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1 Bayesian Methods in Macroeconomics
intro

One of the goals of econometric analysis is to provide quantitative answers to sub-

stantive economic questions. Examples of such questions are:c1 (i) What are the

main driving forces behind business cycles? Are business cycles correlated across

regions and countries? Will GDP decline over the next year and for what reason?

(ii) What happens to aggregate output, consumption, investment, and prices in

response to unanticipated changes in monetary or fiscal policy? (iii) Was it good

luck or good monetary and fiscal policy that caused the decline in output volatility

(“Great Moderation”) in the mid 1980s? (iv) What is the optimal level of infla-

tion? Should a fiscal authority tax labor income, capital income, or consumption

expenditures? (v) Does economic growth lead to democracy or do countries with a

democratic government grow faster?

Quantitative answers to some of these questions, e.g., will GDP decline over the

next year, require very little economic theory and can be generated, for instance, by

simply exploiting serial correlations. Other questions, such as what is the optimal

level of inflation, require a sophisticated theoretical model that generates predictions

about how agents change their behavior in response to economic policy changes.

Thus macroeconometric analysis relies on a large range of model specifications, rang-

ing from simple univariate autoregressions to elaborate dynamic stochastic general

equilibrium models.

1.1 What are some of the key challenges for econometric analysis?

Identification: What patterns in the data allow us to identify an unanticipated

change in monetary policy and its effects? How can one infer an aggregate labor

supply elasticity from movements in aggregate output and hours worked? Identi-

fication has two dimensions: (i) with an infinite amount of data, is the quantity

of interest in principle identifiable? (ii) Does a particular data set contain enough

information to provide a precise measurement?

Providing Measures of Uncertainty: Unfortunately, macroeconomists always

face a shortage of observations that are necessary to provide a reliable answers to

a particular research question. For instance, even to fairly elementary and widely
c1fs: Relate to subsequent empirical illustrations.
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studied questions such as what fractions of employment variation is due to tech-

nology shocks or what is the relative response of output and inflation to a 25 basis

point reduction in the Federal Funds rate, precise answers remain elusive. Answers

are sensitive to the choice of theoretical frameworks, empirical models, and data

definitions. Documenting this uncertainty in scientific reporting is very important.

Empirical Fit versus Theoretical Coherence: Many macroeconomists have a

strong preference for models with a high degree of theoretical coherence. This means

that rather than postulating functional forms for decision rules of economic agents,

these decision rules are derived from some deeper principles such as intertemporal

optimization, rational expectations, competitive equilibrium from a specification

of preferences and production technologies. Theoretical coherence goes typically

hand-in-hand with tight cross-equation restrictions for empirical models that try to

capture the joint dynamics of a vector of macroeconomic time series and tends to

lead to some form of misspecification.c1

High-Dimensional Models: Some questions involve high-dimensional empirical

models. The analysis domestic business cycles might involve processing information

from a large cross section of macroeconomic and financial variables. The study of

international comovements is often based on high-dimensional vector autoregressive

models, which, if left unrestricted, cannot be reliably estimated with the available

data.

1.2 How can Bayesian analysis help?

Identification Issues: Lack of identification manifests itself in “flat” likelihood

functions, both in Bayesian and frequentist analysis. Frequentist analysis, which

conditions on a “true” parameter tends to be very sensitive to the strength of iden-

tification because it affects the sampling distribution of estimators and test statis-

tics. Much of frequentist analysis relies on either large sample or re-sampling based

approximations of small sample distributions of estimators and test statistics. Ap-

proximations that are uniformly valid over the parameter space tend to be difficult

to obtain if models are only weakly or partially identified.

In Bayesian analysis lack of identification manifests itself in a lack of updating

when turning prior distributions into posterior distributions (See Poirier (1998,

c1fs: Does this hurt short and long-term forecasting performance?



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 3

ADD) or Moon and Schorfheide (2009, ADD)c2 As long as the prior distributions

are proper, so are the posterior distributions, which means that lack of identifica-

tion poses no conceptual problems. However, as in frequentist analysis it does cause

some practical challenges: it becomes more important to document which aspects

of the prior distribution do not get updated by the likelihood function and more

care is required in the choice of the prior distribution. In models in which Bayesian

inference is implemented via numerical methods, the researcher has to insure that

these methods work well despite potential lack of identification.

[HvD: Near-boundary features of criterion functions: examining market efficiency

and long-run growth patterns. Distinguishing between deterministic and stochastic

trend components and between cyclical versus trend components.]

Combining Different Sources of Observations. Many macroeconomic models

have implications about price and quantity dynamics at the micro level. For instance,

the popular Calvo mechanism for generating nominal rigidities in a dynamic stochastic

general equilibrium (DSGE) model has implications about the frequency at which

firms change their prices.c1 Thus, micro data on price changes are in principle in-

formative about key parameters of a model that is designed to describe aggregate

output, inflation, and interest rate dynamics. In principle, the micro-level informa-

tion could be incorporated into the estimation of the DSGE model by constructing

a likelihood function for both aggregate and disaggregate data. In practice, this

approach is not particularly useful for the following reason. While, strictly speaking

the Calvo model introduces some heterogeneity across firms, this heterogeneity is

not sufficient to explain price dynamics at the micro level. The Bayesian frame-

work offers a coherent alternative of combining information from different sources,

namely through prior distributions. In our example, one could use the micro-level

data to construct a prior distribution for the parameter associated with the Calvo

mechanism. The weight placed on the micro evidence can be controlled through the

prior variance.

Accounting for Uncertainty: The fact that Bayesian analysis conditions on ob-

served data rather than an unobserved “true” data generating process, and that

macroeconomic forecasts and policy decisions are made conditional on the observed

empirical evidence, implies that Bayesian methods are well suited for macroecono-

metric analysis. To the extent that the substantive analysis requires a researcher
c2fs: Refine statements.
c1fs: Link to discussion of identification.
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to consider multiple theoretical and empirical frameworks, Bayesian analysis allows

the researcher to assign probabilities to competing specifications and update these

probabilities in view of the data.c2 For instance, to study the effect of monetary

policy shocks one could average across vector autoregressions (VARs) or DSGE

models that employ different identification schemes or emphasize different propaga-

tion channels for monetary policy. Forecasting future inflation or output requires

to account for uncertainty about realizations of structural shocks as well as un-

certainty associated with parameter estimates. Since shocks and parameters are

treated symmetrically in a Bayesian framework, namely as random variables, ac-

counting for these two sources of uncertainty is conceptually straightforward in a

Bayesian framework.

Potential Misspecification: Studying questions that involve counterfactuals of

how agents would behave under economic policies that have not been observed before

require models with a high degree of theoretical coherence. In turn these models

are likely to suffer from misspecification. Bayesian methods offer a surprisingly

rich tool kit for coping with misspecification issues arising in structural modelling.

For instance, one can use a more densely parameterized reference model to assess

predictions associated with a tightly parameterized structural model. Alternatively,

one could use the restrictions associated with the theoretically coherent model only

loosely, to center a prior distribution on a richer reference models.

Too Many Parameters, Too Few Observations: Consider studying the spill-

overs of technology shocks among OECD countries. A natural framework to study

this problem is a multi-country VAR model.c1 However, if lagged variables from

each foreign country affect the macroeconomic outcomes in the domestic country

the ratio of observations to free parameters is likely to be very small. Of course, one

can restrict the dimensionality of this multi-country VAR by simply setting most

of the coefficients that capture effects of foreign variables to zero. Unfortunately,

such a set of “hard” restrictions rules out the existence of these spill-over effects.

Conceptually more appealing is the use of “soft” restrictions, which can be easily

incorporated through prior distributions for these coefficients that are centered at

zero but have a small, yet non-zero variance. Alternatively, and related to the

previous discussion of misspecification, these “soft” restrictions embodied in prior
c2fs: In many instances, hypothesis testing is not very useful.
c1fs: The subsequent discussion is vague.
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distributions could be used to tilt the estimates, of say, a vector autoregression,

toward cross-equation restrictions implied by economic theory.

Efficient Computations: Many models used to analyze macroeconomic data in-

clude latent variables, which might capture the state of the business cycle, e.g.,

expansion versus contraction, in a univariate regime-switching model for output

growth, or state variables of the aggregate economy, such as technology or capi-

tal, in a DSGE model. In a Bayesian framework there is no conceptual difference

between parameters and latent variables – both are random variables – and data

augmentation and Gibbs sampling algorithms provide an efficient way of analyzing

models with latent variables.

1.3 Outline of this Chapter

Throughout this chapter we will emphasize multivariate models, that can capture co-

movements of macroeconomic time series. We will begin with a discussion of vector

autoregressive models in Section 2, distinguishing between reduced form and struc-

tural VARs. Reduced form VARs essentially summarize autocovariance properties

of vector time series and can also be used to generate multivariate forecasts. Unfor-

tunately, VARs are not particularly parsimonious. The number of parameters in a

VAR increases as a function of the number of endogenous variables and included lags,

which in practice often leads to small observation-to-parameter ratios.c1 Priors are

useful tools to sharpen the inference and we discuss various methods of constructing

prior distributions. More useful for substantive empirical work in macroeconomics

are so-called structural VARs, in which the innovations do not correspond to one-

step-ahead forecast errors, but instead are interpreted as structural shocks. Much

of the structural VAR literature has focused on studying the propagation of mon-

etary policy shocks, that is changes in monetary policy that are unanticipated by

the public. We discuss various identification schemes and their implementation in

a Bayesian framework. The remainder of Section 2 is devoted to a discussion of

advanced topics such as the estimation of restricted and overidentified VARs. As an

empirical illustration, we estimate the effects of a monetary policy, using a 4-variable

VAR.

Section 3 is devoted to VARs with explicit restrictions on the long-run dynam-

ics. While many macroeconomic time series are well described by stochastic trend
c1fs: Give an example of small.
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models, these stochastic trends are often common to several time series. For ex-

ample, while aggregate consumption and output (in logs) in many countries are

well described as random walks with drifts, implying non-stationary behavior of the

univariate time series, the ratio (or log difference) of consumption and investment

is typically stationary. This observation is consistent with a standard neoclassical

growth model (King, Plosser, and Rebelo, 1989 ADD), in which the exogenous tech-

nology process follows a random walk. It turns out we can impose such common

trends in a VAR by restricting some of the eigenvalues of the characteristic polyno-

mial to unity. VARs with eigenvalue restrictions, written as so-called vector error

correction models (VECM) have been widely used in applied work after Engle and

Granger (1987 ADD) popularized the concept of cointegration. While frequentist

analysis of non-stationary time series models requires a different set of statistical

tools, the shape of the likelihood function is largely unaffected by the presence of

unit roots in autoregressive models. Nonetheless, the Bayesian literature has experi-

enced a lively debate about how to best analyze VECMs. Most of the controversies

are related to the elicitation of prior distributions. In most applications there is un-

certainty about the number of cointegration relationships as well as the appropriate

number of lags to include in the vector autoregressive model. Hence, our discussion

will focus on prior elicitation, posterior inference, and an empirical illustration.

Modern dynamic macroeconomic theory implies fairly tight cross-equation restric-

tions for vector autoregressive processes and in Section 4 we turn to the discussion

of methods suitable to estimated such restricted processes. We refer to these mod-

els as dynamic stochastic general equilibrium (DSGE) models. The term DSGE

model is often used to refer to a broad class of dynamic macroeconomic models

that spans the standard neoclassical growth model discussed in King, Plosser, and

Rebelo (1988) as well as the monetary model with numerous real and nominal fric-

tions developed by Christiano, Eichenbaum, and Evans (2005 ADD). A common

feature of these models is that decision rules of economic agents are derived from

assumptions about preferences and technologies by solving intertemporal optimiza-

tion problems. Moreover, agents potentially face uncertainty with respect to, for

instance, total factor productivity or the nominal interest rate set by a central

bank. This uncertainty is generated by exogenous stochastic processes or shocks

that shift technology or generate unanticipated deviations from a central bank’s

interest-rate feedback rule. Conditional on distributional assumptions for the ex-

ogenous shocks, the DSGE model generates a joint probability distribution for the
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endogenous model variables such as output, consumption, investment, and inflation.

Much of the econometric work related to DSGE models employs Bayesian methods.

Section 4 discusses the estimation of linearized as well as nonlinear DSGE models

and reviews various approaches to evaluate the empirical fit of DSGE models. Some

of the methods are illustrated by estimating a simple stochastic growth model based

on U.S. labor productivity and hours worked data.

The dynamics of macroeconomic variables tend to change over time. These

changes might be a reflection of inherent nonlinearities of the business cycle or

they might be caused by the introduction of new economic policies or the formation

of new institutions. Such changes can be captured by econometric models with time-

varying coefficients. Thus, we augment the VAR models of Section 2 and the DSGE

models of Section 4 with time-varying parameters. We distinguish between models

in which parameters evolve according to a potentially non-stationary autoregres-

sive law of motion and model in which parameters evolve according to a finite-state

Markov-switching process. If time-varying coefficients are introduced in a DSGE

model, an additional layer of complication arises. When solving for the equilibrium

law of motion one has to take into account that agents are aware that parameters

are not constant over time and hence adjust their decision rules accordingly.

Due to the rapid advances in information technologies, macroeconomists have

now access to and the ability to process data sets with a large cross-sectional as

well as a large time series dimension. The key challenge for econometric modelling

is to avoid the proliferation of parameters. Parsimonious empirical models for large

data sets can be obtained in several ways. We consider restricted large-dimensional

vector autoregressive models as well as factor models. The latter class of models

assumes that the comovement between variables is due to a relatively small number

of common factors, which in the context of a DSGE model could be interpreted as

the most important economic state variables. These factors are typically unobserved

and follow some vector autoregressive law of motion. We study empirical models

for so-called data-rich environments in Section 6.

Throughout the various sections of the chapter we will encounter uncertainty

about model specifications, e.g., the number of lags in a VAR, the importance of

certain types of propagation mechanisms in DSGE models, the presence of time-

variation in coefficients, the number of factors in a dynamic factor model. A treat-

ment of Bayesian model selection and, more generally, decision-making under model
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uncertainty is provided in Section 7. Finally, Section 8 offers a few concluding re-

marks.

Finally, a word on notation.c1 We generally summarize our observations y1, . . . , yT

as Y or Y T if it is important to indicate the length T of the sample. θ serves as

generic parameter vector, p(θ) is the density associated with the prior distribution,

p(Y |θ) is the likelihood function, and p(θ|Y ) the posterior density. With respect

to notation for probability distributions, we tend to follow Bauwens, Lubrano, and

Richard [ADD, Appendix A]. U(a, b) denotes a uniform distribution on the interval

(a, b). G(α, β) is the Gamma distribution with density p(x|α, β) ∝ xα−1 exp(−x/β),

where ∝ denotes proportionality. The Chi-squared distribution is denoted by χ2(ν)

and identical to G(ν/2, 2). We distinguish between the Inverted Gamma-2 and

Inverted Gamma-1 distribution: X ∼ IG2(s, ν) if and only if
√

X ∼ IG1(s, ν) and

X−1 ∼ G(ν/2, 2/s). The inverted gamma-2 distribution is often used for residual

variances: σ2 ∼ IG(s, ν) implies that p(σ2|s, ν) ∝ (σ2)−(ν+2)/2 exp(−s/(2σ2)). A

random variable 0 ≤ X ≤ 1 has a B(α, β) distribution if its density is of the form

p(x|α, β) ∝ xα−1(1 − x)β−1. The normal distribution is denoted by N(µ, σ2) and

X ∼ t(µ, s,m, ν) if its density is p(x|µ, s,m, ν) ∝ [s + m(x− µ)2]−(ν+1)/2.

A p-variate normal distribution is denoted by Np(µ,Σ). We say that a p × q

matrix X is matrix-variate normal MNp×q(M,Q ⊗ P ), meaning that vec(X) ∼
Npq(vec(M), Q ⊗ P ) if p(X|M,Q ⊗ P ) ∝ exp{−1

2 tr[Q−1(X − M)′P−1(X − M)]},
where ⊗ is the Kronecker product, vec(·) stacks the columns of a matrix, and tr[·]
is the trace operator. The Inverted Wishart distribution is a multivariate gener-

alization of the IG2 distribution: a q × q matrix Σ has IWq(S, ν) distribution if

p(Σ|S, ν) ∝ |Σ|−(ν+q+1)/2 exp
{
−1

2 tr[Σ−1S]
}
. Finally, if X|Σ ∼ MNp×q(M,Σ ⊗ P )

and Σ ∼ IWq(S, ν), we say that (X, Σ) ∼ MNIW (M,P, S, ν). If there is no ambigu-

ity about the dimension of the random vectors and matrices we drop the subscripts

that signify dimensions, e.g. we write N(µ,Σ) instead of Np(µ,Σ).

c1fs: To be removed.
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2 Vector Autoregressions
var1

At first glance, VARs appear to be straightforward multivariate generalizations of

univariate autoregressive models. At second sight, they turn out to be one of the

key empirical tools in modern macroeconomics. Sims (1980) proposed that VARs

should be used to replace large-scale macroeconometric models inherited from the

1960s, because the latter imposed incredible restrictions, which were largely incon-

sistent with the notion that economic agents take the effect of today’s choices on

tomorrow’s utility into account. Since then, VARs have been used for macroeco-

nomic forecasting and policy analysis, to investigate the sources of business cycle

fluctuations, and to provide a benchmark against which modern dynamic macroe-

conomic theories can be evaluated. In fact, in Section 4 it will become evident

that the equilibrium law of motion of many dynamic stochastic equilibrium models

can be well approximated by a VAR. The remainder of this section is organized as

follows. We derive the likelihood function of a reduced-form VAR in Section 2.1.

Section 2.2 reviews popular prior distributions for VAR coefficients as well as pos-

terior inference. Section 2.3 is devoted to structural VARs in which innovations are

expressed as functions of structural shocks with a particular economic interpreta-

tion, e.g., an unanticipated change in monetary policy. Finally, Section 2.4 provides

some suggestions for further reading.

Insert Figure Here

2.1 Preliminaries
preliminaries

Figure 1 depicts the evolution of three important quarterly macroeconomic time

series for the U.S. over the period from 1964:Q1 to 2006:Q4: percentage deviations

of GDP from a linear time trend, annualized inflation rates computed from the GDP

deflator, and the effective Federal Funds interest rate. Vector autoregressions are

linear time series models, designed to capture the joint dynamics of multiple time

series. We will illustrate the VAR analysis using the three series plotted in Figure 1.

Let yt be a n×1 random vector that takes values in Rn, where n = 3 in our empirical

illustration. The evolution of yt is described by the p’th order difference equation:

yt = Φ1yt−1 + . . . + Φpyt−p + Φc + ut. (1)
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We refer to (1) as reduced form representation of the VAR, because the ut’s are

simply one-step ahead forecast errors and do not have a specific economic interpre-

tation. In order to characterize the conditional distribution of yt given its history,

one has to make a distributional assumption for ut. We shall proceed under the

assumption that ut ∼ N(0,Σ) and independent over time. We are now in a posi-

tion to characterize the joint distribution of a sequence of observations. Let Yt0,t1

denote the sequence {yt0 , . . . , yt1}, let k = np + 1, and define the k × n matrix

Φ = [Φ1, . . . ,Φp,Φc]′. The joint density of Y1,T conditional on Y1−p,0 and the co-

efficient matrices Φ and Σ is called (conditional) likelihood function and can be

factorized as

p(Yt,T |Φ,Σ, Y1−p,0) =
T∏

t=1

p(yt|Φ,Σ, Y1−p,t−1). (2)

This conditional likelihood function can be conveniently expressed, if the VAR is

written as a multivariate linear regression model in matrix notation. Let Y be a

T × n matrix with rows y′t, xt be the k × 1 vector xt = [y′t−1, . . . , y
′
t−p, 1]′, and

X be the T × k matrix with rows x′t. In slight abuse of notation we abbreviate

p(Yt,T |Φ,Σ, Y1−p,0) by p(Y |Φ,Σ):

p(Y |Φ,Σ) ∝ |Σ|−T/2 exp
{
−1

2
tr[Σ−1Ŝ]

}
(3)

× exp
{
−1

2
tr[Σ−1(Φ− Φ̂)′X ′X(Φ− Φ̂)]

}
.

Here,

Φ̂ = (X ′X)−1X ′Y, Ŝ = (Y −XΦ̂)′(Y −XΦ̂), (4)

that is, Φ̂ is the maximum-likelihood (MLE) estimator of Φ and Ŝ is a matrix with

sums of squared residuals.

If we combine the likelihood function with the improper prior p(Φ,Σ) ∝ |Σ|−(n+1)/2

we can deduce immediately that

Φ,Σ|Y ∼ MNIW

(
Φ̂, (X ′X)−1, Ŝ, T − k

)
. (5)

Draws from this posterior can be easily obtained by sampling Σ(s) from a IW (Ŝ, T−
k) distribution and Φ(s) from the conditional distribution MN(Φ̂,Σ(s) ⊗ (X ′X)−1).

An important challenge in practice is to cope with the dimensionality of the pa-

rameter matrix Φ. Consider the data depicted in Figure 1. Our sample consists of

172 observations and each equation of a VAR with p = 4 lags has 13 coefficients,
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which leaves roughly 13 observations to estimate each coefficient. If the sample is

restricted to the post-1982 period, after the disinflation under Fed chairman Paul

Volcker, the sample size shrinks to 96 observation and the observation-to-parameter

ratio drops to about 7.4. Now imagine estimating a two-country VAR for the U.S.

and the Euro Area on post-1982 data. This will double the number of parameters

and leave less than 4 observations for each coefficient that needs to be estimated.

Informative prior distribution can compensate for lack of sample information and

we will subsequently discuss alternatives to the improper prior used so far.

2.2 Specific Priors
varpriors

Before discussing particular types of prior distributions two points are notewor-

thy. First, prior distributions can be conveniently represented by dummy obser-

vations. This insight dates back at least to Theil and Goldberger (1960 ADD).

These dummy observations might be actual observations from other countries, ob-

servations generated by simulating a macroeconomic model, or observations gen-

erated from introspection. Suppose T ∗ dummy observations are collected in ma-

trices Y ∗ and X∗ and we use the likelihood function associated with the VAR to

relate the dummy observations to the parameters Φ and Σ. Using the same argu-

ments that lead to (5), we deduce that p(Y ∗|Φ,Σ)|Σ|−(n+1)/2 can be interpreted as

a MNIW (Φ, (X∗′X∗)−1, S, T ∗−k) prior for Φ and Σ, where Φ∗ and S are obtained

from Φ̂ and Ŝ in (4) by replacing Y and X with Y ∗ and X∗. Now let T̄ = T + T ∗,

Ȳ = [Y ∗′ , Y ′]′, X̄ = [X∗′ , X ′]′, and Φ̄ and S̄ the analogue of Φ̂ and Ŝ in (4), then

we deduce that the posterior of Φ and Σ is MNIW (Φ̄, (X̄ ′X̄)−1, S̄, T̄ − k). Thus,

the use of dummy observations leads to a conjugate prior.1

Second, any prior distribution that takes the MNIW form, including the previ-

ously discussed dummy observation prior, preserves the Kronecker structure of the

problem. This essentially implies that the posterior mean of Φ can be computed

equation-by-equation and only involves the inversion of k × k matrices. If, on the

other hand, the prior for vec(Φ) is normal with an unrestricted covariance matrix,

then the computation of the (conditional) posterior mean requires the inversion

of (nk) × (nk) matrices. In the two-country VAR(4) for the U.S. and Euro area

mentioned previously it would boil down to inverting matrices of size 25× 25 versus
1Prior and likelihood are conjugate, if the posterior belongs to the same distributional family as

the prior distribution.
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150×150. We will subsequently discuss two specific prior distributions: the so-called

Minnesota prior (Section 2.2.1) as well as a prior for a VAR that is parameterized

in terms of a trend and a cycle component (Section 2.2.2).

