{, we obtain,

= 23=4 exp

�
a2

2

� 1X
j=0

(�a2)j

j!
2j=2

1X
k=0

�
j + 1

2

�
k

k!

�
{j=2+1=4 exp

�
�
p
{
p
2

�
2 (j + k) +

1

2
+
a2

2

���
.

By Erd�elyi (1954, 246) we have that,

lap�1p
�
p��1=2 exp f�p�pg

�
(q) = 2����1=2q���1=2 exp

�
� �

8q

�
D2�

� p
�p
2q

�
,

where lap�1p (�) is the inverse Laplace transform. Then, by term-by-term inversion we

have,

lap�1 (E0 [exp f�{U0gjB (1) = � ])

= 23=4 exp

�
� 2

2

� 1X
j=0

(�� 2)j

j!
2j=2

1X
k=0

�
j + 1

2

�
k

k!
2�j=2�3=4��1=2u�j=2�5=4 �

exp

8><>:�
2
�
2 (j + k) + 1

2
+ �2

2

�2
8u

9>=>;Dj+3=2

0@
�
2 (j + k) + 1

2
+ �2

2

�
p
u

1A
= exp

�
� 2

2

� 1X
j=0

(�� 2)j

j!

1X
k=0

�
j + 1

2

�
kp

�k!
u�j=2�5=4 �

exp

(
�(4 (j + k) + 1 + � 2)

2

16u

)
Dj+3=2

�
(4 (j + k) + 1 + � 2)

2
p
u

�
.
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To �nd an expression for g (c) ; note that for for c < 0, by Borodin and Salminen (2002,

526), we have,

f (uj t; c) = �c exp

�
c

2
+
c� 2

2

�
exp

�
�1
2
� 2
�
1� 1

�2c
� 2
��

exp

�
�1
2
c2u

�
f (uj t; 0) ,

and the result follows. �

Remark 5. Using the marginal distribution of T we may also derive,

f (u; t; 0) =

p
2

�

1X
j=0

(�� 2)j

j!

1X
k=0

�
j + 1

2

�
k

k!
u�

1
2(

5
2
+j) �

exp

(
�� (j; k; �)

2

16u

)
D3=2+j

�
� (j; k; �)

2
p
u

�
.

Proof of Theorem 2. We modify the proof of Theorem 5 in Jansson and Moreira (2006).

The proof will proceed in two steps: �rst, we will de�ne a certain class of estimators

and show that ĉ1�� is optimal within this class and also satis�es equation (3.3); second,

we will show that any other sequence of estimators which satis�es equation (3.3) has a

limiting representation that is a member of 	c and thus asymptotically inferior.

First note that (u; t) 7! ĉ1�� (u; t) is continuous in each argument when the other is

�xed. This follows by Lemma 2 and the dominated convergence theorem for the �rst

argument and by Lemma 2 and Remark 1 for the second argument. Therefore, we may

apply the continuous-mapping theorem to the results of Lemma 1 to obtain,

(7.4)

�
ĉ1�� (Sn (X)) ;

Xn

�
p
n
; cTn (X)�

1

2
c2Un (X)

�
)0 (ĉ1�� (S) ; B (1) ;� (c)) =: Q0,

and

� (c) := cT � 1
2
c2U .

Next, note that by Lemma 2 for a jointly measurable function g (�; �) we have,Z Z
g (uc; tc) f (uc; tc) ducdtc = E [g (S) exp f� (c)g] .

Recall that Xn/ (�
p
n) )c Bc (1) and Xn/ (�

p
n) )0 B (1). Now, de�ne the following

two classes of estimators,

�c = f~c : E [(1 f~c (S) � cg � (1� �))h (B (1)) exp f� (c)g] = 0; 8h 2 Cb (R)g ,

and

	c = f~c (�) : E [(1 f~c (S) � cg � (1� �))h (T ) exp f� (c)g] = 0; 8h 2 Cb (R)g .
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Since ĉ1�� (�) is a lower bound with conditional con�dence coe�cient 1� �, it is clear
that ĉ1�� 2 	c. Moreover, by similar arguments as in the proof of Theorem 1,

(7.5) E [`�c (ĉ1�� (S)) exp f� (c)g] � E [`�c (~c (S)) exp f� (c)g] , 8~c 2 	c.

