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Abstract

We show that firms in models with menu costs, when calibrated to have the empirically

observed frequency and size of individual-goods price adjustments, have stock returns

that are always positively correlated with inflation. The cross-sectional dispersion in

this correlation is almost negligible, even though firms have very diverse micro-level

pricing behavior. Because in this class of models positive nominal shocks are good

states of nature and the correlation between stock returns and inflation is positive,

agents are willing to pay a premium to hold assets whose returns covary negatively

with inflation. In contrast, we empirically find that the dispersion in the correlation

between stock returns and inflation is about 100 times larger than in the model, and

that correlations are negative about half the time. Furthermore, and also at odds

with sticky-price models, investors require a premium to hedge against states of high

inflation. Because firms’ heterogeneity is the key mechanism that generates a high

degree of monetary non-neutrality in the models, our results suggest that we do not

yet have a full account of the monetary transmission mechanism, and that asset prices

can provide important information about it.
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1 Introduction

Detailed microeconomic datasets have revealed substantial heterogeneity in the frequency

and size of price adjustments across different categories of goods, firms, industries and coun-

tries. This heterogeneity can have profound effects in aggregate macroeconomic variables

and the degree of monetary non-neutrality of the economy, as demonstrated by Carvalho

(2006) in the context of Calvo-style pricing and Nakamura and Steinsson (2010) in the con-

text of menu-cost models. Both authors show that models calibrated to match firm-level

evidence of price adjustments deliver time-series properties and impulse response functions

with respect to nominal shocks of output, inflation and other macroeconomic quantities that

are in close agreement with their empirical counterparts, and that they cannot be obtained

using a single representative firm. Their results represent a great advance in monetary eco-

nomics, since they reconcile, in a general equilibrium context, the sluggish dynamics of the

aggregate price level and the large real effects of nominal shocks with the relatively high

frequency and large size of price adjustments at the individual firm level.

In this paper, we show that the asset pricing implications of the heterogeneous firms in

these type of models are at odds with what is empirically observed. To do so, we write

the expected stock returns of firms (in excess of the risk-free rate) as the product of the

market-wide price of inflation risk and the firm-specific quantity of risk:

E [Ri]−Rf = βi × λ (1)

where E [Ri]−Rf are expected excess returns for some firm i, βi is the quantity of risk for firm

i and λ is the price of risk. Equation (1) is analogous to the standard CAPM equation, with

the difference that instead of using the returns of the aggregate market as a risk factor, we use

inflation. We consider conditional and unconditional versions of equation (1), which deliver
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the same insights. In the sticky-price models we are considering, firms are heterogeneous

in two dimensions: they have different menu costs and different volatilities of idiosyncratic

productivity. Differences across firms can produce different levels of expected returns and

exposures to inflation βi. However, we find that differences in returns and “inflation betas”

across firms are almost zero when the model is calibrated to match micro-level pricing data.

The reason is that to match the relatively high frequency and large size of individual goods

price adjustments, firms, even in sectors with the stickiest prices, must be calibrated to

have a volatility of idiosyncratic productivity that is many times larger than the volatility

of inflation, and menu costs that are many times larger than if we were calibrating a model

without idiosyncratic productivity shocks. Therefore, from the point of view of a single firm,

inflation shocks are so small that it is usually not worth paying the menu-cost to adjust

to them — the firm can wait until a large productivity shock occurs and adjust prices to

reflect changes in both productivity and inflation in one swoop. The inflation betas are also

positive for all firms because higher inflation, everything else being equal, is associated with

higher aggregate demand, and thus higher profits and higher returns. In brief, the model

predicts a positive correlation between returns and inflation, and not much variation in this

correlation across firms.

The time-series of the market price of risk λ also offers important insights into the asset

pricing properties of the model. We find that the model produces a small, positive and

almost constant inflation price of risk λ. The fact that it is small is nothing but the equity

premium puzzle in disguise: Even though nominal shocks affect real consumption substan-

tially, because the representative agent has power utility with a low relative risk-aversion

coefficient, the changes in consumption produced by inflation shocks only command a small

equity premium. There is a large literature addressing possible solutions to this puzzle, and
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therefore we do not consider this issue here. For the very same reason, we also do not consider

the magnitude of the equity premium (and hence the inflation price of risk λ) as a defining

characteristic of asset pricing in this class of models. However, the fact that the inflation

price of risk is positive is a direct implication of the fact that a positive shock to inflation

increases real aggregate consumption, which is a robust property of sticky price models. A

positive market price of inflation risk means that inflation is a good state of nature; the

representative agent must be compensated with high mean returns to hold assets that co-

vary positively with inflation. The price of risk is also time varying, stemming from the fact

that it is proportional to the variance of inflation, which is itself time varying. However,

inflation is not very volatile in the model, simlpy because nominal shocks are exogenous and

calibrated to match the relatively low volatility of inflation observed in the data, and the

market price of inflation risk inherits this property.