2.2.1 The Minnesota Prior
minnprior

The Minnesota Prior dates back to Litterman (1980, ADD) and Doan, Litterman,

and Sims (1984). Our exposition follows the more recent description in Sims and

Zha (1998), with the exception that for now we focus on a reduced form, rather than

a structural VAR. Consider our lead example, in which yt is composed of output

deviations, inflation, and interest rates, depicted in Figure 1. Notice that all three

series are fairly persistent. In fact the univariate behavior of these series, maybe

with the exception of post-1982 inflation rates, would be fairly well described by a

random walk model of the form yi,t = yi,t−1 + ηi,t. The idea behind the Minnesota

prior is to center the distribution of Φ at a value that implies univariate random walk

behavior of the components of yt.2 This prior can be implemented either by directly

specifying a distribution for Φ or, alternatively, through dummy observations. We

will pursue the latter route for the following reason. While it is fairly straightforward

to choose prior means and variances for the elements of Φ, it tends to be difficult

to elicit beliefs about the correlation between elements of the Φ matrix. After all,

there are nk(nk + 1)/2 of them. At the same time, setting all these correlations to

zero potentially leads to a prior that assigns a lot of probability mass to parameter

combinations that imply quite unreasonable dynamics for the endogenous variables

yt. The use of dummy observations, provides a parsimonious way of introducing

plausible correlations between parameters.

The Minnesota prior depends on several hyperparameters. Let Y0 be a pre-sample

and define s = std(Y0) and ȳ = mean(Y0). The remaining hyperparameters are

stacked in the 5 vector λ with elements λi. Suppose that n = 2 and p = 2. We

begin with dummy observations that generate a prior distribution for Φ1. The
2The random walk approximation is taken for convenience and could be replaced by other

statistical representations. For instance, if some series have very little serial correlation because

they have been transformed to induce stationarity, e.g., log output has been converted into output

growth, then an iid model might be preferable. In Section 4 we will discuss how DSGE model

restrictions could be used to construct a prior.
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hyperparameter λ1 controls the overall tightness of the prior:

Y ∗ = X∗Φ + U[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0 0 0

0 λ1s2 0 0 0

]
Φ +

[
u11 u12

u21 u22

]
.

Notice that the first observation implies

λ1s1 = λ1s1β11 + u11, 0 = λ1s1β21 + u12,

which implies that β11 ∼ N (1,Σ11/(λ2
1s

2
1)) and β21 ∼ N (0,Σ22/(λ2

1s
2
1)). Here Σij

denotes element i, j of Σ.3 The prior for Φ2 is implemented with the dummy obser-

vations [
0 0

0 0

]
=

[
0 0 λ1s12λ2 0 0

0 0 0 λ1s22λ2 0

]
Φ + U,

where the hyperparameter λ2 is used to scale the prior covariance matrix for co-

efficients associated with yt−l according to lλ2 . A prior for the covariance matrix

Σ, “centered” at a matrix that is diagonal with elements equal to the pre-sample

variance of yt, can be obtained by λ3 replications of the observations[
s1 0

0 s2

]
=

[
0 0 0 0 0

0 0 0 0 0

]
Φ + U.

The remaining sets of dummy observations provide a prior for the intercept Φ0

and will generate some a priori correlation between the coefficients. They favor

unit roots and cointegration, which is consistent with the beliefs of many applied

macroeconomists, and they tend to improve VAR forecasting performance. The

sums-of-coefficients dummy observations, introduced in Doan, Litterman, and Sims

(1984), capture the view that when the average of lagged values of a variable is at

some level ȳi, that same value ȳi is likely to be a good forecast of yi,t, regardless of

the value of other variables:[
λ4ȳ1 0

0 λ4ȳ2

]
=

[
λ4ȳ1 0 λ4ȳ1 0 0

0 λ4ȳ2 0 λ4ȳ2 0

]
Φ + U.

3Consider a regression yt = β1x1,t + β2x2,t + ut and suppose that the standard deviation of

xj,t is sj . If we define β̃j = βjsj and x̃j,t = xj,t/sj then the transformed parameters interact with

regressors that have the same scale. Suppose we assume that β̃j ∼ N (0, λ2), then βj ∼ N (0, λ2/s2
j ).

The sj terms that appear in the definition of the dummy observations achieve this scale adjustment.
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The co-persistence dummy observations, proposed by Sims (1993, to be added) re-

flect the belief that when data on all y’s are stable at their initial levels, they tend

to persist at that level:[
λ5ȳ1 λ5ȳ2

]
=
[

λ5ȳ1 λ5ȳ2 λ5ȳ1 λ5ȳ2 λ5

]
Φ + U.

The strength of this belief is controlled by λ5. This set of dummy observations

introduces correlations in prior beliefs about all coefficients, including the intercept,

in a given equation.

The VAR estimates tend to be sensitive to the choice of hyperparameter. If

λ = 0 then all the dummy observations are zero and the VAR is estimated under an

improper prior. The larger λ the stronger more weight is placed on the Minnesota

prior vis-a-vis the likelihood function. From a practitioners view, choosing λ based

on the marginal likelihood function

pλ(Y ) =
∫

p(Y |Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ)

tends to work well for inference as well as forecasting purposes.

The exact implementation of the Minnesota prior differs across studies and we

will provide an illustration in the context of our output-inflation-interest VAR in

Section 2.3. Many researchers do not use the co-persistence and own-persistence

dummy variables. In fact, the prior is often implemented directly, without the use

of dummy observations, by assuming that vec(Φ) ∼ N (vec(Φ), V ), where the prior

mean vec(Φ) captures the univariate random walk representations and V is a diag-

onal prior covariance matrix. Kadiyala and Karlsson (1997 ADD) consider different

numerical approaches of implementing posterior inference and the computation of

multi-step forecasts for VARs with various versions of the Minnesota prior as well

as uninformative priors. Ni and Sun (2003) studies the frequentist risk of Bayes

estimators in VARs under various popular informative and non-informative prior

distributions.

2.2.2 A Prior for an Alternative VAR Parameterization
alternprior

The parameterization of econometric models is never unique.c1 An attractive alter-

native to (1) is the following parameterization studied in Villani (2008):

yt = Γ0 + Γ1t + ỹt, ỹt = Φ1ỹt−1 + . . . + Φpỹt−p + ut. (6)
c1fs: I was looking for the paper by Albert Marcet and Marek Jarocinski.



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 15

The first term, Γ0 + Γ1t captures the deterministic trend of yt, whereas the second

part, the law of motion of ỹt captures stochastic fluctuations around the determin-

istic trend. These fluctuations could either be stationary or non-stationary. Thus,

instead of imposing a prior distribution on Φ in (1) one can specify a prior for Γj ,

j = 1, 2, and Φj , j = 1, . . . , p in (6). In the latter case, it is straightforward to

separate beliefs about the deterministic trend from beliefs about the persistence of

fluctuations around this trend.

The following univariate example is instructive. Consider an AR(1) model of the

form

yt = φ1yt−1 + φc + ut, ut ∼ N (0, 1), (7)

which could be applied to any of the three series depicted in Figure 1. Moreover, con-

sider the following two prior distributions. Under Prior 1 φ1 and φc are independent:

φ1 ∼ U [0, 1 − ξ] where ξ > 0 and φc ∼ N (φ
c
, λ2). This prior implies that condi-

tional on φ1 the prior mean and variance for the expected value IE[yt] = φc/(1−φ1)

increase (in absolute value) as φ1 −→ 1 − ξ. In turn, this generates a fairly diffuse

marginal distribution of yt that might place little mass on values of yt that the re-

searcher finds a priori plausible. Now suppose that under Prior 2 φ1 ∼ U [0, 1− ξ] as

before, but φc|φ1 ∼ N (γ(1− φ1), λ2(1− θ1)2). This prior guarantees that the prior

distribution of IE[yt] has mean γ and variance λ2 for every value of θ1. This prior

can be easily implemented by the following re-parameterization:

yt = γ + ỹt, ỹt = φ1ỹt−1 + ut.

Now let φ1 ∼ U [0, 1− ξ] and γ ∼ N (γ, λ2). This prior has been used, for instance,

in Schotman and Van Dijk (1991 ADD) in the context of unit-root testing.c1

A few remarks are in order: (i) Draws from the posterior of a VAR parameterized

according to (6) can be obtained via Gibbs sampling, by iterating over the condi-

tional distributions of Γ0 and Γ1 (MN), Φ = [Φ1, . . . ,Φp]′ (MN), and Σ (IW). (ii) As

the roots of the characteristic polynomial associated with Φ approach unity, some

elements of Γ0 may not be identifiable anymore. This is easily seen in the AR(1)

example. If φ1 = 1, then it is impossible to distinguish γ and ỹ1. Thus, in practice,

proper priors for the intercept and the initialization of the latent ỹt process are ad-

visable. (iii) The co-persistence dummy observations discussed in Section 2.2.1 have

the purpose to control prior beliefs about the long-run mean of yt. Translated into

the AR(1) example, the co-persistence prior implies that φc|φ1 ∼ N (ȳ(1−φ1), 1/λ2
4).

c1fs: Verify this statement.
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2.3 Structural VARs
svar

The innovations ut in the VAR specified in (1) have the interpretation of one-step-

ahead forecast errors. As long as Σ is not diagonal, the forecast errors for the

components of yt are correlated with each other. More importantly, the forecast

errors do not have any specific economic interpretation. Hence, (1) is referred to

as reduced form VAR. Dynamic macroeconomic theory suggests that the one-step

ahead forecast errors are functions of some fundamental innovations, for instance

to aggregate technology, preferences, or monetary policy. A structural VAR is an

autoregressive model in which the forecast errors are explicitly linked to such fun-

damental innovations. We will provide an empirical illustration in which we fit a

VAR(4) to our output, inflation, and interest rate data and estimate the dynamic

effect of an unanticipated change in monetary policy.

A straightforward calculation shows that additional restrictions need to be im-

posed, for a structural VAR to be identified. Let εt be a vector of orthogonal

structural shocks with unit variances. We now express the one-step ahead forecast

errors as a linear combination of structural shocks

ut = Φεεt = ΣtrΩεt. (8)

Here Σtr refers to the unique lower triangular Cholesky factor of Σ and Ω is an

arbitrary orthonormal matrix. The second equality ensures that the covariance

matrix of ut is preserved, that is, Φε has to satisfy the restriction Σ = ΦεΦ′
ε. The

fact that Ω can be any n× n orthonormal matrix creates an identification problem.

In the remainder of Section 2.3 we will discuss the identification of structural shocks

and posterior inference in structural VAR models in more detail.

2.3.1 (Lack of) Identification

It is instructive to examine the effect of the identification problem on the calcu-

lation of posterior distributions. Our structural VAR is parameterized in terms

of the reduced form parameters Φ and Σ and the orthonormal matrix Ω with the

understanding that Σtr = chol(Σ) is unique. The joint distribution of data and

parameters is given by

p(Y, Φ,Σ,Ω) = p(Y |Φ,Σ)p̄(Φ,Σ)p(Ω|Φ,Σ). (9)
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Here p(Y |Φ,Σ) is the likelihood function (3), which does not depend on Ω. In

other words, the absence of Ω from the likelihood function is a manifestation of the

identification problem.

Without loss of generality, the joint prior density of Φ, Σ, and Ω is factorized in

a conditional density for Ω, p(Ω|Φ,Σ), and a marginal density for the reduced form

parameters. The prior density for the reduced-form parameters is of the form

p̄(Φ,Σ) =
p(Φ,Σ)I{(Φ,Σ) ∈ A}∫

p(Φ,Σ)I{(Φ,Σ) ∈ A}d(Φ,Σ)
(10)

Here p(Φ,Σ) is a density function defined over the entire domain of the reduced-form

parameter space, e.g. a MNIW density, and A is a subset of the Φ−Σ domain. For

instance, A could correspond to the set of all reduced form parameters for which

the VAR is stationary or for which there exists a conditional distribution of Ω|Φ,Σ

and structural shocks are identifiable.4 Finally, I{A ∈ A} denotes the indicator

function that is one if A ∈ A and zero otherwise.

As long as the conditional density of Ω is properly normalized for all Φ and Σ

such that I{(Φ,Σ) ∈ A}, we deduce from integrating (9) with respect to Ω that

p(Y, Φ,Σ) = p(Y |Φ,Σ)p̄(Φ,Σ). (11)

Thus, the calculation of the posterior distribution of the reduced form parameters

is not affected by the presence of the non-identifiable matrix Ω. The conditional

posterior density of Ω can be calculated as follows:

p(Ω|Y, Φ,Σ) =
p(Y |Φ,Σ)p̄(Φ,Σ)p(Ω|Φ,Σ)∫
p(Y |Φ,Σ)p̄(Φ,Σ)p(Ω|Φ,Σ)dΩ

= p(Ω|Φ,Σ). (12)

Thus, the conditional distribution of the non-identifiable parameter Ω does not get

updated in view of the data. This is a well-known property of Bayesian inference

in partially identified models, see for instance Kadane (1974 ADD), Poirier (1998

ADD), and Moon and Schorfheide (2009 ADD). We can deduce immediately, that

draws from the joint posterior distribution can be obtained in two steps. First,

generate draws Φ(s) and Σ(s), s = 1, . . . , ns, from the posterior of the reduced

form parameters, properly accounting for the truncation I{(Φ,Σ) ∈ A}. Second,

pair each reduced form parameter draw with a draw from the conditional prior

distribution p(Ω|Φ(s),Σ(s)).
4If VARs are identified by sign-restrictions, see below, there might be reduced-form parameter

values that are inconsistent with these sign-restrictions and A is a strict subset of the Φ−Σ domain.
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Not surprisingly, much of the literature on structural VARs reduces to arguments

about the appropriate choice of p(Ω|Φ,Σ). Most authors use dogmatic priors for

Ω such that the conditional distribution of Ω given the reduced form parameters

reduces to a point mass. Priors for Ω are typically referred to as identification

schemes because conditional on Ω the relationship between the forecast errors ut and

the structural shocks εt is uniquely determined. The papers by Cochrane (1994),

Christiano and Eichenbaum (1999, ADD), and Stock and Watson (2001) provide

detailed surveys. Before exploring particular identification schemes that have been

employed in the literature, we consider a simple bivariate illustrative example.

Suppose that n = 2, p = 1, Φc = 0, and that the eigenvalues of Φ1 are all less

than one in absolute value. The eigenvalue restriction guarantees that the VAR can

be written as infinite-order moving average (MA(∞)):

yt =
∞∑

j=0

Φj
1ΣtrΩεt. (13)

We will refer to the sequence of partial derivatives

∂yt+j

∂εt
= Φj

1ΣtrΩ, j = 0, . . . (14)

as impulse response function. The set of orthonormal matrices Ω can easily be

characterized by an angle ϕ:

Ω(ϕ) =

[
cos ϕ − sinϕ

sinϕ cos ϕ

]
(15)

where ϕ ∈ (−π, π]. Each column represents a vector of unit length in R2 and the

two vectors are orthogonal. Notice that Ω(ϕ) = −Ω(ϕ + π). Thus, rotating the two

vectors by 180 degrees simply changes the sign of the impulse response function. We

will now consider three different identification schemes, that restrict Ω conditional

on Φ and Σ.

Example 1: Suppose yt is composed of output deviations from trend, ỹt, and the

Federal Funds rate, Rt, and εt consists of innovations to technology, εz,t, and mon-

etary policy, εR,t. That is, yt = [ỹt, Rt]′ and εt = [εz,t, εR,t]′. Identification can

be achieved by imposing restrictions on the informational structure. For instance,

Boivin and Giannoni (2006, ADD) assume in a slightly richer setting that the pri-

vate sector does not respond to monetary policy shocks contemporaneously. This

assumption can be formalized by setting ϕ = 0 in (15) conditional on all values of
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Φ and Σ. Such a restriction on Ω is typically referred to as short-run identification

scheme. A short-run identification scheme was used in the seminal work by Sims

(1980).

Example 2: Assume that yt is composed of inflation rates, πt, and output growth:

yt = [πt,∆ỹt]′. Moreover, εt = [εR,t, εz,t]′. But now we use the following assumption

to identify a monetary policy shock: unanticipated changes in monetary policy

shocks do not raise output in the long-run. This identification scheme has been

used, for instance, by Cogley and Nason (1994, ADD) and Schorfheide (2000). The

long-run response is given by

[(I − Φ1)−1Σtr](2.)Ω(.1)(ϕ) = 0, (16)

where A(.j) (A(j.)) is the j’th column (row) of a matrix A. Geometrically, we need to

find a vector of unit length that is perpendicular to [(I−Φ1)−1Σtr]′(2.). This implies

that there exist exactly two values of ϕ, shifted by π that solve (16). In practice

it is common to normalize the direction of the impulse response function, that is,

choose Ω given Φ and Σ to solve (16) and such that the monetary policy shock

raises prices in the long-run. A long-run identification scheme was initially used

by Blanchard and Quah (1989) to identify supply and demand disturbances in a

bivariate VAR. Since long-run effects of shocks in dynamic systems are intrinsically

difficult to measure, structural VARs identified with long-run schemes often lead to

imprecise impulse response function estimates and inference that is very sensitive

to lag length choice and pre-filtering of the observations. Leeper and Faust (1999,

ADD) provide a detailed discussion.

Example 3: The priors in the preceding examples were degenerate. Faust (1998),

Canova and Nicolo (2002), and Uhlig (2005) propose to be more agnostic in the

choice of Ω. As in Example 2, let yt = [πt,∆ỹt]′ and εt = [εR,t, εz,t]′. Now as-

sume that an expansionary monetary policy shock raises both prices and output

upon impact. Formally, this implies that ΣtrΩ(.1) ≥ 0 and is referred to as a sign-

restriction identification scheme. Since [Σtr](11) > 0, the first inequality implies that

ϕ ∈ (−π/2, π/2]. Since [Σtr](22) > 0, the second inequality generates a lower bound

for ϕ, such that the values for ϕ that are consistent with the sign-restrictions lie in

the intervalc1 (−ϕ(Σ), π/2]. To implement Bayesian inference, the researcher now

has to specify a prior distribution on the interval (−ϕ(Σ), π/2]. More generally, r

c1fs: Verify the bound.
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columns of Ω characterize subspaces of Rn and the problem of choosing a prior dis-

tribution for Ω can be viewed as placing probabilities on a collection of subspaces.5

Uhlig (2005) proposes to use a distribution that is uniform on the relevant collection

of subspaces, which in our bivariate example translates into a uniform distribution

for ϕ, and discusses the extension to higher-dimensional VARs. Moreover, it is

possible to impose sign-restrictions not just upon impact but also on responses at

horizon j > 0. In that case, not all reduced form parameter values might be con-

sistent with the sign restrictions and properly accounting for the truncation in (10)

in the posterior simulator becomes important. Uhlig (2005) provides an acceptance

sampling algorithm to do so.

Draws from the joint posterior distribution of Φ, Σ, and Ω can be easily converted

into impulse response functions or variance decompositions. A variance decompo-

sition measures the fraction that each of the structural shock contributes to the

overall variance of a particular element of yt. In the stationary bivariate example

the covariance matrix is given by

Γyy =
∞∑

j=0

Φj
1ΣtrΩΩ′Σ′

tr(Φ
j)′.

Let Ii be matrix for which element i, i is equal to one and all other elements are

equal to zero. Then we can define the contribution of the i’th structural shock to

the variance of yt as

Γ(i)
yy,0 =

∞∑
j=0

Φj
1ΣtrΩI(i)Ω′Σ′

tr(Φ
j)′. (17)

Thus the fraction of the variance of yj,t explained by shock i is [Γ(i)
yy,0](jj)/[Γyy,0](jj).

With impulse response and variance decomposition draws in hand, one can compute

posterior summary statistics such as means, medians, standard deviations, or point-

wise credible sets. Sims and Zha (1999) propose an alternative method to compute

credible bands for impulse response functions, which relies on the first few principle

components of the covariance matrix of the responses and aims to capture some of

the correlation among responses at different horizons.

Illustration: We estimate a VAR(4) based on the output, inflation, and interest

rate series depicted in Figure 1. In addition, we also include commodity price
5A similar problem arises when placing prior probabilities on cointegration spaces and we will

provide a more extensive discussion in Section 3.2.3.
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inflation as an observable. Our analysis follows Boivin and Giannoni (2006), but

we use a Bayesian approach, starting from a Minnesota prior. [ADD: some blurb

about the choice of hyperparameters, etc.]. Our identification follows Example 1.

We assume that the private sector does not respond contemporaneously to monetary

policy shocks. Hence, if the interest rate Rt is the last element of the 4×1 vector yt,

then Ω is simply the identity matrix for all values of the reduced-form parameters.

Impulse responses to a one-standard deviation monetary policy shock are depicted

in Figure 2. [ADD: some blurb about the effects of a monetary policy shock.]

Insert Figure Here

2.3.2 An Alternative SVAR Parameterization
svaralter

We introduced structural VARs by expressing the one-step-ahead forecast errors of a

reduced form VAR as a linear function of orthogonal structural shocks. Suppose we

now pre-multiply both sides of (1) by Ω′Σ−1
tr and define A′

0 = Ω′Σ−1
tr , Aj = Ω′Σ−1

tr Φj ,

j = 1, . . . , p, and Ac = Ω′Σ−1
tr Φc then we obtain:

A0yt = A1yt−1 + . . . Apyt−p + Ac + εt. (18)

Much of the empirical analysis in the Bayesian SVAR literature is based on this

alternative parameterization, see for instance, Sims and Zha (1998). The advantage

of (18) is that the coefficients have direct behaviorial interpretations. For instance,

one could impose identifying restrictions on A0 such that the first equation in (18)

corresponds to the monetary policy rule of the central bank. Accordingly, ε1,t would

correspond to unanticipated deviations from the expected policy.

A detailed discussion of the Bayesian analysis of (18) is provided in Sims and Zha

(1998). As before, let x′t = [y′t−1, . . . , y
′
t−p, 1], let Y , X, and E be matrices with rows

y′t, x′t, and ε′t respectively. Moreover, define A = [A1, . . . , Ap, Ac]′ such that (18) can

be expressed as multivariate regression of the form

Y A′
0 = XA + E (19)

with likelihood function

p(Y |A0, A) ∝ |A0|T exp
{
−1

2
tr[(Y A0 −XA)′(Y A0 −XA)]

}
. (20)
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Notice that conditional on A0 the likelihood function is quadratic in A, meaning that

under a suitable choice of prior, the posterior of A is matrix-variate normal. Sims

and Zha (1998) propose prior distributions that share the Kronecker structure of the

likelihood function and hence lead to posteriors distributions that can be evaluated

with a high degree of numerical efficiency, that is, without having to invert matrices

of the dimension nk × nk.

It is convenient to factorize the joint prior density as p(A0)p(A|A0) and to assume

that the conditional prior distribution of A takes the formc1

A|A0 ∼ MN

(
A(A0), λ−1I ⊗ V (A0)

)
, (21)

where the matrix of means A(A0) and the covariance matrix V (A0) are potentially

functions of A0. The matrices A(A0) and V (A0) can, for instance, be constructed

from the dummy observations presented in Section 2.2.1:

A(A0) = (X∗′X∗)−1X∗′Y ∗A0, V (A0) = (X∗′X∗)−1.

Combining the likelihood function (20) with the prior (21) leads to a posterior for

A that is conditionally matrix-variate normal:

A|A0, Y ∼ MN

(
Ā(A0), I ⊗ V̄ (A0)

)
, (22)

where

Ā(A0) =
(

λV −1(A0) + X ′X

)−1(
λV −1(A0)A(A0) + X ′Y A0

)
V̄ (A0) =

(
λV −1(A0) + X ′X

)−1

.

The specific form of the posterior for A0 depends on the form of the prior density

p(A0). The prior distribution typically includes normalization and identification

restrictions.

Example 4: is based on a structural VAR analyzed by Robertson and Tallman

(2001, ADD). The vector yt is composed of a price index for industrial commodi-

ties (PCOM), M2, the Federal Funds Rate (R), real GDP interpolated to monthly

frequency (ỹ), the consumer price index (CPI), and the unemployment rate (U).