By Lemma 9, �c and 	c are equivalent classes of estimators. Thus ĉ1�� 2 �c and

equation (7.5) also holds 8~c 2 �c. Next, we need to show that ĉ1�� satis�es equation

(3.3). By equation (7.4) and Le Cam's Third Lemma,�
ĉ1�� (Sn (X)) ;

Xn

�
p
n
; cTn (X)�

1

2
c2Un (X)

�
)c Qc,

where
dQc
dQ0

= exp f� (c)g = exp
�
cT � 1

2
c2U

�
,

is understood as a Radon-Nikodym derivative. Now, since `�c is discontinuous on a set

of probability zero,

`�c (ĉ1�� (Sn (X))))0 `
�
c (ĉ1�� (S)) .

Moreover, since `�c is bounded then f`�c (ĉ1�� (Sn (X)))g are uniformly integrable. Then
by Theorem 3.5 of Billingsley (1999) we have that,

lim
n!1

Ec;n

�
(1 fĉ1�� (Sn (X)) � cg � (1� �))h

�
Xn

�
p
n

��
=

Z
(1 fĉ1�� (S) � cg � (1� �))h (B (1)) dQc

=

Z
(1 fĉ1�� (S) � cg � (1� �))h (B (1)) exp f� (c)g dQ0

= E [(1 fĉ1�� (S) � cg � (1� �))h (B (1)) exp f� (c)g]

= 0,

since ĉ1�� 2 �c. By similar arguments we have that

lim
n!1

Ec [`
�
c (ĉ1�� (Sn (X)))] = E [`�c (ĉ1�� (S)) exp f� (c)g] .

To complete the proof we must show that for any sequence of estimators f~cng which
satis�es equation (3.3) and is uniformly tight, that there exists a ~c 2 �c such that,

lim inf
n!1

Ec;n [`
�
c (~cn (Sn (X)))] = Ec;n [`

�
c (~c (S)) exp f� (c)g] .

First, by properties of the limit inferior we may choose a subsequence, i (n) such that,

(7.6) lim
i(n)!1

Ec;i [`
�
c (~ci (Si (X)))] = lim inf

n!1
Ec;n [`

�
c (~cn (Sn (X)))] .
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Now since, ~ci (Si (X)) is uniformly tight and Si (X) = OP0;n (1) we have joint uniform

tightness and so by Prohorov's theorem there exists a further subsequence j = j (i) such

that along this sequence,

(~cj (Sj (X)) ; Sj (X)))0 (~c1; S) ,

where ~c1 is a random variable de�ned on the same probability space as S. Now, by the

continuous-mapping theorem,

(`�c (~cj (Sj (X))) ; Sj (X) ; cTj �
1

2
c2Uj))0 (`

�
c (~c1) ; S;� (c)) ,

we may apply Le Cam's Third Lemma and Theorem 3.5 of Billingsley (1999), and by

equation (7.6),

lim inf
n!1

Ec;n [`
�
c (~cn (Sn (X)))] = lim

j(n)!1
Ec;j [`

�
c (~cj (Sj (X)))] = E [`�c (~c1) exp f� (c)g] .

Finally, we need to show that ~c1 2 �c. This follows by,

E [(1 f~c1 � cg � (1� �))h (B (1)) exp (� (c))]

= lim
j(n)!1

Ec;j [(1 f~cj (Sj (X)) � cg � (1� �))h (Zn)]

= 0,

since f~cng satis�es equation (3.3). �

Lemma 9. The two classes of estimators, �c and 	c, as de�ned in the proof of Theorem

2, are equivalent.

Proof of Lemma 9. �c is de�ned by estimators which satisfy,

E [(1 f~c (S) � cg � (1� �))h (B (1)) exp f� (c)g] = 0, 8h 2 Cb (R) .

Now,

E [(1 f~c (S) � cg � (1� �))h (B (1)) exp f� (c)g] = 0, 8h 2 Cb (R)

() Ec [(1 f~c (Sc) � cg � (1� �))h (Bc (1))] = 0, 8h 2 Cb (R)

() Ec [ (1 f~c (Sc) � cg � (1� �))jBc (1)] = 0.