To compare the model with the data, we estimate equation (1) using a standard two-

pass Fama and MacBeth (1973) procedure. In the first pass, βi is estimated by running

time-series regressions of returns on inflation. In the second pass, we estimate λ by running

a cross-sectional regression of returns on the β̂i’s found in the first stage. We find that

inflation betas are both positive and negative, and display a cross-sectional dispersion that

is about 100 times larger than the one in the model. In the data, about half of firms’

returns covary positively and half negatively with inflation, unlike the model, in which all

returns are positively correlated with inflation. The distribution of inflation betas estimated

from the conditional version of equation (1) also varies considerably over time. The mean

of the distribution is unconditionally negative, but can change signs in different periods

and is negatively correlated with inflation (so is its standard deviation). In contrast, the

distribution of inflation betas estimated from the unconditional version of equation (1) has a
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positive mean and significantly smaller tails. The difference in behavior between conditional

and unconditional inflation betas imply that betas and the price of risk are correlated over

time. In the model, conditional and unconditional betas behave almost identically.

The empirically estimated market price of inflation risk is, on average, −0.23, which

means that a hypothetical portfolio of stocks whose excess returns move one-for-one with

inflation would have an annual Sharpe ratio of −0.23. This Sharpe ratio is about half as

large as the Sharpe ratio of the aggregate market (but of opposite sign). Perhaps even more

at odds with the model is the standard deviation of the price of risk, which is 1.3, more

than five times its mean and more than 105 times the one observed in the model. Even if we

increased the risk-aversion of the representative agent by a factor of 100 (and thus increased

the aggregate equity premium to reasonable levels), the variation in the price of risk would

still be 10 times smaller than what is observed in the data. Unlike the model, the estimated

market price of inflation risk also changes signs over time: it is negative in the mid-1970s

and 1980s (inflation is a bad state of nature) and has been increasing since the early 2000,

becoming positive in 2005 and staying mostly in positive territory until the present (inflation

has become a good state of nature).

The failure of the model to match the empirically observed conditional and unconditional

properties of inflation betas and the inflation price of risk implies that the underlying cross-

sectional assumptions about how firms behave in the model is, at least, incomplete. Because

firms’ heterogeneity in price adjustment behavior is the key mechanism that generates a

high degree of monetary non-neutrality in this class of models, our results suggest that it is

premature to conclude that the distribution of frequency and size of individual price changes

is the driving force behind the real effects of nominal shocks.

This paper is organized as follows. Section 2 sets up the menu-cost model and derives its
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asset pricing implications. Section 3 compares the model’s asset pricing implications with

what is empirically observed. Section 4 concludes.
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2 Model

2.1 Setup

We use the multisector menu cost model with heterogeneous firms and intermediate inputs

put forward in Nakamura and Steinsson (2010)1. Households maximize expected lifetime

utility, given by:

Et
∞∑
τ=0

βτ
[

1

1− γ
C1−γ
t+τ −

ω

ψ + 1
Lψ+1
t+τ

]
, (2)

where Ct =
[∫ 1

0
ct (z)

θ−1
θ dz

] θ
θ−1

is consumption of a composite basket composed of a con-

tinuum of differentiated goods indexed by z, and Lt is labor supplied by the household ; β

is the discount factor, γ is the coefficient of relative risk aversion, ω is the level parameter

on disutility of labor, ψ is the inverse of the Frisch elasticity of labor supply, and θ is the

elasticity of subsitution between differentiated goods.

Households earn real wages Wt from supplying labor, receive real profits ΠR
t (z) from

firms, and invest in a portfolio of full state-contigent claims with random payoff Xt (markets

are complete). Therefore, their budget constraint expressed in nominal terms is:

PtCt + Et [Dt,t+1Xt+1] ≤ Xt +WtLt +

∫ 1

0

PtΠ
R
t (z) dz, (3)

where Pt =
[∫ 1

0
pt (z)

θ−1
θ dz

] θ
θ−1

is the aggregate price level, pt (z) the price of good z, and

Dt,T is the nominal stochastic discount factor between periods t and T .