The exclusion restrictions on the matrix A0 used by the authors are summarized in

Table 1. The structural VAR here is over-identified, because the covariance matrix
c1fs: Be consistent in the use of λ versus λ−1.
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of the one-step-ahead forecast errors of a VAR with n = 6 has in principle 21 free

elements, whereas the matrix A0 only has 18 free elements. The first equation rep-

resents an information market, the second equation is the monetary policy rule, the

third equation describes money demand, and the remaining three equations char-

acterize the production sector of the economy. Despite the fact we have imposed

overidentifying restrictions, the system requires a further normalization. In princi-

ple we could multiply the coefficients for each equation i = 1, . . . , n by −1, without

changing the distribution of the endogenous variables. A common normalization

scheme is to impose that the diagonal elements of A0 are all non-negative. For all

practical purposes, however, this normalization can be imposed after the posterior

draws from the un-normalized coefficient matrices have been generated.

Insert Table Here

Waggoner and Zha (2003) developed an efficient MCMC algorithm to generate

draws from a restricted A0 matrix. For expositional purposes assume that the prior

for A|A0 takes the form (21), with the restriction that A(A0) = MA0 for some

matrix M and that V (A0) = V does not depend on A0, as is the case for our

dummy observation prior. Then the marginal likelihood function for A0 is of the

form

p(Y |A0) =
∫

p(Y |A0, A)p(A|A0)dA ∝ |A0|T exp
{
−1

2
tr[A′

0S̄A0]
}

, (23)

where S̄ is a function of the data as well as M and V . Waggoner and Zha (2003)

write the restricted columns of A0 as A0(.i) = Uibi where bi is a qi × 1 vector and

Ui an n× qi, composed of orthonormal column vectors. Under the assumption that

bi ∼ N(bi,Ωi), independently across i, we obtain

p(b1, . . . , bn|Y ) ∝ |[U1b1, . . . , Unbn]|T exp

{
−1

2

n∑
i=1

b′iU
′
i(S̄ + Ω−1

i ]Uibi

}
(24)

∝ |[U1b1, . . . , Unbn]|T exp

{
−T

2

n∑
i=1

b′iSibi

}
(25)

with the understanding that A0 can be recovered from the bi’s. Now consider the

conditional density of bi|b1, . . . , bi−1, bi+1, . . . , bn:

p(bi|Y, b1, . . . , bi−1, bi+1, . . . , bn) ∝ |[U1b1, . . . , Unbn]|T exp
{
−T

2
b′iSibi

}
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Let Vi be a qi × qi matrix such that V ′
i SiVi = I. Moreover, let w be an n× 1 vector

perpendicular to each vector Ujbj , j 6= i and define w1 = V ′
i U ′

iw/‖V ′
i U ′

iw‖. Choose

w2, . . . , wqi such that w1, . . . , wqi form an orthonormal basis for Rqi and we can write

bi = Vi

qi∑
j=1

βjwj . (26)

Now,

p(β1, . . . , βqi |Y, b1, . . . , bi−1, bi+1, . . . , bn) (27)

∝

 qi∑
j=1

|[U1b1, . . . , βjViwj , . . . , Unbn]|

T

exp

−T

2

qi∑
j=1

β2
j


∝ |β1|T exp

−T

2

qi∑
j=1

β2
j


The last line follows because w2, . . . , wqi by construction fall in the space spanned

by Ujbj , j 6= i. Thus, β1 has a Gamma distribution and βj , 2 ≤ j ≤ qi, are normally

distributed. Draws from the posterior of A0 can be obtained by Gibbs sampling

according to (26) and (27), and letting A0(.i) = Uibi.

2.4 Further VAR Topics
furthervar

The literature on Bayesian analysis is by now extensive and our presentation is by

no means exhaustive. Readers who are interested in using VARs for forecasting pur-

poses can find efficient algorithms to efficiently compute such predictions, possibly

conditional on the future path of a subset of variables, in Waggoner and Zha (1999).

Rubio-Ramrez, Waggoner, and Zha (2008) provide conditions for the global identifi-

cation of VARs of the form (18). Our exposition was based on the assumption that

the VAR innovations are homoskedastic. Extensions to GARCH-type heteroskedas-

ticity can be found, for instance, in Uhlig (1997, ADD) and Pelloni and Polasek

(2003). We will discuss VAR models with stochastic volatility in Section 5.
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3 VARs with Reduced Rank Restrictions
var2

It is well documented that many economic time series such as aggregate output,

hours worked, unemployment, and interest rates tend to be very persistent. Sums

of coefficients in autoregressive models often tend to be close to one. More formally,

the dynamic behavior of an autoregressive process φ(L)yt = ut, where φ(L) =

1 −
∑p

j=1 φjL
p and L is the lag operator, crucially depends on the roots of the

characteristic polynomial φ(z). If the smallest root is unity and all other roots

are outside the unit circle, then yt is non-stationary, whereas temporal differences

∆yt = (1−L)yt are stationary. Unit root processes are also said to be integrated of

order one, I(1), because temporal differencing can induce stationarity. Since a unit

root implies that φ(1) = 1 −
∑p

j=1 φj = 0, one can deduce immediately that the

sum of autoregressive coefficients is one, if and only if the yt has a unit root.

At the same time, it has long been recognized that linear combinations of macroe-

conomic time series (potentially after a logarithmic transformation) appear to be

stationary. An example are the so-called “Great Ratios,” such as the consumption-

output or investment-output ratio, see Klein and Kosobud (1961, ADD). The left

panel of Figure 3 depicts log nominal GDP and nominal aggregate investment for

the U.S. over the period from 1965 to 2006. Both series have a clear upward trend

and if one were to compute deviations from a simple linear deterministic time trend,

these deviations would look fairly persistent and exhibit unit-root-like features. The

right panel of Figure 3 shows the log of the investment-output ratio. While the ratio

is far from constant, it exhibits no apparent trend and the fluctuations look at first

glance stationary, albeit quite persistent. The observation that particular linear

combinations of non-stationary economic time series often appear to be stationary

has triggered a large literature on cointegration in the mid 1980’s, e.g., Engle and

Granger (1987, ADD), Johansen (1988, 1991, ADD), and Phillips (1991, ADD).

Insert Figure Here

If a linear combination of I(1) time series is stationary, then these series are said

to be cointegrated. Cointegration implies that the series have common stochastic

trends that can be eliminated by taking suitable linear combinations. In Section 4 we

will discuss how such cointegration relationships arise in a dynamic stochastic gen-

eral equilibrium framework. For now, we will show that one can impose co-trending
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restrictions in a VAR by restricting some of the eigenvalues of its characteristic

polynomial to unity. This leads to a reduced rank regression or so-called vector

error correction model (Section 3.1). It turns out that such restricted VARs have

become an empirically successful as well as useful tool in applied macroeconomics.

In Section 3.2 we discuss Bayesian inference in cointegration system under various

types of prior distributions.

3.1 Cointegration Restrictions
cointrestr

The exposition in this section follows Johansen (1995, ADD). Starting point is the

reduced form VAR, specified in (1). For concreteness, we could assume that yt is

composed of log GDP and investment, plottend in Figure 3. Subtracting yt−1 from

both sides of the equality leads to

∆yt = (Φ1 − I)yt−1 + Φ2yt−2 + . . . + Φpyt−p + Φc + ut. (28)

For j = 1, . . . , p−1 define Πj = −
∑p

i=j+1 Φp and Πc = Φc. Then we can rewrite (28)

as

∆yt = −Φ(1)yt−1 + Π1∆yt−1 + . . . + Πp−1∆yt−p+1 + Φc + ut, (29)

where, in slight abuse of notation, Φ(z) = I −
∑p

j=1 Φjz
j is the characteristic poly-

nomial associated with the reduced form VAR. Notice that if the VAR has unit

roots, that is, |Φ(1)| = 0, then the matrix Φ(1) is of reduced rank. If |Φ(z)| = 0

implies that z = 1, that is all roots of Φ(z) are equal to one, then Φ(1) = 0 and ∆yt

follows a VAR in first differences.

Thus, imposing unit roots on the characteristic polynomial of the VAR is equiv-

alent to parameterizing Φ(1) in terms of a reduced-rank matrix. This insight has

lead to the so-called vector error correction or vector equilibrium correction (VECM)

representation:

∆yt = αβ′yt−1 + Π1∆yt−1 + . . . + Πp−1∆yt−p+1 + Πc + ut, (30)

studied by Engle and Granger (1987, ADD). Here α and β are both n× r matrices

and we let Π∗ = αβ′. A few remarks are in order. First, it can be easily verified that

the parameterization of Π∗ in terms of α and β is not unique: for any non-singular

r × r matrix A we can define α̃ and β̃ such that Π∗ = αAA−1β′ = α̃β̃′. In addition

to the matrix α of dimension n× r it is useful to define a matrix α⊥ of full column

rank and dimension n × (n − r) such that α′α⊥ = 0. The matrix [α, α⊥] has rank
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n. The matrix α⊥ is not uniquely defined, but whenever it is used the conclusions

depend only on the orthogonality property. Moreover, define β⊥ in similar fashion.

It can be verified that

β⊥(α′⊥β⊥)−1α⊥ + α(β′α)−1β′ = In×n (31)

If β′α has full rank then any vector v in IRn can be decomposed into a vector in the

space spanned by β⊥, and the space spanned by α.

Second, if |Φ(z)| = 0 implies that z = 1 or |z| > 1, the rank of Π∗ = αβ′ is r and

α′⊥β⊥ has full rank, then according to Granger’s celebrated representation theorem

(30) implies that yt can be expressed as

yt = β⊥(α′⊥Γβ⊥)−1α′⊥

t∑
τ=1

(ut + Πc) + Ψ(L)(ut + Πc) + Pβ⊥y0, (32)

where Γ = I −
∑p−1

j=1 Πi, Pβ⊥ is the matrix that projects onto the space spanned by

β⊥, and Ψ(L)ut =
∑∞

j=0 Ψjut−j is a stationary linear process. It follows immediately

that the r linear combinations β′yt are stationary and that yt has n − r common

stochastic trends. Third, since Π∗ in (30) is rank deficient, the model is often called

a reduced rank regression, first studied by Anderson (1958, ADD).

In the context of our GDP-investment example, visual inspection of Figure 3

suggests appears that the cointegration vector is close to [1,−1]. Thus, according

to (30) the growth rates of output and investment should be modelled as functions

of lagged growth rates as well as the log investment-output ratio. (32) highlights

that output and investment have a common stochastic trend. The remainder of

Section 3 focuses on the formal Bayesian analysis of the vector error correction

model. We will examine various approaches of specifying a prior distribution for

Π∗ and discuss Gibbs samplers to implement posterior inference. In practice the

researcher faces uncertainty about the number of cointegration relationships as well

as the number of lags that should be included. A discussion of model selection and

averaging approaches is deferred to Section 7.

3.2 Bayesian Inference on Π∗
bayescointinf

Define Π = [Π1, . . . ,Πp−1,Πc]′ and assume that ut ∼ N(0,Σ). Inspection of (30)

suggests that conditional on α and β, the VECM reduces to a multivariate linear

Gaussian regression model. In particular if Π,Σ|α, β is MNIW, then we can deduce
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immediately that the posterior Π,Σ|Y, α, β is also of the MNIW form and can easily

be derived following the calculations in Section 2. Hence, throughout this subsection,

we will simply focus on priors and posterior inference for Π∗ = αβ′ conditional on

Π and Σ.6 In particular, we assume

∆yt = Π∗yt−1 + ut, Π∗ = αβ′, ut ∼ N(0,Σ), (33)

and tread Σ as known. As before, it is convenient to write the regression in matrix

form. Let ∆Y , X, and U denote the T × n matrices with rows ∆y′t, y′t−1, and u′t,

respectively, such that ∆Y = XΠ′
∗ + U .

3.2.1 Gaussian or Improper Priors for α and β
bayescointgew

We begin the analysis of the VECM with priors for α and β that are either improper

or Gaussian, that is p(α, β) ∝ c or α ∼ N(α, V α) and β ∼ N(β, V β). Geweke

(1996, ADD) used such priors to study inference in the reduced rank regression

model. Throughout this section we normalize β′ = [Ir×r, B
′
r×(n−r)], where B is

to be estimated. This normalization requires that the elements of yt are ordered

such that each of these variables appears in at least one cointegration relationship.

Alternatively, one could normalize the length of each column of β to one.

In the context of our output-investment illustration, one might find it attractive

to center the prior for the cointegration coefficient B at −1, reflecting either pre-

sample evidence on the stability of the investment-output ratio or the belief in an

economic theory that implies that industrialized economies evolve along a balanced

growth path along which consumption and output grow at the same rate. We will

encounter a DSGE model with such a balanced growth path property in Section 4.

An informative prior for α could be constructed from beliefs about the speed at

which the economy returns to its balanced growth path in the absence of shocks.

Conditional on an initial observation and the covariance matrix Σ (both subse-

quently omitted from our notation), the likelihood function is of the form

p(Y |α, β) ∝ |Σ|−T/2 exp
{
− 1

2
tr[Σ−1(∆Y −Xβα′)′(∆Y −Xβα′)]

}
. (34)

6A Gibbs sampler that iterates over Π, Σ|Y, Π∗ and Π∗|Y, Π, Σ can be used to implement inference

for the full model (30).
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In turn we will derive conditional posterior distributions for α and β based on the

likelihood (34). We begin with the posterior of α. Define X̃ = Xβ. Then

p(α|Y, β) ∝ p(α) exp
{
− 1

2
tr[Σ−1(αX̃ ′X̃α′ − 2αX̃ ′∆Y )]

}
. (35)

Thus, as long as the prior of vec(α′) is flat or normal, the posterior of vec(α′) is

multivariate normal. If the prior has the same Kronecker structure as the likelihood

function, then the posterior is matrix-variate normal. In particular, if p(α) ∝ c then

α′|Y, β ∼ MN

(
(X̃ ′X̃)−1X̃ ′∆Y, Σ, (X̃ ′X̃)

)
.

The derivation of the conditional posterior of β is more tedious. Partition X =

[X1, X2] such that the partitions of X conform with the partitions of β′ = [I,B′]

and rewrite the reduced rank regression as

∆Y = X1α
′ + X2Bα′ + U.

Now define Z = ∆Y −X1α
′ and write

Z = X2Bα′ + U. (36)

The fact that B is right-multiplied by α′ complicates the analysis. The following

steps are designed to eliminate the α′ term. Post-multiplying (36) by the matrix

C = [α(α′α)−1, α⊥], yields the seemingly unrelated regression[
Z̃1, Z̃2

]
= X2

[
B, 0

]
+
[
Ũ1, Ũ2

]
, (37)

where

Z̃1 = Zα(α′α)−1, Z̃2 = Zα⊥, Ũ1 = Uα(α′α)−1, Ũ2 = Uα⊥

Notice that we cannot simply drop the Z̃2 equations. Through Z̃2 we obtain informa-

tion about Ũ2 and hence indirectly information on Ũ1, which sharpens the inference

for B. Formally, let Σ̃ = C ′ΣC and partition Σ̃ conforming with Ũ = [Ũ1, Ũ1]. Let

Σ̃1|2 = Σ̃11 − Σ̃12Σ̃−1
22 Σ̃21 and Z̃1|2 = Z̃1 − Σ̃12Σ̃−1

22 Z̃2. Then we can deduce

p(B|α′, Y ) ∝ p(β(B)) exp
{
− 1

2
tr

[
Σ̃−1

1|2(Z̃1|2 −X2B)′(Z̃1|2 −X2B)
]}

. (38)

As in the case of α′, if β(B) is combined with a flat or a Gaussian prior, the

conditional posterior is normal. In particular, if p(β) ∝ c then

B|Y, α′ ∼ MN

(
(X ′

2X2)−1X ′
2Z̃1|2, Σ̃1|2, (X

′
2X2)−1

)
.
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Illustration: We fit a VECM with p = 4 to the investment and GDP data depicted

in Figure 3. Our prior distribution is informative with respect to the cointegration

relationship, namely B ∼ N(−1, λ), and un-informative with respect to the remain-

ing parameters. Some results are plotted in Figure 4.c1

Insert Figure Here

3.2.2 A Prior for Π∗ via Conditioning
bayescointkp

Kleibergen and van Dijk (1994, ADD) and, more recently, Kleibergen and Paap

(2002) criticize the use of potentially non-informative priors for α′. If the loadings

α for the cointegration relationships β′yt−1, then β(B) becomes non-identifiable.

Under a diffuse prior for B the conditional posterior of B given α = 0 is improper

and its density integrates to infinity. The marginal posterior density of α can be

written as

p(α|Y ) ∝ p(α)
∫

p(Y |α, B)dB.

Since
∫

p(Y |B,α = 0)dB determines the marginal density at α = 0, the posterior

of α tends to favor near-zero values for which the cointegration relationships are

poorly identified.

Kleibergen and Paap (2002) propose the following alternative. Starting point is a

singular value decomposition of Π∗, which takes the form Π∗ = V DW ′. Here both

V and W are orthonormal matrices and D is a diagonal matrix that contains the

singular values. Suppose that V is partitioned into

V =

[
V11 V12

V21 V22

]
(39)

and D and W are partitioned conformingly. We assume that the dimension of D11

is r × r. It can be verifiedc1 that the matrix Π∗ can be expressed as

Π∗ = βα′ + β⊥Λα′⊥, (40)

where

α′ = V11D11[W ′
11,W

′
21], B = V21V

−1
11 , β′ = [I, B′], and

Λ = (V ′
22V22)−1/2V22D22W

′
22(W22W

′
22)

−1/2.

c1fs: To be completed
c1fs: Verify!
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For Λ = 0 the rank of Π∗ reduces to r and we obtain the familiar Π∗ = βα′. Hence,

the key idea behind the construction of the prior distribution for α and β is to start

from a distribution for Π∗ that ignores the reduced rank restriction, then derive a

conditional distribution for Π∗ given Λ = 0, and finally to use a change of variables

to obtain a distribution for the parameters of interest, α and β. Thus,

p(α, B) ∝ p(Π∗(α, B,Λ)|Λ = 0)|JΛ=0(Π∗(α, B,Λ))|, (41)

where JΛ=0(Π∗(α, B,Λ)) is the Jacobian associated with the mapping between Π∗

and (α, B,Λ). Kleibergen and Paap (2002) use a diffuse prior for Π∗ and show that

the Jacobian has the form

|JΛ=0(Π∗(α, B,Λ))| = |β′β|(n−r)/2|αα′|(n−r)/2. (42)

Thus, as α −→ 0 the prior density vanishes and counteracts the divergence of∫
p(Y |α, B)dB. Details of the implementation of a posterior simulator are provided

in Kleibergen and Paap (2002). Strachan (2003) uses a similar idea but argues that

it is preferable to impose non-ordinal identifying restrictions on the cointegration

vector, i.e. normalizing its length, rather than linear identifying restrictions, i.e.

normalizing β′ = [I, B′].

The philosophy behind the prior introduced in this subsection, is very different

from the one underlying the empirical illustration in Section 3.2.1. In the empirical

application our prior was deliberately chosen to be informative. The particular

numerical choice was motivated in part by economic theory and in part by pre-

sample observations. The goal of the prior proposed in Kleibergen and Paap (2002)

is mainly to correct irregularities in the likelihood function of the VECM, caused by

local non-identifiability of α and β, and otherwise to be agnostic about parameter

values.

3.2.3 Priors on Cointegration Spaces
bayescointvil

Strachan and Inder (2004, ADD) and Villani (2005) point out that β should be in-

terpreted as a characterization of a subspace of Rn. Hence, the problem of choosing

a prior distribution is a problem of placing probabilities on a collection of sub-

spaces. We will restrict our exposition to the case n = 2 and r = 1 and begin by

parameterizing β in terms of polar coordinates, normalizing its length to one:

β′ = [cos θ, sin θ].
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The one-dimensional subspace associated with β(θ) is given by λβ(θ), where λ ∈ R.

In general, the set of r-dimensional subspaces of Rn is called the Grassman manifold,

Gr,n−r. For our case of n = 2 and r = 1 the elements of G1,2 can be indexed by the

angle θ ∈ (−π/2, π/2].

Villani (2005) proposes that the uniform distribution on the Grassman manifold

can serve as a reference prior for the analysis of cointegration systems. This uniform

distribution is defined to be the distribution that is invariant under the group of

orthonormal transformations of Rn. For n = 2 this group is given by

Ω(ϕ) =

[
cos ϕ − sinϕ

sin ϕ cos ϕ

]
, ϕ ∈ (−π/2, π/2].

Ω(ϕ) leads simply to a rotation around the origin of the subspace spanned by β(θ),

mapping β(θ) into β(θ − ϕ)c1. Thus, the transformation can be represented as a

shift of the angle θ. The distribution that is invariant under this transformation is

the distribution that is generated by assuming that θ ∼ U(−π/2, π/2].

Villani (2005) works with the ordinal normalization of the cointegration vector

β′ = [1, B]. Thus, let B = sin θ/ cos θ. Assuming that θ has a uniform distribution,

a change of variable leads to the following prior for B:

p(B) = (1 + B2)−1. (43)

Thus, the implied prior for B is a Cauchy distribution. Since B = β2/β1 we can

deduce that β1 and β2 are N(0, 1) variables and therefore

p(β) ∝ exp
{
−1

2
β′β

}
. (44)

Villani (2005) provides a generalization of the preceding argument to the case n > 2

and r > 1 and shows that the priorc2

p(α, β, Σ) ∝ |Σ|−(p+r+q+1)/2 exp
{
−1

2
tr[Σ−1(A + ναβ′βα′)]

}
.

implies that the subspace spanned by β is marginally uniformly distributed on the

Grassman manifold. The author also discusses the implementation of a posterior

simulator.
c1fs: Check that sign is correct
c2fs: Check definitions of nuisance parameters.
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Strachan and Inder (2004, ADD), on the other hand, proceed with their analysis

under the non-ordinal normalization of the cointegration vector and propose meth-

ods to induce informative prior distributions on the Grassman manifold. Consider

our investment-output example. In Section 3.2.1 we used a prior for β′ = [I, B],

where B ∼ N(−1, λ). This prior reflects the belief that, approximately, the log

investment-output ratio is stationary. In terms of polar coordinates, this belief could

alternatively be expressed by replacing the uniform distribution of θ ∈ (−π/2, π/2]

with a (scaled) beta distribution centered at −π/4. A more extensive survey of this

literature can be found in Koop, Strachan, van Dijk, and Villani (2004). Koop,

Leon-Gonzalez, and Strachan (FC) proposes efficient posterior simulators for coin-

tegrated models with priors on the cointegration space.
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4 Dynamic Stochastic General Equilibrium Models
dsge

The term DSGE model is often used to refer to a broad class of dynamic macroe-

conomic models that spans the standard neoclassical growth model discussed in

King, Plosser, and Rebelo (1988) as well as the monetary model with numerous

real and nominal frictions developed by Christiano, Eichenbaum, and Evans (2005).

A common feature of these models is that decision rules of economic agents are

derived from assumptions about preferences and technologies by solving intertem-

poral optimization problems. Moreover, agents potentially face uncertainty with

respect to, for instance, total factor productivity or the nominal interest rate set

by a central bank. This uncertainty is generated by exogenous stochastic processes

or shocks that shift technology or generate unanticipated deviations from a central

bank’s interest-rate feedback rule. Conditional on distributional assumptions for

the exogenous shocks, the DSGE model generates a joint probability distribution

for the endogenous model variables such as output, consumption, investment, and

inflation. DSGE models can in principle used for a variety of tasks, including the

study of sources and propagation of business cycle fluctuations, welfare analysis un-

der counterfactual economic policies, as well as forecasts of the future path of key

macroeconomic variables.

In principle, macroeconometric analysis could proceed as follows: specify a DSGE

model that is sufficiently rich to address the substantive economic question of in-

terest; derive its likelihood function and fit the model to historical data; answer

the questions based on the estimated DSGE model. Unfortunately, this is easier

said than done and a number of challenges have to be overcome: estimation and

inference procedures have to be implemented efficiently, the theoretical coherence of

the DSGE model often generates misspecifications that need to be accounted for in

the econometric analysis, and despite the tight parameterization of DSGE models,

they often suffer from identification problems.