Recall that by Itô's Lemma,

T c =
1

2

�
Bc (1)

2 � 1
�
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and that the conditional distribution of U c given Bc (1) is identical to the conditional

distribution of U c given Bc (1)
2 (see Remark 4 and Lemma 2). Thus,

Ec [ (1 f~c (Sc) � cg � (1� �))jBc (1)] = 0

() Ec

��
1

�
~c

�
U c;

1

2

�
Bc (1)

2 � 1
��
� c

�
� (1� �)

�����Bc (1)2� = 0
() Ec [ (1 f~c (U c; T c) � cg � (1� �))jT c] = 0

() Ec [(1 f~c (Sc) � cg � (1� �))h (T c)] = 0, 8h 2 Cb (R)

() E [(1 f~c (S) � cg � (1� �))h (T ) exp f� (c)g] = 0, 8h 2 Cb (R) ,

and the result follows. �

Proof of Theorem 3. By consistency of �̂2 we have that,

Ŝn
�
X; �̂2

�
= Sn (X) + op (1) .

Then, as in the proof of Theorem 2 we note that (u; t) 7! ĉ (u; t) is continuous and so

by the continuous-mapping theorem (since `�c (�) is discontinuous on a set of probability
zero),

`�c(ĉ1��(Ŝn(X; �̂
2))))0 `

�
c (ĉ1�� (S)) .

Then by an application of Le Cam's Third Lemma (Proposition 1 in Le Cam and Yang

(2000, 40)) and Theorem 3.5 in Billingsley (1999, 31) we have,

lim
n!1

Ec[`
�
c(ĉ1��(Ŝn(X; �̂

2)))] = E [`�c (ĉ1�� (S)) exp f� (c)g] = Ec [`
�
c (ĉ1�� (S

c))] .

�

Proof of Lemma 3. For (1) let us partition the vector " = (("1; : : : ; "p+1) ; ("p+2; : : : ; "n)).

First note that for t = p+ 2; : : : ; n we have,

"t = (1� �L)  (L) (yt � �) .

Then,

"t = (1� �L)  (L) (yt � �)

= (1� L+ L� �L)  (L) (yt � �)

=
�
1� L� cn�1L

� �
0 (L) + n�1=2� (L)

�
(yt � �)

= �xt � cn�1 (xt�1 � �) + n�1=2� (L)�yt � cn�3=2� (L) (yt�1 � �)

= �xt � cn�1xt�1 + n�1=2� (L)�yt +OP0;0;0
�
n�1
�
.
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Thus,

nX
t=p+2

"2t =

nX
t=p+2

�
�xt � cn�1xt�1 + n�1=2� (L)�yt +OP0;0;0

�
n�1
��2

=
nX

t=p+2

[�xt]
2 +

nX
t=p+2

��
cn�1xt�1

�2
+
�
n�1=2� (L)�yt

�2�
�2

nX
t=p+2

�
cn�1xt�1�xt � n�1=2� (L)�xt�yt

�
+ oP0;0;0 (1) .

Next, note that

(1� �z)  (z) =

p+1X
k=0

a1;kz
k �

p+1X
k=0

a2;kz
k + o (1) ,

where

a1;0 = 1; a2;0 = 0, a1;1 = �01; a2;1 = 1

a1;k = �0k; a2;k = �0(k�1) k = 2; : : : ; p

a1;p+1 = 0p; a2;p+1 = 0.

Thus, for t = 1; : : : ; p+ 1 we have that

"1 = y1 �m, "t = �xt + 0(t�1)m, t = 2; : : : ; p+ 1.

Thus,

L (c;m; �)� L (0; 0; 0)

= � 1

2�2

nX
t=p+2

��
cn�1xt�1

�2
+
�
n�1=2� (L)�yt

�2 � 2cn�1xt�1�xt + 2n�1=2� (L)�xt�yt�

� 1

2�2

"
(y1 �m)2 +

p+1X
t=2

�
�xt + 0(t�1)m

�2#
+

1

2�2

"
(y1)

2 +

p+1X
t=2

(�xt)
2

#
+ oP0;0;0 (1) ,

and (1) follows. Now consider (2). Convergence and independence of (Un (Y ) ; Tn (Y ))

and (W1n (Y ) ;W2n (Y )) follow from results in Jeganathan (1991). For (V1n (y) ; V2n (y)),

note that under (c;m; �) = (0; 0; 0), �xk = "k for k = 1; : : : ; p+1. Pairwise independence

follows by Assumption 2. (3) follows by results in Jeganathan (1991). �
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Lemma 10. Suppose Assumptions 2, 3, & 4 hold in model (4.1).Then, the joint distri-

bution of Sc;m;� is,

f (u; t; v; w1; c; �;m; V2;W2)

= exp

�
ct� 1

2
c2u

�
f (u; t; 0) exp

�
�mv � 1

2
m2V2

�
f (v; 0; V2)�

exp

�
�0w1 �

1

2
�0w2�

�
f (w1; 0;W2) ,

and

f (u; v; w1j t; c; �;m; V2;W2)