Given the aggregate price level Pt, household optimization yields the first-order condi-

tions:

Dt,T = β
Ct
CT

Pt
PT

, (4)

1For a more detailed exposition of the model, a thorough discussion of the calibration used and a discussion
of the excelent performance of the model in matching macroeconomic aggregates and impulse response
functions, please consult their paper.
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Wt

Pt
= ωCt, (5)

As previously alluded to, there is a continuum of firms in the economy, each of which produces

a single variety of good z, so we also index firms by z. Frim z produces yt (z) units of its

differentiated good according to:

yt (z) = At (z)Lt (z)1−smMt (z)sm , (6)

where At (z) is the firm’s productivity, Lt (z) is the number of units of labor employed and

mt (z, z′) is a basket of intermediate inputs given by Mt (z) =
[∫ 1

0
mt (z, z′)

θ−1
θ dz′

] θ
θ−1

. The

materials share in production is given by sm, which is the same for all firms.

Each firm z belongs to one of J sectors indexed by j. Firms in different sectors have

different menu costs and different variances of stochastic productivity At (z), which follow

the exogenous process:

logAt (z) = ρ logAt−1 (z) + εt (z) , (7)

with εt (z) ∼ N
(
0, σ2

ε,j

)
. The firm’s problem is to maximize the sum of expected discounted

future real profits:

Vt (z) = max
pt(z)

Et
∞∑
τ=0

DR
t,TΠR

t+τ (z) (8)

where real profits in period t are given by

ΠR
t (z) =

pt (z)

Pt
yt −

Wt

Pt
(Lt (z) + χjIt (z))−Mt (z) (9)

and are discounted using the household’s (real) stochastic discount factor

DR
t,T = β

Ct
CT

(10)

Profits are given by total firm production minus labor and intermediate input costs, and
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minus a menu cost should the firm decide to change the price pt of its good. The indicator

function It (z) equals one if the firm decides to change the price of its good in period t, and

zero otherwise. If the firm decides to change the price, it pays Wt

Pt
χjIt (z) in menu costs,

which can be thought of as hiring an additional xj units of labor. Note that the amount

paid χj is sector-specific. We close the model by assuming that nominal aggregate demand

St = PtCt follows the exogenous process given by:

logSt = µ+ logSt−1 + ηt, (11)

where ηt (z) ∼ N
(
0, σ2

η

)
and is independent from εt.

To maximize the discounted sum of profits (8), each firm should in general set prices based

on the evolution of the prices and productivity of all the firms in the economy. To avoid the

curse of dimensionality in a dynamic program with an infinite number of state variables we

follow Krusell and Smith (1998), and assume that firms percieve that the evolution of the

aggregate price level Pt is based on the aggregate variables St and Pt−1 only:

Pt
Pt−1

= Γ

(
St
Pt−1

)
. (12)

Nakamura and Steinsson (2010) show that the perceived law of motion for prices (12) is

almost identical to the one that is realized in the equilibrium in which all agents assume

it. By log-linearizing the aggregate labor supply, aggregate intermediate product output,

aggregate output and aggregate consumption, around the steady state, we can write the

value function Vt (z) of firm z as Bellman equation in three state variables:

V

(
At (z) ,

pt−1 (z)

Pt
,
St
Pt

)
= max

pt(z)

{
ΠR
t (z) + Et

[
DR
t,t+1V

(
At+1 (z) ,

pt (z)

Pt+1

,
St+1

Pt+1

)]}
. (13)

An equilibrium in this economy is a set of stochastic processes for the endogenous price
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and quantity variables that satisfy household utility naximization, firm profit maximization,

and market clearing, and are consistent with the exogenous variables At (z), St, and the

percieved law of motion (12).

2.2 Asset pricing

The menu cost model we consider has implications for the cross-section of stock returns.