The remainder of this section is organized as follows. We present a prototypical

DSGE model in Section 4.1. The model solution and state-space representation is

discussed in Section 4.2. Bayesian inference for the DSGE model parameters and

extensions to model with indeterminate equilibria and heteroskedastic shocks, and

models solved with nonlinear approximation techniques are discussed in Sections 4.3,

4.4, and 4.5, respectively. Section 4.6 discusses numerous methods of documenting

the fit of DSGE models and comparing it to less restrictive models such as vector
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autoregressions. Finally, we provide a brief discussion of some empirical applications

in Section 4.7. A detailed survey of Bayesian techniques for the estimation and

evaluation of DSGE models is provided in An and Schorfheide (2007).

Insert Figure Here

4.1 A Prototypical DSGE Model
dsgemodel

Figure 5 depicts post-war aggregate log output, hours worked, and log labor pro-

ductivity for the U.S. Both output and labor productivity are plotted in terms of

percentage deviations from a linear trend. The simplest DSGE model that tries to

capture the dynamics of these series is the neoclassical stochastic growth model.

According to this model, an important source of the observed fluctuations in the

three series are exogenous changes in total factor productivity. We will illustrate

the techniques discussed in this section with the estimation of the stochastic growth

model based on observations on labor productivity and hours worked.

The model consists of a representative households and perfectly competitive firms.

The representative household maximizes the expected discounted lifetime utility

from consumption Ct and hours worked Ht:

IEt

[ ∞∑
s=0

βt+s

(
lnCt+s −

(Ht+s/Bt+s)1+1/ν

1 + 1/ν

)]
(45)

subject to a sequence of budget constraints

Ct + It ≤ WtHt + RtKt.

The household owns the capital stock Kt and rents it to the firms at the rate Rt.

Capital accumulates according to

Kt+1 = (1− δ)Kt + It, (46)

where It is investment and δ is the depreciation rate. The household uses the

discount rate β and Bt is an exogenous disturbance that can be interpreted as labor

supply shock. If Bt increases then the disutility associated with hours worked falls.

Finally, ν is the so-called Frisch labor supply elasticity. The first-order conditions

associated with the household’s optimization problem are given by a consumption

Euler equation and a labor supply condition:

1
Ct

= βIE

[
1

Ct+1
(Rt+1 − (1− δ))

]
and

1
Ct

Wt =
1
Bt

(
Ht

Bt

)1/ν

. (47)



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 36

The firms rent capital, hire labor services, and produce final goods according to

the following Cobb-Douglas technology:

Yt = (AtHt)αK1−α
t . (48)

The stochastic process At represents the exogenous labor augmenting technical

progress. The firms solve a static profit maximization problem and choose labor

and capital to equate the marginal products of labor and capital with wages and

the rental rate of capital:

Wt = α
Yt

Ht
, Rt = (1− α)

Yt

Kt
. (49)

An equilibrium is a sequence of prices and quantities such that the representative

household maximizes her utility and the firms maximize their profits taking the

prices as given. Market clearing implies that

Yt = Ct + It. (50)

To close the model we will assume a law of motion for the two exogenous processes.

Log production technology evolves according to a random walk with drift:

lnAt = ln A0 +(lnγ)t+ln Ãt, ln Ãt = ρa ln Ãt−1 +σaεa,t, εa,t ∼ iidN(0, 1). (51)

If |ρa| < 1 the log of technology is trend stationary. If |ρa| = 1 then technology

follows a random walk process with drift. The preference process is assumed to

follow a stationary AR(1) process:

lnBt = (1− ρb) ln B∗ + ρb lnBt−1 + σbεb,t, εb,t ∼ iidN(0, 1) (52)

The solution to the rational expectations difference equations (46) to (50) determines

the law of motion for the endogenous variables Yt, Ct, It, Kt, Ht, Wt, and Rt.

The technology process lnAt induces a common trend in output, consumption,

investment, capital, and wages. Hence, it is convenient to define the detrended

variables as follows:

Ỹt =
Yt

At
, C̃t =

Ct

At
, Ĩt =

It

At
, K̃t+1 =

Kt+1

At
, W̃t =

Wt

At
(53)

According to our timing convention, Kt+1 refers to end of period t, beginning of

t + 1, and is a function of shocks dated t and earlier. Hence, we are detrending
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Kt+1 by At. It is straightforward, to rewrite (46) to (50) in terms of the detrended

variables. First, notice that

At

At−1
= γÃρa−1

t−1 eσaεa,t (54)

This ratio is stationary regardless whether |ρa| < 1 or ρa = 1. The transformed

equilibrium conditions are

1

C̃t

= βIE

[
1

C̃t+1

At

At+1
(Rt+1 − (1− δ))

]
,

1

C̃t

W̃t =
1
Bt

(
Ht

Bt

)1/ν

(55)

W̃t = α
Ỹt

Ht
, Rt = (1− α)

Ỹt

K̃t

At

At−1

Ỹt = Hα
t

(
Kt

At−1

At

)1−α

, Ỹt = C̃t + Ĩt, K̃t+1 = (1− δ)K̃t
At−1

At
+ Ĩt.

We will collect the parameters of the DSGE model in the vector θ

θ = [α, β, γ, δ, ν, ρa, σa, ρb, σb]′.

If we set the standard deviations of the innovations εa,t and εb,t to zero, the model

economy becomes deterministic and has a steady state in terms of the detrended

variables. This steady state is a function of θ. For instance, the rental rate of

capital, the capital-output, and the investment-output ratios are given by:

R∗ =
γ

β
+ (1− δ),

K̃∗

Ỹ∗
=

(1− α)γ
R∗

,
Ĩ∗

Ỹ∗
=

K̃∗

Ỹ∗

(
1− 1− δ

γ

)
. (56)

In a stochastic environment, the detrended variables follow a stationary law of mo-

tion, even if the underlying technology shock is non-stationary. Moreover, if ρa = 1,

the model generates a number of cointegration relationships, which according to (53)

are obtained by taking pair-wise differences of lnYt, ln Ct, ln It, ln Kt+1, and lnWt.

4.2 Model Solution and State-Space Form
dsgesolution

The solution to the equilibrium conditions (55) leads to a probability distribution

for the endogenous model variables, indexed by the vector of structural parameters

θ. This likelihood function can be used for Bayesian inference. Before turning to

the Bayesian analysis of DSGE models, a few remarks about the model solution

are in order. In most DSGE models, the intertemporal optimization problems of

economic agents can be written recursively, using Bellman equations. In general, the
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value and policy functions associated with the optimization problems are nonlinear

both in terms of the state and control variables and the solution of the optimization

problems require numerical techniques. In general the solution of the DSGE model

can be written as

st = Φ(st−1, εt; θ), (57)

where st is a vector of suitably defined state variables and εt is a vector that stacks

the innovations for the structural shocks.

For now, we proceed under the assumption that the DSGE model’s equilibrium

law of motion is approximated by log-linearization techniques, ignoring the discrep-

ancy between the nonlinear model solution and the first-order approximation. We

adopt the convention that if a variable Xt (X̃t) has a steady state X∗ (X̃t), then

X̂t = ln Xt − lnX∗ (X̂t = ln X̃t − ln X̃∗). The log-linearized equilibrium conditions

of the neoclassical growth model (55) are given by the following system of linear

expectational difference equations7:

Ĉt = βIEt

[
Ĉt+1 − (1− ρa)Ât+1 −

γ/β

γ/β + (1− δ)
R̂t+1

]
(58)

Ĥt = νŴt − Ĉt + (1 + ν)B̂t, Ŵt = Ŷt − Ĥt,

R̂t = Ŷt − K̂t + Ât, K̂t+1 = (1− δ)K̂t +
δ + 1− γ

γ
Ît + (1− δ)(1− ρa)Ât,

Ŷt = αĤt + (1− α)K̂t + (1− α)(1− ρa)Ât, Ŷt = Ĉt + Ît,

Ât = ρaÂt−1 + σaεa,t, B̂t = ρbB̂t−1 + σbεb,t.

There are a multitude of techniques available to solve linear rational expectations

models, for instance, Sims (2002, ADD). Economists focus on solutions that guar-

antee a stationary law of motion for the endogenous variables, with the loose justi-

fication that any non-stationary solution would violate the transversality conditions

associated with the underlying dynamic optimization problems. For the neoclassical

growth model, the solution takes the form

st = Φ1(θ)st−1 + Φε(θ)εt. (59)

The system matrices Φ1 and Φε are functions of the DSGE model parameters θ and

st is composed of three elements: the capital stock at the end of period t, K̂t+1, as

well as the two exogenous processes Ât and B̂t. The other endogenous variables, Ŷt,

Ĉt, Ît, Ĥt, Ŵt, and R̂t can be expressed as linear functions of st.

7Here Ât = ln Ãt
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As all DSGE models, the linearized neoclassical growth model has some apparent

counterfactual implications. For instance, according to (58) the labor share l̂sh =

Ĥt +Ŵt− Ŷt is constant, which is clearly at odds with the data. Thus, it is common

to estimate DSGE models based on only a subset of the potentially observable

variables that appear in the model. In our empirical illustration, we will consider

the estimation of the neoclassical stochastic growth model on output and hours

data. Fluctuations in our model are generated by two exogenous disturbances, Ât

and B̂t. Thus, likelihood functions for more than two variables will be degenerate,

because the model predicts that certain linear combinations of these variables are

constant, which is clearly at odds with the data. To cope with this problem authors

have either added so-called measurement errors, Sargent (1989, ADD), Altug (1989,

ADD), Ireland (2004, ADD), or additional shocks as in Leeper and Sims (1994,

ADD) and more recently Smets and Wouters (2003). For the subsequent discussion,

we restrict the dimension of the vector of observables yt to n = 2 so that it matches

the number of exogenous shocks. The measurement equation takes the form

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st (60)

Thus (59) and (60) provide a state-space representation for the linearized DSGE

model. If the innovations εt are Gaussian, then the likelihood function can be

obtained from the Kalman filter, described in Chapter [Time Series].

In our empirical illustration we define yt to be composed of log labor productivity

and log hours worked. In this case A(θ) and B(θ) in (60) represent the following

equations[
lnGDPt/Ht

lnHt

]
=

[
ln Ỹ∗ + lnA0 − lnH∗

lnH∗

]
+

[
ln γ

0

]
t +

[
Ât + Ŷt − Ĥt

Ĥt

]
,

where H∗ is the steady state of hours worked and the variables Ât, Ŷt, and Ĥt are

linear functions of st. From the measurement equation it is clear that we could have

alternatively used log GDP instead of log labor productivity as an observable.

Although we focus on output and hours dynamics in this section, it is instructive

to examine the measurement equations that the model yields for output and invest-

ment, the two series examined in Section 3. Suppose we use the GDP deflator to

convert the series depicted in Figure 3 from nominal into real terms.8 Then, we can
8This conversion is more delicate than it is made to appear here. Our model implies that the

relative price of investment goods in terms of consumption goods is one, which is counterfactual.
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write [
lnGDPt

ln It

]
=

[
ln Ỹ∗ + lnA0

ln Ĩ∗ + lnA0

]
+

[
ln γ

ln γ

]
t +

[
Ât + Ŷt

Ât + Ît

]
.

This representation highlights the common trend, generated by the technology pro-

cess in output and investment. If ρa = 1 then (59) implies that Ât follows a random

walk process and hence generates a stochastic trend component. Thus, the model

generates the following cointegration relationship:

[
1 −1

] [ lnGDPt

ln It

]
=

γ/β + 1− δ

(1− α)(γ − 1 + δ)
+ Ŷt − Ît.

Recall that both Ŷt and Ît are stationary, even if ρa = 1. We used this model

implication in Sections 3.2.1 and 3.2.3 as one of the justifications of our informative

prior for the cointegration vector.

4.3 Bayesian Inference
dsgeinference

We will now estimate the stochastic growth model based on quarterly data on labor

productivity and hours worked ranging from 1955 to 2006. Unlike in Figure 5, we

do not remove a deterministic trend from the two series prior to estimation. Our

analysis begins with the specification of a prior distribution. Most of the literature

on Bayesian estimation of DSGE models uses fairly informative prior distributions.

However, this should not be interpreted as “cooking up” desired results based on

almost dogmatic priors. To the contrary, the spirit behind the prior elicitation is

to utilized other sources of information that does not directly enter the likelihood

function. To the extent that this information is indeed precise, the use of a tight

prior distribution is desirable. If the information is vague, it should translate into a

more dispersed prior distribution. Most importantly, the choice of prior should be

properly documented.

There are three important sources of information that could be used for the elic-

itation of prior distribution: (i) information from macroeconomic time series other

than output and hours during the period 1955 to 2006; (ii) micro-level observations

that are, for instance, informative about labor-supply decisions; (iii) macroeconomic

data, including observations on output and hours worked, prior to 1955. Consider

source (i). It is apparent from (56), that long-run averages of real interest rates,

capital-output ratios, and investment-output ratios are informative about α, β, and
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δ. Moreover, the parameter α equal the labor share in our model. Since none

of these variables directly enter Y T , it is sensible to incorporate this information

through the prior distribution. The parameters ρa, ρb, σa, and σb implicitly affect

the persistence and volatility of output and hours worked. Hence, prior distributions

for these parameters can be chosen such that the implied dynamics of output and

hours are broadly in line with pre-sample evidence, that is, information from source

(iii). Finally, micro-econometric estimates of labor supply elasticities could be used

to set a prior for the Frisch elasticity ν, accounting for the fact that most of the

variation in hours worked at the aggregate level is due to the extensive margin, that

is, individuals moving in and out of unemployment.

The prior distribution for our empirical illustration is summarized in Table 2.

Based on NIPA data we choose the prior means for α, β, and δ to be consistent

with a labor share of 0.4, an investment-to-output ratio of 28%, and an annual

interest rate of 4%. These choices yield values of α = 0.34, β = 0.99, and δ = 0.014

in quarterly terms. We decided to use dogmatic priors for β and δ, i.e. these

parameters are fixed, and a Beta distribution for α with a standard deviation of

0.02. An important parameter for the behavior of the model is the labor supply

elasticity. As discussed in Rios-Rull et al. (2009, ADD) a priori plausible vary

considerably. Micro-level estimates based on middle-age white males yield a value

of 0.2, balanced growth considerations under slightly different household preferences

suggest a value of 2.0, and Rogerson’s (1988, ADD) model of hours variation along

the extensive margin would lead to ν = ∞. We use a Gamma distribution with

parameters that imply a prior mean of 2 and a standard deviation of 1. Our prior

for the technology shock parameters is fairly diffuse with respect to the average

growth rate, it implies that the total factor productivity has a serial correlation

between 0.91 and 0.99, and the standard deviation of the shocks is about 1% each

quarter. Our prior implies that the preference shock is slightly less persistent than

the technology shock. Finally, we define lnY0 = ln Y∗+lnA0 and use fairly agnostic

priors on the location parameters lnY0 and lnH∗.

The distributions specified in the first columns of Table 2 are marginal distribu-

tions. A joint prior is typically obtained by taking the product of the marginals for

all elements of θ, which is what we will do in the empirical illustration. Alterna-

tively, one could replace a subset of the structural parameters by, for instance, R∗,

lsh∗, Ĩ∗/K̃∗, and K̃∗/Ỹ∗, and then regard beliefs about these various steady states as

independent. Del Negro and Schorfheide (2008 ADD) propose to augment an initial
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prior p(θ) constructed from marginal distributions for the individual elements of θ

by a quasi-likelihood function that reflects beliefs about steady-state relationships

and autocovariances. In a nutshell this quasi-likelihood function is generated by

interpreting long-run averages of variables that do not appear in the model and

pre-sample autocovariances of yt as noisy measures of steady states and population

autocovariances.

Due to the nonlinear relationship between the DSGE model parameters θ and

system matrices Ψ0, Ψ1, Ψ2, Φ1 and Φε it is not possible to obtain useful charac-

terizations of marginal or conditional posterior distributions of θ, despite the linear

Gaussian state-space form of (59) and (60). Up to now the most commonly used pro-

cedures to generate draws from the posterior distribution of θ are the Random-Walk

Metropolis (RWM) Algorithm described in Schorfheide (2000) and Otrok (2001) or

Importance Sampler (IS) proposed in DeJong, Ingram, and Whiteman (2000). The

basic RWM Algorithm takes the following form

Random-Walk Metropolis (RWM) Algorithm

1. Use a numerical optimization routine to maximize ln p(Y |θ) + ln p(θ). Denote

the posterior mode by θ̃.

2. Let Σ̃ be the inverse of the Hessian computed at the posterior mode θ̃.

3. Draw θ(0) from N (θ̃, c2
0Σ̃) or directly specify a starting value.

4. For s = 1, . . . , nsim, draw ϑ from the proposal distributionN (θ(s−1), c2Σ̃). The

jump from θ(s−1) is accepted (θ(s) = ϑ) with probability min {1, r(θ(s−1), ϑ|Y )}
and rejected (θ(s) = θ(s−1)) otherwise. Here

r(θ(s−1), ϑ|Y ) =
L(ϑ|Y )p(ϑ)

L(θ(s−1)|Y )p(θ(s−1))
.

5. Approximate the posterior expected value of a function h(θ) by 1
nsim

∑nsim
s=1 h(θ(s)).

The RWM Algorithm works well if the parameter space is of fairly low dimension

and the posterior is unimodal. An and Schorfheide (2007) describe a hybrid MCMC

algorithm with transition mixture to deal with a bimodal posterior distribution.

Most recently, Chib and Ramamurthy (2009, ADD) have developed a multi-block

Metropolis-within-Gibbs algorithm that randomly groups parameters in blocks and

thereby dramatically reduces the persistence of the resulting Markov chain and
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improves the efficiency of the posterior sampler compared to a single-block RWM

algorithm. A detailed discussion can be found in Chapter [Bayesian Computation].

Illustration: We apply the RWM Algorithm to generate draws from the posterior

distribution of the parameters of our stochastic growth model. Posterior means

and 90% credible intervals are summarized in Table 2. We consider two versions of

the model. In the deterministic trend version the autocorrelation parameter of the

technology shock is estimated subject to the restriction that it lies in the interval

[0, 1), whereas it is fixed at 1 in the stochastic trend version. Due to the fairly

tight prior, the distribution of α is essentially not updated in view of the data. The

labor supply elasticity estimates are 0.44 and 0.69, respectively, which is in line with

estimates reported in Rios-Rull et al. (2009, ADD). These relatively small values of

ν imply that most of the fluctuations in hours worked are due to the labor supply

shock. The estimated shock autocorrelations are around 0.97, and the innovation

standard deviations of the shocks are 0.7% for the technology shock and 1.1% for

the preference shock. The estimates of lnH∗ and ln Y0 capture the level of the two

series.

4.4 Indeterminacy and Stochastic Volatility
dsgeindetsv

Linear rational expectations systems can have multiple stable solutions, which is

referred to as indeterminacy. DSGE models that allow for indeterminate equilibrium

solutions have received a lot of attention in the literature, because this indeterminacy

might arise if a central bank does not react forcefully enough to counteract deviations

of inflation from its long-run target value. In an influential paper, Clarida, Gali,

and Gertler (2000, ADD) estimated interest rate feedback rules based on U.S. post-

war data and found that the policy rule estimated for pre-1979 data would lead to

indeterminate equilibrium dynamics in a DSGE model with nominal price rigidities.

The presence of indeterminacies raises a few complications for Bayesian inference,

described in detail in Lubik and Schorfheide (2004).

Consider the following simple example. Suppose that yt is scalar and satisfies the

expectational difference equation:

yt =
1
θ
IEt[yt+1] + εt, εt ∼ N(0, 1), θ ∈ (0, 2]. (61)

It can be verified that if θ > 1 the unique stable solution is yt = εt, If on the other

hand θ ≤ 1, we obtain a much larger class of solutions that can be characterized by
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the ARMA(1,1) process

yt = θyt−1 + (1 + M)εt − θεt−1.

Notice that one needs to introduce additional parameters, here the scalar M , to

characterize the solutions under indeterminacy. Moreover, the structural parameter

θ drops out of the equilibrium law of motion if θ > 1. Thus, for certain parame-

terizations of the DSGE model, θ is only set-identified, meaning that one can only

learn from the data that θ ∈ (1,∞], but not the precise value. Thus, indeterminacy

exacerbates identification problems in DSGE models. We saw in the analysis of

VARs with sign restrictions that lack of identification implies that certain condi-

tional distributions do not get updated through the likelihood function.

One of the most striking features of post-war U.S. GDP data is the reduction in

the volatility of output growth around 1984. This phenomenon has be termed the

Great Moderation and is also observable in many other industrialized countries. To

investigate the sources of this volatility reduction Justiniano and Primiceri (2008)

allow the volatility of the structural shocks εt in (59) vary over time. In the context

of our stochastic growth model, consider for instance the technology shock εa,t. We

previously assumed that εa,t ∼ N(0, 1). Alternatively, suppose that

εa,t ∼ N(0, v2
t ), ln vt = ρv ln vt−1 + ηt, ηt ∼ N(0, ω2). (62)

Justiniano and Primiceri (2008) first solved their log-linearized DSGE model with

a standard solution technique, ignoring the stochastic volatilities in the structural

shock processes, and then used the following Gibbs sampler to conduct inference:

1. Conditional on the sequence v1,T = {vt}T
t=1 the likelihood function of the state-

space model can still be evaluated with the Kalman filter. Consequently, the

RWM step described in Section (4.3) can be used to generate draws from the

conditional posterior of θ given v1,T .

2. Draws from the conditional distribution of εa,1,T given θ and v1,T can be ob-

tained by using the Kalman smoother as in Carter and Kohn (1994), described

in Chapter [Time Series].

3. The distribution of ρv and ω given v1,T is of the Normal-Inverse Gamma form

because ln vt in (62) evolves according to an AR(1) process.
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4. To obtain draws from the distribution of v1,T given εa,1,T , ρv, and ω, no-

tice that (62) can be interpreted as nonlinear state-space model, where εa,t

is the “observable” and vt is the latent state. Smoothing algorithms that

generate draws of the sequence of stochastic volatilities have been developed

by Jacquier, Polson, and Rossi (1994) and Kim, Shephard, and Chib (1998,

ADD) and are discussed in more detail in the Chapters [Time Series, Finance].

4.5 Estimation of Nonlinear DSGE Models
dsgenonlinear

DSGE models are inherently nonlinear, as can be seen from the equilibrium condi-

tions (55) associated with our stochastic growth model. Nonetheless, given the mag-

nitude of the business cycle fluctuations of a country like the U.S. or the Euro area,

the equilibrium dynamics are quite well approximated by the linear system (59).

However, this linear approximation becomes unreliable if economies are hit by large

shocks, as is often the case for emerging market economies, or if the goal of the

analysis is to study asset pricing implications or consumer welfare. It can be easily

shown that for any asset j, yielding return Rj,t, the linearized consumption Euler

equation takes the form:

Ĉt = βIEt

[
Ĉt+1 − (1− ρa)Ât+1 − R̂j,t+1

]
, (63)

implying that all assets yield the same expected return. Thus, risk premia disappear

in log-linear approximation.

The use of nonlinear model solution techniques complicates the implementation of

Bayesian estimation for two reasons. First, it is computationally more demanding

to obtain the nonlinear solution. The most common approach in the literature on

estimated DSGE model is to use second-order perturbation methods.9 Second, the

evaluation of the likelihood function becomes more costly because both the state

transition equation as well as the measurement equation of the state-space model

are nonlinear. Thus, (59) and (60) are replaced by (57) and

yt = Ψ(st; θ). (64)

Fernandez-Villaverde and Rubio-Ramirez (2007a) and Fernandez-Villaverde and

Rubio-Ramirez (2007b) show how a particle filter can be used to evaluate the likeli-
9A comparison of linear and nonlinear solution methods for DSGE models can be found in

Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2004, ADD).
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hood function associated with a DSGE model. A detailed description of the particle

filter is provided in Chapter [Time Series].