= g (c; t) exp

�
�1
2
c2u

�
f (uj t; 0) exp

�
�mv � 1

2
m2V2

�
f (v; 0; V2)�

exp

�
�0w1 �

1

2
�0W2�

�
f (w1; 0;W2) ,

where

f (v; 0; V2) = (2�V2)
�1=2 exp

�
� (2V2)�1 v2

	
,

f (w1; 0;W2) = (2�)�p=2 jW2j�1=2 exp
�
�1
2
W 0
1W

�1
2 W1

�
,

and g (c; t) and f (uj t; 0) are as in Lemma 2.

Proof of Lemma 10. By Lemma 3 (1) we have that L (c;m; �)�L (0; 0; 0))(0;0;0) � (c;m; �).

Next, by Lemma 3 (3) we have that the sequences of probability measures are contiguous

and so we may appeal to Le Cam's Third Lemma (Proposition 1 in Le Cam and Yang

(2000, 40)). An application of Lemma 2.7.2 in Lehmann and Romano (2005, 48) yields,

f (u; t; v; w1; c; �;m; V2;W2)

= exp

�
ct� 1

2
c2u�mv � 1

2
m2V2 + �0w1 �

1

2
�0W2�

�
f (u; t; v; w1; 0; 0; 0; V2;W2) .

By the independence results in 3 (2) we may rewrite,

f (u; t; v; w1; 0; 0; 0; V2;W2) = f (u; t; 0) f (v; 0; V2) f (w1; 0;W2) ,

where f (u; t; 0), f (v; 0; V2), f (w1; 0;W2) are f (u; t; c), f (v;m;V2), f (w1; �;W2) under

the parameter values c = 0, m = 0, and � = 0, respectively. Another application of
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Lemma 2.7.2 in Lehmann and Romano (2005, 48) yields,

f (u; v; w1j t; c; �;m; V2;W2)

= C exp

�
ct� 1

2
c2u

�
f (uj t; 0) exp

�
�mv � 1

2
m2V2

�
f (v; 0; V2)�

exp

�
�0w1 �

1

2
�0W2�

�
f (w1; 0;W2) ,

where C = C (c; �;m; t) is a normalizing function. However, by Lemma 2 we know that

the appropriate normalizing function for f (uj t; 0) is g (c; t). Moreover, by standard

properties of the (log) normal distribution we have that,Z 1

�1
exp f�mvg f (v; 0; V2) dv = exp

�
1

2
m2V2

�
and Z 1

�1
exp f�0w1g f (w1; 0;W2) dw1 = exp

�
1

2
�0W2�

�
.

Thus, C = g (c; t). �

Proof of Theorem 4. This proof follows by similar steps as in the proofs of Theorem 2

and 3. �



30 RICHARD K. CRUMP

8. Simulation Results

� OLS HAT GRA ES
1 0.3006 0.6807 0.3219 0.2170
0.99 0.3768 0.4901 0.4391 0.3258
0.95 0.7655 0.9233 0.8975 0.7622
0.9 1.2260 1.5109 1.3776 1.2630
0.75 2.4324 7.0158 2.5891 3.5756
0.5 3.8169 70.4593 3.9257 20.3303

Table 1. 103� Avg MSE Parameter Estimation Error, n = 200

� OLS HAT GRA ES
1 0.0489 0.1013 0.0534 0.0351
0.99 0.1018 0.1064 0.1190 0.0935
0.95 0.2842 0.2740 0.3206 0.2914
0.9 0.4780 0.5260 0.5199 0.5415
0.75 0.9587 4.6473 1.0003 2.3671
0.5 1.5401 64.0822 1.5722 18.3329

Table 2. 103� Avg MSE Parameter Estimation Error, n = 500

� OLS HAT GRA ES
1 0.9642 1.5131 1.0288 0.3082
0.99 0.6691 1.4807 0.7603 0.4819
0.95 0.5175 0.7231 0.5999 0.5082
0.9 0.5199 0.7002 0.5727 0.6637
0.75 0.4968 1.5317 0.5102 1.6938
0.5 0.4538 9.0072 0.4543 5.5514

Table 3. 102� Avg MSE Prediction Error, n = 200
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� OLS HAT GRA ES
1 0.3705 0.4430 0.3964 0.1073
0.99 0.2512 0.4528 0.2830 0.2266
0.95 0.2376 0.2829 0.2619 0.3389
0.9 0.2473 0.2815 0.2631 0.5006
0.75 0.2225 0.9652 0.2273 1.4589
0.5 0.1967 7.9334 0.2001 4.3138

Table 4. 102� Avg MSE Prediction Error, n = 500

References

[1] Andrews, D. A. (1993): \Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit

Root Models," Econometrica, 61(1), 139-165.