The gross real return of firm z is given by:

Rt+1 (z) =
V
(
At+1 (z) , pt(z)

Pt+1
, St+1

Pt+1

)
V
(
At (z) , pt−1(z)

Pt
, St
Pt

)
− ΠR

t (z)
(14)

Note that we subtract profits in the denominator because V is the value of the firm “cum

dividend” (with dividends). Because of (13) the returns satisfy the conditional Euler equation

1 = Et
[
DR
t,t+1Rt+1 (z)

]
. (15)

We can rewrite the dynamics of the aggregate price level given by (12) as

πt = Γ (Ct (1 + πt))− 1, (16)

where πt = Pt
Pt−1
− 1 is the inflation rate between period t − 1 and t. The contemporanous

relationship (16) between real aggregate demand and inflation allows us to rewrite (15) in

terms of inflation as:

Et [Rt+1 (z)]−Rf
t = λπt β

π
t (z) , (17)

where Rf
t = 1

Et[DRt,t+1]
is the real risk-free rate, λπt is the price of inflation risk, and βπt (z) =

Covt(πt+1,Rt+1(z))
V art(πt+1)

is the exposure of firm z to inflation risk at time t. The pricing equation

(17) is analogous to the familiar conditional CAPM with the difference that we use inflation

as risk factor instead of aggregate market returns. Equation (17), the conditional “inflation
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CAPM”, determines the expected excess returns of firms based on time-t information about

their exposures to inflation and the aggregate market price of inflation risk. In parallel

fashion with the traditional CAPM, we refer to βπt (z) as the “inflation betas”. Note also

that the definition of betas imply that they are the coefficient of a linear univariate regression

of realized excess returns on inflation. As a consequence, an inflation beta equal to 1 means

that when inflation goes up by one percentage point, so do excess returns. To understand

expected returns, we can use the inflation CAPM equation (17). If λπt < 0, households at

time t require high expected returns to hold assets that have low returns when inflation is

high. That is, housholds dislike future inflation and would accept lower expected returns

on assets that hedge better against inflation risk. On the other hand, if λπt > 0, households

would benefit from future inflation, requiring higher risk premia on assets with low returns

when inflation is low.

The gross real return of firm z also satisfies the Euler equation unconditionally. There

is a subtle difference between the conditional and unconditional inflation CAPMs. In the

conditional version, the stochastic discount factor expressed in terms of inflation depends

on both current and lagged inflation (to see this, combine equations (10), (15), and (16)).

Because lagged inflation is known at time t, it does not influence the covariance between

the stochastic discount factor and returns, and hence lagged inflation is not priced. On the

other hand, when we think about the unconditional Euler equation, we cannot condition on

lagged inflation, and hence both inflation and lagged inflation are priced through inflation

differences 4πt = πt − πt−1. The unconditional inflation CAPM is given by:

E [Rt+1 (z)]−Rf = λ4πβ4π (18)

with Rf = 1

E[DRt,t+1]
as real mean risk-free, λ4π as the unconditional price of inflation risk,
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and β4π (z) = Cov(4πt,Rt(z))
V ar(4πt) as the unconditional inflation beta. Note also that while (17)

could be written in terms of inflation differences as well, the static (18) is in general not

simply the unconditional mean of (17), because of the possibly nonzero covariance between

λπt and βπt (z).

Finally, we compare the firm’s return with the market return. The market real gross

return is defined as an asset that pays aggregate profits each period:

Rm
t+1 =

V m
t+1

V m
t −

∫ 1

0
ΠR
t (z) dz

, (19)

where because of (8) the market price V m
t is the aggregated value of firms

V m
t = Et

[
∞∑
s=t

DR
s,t

∫ 1

0

ΠR
s (z) dz

]
=

∫ 1

0

Vs (z) dz (20)

The market return also satisfies the Euler equations (17) and (18), and because of (20) can

be written as a value-weighted portfolio of individual firm returns:

Rm
t+1 =

∫ 1

0

wt (z)Rt+1 (z) dz, (21)

where the time-varying value weights are given by wt (z) =
Vt(z)−ΠRt (z)∫ 1

0 [Vt(z′)−ΠRt (z′)]dz′
. We denote

the exposure of the market to inflation as βπ,mt and the unconditional market exposure to

inflation differences as β4π,m.

2.3 Results

To obtain quantitative results, we use the calibration propopsed by Nakamura and Steinsson

(2010), which is displayed in Table 1. In Table 2, we report the aggregate variables that

are important for asset pricing. The price of inflation risk, λt, is normally distributed with

annualized mean of 3.1 · 10−3% and standard deviation 4.9 · 10−6%. This essentially non-
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negative price of inflation risk means that households benefit from future inflation in all time

periods, accepting lower expected excess returns on assets that pay well when inflation is

low. However, the effect is very small.