For the particle filter to work in the context of the stochastic growth model de-

scribed above, the researcher has to introduce measurement errors in (64). Suppose

that {s(i)
t−1}N

i=1 is a swarm of particles that approximates p(st−1|Y T , θ). Without

errors in the measurement equation any proposed particle s̃
(i)
t that does not satisfy

the equations

yt = Ψ(s̃(i)
t ; θ), s̃

(i)
t = Φ(s(i)

t−1, ε
(i)
t ; θ) (65)

for some ε
(i)
t has probability zero. If s̃

(i)
t is sampled from a continuous distribution,

the probability that conditional (65) is satisfied is also zero. Thus, in the absence

of measurement errors, one has to find all real solutions of (65) conditional on yt

and s
(i)
t−1, i = 1, . . . , N , which is a difficult computational task because the nonlinear

equation might have multiple solutions. If errors ηt ∼ N(0,Ση) are added to the

measurement equation (64), then (65) turns into

yt = Ψ(s̃(i)
t ; θ) + ηt, s̃

(i)
t = Φ(s(i)

t−1, ε
(i)
t ; θ) (66)

which can be solved for any s̃
(i)
t by setting ηt = yt − Ψ(s̃(i)

t ; θ). An efficient imple-

mentation of the particle filter is one for which a large fraction of the N s̃
(i)
t ’s are

associated with values of ηt that are small relative to Ωη.

4.6 DSGE Model Evaluation
dsgeevaluation

An important aspect of empirical work with DSGE models is the evaluation of fit.

We will distinguish three approaches. First, one could examine to what extent

an estimated DSGE model is able to capture salient features of the data. For

instance, in the context of the stochastic growth model we could examine whether

the model is able to capture the correlation between output and hours worked that

we observe in the data. This type of evaluation can be implemented with predictive

checks. Second, the researcher might be interested in assessing whether the fit of

the stochastic growth model improves if we allow for convex investment adjustment

costs. Posterior odds of a model with versus a model without adjustment costs

are useful for such an assessment. Finally, a researcher might want to compare the

DSGE model to are more flexible reference model such a VAR and we consider three

methods of doing so.
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4.6.1 Predictive Checks

A general discussion of the role of predictive checks in Bayesian analysis can be found

in Geweke (2005, ADD). Predictive checks can be implemented based on either the

prior or the posterior distribution of the DSGE model parameters θ. Let Y rep be a

sample of observations of length T that we could have observed in the past or that

we might observe in the future. The predictive distribution for Y rep based on the

time t information set It is:

p(Y rep|It) =
∫

p(Y rep|θ)p(θ|It)dθ. (67)

We can then use I0 to denote the prior information and IT to denote posterior infor-

mation. Draws from the predictive distribution can be obtained in two steps. First,

generate a parameter draw θ̃ from It. Second, simulate a trajectory of observations

Y rep from the DSGE model conditional on θ̃. The simulated trajectories can be

converted into sample statistics of interest, S(Y rep), such as the sample correlation

between output and hours worked, to obtain an approximation for predictive dis-

tributions of sample moments. Finally, one can compute the observed value of S
based on the actual data and assess how far it lies in the tails of its predictive distri-

bution. If S is located far in the tails, one concludes that the model has difficulties

explaining the observed patterns in the data.

The goal of prior predictive checks is to determine whether the model is able to

capture salient features of the data. Canova (1994, ADD) was the first author who

used prior predictive checks to assess implications of a stochastic growth model that

is solely driven by a technology shock. The advantage of prior predictive checks

is that they do not require the implementation of a posterior sampler. Posterior

predictive checks can be used to assess the “absolute” fit of an estimated model,

similar to a frequentist specification test. Chang, Doh, and Schorfheide (2007) use

posterior predictive checks to determine the extent to which a stochastic growth

model, similar to the one analyzed in this section, with and without non-stationary

labor supply shocks and labor adjustment costs is able to capture the observed

persistence of hours worked.

4.6.2 Posterior Odds
dsgeodds

The Bayesian framework allows researchers to assign probabilities to various com-

peting models. These probabilities are updated through marginal likelihoods ratios
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according to
πi,T

πj,T
=

πi,0

πj,0
× p(Y |Mi)

p(Y |Mj)
(68)

Here, πi,0 (πi,0) is the prior (posterior) probability of model Mi and

p(Y |Mi) =
∫

p(Y |θ(i),Mi)p(θ(i)dθ(i) (69)

is the marginal likelihood function. The key challenge in posterior odds comparisons

is the computation of the marginal likelihood which involves a high-dimensional

integral. If posterior draws for the DSGE model parameters are generated with

the RWM algorithm, the methods proposed by Geweke (1999, ADD) and Chib

and Jeliazkov (2001, ADD) can be used to obtain numerical approximations of the

marginal likelihood. Posterior odds-based model comparisons are fairly popular in

the DSGE model literature. For instance, Rabanal and Rubio-Ramirez (2005) use

posterior odds to assess the importance of price and wage stickiness in the context

of a small-scale New Keynesian DSGE model and Smets and Wouters (2007) use

odds to determine the importance of a variety of real and nominal frictions in a

medium-scale New Keynesian DSGE model. A more detailed discussion of model

selection and model averaging based on posterior probabilities will be provided in

Section 7.

4.6.3 VARs as Reference Models

Vector autoregressions play an important role in the assessment of DSGE models,

since they provide a more densely parameterized benchmark. We consider three

approaches of using VARs for the assessment of DSGE models.

Models of Moments: Geweke (2007) points out that many DSGE models are too

stylized to deliver a realistic distribution for the data Y , that is useable for likelihood-

based inference. Instead these models are designed to capture certain underlying

population moments, such as the volatilities of output growth, hours worked, and the

correlation between these to variables. Suppose we collect these population moments

in the vector ϕ, which in turn is a function of the DSGE model parameters θ. Thus,

a prior distribution for θ induces a model-specific distribution for the population

characteristics, denoted by p(ϕ|Mi). At the same time the researcher considers a

VAR as reference model, M0, that is meant to describe the data and at the same
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time delivers predictions about ϕ. Let p(ϕ|Y,M0) denote the posterior distribution

of population characteristics as obtained from the VAR. Geweke (2007) shows that

π1,0 ∈ p(ϕ|M1)p(ϕ|Y,M0)dϕ

π2,0 ∈ p(ϕ|M2)p(ϕ|Y,M0)dϕ
(70)

can be interpreted as odds ratio of M1 versus M2 conditional on the reference

model M0. The numerator in (70) is large, if there is a strong overlap between

the predictive densities for ϕ between DSGE model M1 and VAR M0. The ratio

formalizes the confidence interval overlap criterion proposed by DeJong, ingram,

and Whiteman (1996). It has been used by Geweke (2007) to examine asset pricing

implications of DSGE models and by Kano and Nason (2009, ADD) to study the

business cycle implications of internal consumption habit.

Loss-Function-Based Evaluation Schorfheide (2000) proposes a Bayesian frame-

work for a loss function-based evaluation of DSGE models. As in Geweke (2007)’s

framework, the research is interested in the relative ability of two DSGE model

to capture a certain set of population moments ϕ. Unlike in Geweke (2007), the

DSGE models are given a chance to explain the data Y . Suppose there are two

DSGE models M1 and M2, and a VAR that serves as a third reference model M0.

The first-step of the analysis consists of computing model-specific posterior pre-

dictive distributions p(ϕ|Y,Mi) and posterior model probabilities πi,T , i = 1, 2, 3.

Second, one can form a predictive density for ϕ by averaging across the three models

p(ϕ|Y ) =
∑

i=1,2,3

πi,T p(ϕ|Y,Mi). (71)

If, say, DSGE model M1 is well specified and attains a high posterior probability,

then the predictive distribution is dominated by M1. If on the other hand, none of

the DSGE models fits well, then the predictive density is dominated by the VARs.

Third, one specifies a loss function L(ϕ̂(i), ϕ) under which DSGE model predictions

ϕ̂(i) of ϕ are to be evaluated. Finally one can compare DSGE modelsM1 andM2 the

posterior expected loss
∫

L(ϕ̂(i), ϕ)p(ϕ|Y )dϕ. This procedure has the feature that

if the DSGE models are poorly specified, the evaluation is loss-function dependent,

whereas the model ranking becomes effectively loss function independent if one of

the DSGE models has a posterior probability that is close to one.

DSGE-VARs Building on work by Ingram and Whiteman (1994), Del Negro and

Schorfheide (2004) link DSGE models and VARs by constructing families of prior
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distributions that are more or less tightly concentrated in the vicinity of the restric-

tions that a DSGE model implies for the coefficients of a VAR. We will refer to

such a model as DSGE-VAR. Recall the VAR from Section 2 that we specified in

Equation (1):

yt = Φ1yt−1 + . . . + Φpyt−p + Φc + ut, ut ∼ N(0,Σ),

which can be written in matrix form as Y = XΦ + U . Assuming that the data

have been transformed such that yt is stationary, let IED
θ [·] be the expectation un-

der DSGE model conditional on parameterization θ and define the autocovariance

matrices

ΓXX(θ) = IED
θ [xtx

′
t], ΓXY (θ) = IED

θ [xty
′
t].

A VAR approximation of the DSGE model can be obtained from the following

restriction functions that relate the DSGE model parameters to the VAR parameters

Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ), Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1

XX(θ)ΓXY (θ). (72)

This approximation is typically not exact because the state-space representation of

the linearized DSGE model generates moving average terms. In order to account

for potential misspecification of the DSGE model, we now use a prior distribution

that, while centered at Φ∗(θ) and Σ∗(θ), allows for deviations of Φ and Σ from the

restriction functions:

Φ,Σ|θ ∼ MNIW

(
Φ∗(θ), [λTΓXX(θ)]−1, λTΣ∗(θ), λT − k

)
. (73)

This prior distribution can be interpreted as a posterior calculated from a sample

of λT artificial observations generated from the DSGE model with parameters θ.

So far, we have specified a prior distribution for the reduced form parameters of

a VAR conditional on the DSGE model parameters θ. The next step is to turn

the reduced form VAR into a structural VAR. According to the DSGE model, the

one-step-ahead forecast errors ut are functions of the structural shocks εt, which we

represent by

ut = ΣtrΩεt. (74)

Σtr is the Cholesky decomposition of Σ and Ω is an orthonormal matrix that is

not identifiable based on the likelihood function associated with (1). Let A0(θ) be

the contemporaneous impact of εt on yt according to the DSGE model. Using a
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QR factorization, the initial response of yt to the structural shocks can be can be

uniquely decomposed into(
∂yt

∂ε′t

)
DSGE

= A0(θ) = Σ∗
tr(θ)Ω

∗(θ), (75)

where Σ∗
tr(θ) is lower triangular and Ω∗(θ) is orthonormal. The initial impact of εt

on yt in the VAR, on the other hand, is given by(
∂yt

∂ε′t

)
V AR

= ΣtrΩ. (76)

To identify the DSGE-VAR, we maintain the triangularization of its covariance ma-

trix Σ and replace the rotation Ω in (76) with the function Ω∗(θ) that appears

in (75). The rotation matrix is chosen such that in absence of misspecification the

DSGE’s and the DSGE-VAR’s impulse responses to all shocks approximately coin-

cide. To the extent that misspecification is mainly in the dynamics, as opposed to

the covariance matrix of innovations, the identification procedure can be interpreted

as matching, at least qualitatively, the short-run responses of the VAR with those

from the DSGE model. The estimation of the DSGE-VAR can be implemented as

follows.

The final step is to specify a prior distribution for the DSGE model parameter

θ, which can follow the same elicitation procedure that was used when the DSGE

model was estimated directly. Thus, we obtain the following hierarchical model

pλ(Y, Φ,Σ, θ) = p(Y |Φ,Σ)pλ(Φ,Σ,Ω|θ)p(θ) (77)

with the understanding that the distribution of Ω|θ is a point mass at Ω∗(θ). To

implement posterior inference it is convenient to factorize the posterior distribution

as follows:

pλ(Φ,Σ,Ω, θ|Y ) = pλ(θ|Y )pλ(Φ,Σ|Y, θ)p(Ω|θ). (78)

The distribution of Φ,Σ|θ is of the Inverse Wishart-Normal form:

Φ,Σ|Y, θ ∼ MNIW

(
Φ̄(θ), [λTΓXX(θ)+X ′X]−1, (1+λ)T Σ̄(θ), (1+λT )−k

)
. (79)

where

Φ̄(θ) =
(

λ

1 + λ
ΓXX(θ) +

1
1 + λ

X ′X

T

)−1( λ

1 + λ
ΓXY +

1
1 + λ

X ′Y

T

)
Σ̄(θ) =

1
(1 + λ)T

[
(λTΓY Y (θ) + Y ′Y )− (λTΓY X(θ) + Y ′X)

×(λTΓXX(θ) + X ′X)−1(λTΓXY (θ) + X ′Y )
]
.
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The marginal posterior density of θ can be obtained through the marginal likelihood

pλ(Y |θ) =
|λTΓXX(θ) + X ′X|−

n
2 |(1 + λ)T Σ̂b(θ)|−

(1+λ)T−k
2

|λTΓXX(θ)|−
n
2 |λTΣ∗(θ)|−

λT−k
2

(80)

×
(2π)−nT/22

n((1+λ)T−k)
2

∏n
i=1 Γ[((1 + λ)T − k + 1− i)/2]

2
n(λT−k)

2
∏n

i=1 Γ[(λT − k + 1− i)/2]
.

A derivation is provided in Del Negro and Schorfheide (2004). Draws from the

marginal posterior of θ can be generated with the same algorithms that are used for

the direct Bayesian estimation of DSGE models, described previously. One can show

that in large samples the resulting estimator of θ can be interpreted as a Bayesian

minimum distance estimator that projects the VAR coefficient estimates onto the

subspace generated by the restriction functions (72).

Since the empirical performance of the DSGE-VAR procedure crucially depends

on the weight placed on the DSGE model restrictions, it is important to consider a

data-driven procedure to determine λ. A natural criterion for the choice of λ in a

Bayesian framework is the marginal data density

pλ(Y ) =
∫

pλ(Y |θ)p(θ)dθ. (81)

For computational reasons we restrict the hyperparameter to a finite grid Λ. If

one assigns equal prior probability to each grid point then the normalized pλ(Y )’s

can be interpreted as posterior probabilities for λ. Del Negro, Schorfheide, Smets,

and Wouters (2007) emphasize that the posterior of λ provides a measure of fit for

the DSGE model: high posterior probabilities for large values of λ indicate that the

model is well specified and a lot of weight should be placed on its implied restrictions.

Define

λ̂ = argmaxλ∈Λ pλ(Y ). (82)

If pλ(Y ) peaks at an intermediate value of λ, say between 0.5 and 2, then a com-

parison between DSGE-VAR(λ̂) and DSGE model impulse responses can potentially

yield important insights about the misspecification of the DSGE model. The DSGE-

VAR approach was designed to improve forecasting and monetary policy analysis

with VARs. The framework has been used as a model evaluation tool in Del Negro,

Schorfheide, Smets, and Wouters (2007) and for policy analysis with potentially

misspecified DSGE models in Del Negro and Schorfheide (forthcoming).
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4.7 DSGE Models in Applied Work
dsgemodelapps

DSGE models estimated with Bayesian methods are currently enjoying a moment

of popularity in applied macroeconomic research. Such popularity is in large part

due to the contribution of Smets and Wouters (2003), who find that the fit of a

suitably enriched DSGE model is comparable to that of more heavily parameterized

models, such as VARs. This finding had quite important implications, as many

applied macroeconomists quickly realized. For twenty years after the publication

of “Macroeconomics and Reality” (Sims (1980)) and “Time to Build and Aggre-

gate Fluctuations” (Kydland and Prescott (1982)) there have been two competing

approaches for addressing questions like: What shocks drive U.S. business cycles?

What are the sources of the Great Moderation? What do impulse responses to mon-

etary policy shocks look like? Structural VARs, which we discussed in Section 2.3,

represent one approach. Their advantage is that their ability to fit the data is good.

Their downside is that it is not always straightforward to discuss the underlying

identification assumptions in terms of an explicit economic theory. Quantitative

DSGE models following the Kydland and Prescott (1982) tradition represent the

alternative approach. Its advantage is that the identifying assumptions are clear.c1

Its disadvantage is that these models’ fit of the data in a statistical sense is question-

able.10 Smets and Wouters (2003)’s results show that an estimated DSGE model,

if cleverly enriched with adjustment frictions and a broad set of structural shocks,

can deliver a fit that in a statistical sense is comparable to that of a VAR.11

The estimated DSGE literature focuses on a number of questions, and one of the

most important ones is precisely “What shocks drive U.S. business cycles?” Even

within the applied DSGE model literature there is little agreement on the answer,

which depends not only on the model and the set of observables used (not surpris-

ingly) but also on the way the data are constructed. Smets and Wouters (2007) find
c1fs: I would say that except for fairly simple models, we have no idea how the identification

works. I would cite theoretical coherence as advantage.
10Proponents of this approach claim that this is not a problem, and argue for an alternative

approach to assess a model’s fit.
11This overly elegiac description of estimated DSGE models should not hide that fact that ma-

jor issues lie ahead. For instance, model misspecification may result in some shocks being very

persistent. To the extent that the dynamics of the exogenous shocks capture the model’s misspeci-

fication, optimal monetary policy conducted using the DSGE model may be misleading. Moreover,

the assumption that the shocks are uncorrelated may result in “incredible identifying restrictions”

to the extent that, again, the shocks mostly capture misspecification.
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that wage-markup shocks, that is, shocks to the degree of competition in labor mar-

kets that affect the economy because of nominal wage stickiness, play a dominant

role.12 Justiniano, Primiceri, and Tambalotti (2008), using the same model and a

similar data set, find that on the contrary shocks to the marginal efficiency of invest-

ment are the dominant source of business cycles. Schmidth-Grohe and Uribe (2009,

ADD) introduce anticipated technology shocks (so-called “news shocks”) and argue

that news shocks to technology play a key role. Finally, Christiano, Motto, and

Rostagno (2006, ADD) estimate a DSGE model with financial frictions and claim

that introducing shocks associated with these frictions diminishes the importance of

shocks to the marginal efficiency of investment. Justiniano and Primiceri (2008) are

the only ones who address the question using a model with time-varying volatilities,

thereby allowing for the possibility that the sources of business cycle vary over time.

Other issues addressed with DSGE models estimated with Bayesian methods are:

the importance of nominal rigidities in the U.S. economy, and the best way to intro-

duce them (e.g., Rabanal and Rubio-Ramirez (2005), Laforte (2007), Benati (2008b),

Del Negro and Schorfheide (2008)); the importance of informational frictions (e.g.,

Mankiw and Reis (2007), Reis (2008b)) and of learning (e.g., Milani (2006), Milani

(2007) , Milani (2008)); the consequence of labor market frictions (e.g., Gertler, Sala,

and Trigari (forthcoming), Krause and Lubik (2007), Sala, Sderstrm, and Trigari

(2008), Krause, Lopez-Salido, and Lubik (forthcoming)) and credit market frictions

(e.g., Iacoviello and Neri (2008)); the relationship between the yield curve and mon-

etary policy (e.g., Doh (2007)); the impact of monetary policy shocks (Rabanal

(2007)) and optimal monetary policy (e.g., Levin, Onatski, Williams, and Williams

(2005), Justiniano and Preston (forthcoming), Reis (2008a)). There also exist sev-

eral papers using open economy DSGE models estimated with Bayesian methods.

A non-exhaustive list includes Adolfson, Linde, Laseen, and Villiani (2005), Jus-

tiniano and Preston (2006), Lubik and Schorfheide (2007), Adolfson, Laseen, Linde,

and Villani (2007), Adolfson, Lasen, Lind, and Villani (2008), Aldofson, Laseen,

Linde, and Villani (2008), Cristadoro, Gerali, Neri, and Pisani (2008).

Estimated DSGE models are also appealing to Central Banks, as they are a tool for

forecasting, structural interpretation of economic data, and most importantly policy

exercises. Smets and Wouters (2005a) and Adolfson, Andersson, Lind, Villani, and

Vredin (2007) among others discuss the use of DSGE models at Central Banks, and
12Smets and Wouters (2003) is based on Euro Area data. Smets and Wouters (2005b) compare

results for the U.S. with those for the Euro Area.
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Adolfson, Lind, and Villani (2007) and Edge, Kiley, and Laforte (2009, ADD) assess

the forecasting performance of both closed and open economy DSGE models.
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5 Time-Varying Coefficient Models
tvcmodels

The coefficients in the models presented in Sections 2 to 4 were assumed to be

time-invariant, implying that economic relationships are stable. In Figure 6 we plot

quarterly U.S. GDP deflator inflation from 1960 to 2006. Suppose we adopt the

view that the inflation rate can be decomposed in a target inflation, set by the

central bank, and some stochastic fluctuations around this target. The figure offers

three views of U.S. monetary history. First, it is conceivable that the target rate

was essentially constant between 1960 to 2006, but there were times, for instance,

the 1970s when the central bank let the actual inflation deviate substantially from

the target. An alternative interpretation is that throughout the 1970s the Fed tried

to exploit an apparent unemployment-inflation trade-off and gradually revised its

target upwards. In the early 1980s, however, it realized that the long-run Phillips

curve is essentially vertical and that the high inflation lead to a significant distortion

of the economy. Volcker decided to disinflate, that is reduced the target inflation

rate. This time-variation in the target rate could either be captured by a regime

switching process that shifts from a 2.5% target to a 7% target and back to 2.5% or

through a slowly varying process.

This section describes models that aim at capturing structural changes in the

economy. We introduce models in which the coefficients either vary gradually over

time according to a multivariate autoregressive process (Section 5.1), or they change

abruptly as in Markov-switching or structural break models (Section 5.2). The mod-

els will take the form of state-space models and much of the technical apparatus

needed for the estimation with Bayesian methods can be found in Chapter [Time

Series] or in the monographs by Kim and Nelson (1999b) and Durbin and Koopman

(2001). We shall focus placing these methods in context of the empirical macroe-

conomics literature and on providing an overview of the applications (Section 5.3).

There are other important classes of nonlinear time series models such as threshold

vector autoregressive models or smooth transition vector autoregressive models in

which the parameter change is often linked directly to observables rather than latent

state variables. However, due to space constraints we are unable to discuss these

models in this chapter.
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5.1 Models with Autoregressive Coefficients
arcoef

We will now take the models from Sections 2 and 4 and introduce time-varying

coefficients that follow an autoregressive law of motion. Most of the subsequent

discussion is devoted to VARs (Section 5.1.1). Whenever time-varying coefficients

are introduced into a DSGE model, an additional complication arises. For the

model to be theoretically coherent, one should assume that the agents in the model

are aware of the time-variation, say, in the coefficients of a monetary policy rule

and form their expectations and decision rules accordingly. Hence, the presence of

time-varying coefficients significantly complicates the solution of the DSGE model’s

equilibrium law of motion, and requires the estimation of a nonlinear state-space

model (Section 5.1.2).

5.1.1 Vector Autoregressions
vararcoef

While VARs with time-varying coefficients were estimated with Bayesian methods

almost two decades ago (e.g., Sims (1993)), the current popularity of this approach

in empirical macroeconomics is largely due to the contribution of Cogley and Sargent

(2001), who took advantage of the developments in MCMC methods occurred in the

1990s. They estimate a VAR in which the coefficients follow unit-root autoregressive

processes. The motivation for their work, as well as for the competing Markov-

switching approach of Sims and Zha (2006) discussed in Section 5.2, arises from the

interest in documenting the time-varying nature of business cycles in the US and

other countries.

Cogley and Sargent (2001) set out to investigate time-variation in U.S. inflation

persistence using a three-variable VAR with inflation, unemployment, and inter-

est rates. One rationale underlying their reduced form specification is provided by

models in which the policymaker and/or agents in the private sector gradually learn

about the dynamics of the economy and consequently adapt their behavior, e.g.,

Sargent (1999). As discussed in the introduction to this section, the central bank

might adjust its target inflation rate in view of changing beliefs about the effective-

ness of monetary policy and the agents might slowly learn about the policy change.