[2] Andrews, D.A., & H. Y. Chen (1994): \Approximately Median-Unbiased Estimation of Autoregres-

sive Models," Journal of Business & Economic Statistics, 12(2), 187-204.

[3] Andrews, D.A., & P.C.B. Phillips (1987): \Best Median-Unbiased Estimation in Linear Regres-

sion with Bounded Asymmetric Loss Functions," Journal of the American Statistical Association,

82(399), 886-893.

[4] Barndor�-Nielsen, O. E., & D. R. Cox (1994): Inference and Asymptotics. London: Chapman &

Hall.

[5] Barndor�-Nielsen, O. E., & D. R. Cox (1996): \Prediction and Asymptotics," Bernoulli, 4(2),

319-340.

[6] Billingsley, P. (1999): Convergence of Probability Measures (Second Ed.). New York: Wiley.

[7] Bobkoski, M. J. (1983): \Hypothesis Testing in Nonstationary Time Series," Unpublished P.h.D.

Thesis, Department of Statistics, University of Wisconsin.

[8] Borodin, A.N., & P. Salminen (1996): Handbook of Brownian Motion. Basel: Birkha�user-Verlag.

[9] Breidt, J.F., Davis, R.A., & W.T.M. Dunsmuir (1995): \Improved Bootstrap Prediction Intervals

for Autoregressions," Journal of Time Series Analysis, 95(2), 177-200.

[10] Cavanagh, C. (1985): \Roots Local to Unity," Manuscript, Department of Economics, Harvard

University.

[11] Chan, N. H. (1988): \The Parameter Inference for Nearly Nonstationary Time Series," Journal of

the American Statistical Association, 83(403), 857-862.

[12] Chan, N. H., & C.Z. Wei (1987): \Asymptotic Inference for Nearly Nonstationary AR(1) Processes,"

The Annals of Statistics, 15(3), 1050-1063.

[13] Dufour, J. (1990): \Exact Tests and Con�dence sets in Linear Regressions with Autocorrelated

Errors," Econometrica, 58(2), 475-494.

[14] Efron, B. (1975): \De�ning the Curvature of a Statistical Problem (with Applications to Second

Order E�ciency)," The Annals of Statistics, 3(6), 1189-1242.

[15] Efron, B. (1978): \The Geometry of Exponential Families," The Annals of Statistics, 6(2), 362-376.

[16] Elliott, G. (2006): \Unit Root Pre-Testing and Forecasting," Working Paper, Department of Eco-

nomics, UC-San Diego.



32 RICHARD K. CRUMP

[17] Elliott, G., Rothenberg, T. J. & J. H. Stock (1996): \E�cient Tests for an Autoregressive Unit

Root," Econometrica, 64(4), 813-836.

[18] Elliott, G., & J. H. Stock (2001): \Con�dence Intervals for Autoregressive Coe�cients Near One,"

Journal of Econometrics, 103(1-2), 155-181.

[19] Erd�elyi, A. (1954): Tables of Integral Transforms I. New York: McGraw-Hill.

[20] Gospodinov, N. (2002): \Median Unbiased Forecasts for Highly Persistent Autoregressive Pro-

cesses," Journal of Econometrics, 111(1), 85-101.

[21] Gushchin, A. A., (1995): \On Asymptotic Optimality of Estimators Under the LAQ Condition,"

Theory of Probability and its Applications, 40(2), 261-272.

[22] Haldrup, N., & M. Jansson (2006): \Improving Size and Power in Unit Root Testing," in Palgrave

Handbook of Econometrics, Volume 1: Econometric Theory, ed. by Mills, T. C., & K. Patterson.

New York: Palgrave Macmillan, 252-277.

[23] Hansen, B. E. (1999): \The Grid Bootstrap and the Autoregressive Model," The Review of Eco-

nomics and Statistics, 81(4), 594-607.

[24] Jansson, M. (2008): \Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis,"

Econometrica, 76(5), 1103-1142.

[25] Jansson M., & M.J. Moreira (2006): \Optimal Inference in Regression Models with Nearly Inte-

grated Regressors," Econometrica, 74(3), 681-714.