[TABLE 1 HERE]

[TABLE 2 HERE]

Figure 1 shows that the price of inflation risk λt is a linear function of the conditional

variance of inflation V art (πt+1), which is on the same order of magnitude as λt. The reason

that the price of inflation risk λt is small is that given the aggregate state at period t, future

inflation is not expected to vary greatly, i.e. V art (πt+1) has an annualized mean of 10−3

percent. Expecting only small variation in inflation, households are not willing to pay much

for “protection” against low inflation.

[FIGURE 1 HERE]

As in all models in which the consumption CAPM holds and risk aversion is small, the

market return is comparable to the risk-free rate (see Table 2). In Table 4 we show the

sector-specific results of the menu cost model. As we expect from (21) the sector returns are

spread around the market return.

[TABLE 4 HERE]

Interestingly, the sector returns are very close to the point where they are indistinguish-

able from one another. To build intution, consider that in (8) only the stochastic discount

factor and profits affect the value of the firm and hence its returns. Figure 2 plots the

impulse response function of those two building blocks after a shock in nominal aggregate

demand St. While some sectors respond with larger profits than others (middle left plot),

we see that this differentiation is dwarfed by the 103 times bigger response of the stochastic

discount factor (upper left plot). After the shock, the realization of a larger firm value be-
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comes the denominator in (14), causing all expected returns to move down in unison (lower

left plot). This explains why all sector returns are affected equally by aggregate shocks.

The only other possible source of differentiation among firm returns are the heterogeneous

idiosyncratic shocks. However, idiosyncratic risk is completely diversifiable and thus not

priced.

[FIGURE 2 HERE]

The variation in inflation exposures βπt (z) is also small both across sectors and through

time (columns seven and eight in Table 4). Since all expected returns satisfy (17), a similar

picture for the impulse response function of inflation exposures arises as for expected returns.

All inflation exposures move down in unison due to the nominal shock (lower left plot in

figure 2), and the spread between them is very small. To build more intuition about the

cross-sectional and time variation of inflation exposure of firm z, βπt (z), note that up to first

order we can write

βπt (z) ≈ 1

Vt (z)− ΠR
t

dVt (z)

dπt
. (22)

We can then write the beta of the market βπ,mt as a value-weighted average of the betas of

the the firms:

βπ,mt ≈
∫ 1

0

wt (z) βπt (z) dz, (23)

which explains why the market exposure to inflation βπ,mt is behaving similarly to the sectoral

exposures to inflation due to the nominal shock.

[FIGURE 3 HERE]

Figure 3 verifies that the first order approximation (22) is accurate. We plot the contem-

poraneous relationship between the scaled derivative of the value function with respect to

inflation (the right-hand side of equation (22)) and the firm exposures to inflation βt (z) (the

left-hand side of (22)) for multiple time periods for each sector. This relationship shows that
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inflation exposures across sectors cannot vary more than the sensitivity of the value functions

with respect to inflation. The histogram on the left-hand side shows that the sectors in this

model are not easily distinguishable by their inflation exposures.

Figure 4 shows the origins of the small variation in the sensitivity of the value functions

with respect to inflation. We plot the value function V
(
At (z) , pt−1(z)

Pt
, St
Pt

)
and its partial

derivatives against the log of the second and third arguments: the log of last period’s relative

price xt (z) = log pt−1(z)
Pt

, and the log of real aggregate demand ct = log St
Pt

. The first feature

to note in the upper left corner of figure 4 is that firms only adjust their relative price xt

whenever it gets far from the desired price, because it is not worth paying the menu cost

if the benefits are not large enough. Consequently, the value function plotted against xt (z)

has two regions. The first is for values of xt around zero, where the value function is a

concave one. This region corresponds to the firm deciding to optimally not change prices,

and therefore the firm’s value changes with its relative price. The second region is on the

edges of the figure, and corresponds to the firm deciding to pay the menu cost and change

its relative price to the optimal level. Correspondingly, the partial derivative is downward

sloping when the firm does not change prices and zero otherwise (middle left plot). The

highest point of the value function occurs when last period’s relative price happens to equal

the firm’s optimal relative price, so the firm reaps the most benefits from its pricing without

having to pay the menu cost. The greater the displacement from this point, the smaller the

value of the firm, until the relative price is far enough from optimum that it is worth paying

the menu cost, at which point the value function is flat. Sector 6 has the largest menu costs

and the most pronounced concavity, while sector 1 has almost neglagible menu costs and

therefore changes prices much more frequently than other sectors. With respect to the log

of real aggregate demand ct, the value function is linear in all sectors (upper right plot)
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with similar positive slope (middle right plot). Sector 6 has the smallest slope, while sector

3, the sector with the largest idiosyncratic shocks has the largest slope. How large are the

differences when it comes to the sensitivity of the value function with respect to inflation?