To the extent that this adjustment occurs gradually in every period, it can be best

captured by reduced form models where the coefficients are allowed to vary in each

period.
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In addition to the evidence for changes in the conduct of monetary policy and the

agents’ perception of central bank behavior, studies by McConnell and Perez-Quiros

(2000) and Kim and Nelson (1999a), for instance, had suggested the possibility of

breaks in the volatility of U.S. GDP, potentially caused by heteroskedastic structural

shocks. Cogley and Sargent’s earlier work was criticized by Sims (2001), who pointed

out that the lack of time-varying volatility in their VAR may well bias the results

in favor of finding changes in the dynamics. Cogley and Sargent (2005) address

this criticism by adding time-varying volatility to their model. Here we base out

description of a VAR with autoregressive coefficients on their work. Thus, we also

explain how to introduce heteroskedastic shocks in a VAR.

Consider the reduced-form VAR in Equation (1), which we are reproducing here

for convenience:

yt = Φ1yt−1 + . . . + Φpyt−p + Φc + ut.

We defined xt = [y′t−1, . . . , y
′
t−p, 1]′ and Φ = [Φ1, . . . ,Φp,Φc]′. Now let Xt = In ⊗ xt

and φ = vec(Φ). Then we can write the VAR as

yt = X ′
tφt + ut, (83)

where we replaced the vector of constant coefficients, φ, by a vector of time-varying

coefficients, φt. We assume that the parameters evolve according to independent

random walks:

φt = φt−1 + νt, νt ∼ N(0, Q). (84)

The innovations νt uncorrelated with the vector of VAR innovations, ut. The ut

innovations are also normally distributed, but unlike in Section 2, their variance

now evolves over time:

ut ∼ N(0, Rt), Rt = B−1HtB
−1 ′

, (85)

where Ht is a diagonal matrix with elements h2
i,t following a geometric random walk:

lnhi,t = ln hi,t−1 + σiηi,t, ηi,t ∼ N(0, 1). (86)

B is a lower triangular matrix with ones on the diagonal.13 If the prior distributions

for φ0, Q, B, and σi are conjugate, then one can use a Gibbs sampler that iterates

over the following five conditional distributions to implement posterior inference:
13Notice that this form of stochastic volatility was also used in Section 4.4 to make the innovation

variances for shocks in DSGE models time varying.
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1. Conditional on the matrices H1,T , B, and Q, the posterior for φt can be

obtained using the state-space representation given by equations (83) and (84),

and applying the algorithm developed by Carter and Kohn (1994), described

in Chapter [Time Series].

2. Conditional on the VAR parameters φt, the innovations to equation (83) are

known. According to (85) But is normally distributed with variance Ht, or:

But = H
1
2
t εt, (87)

where εt is a vector of standard normals. Thus, the problem of sampling

from the posterior distribution of B under a conjugate prior is identical to the

problem of sampling from the posterior distribution of A0 in the structural

VAR specification (18) described in detail in Section 2.3.2.c1

3. Conditional on φt and B we can write the i’th equation of (87) as zi,t = Bi.ut ∼
N(0, h2

i,t), which is identical to (62). Thus, as in Section 4.4 we can use the

algorithms of Jacquier, Polson, and Rossi (1994) or Kim, Shephard, and Chib

(1998, ADD) to draw the sequence hi,t,T .

4. Conditional on the sequence hi,1,T the posterior of σi in (86) is of the Inverse-

Gamma form.

5. Conditional on the sequence φ1,T the posterior of Q in (84) the Inverted

Wishart form.

For the initial vector of VAR coefficients, φ0, Cogley and Sargent (2001) and

Cogley and Sargent (2005) use a prior of the form φ0 ∼ N(φ
0
, V 0), where φ

0
and

V 0 are obtained by estimating a fixed-coefficient coefficient VAR with flat prior

based on a pre-sample. Del Negro (2003) advocates the use of a shrinkage prior

with tighter variance than Cogley and Sargent’s to partly overcome the problem

of over-fitting. The prior for Q controls the magnitude of the period-to-period

drift in the VAR coefficients and the priors for σi determines the magnitude of

changes in the volatility of the VAR innovations. These priors have to be chosen

very carefully. Imposing the restriction that for each t the parameter vector φt is

such that the VAR (83) is stationary introduces an additional complication that we
c1fs: I believe our previous description was incorrect because it ignored the Jacobian term.
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do not explore here. Koop and Potter (2008) discuss how to impose stationarity

restrictions efficiently.

Primiceri (2005) extends the above framework by allowing the parameter of the

contemporaneous covariance matrix (B) to evolve as well following a random walk.

The matrix Bt still has a lower triangular structure. This extension turns the

reduced form VAR (83) into a structural model – at least to the extent that one

is comfortable with the lower triangular identification scheme – in that the model

now allows for the contemporaneous relationships among the variables to be time-

varying. Hence, for instance, one can estimate a time-varying monetary policy

reaction function, as in Primiceri’s application.14 Del Negro (2003) suggests an

alternative approach where time-variation is directly imposed on the parameters of

the structural model – that is, the parameters of the VAR in equation (18). Finally,

no cointegration restrictions are imposed in the VAR (83). A Bayesian analysis of a

time-varying coefficient cointegration model can be found in Koop, Leon-Gonzalez,

and Strachan (2008).

5.1.2 DSGE Models with Drifting Coefficients
dsgearcoef

Recall the stochastic growth model introduced in Section 4.1. Suppose that we

change the objective function of the household to

IEt

[ ∞∑
s=0

βt+s

(
lnCt+s −

(Ht+s/B)1+1/ν

1 + 1/ν

)]
. (88)

Under this specification B is a parameter that affects the disutility associated with

working. Thus, we can interpret our original objective function (88) as a generaliza-

tion of (88), in which we have replaced the constant parameter B by a time-varying

parameter Bt. But in our discussion of the DSGE model in Section 4.1 we never

mentioned time-varying parameters, we simply referred to Bt as a labor supply or

preference shock. Thus, a time-varying parameter is essentially just another shock.

If the DSGE model is log-linearized, as in (58), then all structural shocks (or time-

varying coefficients) appear additively in the equilibrium conditions. For instance,

the preference shock appears in the labor supply function

Ĥt = νŴt − Ĉt + (1 + ν)B̂t. (89)
14Primiceri (2005) estimates a tri-variate VAR with interest rates, unemployment, and inflation

on post-war U.S. data.
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Now imagine replacing the constant Frisch elasticity ν in (45) and (88) by a time-

varying process νt. After log-linearizing the equilibrium conditions the time-varying

elasticity would show up as an additional additive shock in (89) and hence, be

indistinguishable in its dynamic effects from Bt. Thus, for additional shocks or

time-varying parameters to be identifiable, it is important that the log-linear ap-

proximation be replaced by a nonlinear solution technique. Fernandez-Villaverde

and Rubio-Ramirez (2007b) take a version of the constant-coefficient DSGE model

estimated by Smets and Wouters (2003) and allow for time variation in the coef-

ficients that determine the interest-rate policy of the central bank and the degree

of price and wage stickiness in the economy. To capture, for instance, the different

effects of a typical monetary policy shock and a shock that changes central bank’s

reaction to deviations from the inflation target the authors use a second-order per-

turbation method to solve the model and the particle filter to approximate its like-

lihood functions. Thus, the topic of DSGE model with time-varying autoregressive

parameters has essentially been covered in Section 4.5.

5.2 Models with Markov-Switching Coefficients
msmodels

Markov-Switching (MS) models represent an alternative to drifting autoregressive

coefficients in time series models with time-varying parameters. MS models are

able to capture sudden changes in time series dynamics. Recall the two different

representations of a time-varying target inflation rate in Figure 6. The piecewise

constant path of the target can be generated by a MS model, but not by the drifting-

coefficients model. We will begin with a discussion of MS coefficients in the context

a VAR (Section 5.2.1) and then consider the estimation of DSGE models with MS

coefficients (Section 5.2.2).

5.2.1 Markov-Switching VARs
msvar

Markov-Switching models have been popularized in economics by the work of Hamil-

ton (1989), who used them to model GDP growth rates in recession and expansion

states. We will begin by adding regime-switching to the coefficients of the reduced

form VAR specified in (1), which we write in terms of a multivariate linear regression

model as

y′t = x′tΦ(st) + u′t, ut ∼ N(0,Σ(st)) (90)
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using the same definitions of Φ and xt as in Section 2.1. Unlike before, the coefficient

vector Φ is now a function of st. Here st is a discrete M -state Markov process with

time-invariant transition probabilities

πlm = P [{st = l}|{st−1 = m}], l,m ∈ {1, . . . ,M}.

For simplicity, suppose that M = 2 and all elements of Φ(st) and Σ(st) switch simul-

taneously, without any restrictions. Posterior inference in this simplified MS VAR

model can be implemented with a Gibbs sampler that iterates over the following

conditional distributions:

1. Posterior distribution of Φ(s) and Σ(s), s = 1, 2, conditional on s1,T . Let

T1 be a set that contains the time periods when st = 1 and T2 be the set

that contains the times when st = 2. Under a conjugate prior, the posterior

of Φ(s) and Σ(s) is MNIW, obtained from the regression y′t = x′tΦ(s) + ut,

ut ∼ N(0,Σ(s)), t ∈ Ts.

2. Draws from the posterior of s1,T conditional on Φ(s) and Σ(s), s = 1, 2, can

be obtained with a variant of the Carter and Kohn (1994) approach, described

in detail in Chapter [Time Series].

If one imposes that π22 = 1 and π12 = 0 then model (90) becomes a change-point

model in which state 2 is the final state. Alternatively, such a model can be viewed

as a structural break model in which at most one break can occur, but the time of

the break is unknown. Kim and Nelson (1999a) use a change-point model to study

whether there been a structural break in post-war GDP growth towards stabiliza-

tion. By increasing the number of states and imposing the appropriate restrictions

on the transition probabilities, one can generalize the change-point model to allow

for several breaks. Chopin and Pelgrin (2004) considers a setup that allows the joint

estimation of the parameters and the number of regimes that have actually occurred

in the sample period. Koop and Potter (2007) and Koop and Potter (FC) explore

posterior inference in change-point models under various types of prior distributions.

In a multivariate setting the unrestricted MS VAR in (90) with coefficient matrices

that are a priori independent across states is typically not empirically not viable,

because it involves too many coefficients that need to be estimated on too few ob-

servations. Introducing dependence of coefficients across Markov states complicates

Step 1. of our posterior simulator.
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Sims and Zha (2006) extend the structural VAR given in (18) to a Markov-

Switching setting:

y′tA0(st) = x′tA(st) + ε′t, (91)

where εt is a vector of orthogonal structural shocks with unit variance. To cope with

the dimensionality problem the authors re-parameterize the k × n matrix A(st) as

D(st) + S̄A0(st), where S̄ is a k × n with the n × n identity matrix in the first n

rows, and zeros elsewhere. Thus,

y′tA0(st) = x′t(D(st) + S̄A0(st)) + ε′t. (92)

Notice that if D(st) = 0, then the reduced-form VAR coefficients are given by Φ = S̄

and the elements of yt follow random walk processes, as implied by the Minnesota

prior. If the prior for D(st) is centered at zero, one can impose restriction, for

instance constrain some elements of D(st) to be the same across states, and at the

same time maintain the feature that conditional on the state st the prior for the

reduced form VAR is centered at a random walk representation.c1 Sims and Zha

(2006) use their setup to estimate specifications in which (i) only the coefficients of

the monetary policy rule change across Markov states, (ii) only the coefficients of

the private-sector equations switch, and (iii) only coefficients that implicitly control

innovation variances (heteroskedasticity) change. The Gibbs sampler for the param-

eters of (92) is derived by extending the approach in Waggoner and Zha (2003), as

discussed in detail by Sims, Waggoner, and Zha (2006).

Paap and Van Dijk (2003) consider a restricted MS VAR in which the Markov

process affects the trend of a vector time series yt but leaves the fluctuations around

this trend unchanged. Let

yt = y∗t + Γ0(st) + ỹt, ỹt = Φ1ỹt−1 + . . . + Φpỹt−p + ut, (93)

where

y∗t = y∗t−1 + Γ1(st).

The model captures growth rate differentials between recessions and expansions and

is used by the authors to capture the joint dynamics of U.S. aggregate output and

consumption.
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5.2.2 DSGE Models with Markov-Switching Coefficients
msdsge

There is a growing number of papers that incorporates Markov-switching effects

in DSGE models. Consider the nonlinear equilibrium conditions of our stochastic

growth model in (55). The most rigorous and general treatment of Markov-Switching

coefficients would involve replacing the vector θ by a function of the latent state st,

θ(st), and solving the nonlinear model while accounting for the time variation in

θ. Since the implementation of the solution and the subsequent computation of the

likelihood function is very challenging the literature has focused on various short-

cuts, which introduce Markov switching in the coefficients of the linearized model

given by (58).

Following Sims (2002, ADD) we write the linearized equilibrium conditions in the

following canonical form

Γ0xt = C + Γ1xt1 + Ψεt + Πηt. (94)

Here the vector ηt is comprised of one-step ahead rational expectations forecast

errors. In the context of our stochastic growth model it would for instance contain

ηC
t = Ĉt − IEt−1[Ĉt], which enable us to re-cast (58) in the canonical form. In most

applications one can define the vector xt such that the observables yt can, as in

Section 4.2 be simply expressed as a linear function of xt, that is,

yt = Ψ0 + Ψ1t + Ψ2xt. (95)

We could now introduce Markov-switching directly into the system matrices Γ0,

Γ1, Ψ, and Π – and potentially into the coefficient matrices of the measurement

equations as well.

Schorfheide (2005) considers a special case of this Markov-switching linear rational

expectations framework, because in his analysis the switching only affects the target

inflation rate of the central bank. The resulting system can be written as

Γ0xt = Γ1xt1 + (Ψεt + C(st)) + Πηt

and is solvable with the algorithm provided in Sims (2002, ADD). However, there

is a large debate in the literature about whether the central bank’s reaction to

inflation and output deviations from target has changed around 1980. A candidate
c1fs: The exposition is still a bit cryptic
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explanation for the reduction of macroeconomic volatility in the 1980s is a more

forceful reaction of central banks to inflation deviations. This can be captured by

a monetary policy rule in which the slope coefficients (rather than the intercept)

are subject to regime-switches. Thus, subsequent work by Davig and Leeper (2007,

ADD), Farmer, Waggoner, and Zha (2007, ADD), and Bianchi (2008, ADD) is more

ambitious in that it allows for switches in the other system matrices as well:

Γ0(st)xt = Γ1(st)xt1 + (Ψ(st)εt + C(st)) + Π(st)ηt.

Characterizing the full set of solutions for this general MS linear rational expecta-

tions model and conditions under which there exists a unique stable solution is the

subject of ongoing research.

In the simplified model of Schorfheide (2005) the solution to the rational expec-

tations model takes the form

xt = Φ1xt−1 + Φε(st) · (µ(st) + εt) + Φ0(st) (96)

Equations (95) and (96) define a (linear) Markov-switching state-space model, with

the understanding that the system matrices are functions of a time-invariant parame-

ter vector θ. Posterior inference can be implemented in two different ways. Following

a filtering approach that simultaneously integrates over xt and st, discussed in Kim

and Nelson (1999, ADD), Schorfheide (2005) constructs an approximate likelihood

that only depends on θ. This likelihood function is then used in the RWM algorithm

described in Section 4.3. Alternatively, one could construct a Gibbs sampler that

iterates over the blocks x1,T , s1,T , and θ. Drawing from the conditional distribution

of θ however, requires a Metropolis step due to the nonlinear relationship between

the deep structural parameters and the system matrices. One would probably need

to tailor this Metropolis step as a function of the latent states at each step of the

Gibbs sampler.

5.3 Applications of Bayesian Time-Varying Coefficients Models:

The ‘Great Moderation’ and ‘Inflation Persistence’ Debates
tvpapps

The work by Cogley and Sargent (2001) started a robust debate on whether the

dynamics of U.S. inflation, and in particular its persistence, had changed over the

last quarter of the 20th century and, to the extent that it had, whether monetary

policy played a major role in affecting inflation’s dynamics. Naturally, this debate
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evolved in parallel to that on the magnitude and causes of the ‘great moderation’,

that is, the decline in the volatility of business cycles during the same period, started

by the contributions of McConnell and Perez-Quiros (2000) and Kim and Nelson

(1999a). Whatever the causes of the changes in the dynamics of output – whether

shocks, policies, or other structural changes – it is likely that these same causes

affected the dynamics of inflation. Some of the paper discussed in this section

discuss both, while others focus on only one of the two phenomena.

Cogley and Sargent (2001) compute the spectrum of inflation obtained from their

time-varying coefficient VAR and use it as evidence that both inflation volatility and

persistence have changed dramatically from the 70s to the more recent period. Cog-

ley and Sargent (2005) finds that this result is robust to considering time-variation

in the volatility of shocks, and argue that changes in the monetary policy rule are

partly responsible for it.15 Using a structural VAR, Primiceri (2005) finds that

monetary policy indeed changed since the 70s, but that the impact of these changes

on the rest of the economy was fairly negligible. He claims that variation in the

volatility of the shocks is the main cause for the lower volatility of both inflation

and business cycles in the post-Volcker period.16 Sims and Zha (2006) arrives to

similar conclusions using a structural regime-switching VAR. Their findings differ

from Primiceri’s however, to the extent that they find no support to the hypothesis

that the parameters of the monetary policy equation have changed. Similarly, using

a AR time-varying coefficients VAR identified with sign restrictions Canova and

Gambetti (forthcoming) find little evidence that monetary policy has become more

aggressive in responding to inflation in the recent period.

Benati and Surico (forthcoming) question the ability of structural VAR methods to

correctly identify the sources of the great moderation. They estimate a DSGE model

with Bayesian methods, and they find that changing the reaction to inflation in the

policy rule can deliver shifts in the volatility of inflation and the output gap similar
15Pivetta and Reis (2007) challenge the findings of Cogley and Sargent (2001) and Cogley and

Sargent (2005) on the variation of inflation persistence on the ground that variations in inflation per-

sistence are not statistically significant. Cogley, Primiceri, and Sarget (2008) address this criticism

by: i) focusing on a different measure of inflation persistence, which the time-varying coefficient

model estimates with more precision than that in Cogley and Sargent (2001), and ii) distinguishing

between the persistence of inflation itself and that of the ‘inflation gap’, the difference between

inflation and the time-varying target of the central bank. They find that changes in persistence of

the inflation gap are statistically significant.
16Benati (2008a) reaches similar conclusions for the UK.
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to those observed in the data. They claim that the VAR representation implied by

such a model under the two regimes would incorrectly identify the sources of the

great moderation as a change in the variance of the shocks, and that the change in

the VAR impulse response functions to a policy shock would be small.17

We conclude by mentioning a few other applications of VARs with time variation

in the coefficients. These include forecasting, as in the seminal work by Sims (1993)

and the exercise conducted by Cogley, Morozov, and Sargent (2005) using U.K.

data, and estimation of a time-varying Phillips Curve, as in Cogley and Sbordone

(forthcoming).

17Benati and Surico (2008) draw a connection between inflation predictability and the reaction

to inflation in the policy rule.
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6 Models for Data-Rich Environments
panel

This section addresses the estimation of models designed to deal with data sets that

have a large cross-sectional and time-series dimension. Consider the VAR(p) from

Section 2:

yt = Φ1yt−1 + . . . + Φpyt−p + Φc + ut, t = 1, . . . , T (97)

where yt is a n×1 vector. Without mentioning it explicitly, our previous analysis was

tailored to situations in which the time series dimension T of the data set is much

larger than the cross-sectional dimension n. This section focuses on situations in

which T and n are of similar size, such that the ratio of observations to parameters for

each equation of the vector autoregressive system is too small to enable a meaningful

estimation of the coefficients without further restrictions. For instance, in the United

States and several other countries statistical agencies release at the monthly or

quarterly frequency a number of indicators that are potentially informative on the

state of the business cycle. These include well-known measures such as GDP and

its components, industrial production or employment, but also indices of consumer

confidence, capacity utilization, new orders of non-defense capital goods, et cetera.

Examples of this data set are those in Stock and Watson (1999) and Stock and

Watson (2002). If one wants to use all available information for forecasting, the size

of the cross section renders a VAR with typical lag-length (four and thirteen for

quarterly and monthly data, respectively) heavily over-parameterized. Similarly, if

we want to study international business cycle synchronization the sheer number of

countries for which measures of GDP, consumption, and investment are available

(say, OECD countries) implies that each VAR equation would have a very large

number of regressors.

We will consider the following approaches to cope with the curse of dimensionality.

First, one could impose “hard” restrictions, such as setting many of the coefficients in

the VAR to zero, or alternatively re-parameterize the model so to reduce the number

of free parameters (Section 6.1).18 Second, one could use very informative, yet non-

dogmatic prior distributions for the many coefficients in the VAR (Section 6.2).

Finally one could express yt as a function of a lower dimensional vector of “factors”
18For instance, Stock and Watson (2005), who study international business cycles using output

data for the G7 countries, impose the restriction that in the equation describing output evolution

for a given country enter only the trade-weighted averages of the other countries GDP growth rates.
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which by itself follows a vector autoregressive process (Section 6.3). We will in turn

explore all three possibilities.

6.1 Restricted High-Dimensional VARs
varrestricted

Canova, Ciccarelli, and Ortega (2007) and Canova and Ciccarelli (forthcoming)

introduce large-scale VARs where priors reduce the dimensionality of the parameter

space.19 Specifically, let yt, xt, and Φ be defined as in section 2 (recall that xt

includes the constant and p lags of yt) and let φ denote vec(Φ). The VAR can then

be represented as:

yt =
(
In ⊗ x′t

)
φ + ut, (98)

where In is an n×n identity matrix, and ut is a vector of reduced form residuals with

variance Σ. The key idea in Canova and Ciccarelli (forthcoming) consists in reducing

the number of parameters that need to be estimated by making φ time-varying and

assuming the following relationship:

φt = Ξθ + νt, (99)

where θ is a vector of size κ << nk, νt is a nk × 1 vector of i.i.d. variables (in-

dependent from ut for all leads and lags) with variance V, and the nk × κ matrix

incorporates pre-specified weights (or loadings). Equation (99) states that the VAR

coefficients φt are known functions of a lower dimensional set of parameters θ via

a set of restrictions Ξθ, plus a number of deviations νt from such restrictions. An

example of these restrictions would be to impose that a coefficient in equation i

(i = 1, .., n) associated with variable j (j = 1, .., n) that enters lagged l times

(l = 1, .., p) is the sum of an equation-specific parameter, a variable-specific pa-

rameter, and a lag-specific parameter. Here θ would be comprised of the set of all

n + n + p equation/variable/lag-specific parameters, and Ξ would be an indicator

matrix of zeros and ones that picks the subset of θ associated with each element of

φ.

The fact that the deviations from the restrictions νt are i.i.d. both over time

(and over the elements of φ) makes estimation very convenient. In fact, the random
19Canova (2005) and Canova, Ciccarelli, and Ortega (2007) use the approach to study the trans-

mission of US shocks to Latin America and convergence in business cycles among G7 countries,

respectively.
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deviations νt can be merged with the VAR innovations ut, resulting in a model that

is straightforward to estimate. Inserting (99) into (98) we obtain the SUR system:

yt = Xtθ + ζt. (100)

The matrix of regressors Xt = (In ⊗ x′t) Ξ essentially contains weighted averages of

the regressors, where the weights are given by the columns of Ξ, and where the

variance of ζt = (In ⊗ x′t) νt + ut is given by20(
In ⊗ x′t

)
V
(
In ⊗ x′t

)′ + Σ.

The appeal of Canova and Ciccarelli’s framework is that inference about θ can be

conducted using the tools discussed in section 2.