[26] Jeganathan, P. (1991): \On the Asymptotic Behavior of Least-Squares Estimators in AR Time

Series with Roots near the Unit Circle," Econometric Theory, 7(3), 269-306.

[27] Jeganathan, P. (1995): \Some Aspects of Asymptotic Theory with Applications to Time Series

Models," Econometric Theory, 11(5), 818-887.

[28] Kabaila, P. (1993): \On Bootstrap Predictive Inference for Autoregressive Processes," Journal of

Time Series Analysis, 93(5), 473-484.

[29] Kabaila, P. (1999): \The Relevance Property for Prediction Intervals," Journal of Time Series

Analysis, 20(6), 655-662.

[30] Kallenberg, O. (2002): \Foundations of Modern Probability," (Second Ed.). New York: Springer-

Verlag.

[31] Kiviet, J. F. & G. D. A. Phillips (1992): \Exact Similar Tests for Unit Roots and Cointegration,"

Oxford Bulletin of Economics and Statistics, 54(3), 349-367.

[32] Le Cam, L. (1982): Asymptotic Methods in Statistical Decision Theory. New York: Springer-Verlag.

[33] Le Cam, L., & G. L. Yang (2000): Asymptotics in Statistics: Some Basic Concepts (Second Ed.).

New York: Springer-Verlag.

[34] Lehmann, E. L., & J. P. Romano (2005): Testing Statistical Hypotheses (Third Ed.). New York:

Springer-Verlag.

[35] L�evy, P. (1951): \Wiener's Random Functions and other Laplacian Random Functions," in Proc.

Second Berkeley Symp. on Math. Statist. and Prob. Berkeley: Univ. of Calif. Press, 171-187.

[36] Lipster, R. S., & A. N. Shiryaev (2001): Statistics of Random Processes: I. General Theory (Second

Ed.). New York: Springer-Verlag.

[37] Nelson, C. R., & C. I. Plosser (1982): \Trends and Random Walks in Macroeconomic Time Series,"

Journal of Monetary Economics, 10(2), 139-162.



OPTIMAL CONDITIONAL ESTIMATION 33

[38] Patterson, K. (2000): \Finite Sample Biase of the Least Squares Estimator in an AR(p) Model:

Estimation, Inference, Simulation and Examples," Applied Economics, 32(15), 1993-2005.

[39] Pfanzagl, J. (1970): \Median Unbiased Estimates for M.L.R.-Families," Metrika, 15, 30-39.

[40] Pfanzagl, J. (1979): \On Optimal Median Unbiased Estimators in the Presence of Nuisance Param-

eters," The Annals of Statistics, 7(1), 187-193.

[41] Phillips, P.C.B. (1979): \The Sampling Distribution of Forecasts from a First-Order Autoregres-

sion," Journal of Econometrics, 9(3), 241-261.

[42] Phillips, P. C. B. (1987): \Towards a Uni�ed Asymptotic Theory for Autoregression," Biometrika,

74(3), 535{547.

[43] Phillips, P. C. B., & Z. Xiao (1998): \A Primer on Unit Root Testing," Journal of Economic

Surveys, 12(5), 423-469.

[44] Rudebusch, G.D. (1992): \Trends and Random Walks in Macroeconomic Time Series: A Re-

Examination," International Economic Review, 33(3), 661-680.

[45] Schotman, P. C., & H. K. van Dijk (1991): \On Bayesian Routes to Unit Roots," Journal of Applied

Econometrics, 6(4) 387-401.

[46] Stine, R.A. (1987): \Estimating Properties of Autoregressive Forecasts," Journal of the American

Statistical Association, 82(400), 1072{1078.

[47] Stock, J. H. (1991): \Con�dence Intervals for the Largest Autoregressive Root in U.S. Macroeco-

nomic Time Series," Journal of Monetary Economics, 28(3), 435-459.

[48] Stock, J. H. (1994): \Unit Roots, Structural Breaks and Trends," in Handbook of Econometrics,

Vol. IV, ed. by R. F. Engle and D. L. McFadden. New York: North-Holland, 2739-2841.

[49] Vidoni, P. (2004): \Improved Prediction Intervals for Stochastic Process Models," Journal of Time

Series Analysis, 25(1), 137-154.

Department of Economics, University of California at Berkeley

E-mail address: crump@econ.berkeley.edu

URL: http://www.ocf.berkeley.edu/~crump