By the chain rule

dVt (z)

dπt
= −∂Vt (z)

∂xt (z)
+ 3

∂Vt (z)

∂ct
(24)

where the factor 3 comes from inverting (16) and plugging in the corresponding parameters.

In the lower left graph of figure 4, we plot two sectors whose difference in their sensitivity to

inflation is the largest. Their difference is still very small. In fact, most of the difference is

due to how the value function responds to real aggregate demand ct, as its partial derivative

dominates the derivative with respect to the second argument by a factor of 30. If the

partial derivative of the value function with respect to the relative price of the firm were more

significant, differences in the adjustment cost across sectors would interact more strongly with

inflation. One of the reasons why the derivative is small is that, with the exception of sector

1, the size of the price-changing domain is too large for inflation to induce repricing directly.

Rather re-pricing occurs mostly due to idiosyncratic productivity shocks with inflation only

possibly impacting the size of repricing. The idiosyncratic shocks have a standard deviation

that is at least 10 times as large as the standard deviation of inflation. In the case of sector

1, inflation does induce re-pricing. However, its menu costs are too small to experience a

significant drop in the value function due to inflation. We conclude that inflation in this

model is not volatile enough to generate costly price adjustments by itself, but only in

conjunction with the idiosyncratic shocks.

[FIGURE 4 HERE]

Finally, the results on the unconditional inflation-CAPM (18) are in close agreement with

all preceeding results. Table 3 shows that the price of inflation-difference risk is 3.5 · 10−3%.
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The unconditional inflation-difference exposures of market and sector are also very similar

in magintude and spread to the results of the condtional inflation-CAPM.

[TABLE 3 HERE]
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3 Empirical Results

3.1 Data description

We use quarterly data from January 1959 to July 2012. To construct inflation, we use the

price indices corresponding to personal consumption expenditures (PCE) of non-durables

and services from the BEA. We use PCE inflation because, as emphasized in Piazzesi and

Schneider (2006), it is better than alternatives such as the CPI to match theory to data. We

obtain individual stock returns from CRSP. Fama-French factors, the momentum factor and

the risk-free rate are from Prof. French’s website.

Our sample spans T = 206 time periods and I = 16, 358 individual firms. Not all firms

have observations for all time periods (it is an unbalanced panel), with more firms available

later in the sample. We will denote the subset of firms that have observations in period t by

It. We eliminate the smallest 1% of firms each period (”microcaps”) to avoid illiquid stocks.

In total, we end up with 887, 562 month-firm observations for stock returns.

3.2 Inflation betas

In the model, the inflation betas from the unconditional inflation-CAPM correspond to

the coefficient in a univariate regression of excess returns on inflation changes. Therefore,

following Duarte (2011) and Briere, Ang, and Signori (2012), it is natural to estimate these

unconditional inflation betas by running the regression:

Rit −Rf
t = αi + β∆π

i ∆πt + ciXt + εit, (25)

where we use all available observations for firm i. In equation (??), Rit is the return of firm

i at time t, Rf
t is the risk-free rate at time t, ∆πt = πt− πt−1 and Xt are additional controls

that capture systematic variation in excess returns that are not present in the model. We
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will use as controls Xt the Fama and French (1993) factors and the momentum factor of

Jegadeesh and Titman (2012). Regressions without including the controls Xt yield similar

results, showing that inflation is a pricing factor that is not captured by the Fama-French

factors or momentum.