Canova and Ciccarelli (forthcoming) actually generalize expression (99) by as-

suming that the vector θt is time-varying and follows a simple autoregressive law

of motion. The vector θt can therefore be interpreted as a vector of factors. The

structure of the estimation problem is therefore very similar to that of the factor

models described later in section 6.3, and estimation can be conducted using similar

methods (see Canova and Ciccarelli (forthcoming) for details).

6.2 Shrinkage Estimation of High-Dimensional VARs
varshrink

If one solution to the curse of dimensionality is to reparameterize the model so that

we have fewer free parameters, another is to have a (possibly strong) a-priori belief

that the parameters in a regression are zero. Such approach is known as ridge regres-

sions (or Stein estimator in a classical setup) and amounts to estimating the VAR

using a prior of the the type N(0, σ2I). What is the outcome of ridge regressions

when both the cross-sectional and the time series dimensions are large? De Mol,

Giannone, and Reichlin (2008) show that there is a tight connection between ridge

regressions and factor models. De Mol, Giannone, and Reichlin (2008) compare

different solutions to the curse of dimensionality in univariate forecasting problems,

e.g. in situations where we want to forecast a specific variable using a potentially

large number of regressors. A Classical approach to the curse of dimensionality is to

compute the covariance matrix of the regressors, obtain its principal components,

and use those associated with the largest eigenvalues as regressors.21 De Mol, Gi-
20Note that if V and Σ have a kronecker structure (as it may be the case for country VARs, for

instance) the computation of the variance simplifies considerably.
21The Bayesian analog to this solution amounts to extracting a few factors via the methods

described later in this section, and then forecast using these factors.



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 71

annone, and Reichlin (2008) consider ridge regressions as an alternative, and show

that the difference between the two solutions amounts to the following: While un-

der principal components forecasts we use only the first few principal components,

under ridge regressions we use all principal components multiplied by a weight that

declines with the size of the associated eigenvalues. De Mol, Giannone, and Reich-

lin (2008) show how to set the shrinkage parameter σ2 to obtain consistency of the

ridge regression forecasts as both the time-series and cross-sectional size increase

to infinity. They also show that with a suitably chosen shrinkage parameter the

empirical forecast performance for ridge regression forecasts with a large number

of regressors is similar to that obtained with principal components. Banbura, Gi-

annone, and Reichlin (2008) use the theoretical insights from De Mol, Giannone,

and Reichlin (2008) to choose the shrinkage parameters in estimating VARs with

Minnesota priors in large cross-sections. They argue that these large scale VARs

outperform smaller scale VARs in terms if forecasting accuracy.

6.3 Dynamic Factor Models
dfm6

Factor models also represent an approach for dealing with the curse of dimension-

ality. Factor models describe the dynamic behavior of a possibly large cross section

of observations as the sum of a few common components, which capture comove-

ments, and of series-specific components, which describe the idiosyncratic dynamics

of each individual series. Factor models have been part of the econometricians’ tool-

box for a long time (see for instance the “unobservable index” models by Sargent

and Sims (1977) and Geweke (1977)), but the contribution of Stock and Watson

(1989) generated renewed interest in this class of models. Stock and Watson (1989)

use a factor model to exploit information from a large cross-section of macroeco-

nomic time-series for forecasting. While Stock and Watson (1989) use maximum

likelihood, Bayesian estimation of this class of models follows the work by Otrok

and Whiteman (1998). The remainder of this subsection is organized as follows.

The baseline version of the dynamic factor model is introduced in Section 6.3.1 and

posterior inference is described in Section 6.3.2. Some applications are discussed in

Section 6.3.3. Finally, we consider various extensions. We introduce time-varying

parameters (Section 6.3.4), consider factor-augmented VARs (Section 6.3.5), and

combine DSGE models and factor models (Section 6.3.6).
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6.3.1 Baseline Specification
dfm6baseline

A dynamic factor model decomposes the dynamics of observables yi,t, i = 1, . . . , n, t =

1, . . . , T into the sum of two unobservable components, one that affects all yis,

namely the factors ft (a κ× 1 vector, if we have κ factors), and one that is idiosyn-

cratic, e.g. specific to each i:

yi,t = ai + λift + ξi,t, (101)

where ai is the constant and λi is the 1 × κ vector of loadings of series i to the

common factors. The factors follow a vector autoregressive processes of order q:

ft = Φ0,1ft−1 + .. + Φ0,qft−q + u0,t, and (102)

where the Φ matrices are of size κ × κ (in the literature these matrices are of-

ten assumed to be diagonal). The idiosyncratic components follow autoregressive

processes of order pi:

ξi,t = φi,1ξi,t−1 + .. + φi,piξi,t−pi + σiui,t, (103)

where σi is the standard deviation of the idiosyncratic component, ui,t ∼ N (0, Iκ),

and ui,t ∼ N (0, 1) for i = 1, .., n are the innovations to the law of motions (102)

and (103), respectively.22 These innovations are i.i.d. over time and across i (in-

cluding i = 0, e.g. the vector u0,t is orthogonal to all of the ui,t innovations). The

latter is the key identifying assumption in the model, as it postulates that all co-

movements in the data arises from the factors.23 24 Another important identifying

assumption involves the fact that the factors are not rotation-invariant: we can pre-

multiply the factors in (101) and (102) by a κ×κ orthonormal matrix H (such that

H ′H = Iκ), and post-multiply the vector λi and the Φ0,j matrices by H ′, and obtain

22Note that the matrix Σ0 is set equal to the κ × κ identity matrix Iκ, which is a standard

normalization assumption given that the scale of the loadings λis and σ0 cannot be separately

identified.
23Stock and Watson (1989) include lags of the factors in (101), which we omit for simplicity.
24Following the work of Chamberlain and Rothschild (1983) the literature has also considered

“approximate” factor models, that is, models where there is limited cross-sectionally correlation

among the idiosyncratic components. Doz, Giannone, and Reichlin (2008) show that even in this

situation maximum likelihood estimation of a model that ignores the weak correlation among the

idiosyncratic components delivers consistent estimates of the factors. Their result is important from

a Bayesian perspective, as it shows that Bayesian estimates of the factors can be consistent even

when the factor structure is not exact.
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an observationally equivalent model. This problem is often addressed by imposing

constraints on the loading vector λi: for instance, if we had two factors we would

impose that for at least one i we have that the second element of λi equals zero.

Another problem is that the factors are sign-indeterminate: if we multiply factors

and loadings by −1 we obtain an observationally equivalent model. Hamilton and

Waggoner (2007) provide a solution to this normalization issue. The problem can

also be sidestepped of the prior on the loadings λi is not centered at zero. While

the likelihood would still be sign-invariant, the posterior would no longer be so.25

6.3.2 Priors and Posteriors
dfm6baselinepp

It is convenient to use conjugate priors for the parameters. Specifically, the priors on

both the constant terms ai and the loadings λi are normal, namely N(ai, A
−1
i ) and

N(β
i
, B−1

i ), respectively. The autoregressive coefficients for the factors and the id-

iosyncratic shocks have a truncated normal prior. Define φ0 as φ0 = (vec(Φ0,1)′, .., vec(Φ0,q)′)′.

The prior for φ0 is N(φ
0
, V −1

0 )ISφ0 , where ISφ0 is an indicator function that places

zero prior mass on the region of the parameter space where we have non station-

arity. Likewise, the prior for φi = (φi,1, .., φi,pi)
′ is N(φ

i
, V −1

i )ISφi
, where ISφi

is

similarly defined. The prior for the idiosyncratic volatility σi is also given by an

inverse gamma distribution: IG(νi, s
2
i ).

The intuition behind the Gibbs sampler is straightforward: (i) for given factors,

equations (101) are simple regression models with AR(pi) errors, each independent

from one another (since the ξi,t are independent across i); (ii) for given parameters,

the factors can be drawn using expressions (101) and (102), as the measurement and

transition equations, respectively, in a state-space representation. We now further

elaborate on the details of the Gibbs sampler.

(i) The key insight from Otrok and Whiteman (1998) is that, conditional on the

factors, drawing from the conditional posterior distribution of {ai, φi, σ
2
i } amounts

to straightforward application of the procedure in Chib and Greenberg (1994) since

equation (101) is simply a regression where the errors follow an AR(pi) process given
25This normalization issue implies that using a time series of zeros as starting values for the

factors may delay convergence. Initializing the factors at some reasonable value different than zero

can help. For instance, the cross-sectional average of the series can be a reasonable starting point

for a common factor.



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 74

by equation (103) (see Otrok and Whiteman (1998) for a detailed description). 26

Moreover, since the errors in equation (101) are independent across i, the procedure

can be implemented one i at the time, which implies that computational cost is

linear in the size of the cross-section. Finally, conditional on the factors, the VAR

coefficients in (102) can be drawn using the methodology discussed in section 2.

(ii) In the second block of the Gibbs sampler we draw the factors conditional on

all other parameters. Two approaches to drawing the factors exist in the Bayesian

factor model literature. One is that followed Otrok and Whiteman (1998) approach,

who explicitly write the likelihood of the observations yi,t, the prior for the factors

(given by equation 102), and then combining the two to derive the posterior distri-

bution of {ft}T
t=1. The alternative is to use the state-space representation given by

equations (101) and (102), and apply the algorithm developed by Carter and Kohn

(1994)to draw from the posterior distribution of the factors. The first approach in-

volves inverting size-T matrices, and hence becomes computationally expensive for

large T . In the second approach it becomes essential to eliminate the idiosyncratic

terms from the state vector if one wants to estimate data sets where n is large (for

otherwise the dimension of the state vector would increase with n, since the id-

iosyncratic terms in (103) are not i.i.d.). This is accomplished by quasi-differencing

expression (101) as in Kim and Nelson (1999c) and Quah and Sargent (1992).

We describe the second approach, assuming notational simplicity that we have

only one factor. We first write the measurement equation (101) and the law of

motion of the idiosyncratic components in stacked form:

ỹt = ã + b̃ft + ξ̃t for t = 1, .., T (104)

ξ̃t = Φ̃1ξ̃t−1 + .. + Φpξ̃t−p + ũt, (105)

where ỹt = (y1,t, . . . , yn,t)′, ã = (a1, . . . , an)′, b̃ = (λ1, . . . , λn)′, ξ̃t = (ξ1,t, . . . , ξn,t)′,

p = maxi=1,..,n(pi), ũt = (σ1u1,t, . . . , σnun,t)′ and the Φ̃js are diagonal n×n matrices

with elements φ1,j , . . . , φn,j on the diagonal. Next we express the laws of motion of

the factor (equation 102) in companion form:

f̃t = Φ̃0f̃t−1 + ũ0,t, (106)

26Importantly, Chib and Greenberg (1994) include the first pi observation in computing the

likelihood.
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where f̃t = (ft, .., ft−q+1)′ and ũ0,t = (u0,t, 0, .., 0)′ are q × 1 vector and Φ̃0 is the

companion matrix:

Φ̃0 =

[
Φ0,1.. Φ0,q

Iq−1 0

]
. (107)

We consider the case q− 1 = p (again for ease of notation) and pre-multiply expres-

sion (104) by the matrix In −
∑p

j=1 Φ̃jL
j and obtain the system:

ỹ∗t = ã∗ + Λ∗f̃t + ũt for t = p+1, .., T (108)

where ỹ∗t = (In −
∑p

j=1 Φ̃jL
j)ỹt, ã∗ = (In −

∑p
j=1 Φ̃jL

j)ã, and:

Λ∗ =


λ1 −λ1φ1,1 . . . −λ1φ1,p

...
. . .

...

λn −λnφn,1 . . . −λnφn,p

 .

The errors in the measurement equation (108) are now i.i.d.. We are then ready to

draw the factors using the Carter and Kohn (1994) procedure, where the transition

equation is given by equation (106).27

Note that equation (108) starts from t = p + 1 since we are using the first p

observations for pre-whitening. If we were to condition on these first p observations,

would use the mean and variance of the unconditional ergodic distribution of the

state vector f̃t to initialize the Kalman filter. There may be cases where the initial

conditions matter, either because T is not too large (relative to p) or because the

factor is very persistent. Del Negro and Otrok (2008) provide formulas for the mean

and variance of the state f̃p conditional on the first p observations.

6.3.3 Applications of Dynamic Factor Models
dfmapps

How integrated are international business cycles? Are countries more integrated in

terms of business cycle synchronization within a region (say, within Europe) than

across regions (say, France and the US)? Has the degree of comovement changed

significantly over time as trade and financial links have increased? These are all

natural questions to address using a dynamic factor model, which is precisely what

Kose, Otrok, and Whiteman (2003) do. For instance, Kose, Otrok, and Whiteman
27Note that in the the cases q − 1 > p one simply needs to add q − 1− p columns of zeros to the

matrix Λ∗. Viceversa, in the the case q − 1 < p one adds p− q + 1 columns of zeros to the matrix

Φ̃0.
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(2003) estimate a dynamic factor model on a panel of annual data on output, invest-

ment, and consumption for 60 countries and about 30 years. The model includes

a world factor that captures the world business cycle, regional factors that capture

region-specific cycles (say, Latin America), and from country-specific cycles.28 29

Kose, Otrok, and Whiteman (2003) find that international business cycle comove-

ment is significant. For output in the G7 countries for instance, world cycles are on

average as important as country-specific cycles. For the entire world country specific

cycles are not surprisingly much more important than world cycles. Regional cycles

are not that important at all, suggesting that integration is no higher within regions

than across regions. Kose, Otrok, and Whiteman (2008) assess to what extent the

importance of world cycles has changed from Bretton Woods period to the early

70s/mid80s, and finally to the current (called ‘globalization’) period. They argue

that for output comovement was highest in the early 70s/mid80s period, which they

call ‘common shock’ period, but that the importance of the world business cycle has

also increased from the Bretton Woods to the ‘globalization’ period. In Kose, Otrok,

and Eswar (2008) the authors provide evidence of ‘decoupling’ during the ‘globaliza-

tion’ period. That is, the authors show that industrialized and emerging economies

have become more integrated within each group, but less integrated across groups

(note that here the regions are defined very differently than in Kose, Otrok, and

Whiteman (2003)). Finally, Crucini, Kose, and Otrok (2008) try to explain the

unobserved factors, and in particular the world factors, in terms of observables such

as productivity, oil prices, et cetera. They find that productivity is the main driving

force of international business cycles.30

28Note that in maximum likelihood/Bayesian methods it is quite natural to construct regional

or country-specific factors by simply imposing the restriction that that the factor has zero loading

on series that do not belong to that region/country. Moreover, the county factor can be estimated

even if the number of series per country is small, as is the case in Kose, Otrok, and Whiteman

(2003). Non-parametric methods such as principal components have a harder dealing with the first

issue (imposing zero restriction on loadings) and with characterizing the uncertainty that results

from estimating country factors with a small cross-section per country.
29Ng, Moench, and Potter (2008) take a different modeling strategy, and use hierarchical factors.

In this case they would estimate factors for each country , and then impose that the country factors

themselves are driven by a factor model, where the factors would be the regional factors. Next, they

would postulate that regional factors also evolve according to a factor model, where the common

factors are the world factors. It turns out that this approach is more parsimonious than Kose,

Otrok, and Whiteman (2003)’s.
30The study of house prices is another interesting application of factor models, given that these

have both an important national (due to interest rates) and a regional (due to migration, demo-
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6.3.4 Dynamic Factor Models with Time-Varying Parameters
dfmtvp

For the same reasons that it may be useful to allow parameter variation in a VAR

as we saw in chapter 5, it may be useful to allow for time-variation among the

parameters of a factor model. For instance, comovement across countries may have

changed as a result of increased financial or trade integration, or because of monetary

arrangements (monetary unions, switches from fixed to flexible exchange rates, et

cetera). Del Negro and Otrok (2008) accomplish that by modifying the standard

factor model in three ways. First, they make the loadings time-varying. This feature

allows for changes in the sensitivity of individual series to common factors. The

measurement equation (101) becomes:

yi,t = ai + λi,tft + ξi,t (109)

where they control the evolution of the factor loadings by requiring that they follow

a random walk without drift as in Cogley and Sargent (2005):

λi,t = λi,t−1 + σηiηi,t. (110)

Importantly for identification purposes, they assume that ηi,t ∼ N (0, 1) and is

independent across i.

The second innovation amounts to introducing stochastic volatility in the law of

motion of the factors and the idiosyncratic shocks. The transition equations, (102)

and (103) become:

ft = φ0,1ft−1 + .. + φ0,qft−q + eh0,tu0,t ,and (111)

ξi,t = φi,1ξi,t−1 + .. + φi,piξi,t−pi + σie
hi,tui,t, (112)

respectively, where to keep notation simple we assume we have only one factor.

The terms ehi,t represents the stochastic volatility components, where hi,t follows a

random walk process:

hi,t = hi,t−1 + σζi
ζi,t, i = 0, 1, .., n (113)

with ζi,t ∼ N (0, 1) and is independent across i (note that h0,t denotes the factor’s

stochastic volatility term). We assume that hi,t = 0 for t ≤ 0, i = 0, 1, ., n, that

graphics, ...) components. Del Negro and Otrok (2007) apply dynamic factor models to study

regional house prices in the US.



Del Negro, Schorfheide – Bayesian Macroeconometrics: July 6, 2009 78

is, before the beginning of the sample period there is no stochastic volatility: This

assumption allows us to derive an ergodic distribution for the initial conditions.31

Del Negro and Otrok (2008) assume that the priors for the standard deviations

of the innovations to the law of motions of the loadings ({σηi}n
i=1) and stochastic

volatilities ({σζi
}n

i=0 (where i = 0 denotes the stochastic volatility for the factors’

law of motion) follow an inverse gamma distributions IG(νηi , s
2
ηi

) and IG(νζi
, s2

ζi
),

respectively.

The Gibbs sampling procedure reduces to four main blocks. (i) The first block

conditions on the factors, time-varying loadings, and stochastic volatilities to sample

from the posterior of the constant term ai, the autoregressive parameters {φi,1, . . . , φi,pi},
and the non time-varying component of the variance σ2

i as described in Section 6.3.1

(the procedure is modified to take the heteroskedasticity introduced by the stochas-

tic volatilities into account). (i) In the next block, which is again similar to the

one described in Section 6.3.2, the factors ft are drawn conditional on all other pa-

rameters using the state space representation of the model, as in Carter and Kohn

(1994). (iii) The third block draws the time-varying loadings λi,t, again using Carter

and Kohn’s algorithm. In this block the factors are treated as known quantities.

(iv) The last block samples the stochastic volatilities using the procedure of Kim,

Shephard, and Chib (1998).

Del Negro and Otrok (2008) apply this model to study the time-varying nature of

international business cycles. Mumtaz and Surico (2008), in a related development,

introduces time-variation in the law of motion of the factors (but not in any of the

other parameters) and use their model to cross-country inflation data.

6.3.5 Factor Augmented VARs
fvar

Bernanke, Boivin, and Eliasz (2005) introduce Factor augmented VARs (or FAVARs).

The FAVAR approach introduces two changes to the standard factor model. First,

FAVAR allows for additional observables (the Fed Funds rate, for instance) to enter

the measurement equation, which becomes:

yi,t = ai + λift + γixt + ξi,t (114)

31The assumption that h0,0 = 0 also makes it possible to identify the scale of the loadings λi,t

while the assumption that hi,0 = 0 makes it possible to identify the non-time varying component of

the idiosyncratic shocks standard deviation σi. See the discussion in Del Negro and Otrok (2008).
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where xt and γi are m×1 and 1×m vectors, respectively. Second, the unobservable

factors and the observable xt are assumed to jointly follow a vector autoregressive

processes of order q:[
ft

xt

]
= Φ0,1

[
ft−1

xt−1

]
+ .. + Φ0,q

[
ft−q

xt−q

]
+ u0,t, and (115)

where the Φ0,j matrices are now of size (κ+m)×(κ+m). While in early applications

of FAVAR (Bernanke, Boivin, and Eliasz (2005)) estimation involved a two-step

procedure where first the factors were extracted from a large cross-section and then

the VAR parameters were estimated, later approaches involved joint estimation of

the factors and the VAR parameters. At least in principle, estimating a FAVAR

is a straightforward application of the tools described in Section 6.3.2. For given

factors, obtaining the posterior distribution for the parameters of (114) and (115) is

straightforward. Likewise, the factors can be drawn using expressions (114) and the

first κ equations of the VAR in (115), as the measurement and transition equations,

respectively, in a state-space representation. The appeal of the FAVAR is that it

afford a combination of factor analysis with the structural VAR analysis described

in Section 2.3. As a consequence, one can directly model the impact of variations

in some particular observables (e.g., the Fed Funds rate) on the evolution of the

factors. For instance, Bernanke, Boivin, and Eliasz (2005) apply their model to

study the effects of monetary policy shocks in the U.S. Belviso and Milani (2006)

also apply a FAVAR to study the effects of monetary policy shocks, and in addition

attempt to provide the factors with a structural interpretation. Ludvigson and Ng

(2008) apply the methodology to study bond risk premia.

6.3.6 Combining DSGE Models and Factor Models
dfmdsge

Boivin and Giannoni (2006) estimate a factor model where the factors are the states

from a DSGE model and the factor dynamics are therefore subject to the restrictions

implied by the model. As discussed in Section 4, the solution of a log-linearized

DSGE models can be written as:

st = Φ1(θ)st−1 + Φξ(θ)εt. (116)

where the state vector st includes all endogenous and exogenous variables relevant

to the model. Define a vector ft of all the economic concepts for which we have
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measurement – e.g., output, inflation, et cetera – and a matrix F that selects ft out

of st:32

ft = Fst. (117)

Standard practice in the estimation of DSGE models is to select only one empirical

counterpart for each economic concept, so that the measurement equation can be

written in vectorized forms as:

yt = ft. (118)

where for convenience we ignore the constants. Boivin and Giannoni (2006) argue

that in fact there are several empirical counterparts for each economic concept – for

instance, inflation can be measured using the GDP deflator, the Consumer Price

Index, the Personal Consumption Expenditures deflator, and so on – and that the

measurement equations should be generalized accordingly as:

yt = ΛY ft + ξt, (119)

The vector ξt stacks all measurement errors, which eveolve independently from one

another according to the law of motion (103). Each equation of (119) can be written

like the measurement equation (101) described in Section 6.3, with the additional

restriction that each observable loads only onto one factor – the economic concept

f j
t for which yi,t is one of the empirical counterparts:

yi,t = λY
i,jf

j
t + ξi,t, (120)

We can now substitute ft for st and the measurement equations become:

yi,t = λist + ξi,t, (121)

where λi obeys the restriction

λi = λY
i,jF.

Boivin and Giannoni (2006) also consider variables (for instance, consumer con-

fidence) that do not have a clear counterpart in the economic model. For these

variables the vector λi is unrestricted.

Estimation of these model by and large follows the Gibbs sampler described in

Section 6.3.2. Given the states st, the λi and the other parameters of (103) can be
32We can always suitably expand the definition of st to incorporate whatever variable of interest

the model produces.
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recovered equation by equation using the approach in Chib and Greenberg (1994).

For given vector θ of DSGE model parameters, the states can be drawn using the

procedure in Carter and Kohn (1994, ADD). The main difference arises when it

comes to draw the parameters of the law of motion of the states (116). These

parameters are now function of the vector θ of DSGE model parameters. Conditional

on λi and the other parameters of (103), θ can be drawn using a Metropolis-Hastings

step, where the measurement and transition equations are given by (121) and (116),

respectively.

Boivin and Giannoni (2006) argue that their approach to estimating DSGE model

in a “data rich environment” provides several advantages relative to the standard

practice. First of all, the additional information coming from the large cross section

can provide better estimates of the states st and of the structural shocks driving

the economy.33 In addition, they provide evidence that their procedure can deliver

different estimates of the DSGE model parameters relative to the standard approach.

Boivin and Giannoni (2008) discuss optimal monetary policy in a in a “data rich

environment”.

Kryshko, Schorfheide, and Sill (2008) provide an approach for forecasting variables

that do not explicitly appear in the DSGE model that is to some extent in the spirit

of that in Boivin and Giannoni (2006), but is computationally much simpler.34

Specifically, Kryshko, Schorfheide, and Sill (2008) estimate the DSGE using the

standard approach. Conditional on the posterior mean of those estimates, they

use the Kalman filter to obtain the filtered states st. In the next step, they use

these states as regressors in a measurement equation like (121), where the errors

ξi,t follow an autoregressive law of motion like (103). Unlike Boivin and Giannoni

(2006), the λi in Kryshko, Schorfheide, and Sill (2008) are generally unrestricted.

However, these authors use the DSGE model to form a prior for λi. The approach

is straightforward to apply as it does not involve a feedback between the yi,t and

the states, as in Boivin and Giannoni (2006). Precisely for this reason, however,

their approach differs from Boivin and Giannoni (2006) as it does not exploit the

data-rich environment to extract estimates of the states.

33Bernanke, Boivin, and Eliasz (2005) make a similar point in the context of a structural VAR.
34Monti, Giannone, and Reichlin (2008) consider a similar approach where information at different

frequency (monthly, quarterly) is used for forecasting with a DSGE model. They postulate a so-

called bridge equation that links the observables in the DSGE model to the monthly variables that

are not explicitly included in the DSGE model.
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7 Model Uncertainty

An important aspect of empirical work in macroeconomics is model uncertainty. We

have encountered “model” uncertainty in various places throughout this chapter. For

instance, in the context of VARs there is uncertainty about the appropriate number

of lags and cointegration restrictions. In the context of DSGE model, a researcher

might be uncertain whether price stickiness, wage stickiness, informational frictions,

or monetary frictions are quantitatively important for the understanding of business

cycle fluctuations and should be accounted for when designing monetary and fiscal

policies. In view of the proliferation of hard-to-measure coefficients in time-varying

parameter models, there is uncertainty about the importance of such features in

empirical models. Researchers working with dynamic factor models are typically

uncertain about the number of factors necessary to capture the comovements in a

cross-section of macroeconomic or financial variables.

In a Bayesian framework, model uncertainty is conceptually not different from

parameter uncertainty. Consider the following simple example. We could distinguish

the following two (nested) models:

M1 : yt = ut, M2 : yt = θ(2)xt + ut.

Here M1 restricts the regression coefficient θ(2) in M2 to be equal to zero. Bayesian

analysis allows us to place probabilities on the two models, denoted by πi,0, and

specify a prior distribution for θ(2) in model M2. Suppose that π1,0 = λ and

θ(2) ∼ N(0, 1). Then the mixture of M1 and M2 is equivalent to a model M0

M0 : yt = θ(0)xt + ut, ut ∼ iidN(0, 1), θ ∈ R.

with a prior distribution for θ(0) that is of the form

θ(0) ∼

{
0 with prob. λ

N(0, 1) with prob. 1− λ

More generally, we can always construct a prior on a sufficiently large parameter

space such that model uncertainty can be represented as parameter uncertainty.

However, in many applications it is convenient to refer restricted versions of a large

encompassing model, e.g. a VAR whose lag length is restricted to p, as models

themselves.
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The remainder of this section is organized as follows. Section 7.1 discusses the

computation of posterior model probabilities and their use to select among a collec-

tion of models. However, rather than first selecting a model and then conditioning

on the selected model in the subsequent analysis, it is more desirable to average

across models and to explicitly take model uncertainty into account when making

decisions. We use a stylized optimal monetary policy example to highlight this point

in Section 7.3. In many macroeconomic applications, in particular those that are

based on DSGE models, posterior model probabilities often seem to be implausible,

in that one specification essentially attains posterior probability one and all other

specification receive probability zero. These probabilities seem implausible because

they do not capture the variation of results found across different studies. In view

of potentially implausible posterior model probabilities a decision maker might be

inclined to robustify her decisions and we discuss robustness considerations in Sec-

tion 7.4.

7.1 Posterior Model Probabilities and Selection
modelsel

Suppose we have a collection of M models denoted byM1 throughMM . Each model

has a parameter vector θ(i) and prior probability πi,0. The posterior probabilities

are given by

πi,T =
πi,0p(Y |Mi)∑M

j=1 πj,0p(Y |Mj)
, p(Y |Mi) =

∫
p(Y |θ(i),Mi)p(θ(i)|Mi)dθ(i), (122)

where p(Y |Mi) is the marginal likelihood or data density associated with modelMi.

As long as the likelihood functions p(Y |θ(i),Mi) and prior densities p(θ(i)|Mi) are

properly normalized for all models the posterior model probabilities are well defined.

Improper prior densities35, however, pose a problem. We could pre-multiply an

improper prior by an arbitrary factor c, which would result in an (arbitrary) scaling

of the marginal likelihood and leave the posterior probabilities indeterminate. One

can obtain meaningful posterior model probabilities an improper prior p(θ) (we

omitted the i subscript and the model indicator from the notation) by replacing the

marginal likelihood p(Y ) with a predictive likelihood of the form

p(Yk+1,T |Y1,k) =
∫

p(Yk+1,T |Y1,k, θ)p(θ|Y1,k)dθ,

35Prior densities for which
∫

p(θ)dθ = ∞.
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provided the k-observation posterior p(θ|Y1,k) is proper.36 Since for any model with

a parameter vector θ

ln p(Y1,T ) =
T∑

t=1

ln p(yt|Y1,t−1) =
T∑

t=1

ln
∫

p(yt|θ, Y1,t−1)p(θ|Y1,t−1)dθ

log marginal likelihoods can be interpreted as pseudo-out-of-sample one-step-ahead

predictive scores.

While the calculation of posterior probabilities is conceptually straightforward, it

can be computationally challenging. First, there are only a few instance, such as

the VAR model in (1) with conjugate MNIW prior, in which the marginal likelihood

p(Y ) can be computed analytically. If fact, for priors represented through dummy

observations the formula is given in (80). We also mentioned in Section 4.6.2 that

for a DSGE model, or other models for which posterior draws have been obtained

using the RWM Algorithm, numerical approximations to marginal likelihoods can

be obtained using Geweke (1999, ADD)’s approach or the method proposed by Chib

and Jeliazkov (2001, ADD). A more detailed discussion of numerical approximation

techniques for marginal likelihoods is provided in Chapter [Bayesian Computation].

Finally, marginal likelihoods can be approximated analytically using a so-called

Laplace approximation, which approximates ln p(Y |θ)+ ln p(θ) by a quadratic func-

tion centered at the posterior mode or the maximum of the likelihood function. The

most widely-used Laplace approximation is the one due to Schwarz (1979, ADD).

Phillips (1996, ADD) and Chao and Phillips (1999, ADD) provide extensions to

non-stationary time series models and reduced rank VARs.

Second, the model space might be quite large and require the calculation of

marginal likelihoods for many specifications. Consider the empirical illustration

in Section 2, which involved a 4-variable VAR with 4 lags, which leads to a coef-

ficient matrix Φ with 68 elements. Suppose we construct submodels by restricting

VAR coefficients to zero. Based on the exclusion of parameters we can easily gen-

erate 268 ≈ 3 · 1020 submodels. Even if we use a conjugate prior that leads to an

analytical formula for the marginal likelihoods of the submodels, the computation

of the posterior probabilities is a daunting task. As an alternative to computing the

marginal likelihood for each of the 268 specifications, George, Ni, and Sun (2008)

develop a stochastic search algorithm for VAR restrictions.
36For instance, Villani (2001) discusses lag length selection using predictive marginal likelihoods

based on improper priors in the context of VARs with cointegration restrictions.
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The literature distinguishes between model selection and model averaging. We will

provide a few remarks on model selection and defer a discussion of model averaging,

which is a more natural approach in a Bayesian framework, to Section 7.2. Suppose

that a researcher faces a loss of zero if she chooses the “correct” model and a loss of

one if an incorrect model is chosen. Under this loss function, it is straightforward

to verify that the posterior expected loss is minimized by selecting the model with

the highest posterior probability. Thus, Bayesian model selection simply amounts

to choosing the highest posterior probability models.

¿From a frequentist perspective Bayesian model selection procedures are consis-

tent in the sense that if the data generating process is contained in one of the models

under consideration then the posterior probability of this model will converge to one

as the sample size tends to infinity. If the models Mi are nested then the smallest

model that contains the data generating process will be chosen. This consistency

result tends to remain valid if the marginal likelihoods are replaced by Laplace ap-

proximations, e.g. Schwarz (1979, to be added) and Phillips and Ploberger (1996).

Moreover, the consistency is preserved even in non-stationary time series models.

For instance, Chao and Phillips (1999, to be added) show formally that a Bayesian

model selection criterion leads to a consistent selection of cointegration rank and lag

length in vector autoregressive models. Fernandez-Villaverde and Rubio-Ramirez

(2004) emphasize that if none of the models in the model space is “true” model

selection based on posterior odds leads asymptotically to the model that is closest

to the data-generating process in terms of the Kullback-Leibler divergence.

7.2 Decision Making with Multiple Models
decisionmaking

For many applications the zero-one loss function underlying the model selection

problem is not particularly attractive. Economic policy makers are often confronted

with choosing policies under model uncertainty. We will illustrate a prototypical

decision problem. Suppose that output yt and inflation πt are related to each other

according to one of the two Phillips curve relationships

M1 : yt =
1
10

πt + εs,t, M2 : yt = πt + εs,t, (123)

where εs,t is a cost (supply) shock. The demand side of the economy leads to the

following relationship between inflation and money mt:

πt = mt + εd,t, (124)
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where εd,t is a demand shock. Finally, up until period T monetary policy was mt = 0.

However, in period T the central back is considering a policy of the form

mt = −εd,t + δεs,t (125)

for t > T under the loss function

L̃t = (π2
t + y2

t ). (126)

All variables in this model are meant to be in log deviations from some steady state

and the shocks are assumed to be iid N(0, 1).

Now define θ(Mi) such that θ(M1) = 1/10 and θ(M2) = 1. If one averages with

respect to the distribution of the supply shocks the expected loss associated with a

policy δ under model Mi is

L(Mi, δ) = [(δθ(Mi) + 1)2 + δ2]. (127)

Suppose that after observing the data the posterior probabilities are π1,T = 0.61

and π2,T = 0.39. There are essentially three ways of arriving at a decision δ.

First, one could condition on the highest posterior probability model which is M1.

For θ = 1/10 the loss function (127) is minimized at δ∗(M1) = −0.10. However, this

decision completely ignores the loss that occurs if in fact M2 is the correct model.

Second, one can derive decisions δ∗(Mi) that are optimal for model Mi, i = 1, 2,

and examine the loss of δ∗(Mi) if model Mj is correct. The matrix of expected

losses is summarized in Table 3. Notice that there is a large loss associated with

δ∗(M2) if in fact M1 is the correct model. The last column provides the posterior

risks associated with the two decision, which is an average of the expected loss

reported in columns (2) and (3), weighted by the posterior probabilities of the two

models:

R(δ) = π1,T L(M1, δ) + π2,T L(M2, δ). (128)

It turns out to be optimal to implement the decision associated with model M2

despite M1 being the highest posterior probability model. Finally, one can choose

δ to directly minimize the posterior risk in (128). This leads to δ∗ = −0.32 and the

posterior risk associated with this decision is R(δ∗) = 0.85.

Insert Table Here
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This simple example illustrates that conditioning on the highest posterior prob-

ability model can clearly lead to sub-optimal decisions. At a minimum one should

account for the loss of a decision that is optimal under Mi if in fact one of the

other models Mj , j 6= i, is correct. The decision that is optimal from a Bayesian

perspective is obtained by minimizing the expected loss under a mixture of models.

In more realistic applications the two simple models would be replaced by more

sophisticated DSGE models. These models would itself depend on unknown param-

eters. Cogley and Sargent (2005, ADD) provide a nice illustration of the notion that

one should not implement the decision of the highest posterior probability model if

it has disastrous consequences if one of the other models is correct. They consider

a traditional Keynesian model with a strong output and inflation trade-off versus

a model that incorporates the natural rate hypothesis. While according to their

analysis the posterior probability on the Keynesian model was very small by the

mid 1970s and the natural rate model suggested to implement a disinflation policy,

the costs associated with this disinflation if in fact the Keynesian model is correct

were very high. This consideration delayed the disinflation until about 1980.

Often, loss depends on future realizations of yT . In this case predictive distribu-

tions are important. Consider for example a prediction problem. The h-step ahead

predictive density can be expressed as the mixture

p(yT+h|Y1,T ) =
M∑
i=1

πi,T p(yT+h|Y1,T ,Mi). (129)

Thus, p(yT+h|Y1,T ) is the result of the Bayesian averaging of model-specific predic-

tive densities p(yT+h|Y1,T ). Notice that only if the posterior probability of one of

the models is essentially equal to one, conditioning on the highest posterior proba-

bility leads to approximately the same predictive density as model averaging. If the

goal is to generate point predictions under a quadratic loss function then it would

be optimal to average point forecast from the M models. This is often referred

to as Bayesian forecast combination. There exists an extensive literature on appli-

cations of Bayesian model averaging. For instance, Min and Zellner (1990, ADD)

use posterior model probabilities to combine forecasts, Wright (2008) uses Bayesian

model averaging to construct exchange rate forecasts, and Strachan and van Dijk

(2006) average across VARs with different lag lengths and cointegration restrictions

to study the dynamics of the “Great Ratios.”
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Bayesian model averaging has become popular in growth regressions following the

work of Fernandez, Ley, and Steel (2001), Sala-i Martin, Doppelhofer, and Miller

(2004), Masanjala and Papageorgiou (Forthcoming). In particular, Sala-i Martin,

Doppelhofer, and Miller (2004) use a combination of Bayesian model averaging and

uninformative priors on individual regression coefficients called BACE (Bayesian

Averaging of Classical Estimates). The BACE approach computes posterior odds

for different specifications in growth regressions, and then assesses the magnitude

and statistical significance of regressors by taking weighted averages of the poste-

rior means and variances across specifications using the posterior odds as weights.

Ciccone and Jarociski (2007) show that the BACE approach may not be robust

to differences in the datasets because such differences can result in large dispari-

ties in the posterior odds across models. They argue that more informative priors

on the regression coefficients robustify the Bayesian model averaging approach to

cross-country.

7.3 Implausible Posterior Probabilities
implausibleodds

While Bayesian model averaging is conceptually very attractive, it very much relies

on the notion that the posterior model probabilities provide a “plausible” charac-

terization of model uncertainty, rather than merely one that is formally correct.

Consider a central bank deciding on its monetary policy. Suppose that a priori the

policy makers entertain the possibility that either wages or prices of intermediate

goods producers are subject to nominal rigidities. These rigidities have the effect

that wage (or price) setters are not able to adjust their nominal wages (prices) op-

timally, which distorts relative wages (prices), and ultimately, leads to the use of

an inefficient mix of labor (intermediate goods). The central bank could use its

monetary policy instrument to avoid the necessity of wage (price) adjustments and

thereby nullifying the effect of the nominal rigidity.

Based on the tools and techniques in the preceding Sections, one could now pro-

ceed by estimating two models, one in which prices are sticky and wages are flexible,

and one in which prices are flexible and wages are sticky. Results for such an es-

timation, based on a variant of the Smets and Wouters (2007) models, have been

reported, for instance, in Table 5 of Del Negro and Schorfheide (2008). According

to their estimation, conducted under various prior distributions, U.S. data favor the

sticky price version of the DSGE model with odds that are greater than e40. Such
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odds are not uncommon in the DSGE model literature. If these odds are taken

literally, they would imply that we should completely disregard the possibility that

wages are sticky. Related, Del Negro, Schorfheide, Smets, and Wouters (2007) com-

pare versions of DSGE models with nominal rigidities in which those households

(firms) that are unable to re-optimize their wages (prices) are either indexing their

past price by the long-run inflation rate or by last period’s inflation rate (dynamic in-

dexation). According to their Figure 4, the odds in favor of the dynamic indexation

are greater than e20, which again seems very decisive.

Schorfheide (2008, ADD) surveys a large number of DSGE model-based estimates

of price and wage stickiness and the degree of dynamic indexation. While the papers

included in this survey build on the same theoretical framework, variations in some

details of the model specification as well as in the choice of observables lead to a

significant variation in parameter estimates and model rankings. Thus, posterior

model odds from any individual study, even though formally correct, appear to be

overly decisive and thereby implausible.

Part of the problem is that each model represents a stylized representation of a

particular economic concept, such as wage or price stickiness, augmented by aux-

iliary mechanisms that are designed to make the model fit the data. By looking

across studies one encounters several representations of what is essentially the same

basic concept, but each representation leads to a different time series fit and makes

posterior probabilities appear fragile across studies. This problem is exacerbated by

model misspecification. We shall provide two stylized example. The second example

is taken from Sims (2003, ADD).

Example 1: Suppose that the world works according to yt ∼ iidN(0, 1) and a

macroeconomist considers two stylized representationsMi: yt ∼ iid(µi, σ
2
i ), i = 1, 2,

where µi and σ2
i are fixed in both models. Assuming that the two models have the

same prior probability, the expected log posterior odds ratio is

IE

[
ln

π1,T

π2,T

]
= −T

2

[
lnσ2

1 +
1
σ2

1

(1 + µ2
1)
]

+
T

2

[
lnσ2

2 +
1
σ2

2

(1 + µ2
2)
]

≈ −T

2

[
3(σ2

1 − 1)2 + µ2
1 − 2(σ2

2 − 1)2 − µ2
2

]
The approximation is obtained by a second-order Taylor expansion around the

“true” values µ = 0 and σ2 = 1. Suppose that the location parameters µ1 and

µ2 capture the key economic concept, such as wage or price stickiness, and the scale
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parameters are generated through the various auxiliary assumptions that are made

to obtain a fully-specified DSGE models. If one of the models is well specified, say

M1, in the sense that µ1 ≈ µ0, then posterior probabilities for M1 and M2 would

favor M1, possibly in a decisive manner, even if auxiliary assumptions lead to some

distortions σ2
1 6= σ2

0. These odds would be fairly robust to changes in the auxiliary

assumptions (from σ2
i to σ̃2

i ). However, if it turns out that both µ1 and µ2 are quite

different from µ0, then changes in the auxiliary assumptions underlying the model

have a much greater effect on the relative odds of the two misspecified models. For

instance, if µ2
1 ≈ µ2

2 then the expected log posterior odds depend solely on the σ2
i ’s,

that is, the auxiliary assumptions.

Example 2, (Sims, 2003): Suppose that according to model M1 yt ∼ iidN(0, 0.01)

and according to model M2 yt ∼ iidN(1, 0.01) and that the sample size is T = 1.

Based on equal prior probabilities, the log posterior odds in favor of model M1 are

ln
π1,T

π2,T
= − 1

2 · 0.01
[y2

1 − (y1 − 1)2] = 100(y1 − 1/2)2.

Thus, for values of y1 less than 0.45 or greater than 0.55 the posterior odds are

greater than 100 in favor of one of the models. But suppose that y1 = 0.6. While

the posterior odds in favor of M2 are decisive, the likelihood to observe a value in

the vicinity of 0.6 under either model is very small.

Thus, the key problems in the use of posterior probabilities in the context of

DSGE models are that the models often suffer from misspecification, they tend to

capture one of many possible representations of a particular economic mechanism

which means that one might be able to find versions of these models that are much

closer together and deliver less decisive odds. Posterior odds in the magnitude of

e20 or e40 are suspicious and often indicate that we should compare a different

models. Sims (2003) recommends to introduce continuous parameters such that dif-

ferent sub-model specifications can be nested in a larger encompassing model. The

downside of creating these encompassing models is that it is potentially difficult to

properly characterize multi-modal posterior distributions in high-dimensional pa-

rameter spaces. Hence, a proper characterization of posterior uncertainty about

the strength of various competing decision-relevant economic mechanisms remains

elusive.
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7.4 Robustness
robustness

There is a growing literature in economics that studies the robustness of decision

rules to model misspecification, see Hansen and Sargent (Book, ADD). Underlying

this robustness is typically a static or dynamic two-person zero-sum game. The

decision maker, in our case the central bank choosing a monetary policy indexed by

δ, is minimizing a loss function while a malevolent fictitious other, “nature”, chooses

the misspecification to harm the decision maker. We consider a simple illustration

in which “nature” distorts the model probabilities subject to a penalty function that

is increasing in the size of the distortion. The central bank’s decision is robust, if it

corresponds to a Nash equilibrium in the two person game.

In our Bayesian framework the risk-sensitivity that is inherent in a robust control

approach can be introduced as follows by the following fictitious game between

“nature” and the policy maker:

min
δ

max
q∈[0,1/π1,T ]

qπ1,T L(M1, δ) + (1− qπ1,T )L(M2, δ) (130)

+
1
τ

[
π1,T ln(qπ1,T ) + (1− π1,T ) ln(1− qπ1,T )

]
.

Here “nature” uses q to distort the posterior model probability of model M1. This

distortion may reflect concerns about the plausible updating of model odds in light

of the data (see Section 7.3). To ensure that the distorted probability of M1 lies in

the unit interval the domain of q is restricted to [0, 1/π1,T ]. The second term in (130)

is a penalizes the distortion as a function of the Kullback-Leibler divergence between

the undistorted and distorted probabilities. If τ is equal to zero, then the penalty

is infinite and “nature” will not distort π1,T . If on the other hand τ = ∞, then

conditional on a particular δ “nature” will set q = 1/π1,T if L(M1, δ) > L(M2, δ)

and q = 0 otherwise. For selected values of τ the Nash equilibrium is summarized

in Table 4. In our example L(M1, δ) > L(M2, δ) in the relevant region for δ. Thus,

nature has an incentive to increase the probability of M1 and in response the policy

maker reduces (in absolute terms) her response δ to a supply shock.

Insert Table Here
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8 Concluding Remarks
conclusion

The Bayesian paradigm provides a rich framework for inference and decision making

with modern macroeconometric models such as DSGE models and VARs.c1 The

econometric methods can be tailored to cope with the challenges in this literature:

potential model misspecification and a trade-off between theoretical coherence and

empirical fit, identification problems, and estimation of models with many param-

eters based on relatively few observations. Advances in Bayesian computations

let the researcher efficiently deal with numerical complications that arise in models

with latent state variables, such as regime-switching models, or nonlinear state-space

models.

c1fs: To be edited.
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Figure 1: Output, Inflation, and Interest Rates
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Notes: The figure depicts U.S. data from 1964:Q1 to 2006:Q4. Output is depicted

in percentage deviations from a linear deterministic trend.
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Figure 2: Response to a Monetary Policy Shock
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Notes: The figure depicts 90% credible bands and posterior mean responses for a

VAR(4) to a one-standard deviation monetary policy shock.
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Table 1: Identification Restrictions for A0

Inform MP MD Prod Prod Prod

Pcom X 0 0 0 0 0

M2 X X X 0 0 0

R X X X 0 0 0

Y X 0 X X X X

CPI X 0 X 0 X X

U X 0 0 0 0 X

Notes: A zero entry denotes a coefficient restriction.
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Figure 3: Nominal Output and Investment
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Figure 4: Prior and Posterior Cointegration Parameter

Notes: TBA
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Figure 5: Aggregate Output, Hours, and Labor Productivity
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a deterministic trend, and hours are depicted in deviations from its mean. Sample

period is 1955:Q1 to 2006:Q4.
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Figure 6: Inflation and Measures of Trend Inflation
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Notes: Inflation is measured as quarter-to-quarter changes in the log GDP deflator,

scaled by 400 to convert it into annualized percentages. The sample ranges from

1960:Q1 to 2005:Q4.
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Table 3: Expected Losses

Decision M1 M2 Risk R(δ)

δ∗(M1) = −0.1 0.99 0.82 0.92

δ∗(M2) = −0.5 1.15 0.50 0.90

Table 4: Nash Equilibrium as Function of Risk Sensitivity τ

τ 0.00 1.00 10.0 100

q∗(τ) 1.00 1.10 1.43 1.60

δ∗(τ) -0.32 -0.30 -0.19 -0.12