The model shows that the inflation betas in the conditional inflation-CAPM are also

regression coefficients, but using inflation levels instead of changes in inflation. In addition,

the betas are time-varying and depend on time-t information only. Thus, they can not be

estimated by a full-sample regression like (??). Instead, we estimate the regression

Ris −Rf
s = αit + βπitπs + citXs + εis (26)

s = 1, 2, ..., t− 1

in which we use observations only up to time t and we let the coefficients αit, βit and cit depend

on t. An easy and popular way to estimate (??) is to run a rolling OLS regression, usually

using a 5-year window, as in Briere et al. (2012). This is a special case of the nonparametric

kernel estimator developed by Ang and Kristensen (2012) and used by Duarte (2011) in the

context of inflation. We will use this estimator using an exponential kernel instead of a flat

window. The main advantage of this choice is that it produces smoother estimates for βit (i.e.

smaller standard errors) while still preserving all the consistency and robustness properties of

the rolling-window OLS estimator. Ang and Kristensen (2012) and Duarte (2011) show that

estimates of this regressions are robust to including many controls, restricting the sample,

double-sorting by size and other firm characteristics and forming portfolios. In order to

implement the kernel estimator, we run a weighted least-squares regression:

(
α̂i,t, β̂

π
i,t, ĉi,t

)
= arg min

α,β,βl,c,d

t−1∑
s=1

Ki,t (t− s)
(
Ri,s −Rf

s − α− βπs − cXs

)2
(27)
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where

Ki,t (t− s) = K

(
t− s
hiTi

)
1

hiTi
, (28)

hi is a stock-specific bandwidth, Ti is the number of total observations for stock i and the

exponential kernel is given by

K (x) =

{
e−x , x ≤ 0

0 , x > 0.
(29)

We pick the bandwidth hi so that the half-life of the exponential kernel Ki,t is 5 years, which

makes the estimates comparable to those obtained by a 5-year rolling window regression.

3.3 Market price of inflation risk

Armed with estimates for inflation betas, we use cross-sectional regressions to estimate the

conditional and unconditional market prices of inflation risk λπt and λ∆π. To estimate λ∆π,

we run a regression of mean returns on betas:

R̄i − R̄f = λ∆πβ̂∆π
i + λxi ĉi + εis (30)

i = 1, 2, ..., I

where β̂∆π
i and ĉi are the estimates obtained from regression (??) and mean returns are given

by:

R̄i − R̄f =
1

T

T∑
t=1

(
Rit −Rf

t

)
(31)

In equation (??), we have imposed that the constant term is zero to be consistent with the

model’s pricing equation (18). Unreported results confirm that the estimates for λ∆π are

almost identical if we do include a constant. Note that in equation (??), the regressor β̂∆π
i

is itself a regression estimate, while λ∆π is the slope coefficient to be estimated.

To estimate the conditional price of risk λπt we use a standard Fama and MacBeth (1973)
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procedure. We run T cross-sectional regressions, each of which consists of It observations:

Rit −Rf
t = λπt β̂

π
it + εis (32)

i = 1, 2, ..., It

Again, we decide to run this regression without a constant as dictated by the model equation

(17), although results are not sensitive to including one.

3.4 Results

Figure 5 shows the distribution of unconditional inflation betas β∆π
i estimated using equation

(??). The same distribution in the model is centered around 3.03 with standard deviation

of 1%, while it is centered at 0.88 in the data, and has a standard deviation of 10%. In

the model, just as in the data, we find that stock returns are, on average, unconditionally

positively correlated with inflation shocks. This means that the long-standing intuition that

stocks are good protection against high inflation is true if we think about long periods of

time and the mean (or median) firm. While the means of the two distributions are different

by a factor of 3, we cannot reject the hypothesis that they are different because of the

high dispersion of the empirical distribution. On the other hand, precisely because of the

difference in dispersion of the two distributions, it is easy to statistically reject the null

hypothesis that both distributions are equal.

[FIGURE 5 HERE]

Figure 6 plots the time series of the cross-sectional mean of conditional inflation betas

β̂πit and realized inflation. The figure shows that the conditional covariance between inflation

and stock returns is time-varying and changes signs quite often. In contrast, the model’s

(market) inflation betas are always positive and have a standard deviation across time that
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is 100 times smaller than in the data. In addition, the time-average of the cross-sectional

mean of β̂πit is −0.15, while in the model it is 3.03. Thus, on average, equation (??) shows

that a one percentage point increase in inflation during the current month is associated with

a decrease in realized excess returns of 15 basis points in the data and an increase of 3.03

basis points in the model. Figure 6 also shows the correlation between inflation and betas,

which is −12%, while in the model it is −100%. Figure 7 displays the histogram of the time-

average of individual conditional inflation betas. The mean of this distribution is negative,

which compares to the model’s mean of 3.03 displayed in figure 3.

[FIGURE 6 HERE]

[FIGURE 7 HERE]

The unconditional estimate of the market price of inflation risk using (??) gives λ̂∆π =

−0.18, while in the previous section we had found that the model has λ∆π = 2.53 × 10−3.

The estimate of λ̂∆π = −0.18 means that a portfolio of stocks that moves one-for-one with

inflation has a Sharpe ratio of −0.18. For comparison, the aggregate market return has

a Sharpe ratio between 0.3 and 0.5 depending on how it is estimated. A negative price

of risk means that investors are willing to accept negative mean returns in order to be

unconditionally hedged against inflation.

The unconditional mean, however, is not all there is – time variation in the conditional

price of risk is an equally important concept to understand how investors evaluate inflation

risk and provides a stronger rejection of the model. Recall that in the model, the conditional

price of risk λπt was always positive, almost constant over time and very small in magnitude.

In contrast, figure 8 shows that the price of risk obtained from the cross-sectional regression

(??) is negative on average, time-varying and large in magnitude (both positive and negative).

We see from figure 8 that there are sustained periods of large and negative price of inflation
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risk, like in the mid-1970’s and the mid-1980’s. Since 2000, we can see an upward trend in

the price of inflation risk: high inflation can become a better state of nature in a recessionary

environment. Not only the mean, but also the amount of time variation in the conditional

price of risk is at odds with the model. The standard deviation of λ̂πt is 1.3, more than five

time its mean of −0.23 and more than 105 times the one observed in the model.

[FIGURE 8 HERE]

In summary, the empirically observed price of inflation risk reveals that investors are very

sensitive to inflation shocks, and that whether high or low inflation is a concern depends

acutely on economic conditions. In addition, the quantity of inflation risk that firms face,

measured by their inflation betas, is very heterogeneous across firms and changes over time.

In contrast, in the model, firms of all sectors are almost completely immune to inflation

shocks, which makes the cross-section of their returns move in unison and almost not at

all as a result of inflation shocks. And precisely because inflation does not alter the cross-

sectional distribution of returns or output of firms, the market price of inflation risk is small.
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4 Concluding remarks

We have presented the asset pricing implications of a menu cost model with heterogenous

firms. Firms are assumed to be heterogeneous in two dimensions: they have different menu

costs and different volatilities of idiosyncratic productivity. When these two degrees of

freedom are used to match the empirically observed frequency and size of price adjustments

for firms, we find that the model fails to reproduce basic asset pricing patterns observed in

the data.

The first pattern we analyze is the market price of inflation risk, that is, the compensation

that investors require to hold inflation risk. We find that the unconditional inflation price of

risk implied by the cross-section of stocks is empirically negative and quite large, while it is

positive and small in the model. More importantly, the conditional price of risk inferred from

the cross-section of stock returns exhibits large time-series variation in the data, and can even

change signs. This means that investors percieve inflation to be a good state of nature in

certain economic times and a bad state of nature in others. This result is also consistent with

what is observed in bond markets as demonstrated, for example, in Campbell, Sunderam,

and Viceira (2009). The menu cost model, however, implies that the conditional price of

inflation risk is barely time varying and almost identical to its unconditional counterpart.

Not only is it not costly to insure against inflation in the model, the price of insurance is

almost constant.

The second pattern we study is how firms’ stock returns co-vary with inflation. The model

predicts that all stock returns should covary positively with inflation, and that the covariance

is almost identical across firms. In contrast, the data shows considerable cross-sectional

heterogeneity in the covariance, with half of firms covarying negatively with inflation. As a

consequence, there is a considerable spread in mean returns between firms that are exposed
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to inflation and those that are not, a feature absent in the model.

If we accept that stock returnrs are informative about investors’ preferences and firm

behavior, then our results demonstrate that the canonical menu cost model does not yet

capture some important features of how economic agents perceive and react to inflation.

Because the model is so successful at reproducing the empirically observed impulse response

functions of macroeconomic quantities with respect to nominal shocks, and there is ample

evidence supporting the existence of heterogeneous menu costs, our work by no means sug-

gests that we should abandon such models. On the contrary, our hope is that our work will

encourage further research into how to reconcile the observed behavior of asset prices with

the otherwise sound menu cost models.
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5 Tables and Figures

Table 1: Model parameters

Discount factor β = 0.961/12

Coefficient of relative risk aversion γ = 1
Inverse of Frisch elasticity of labor supply ψ = 0
level parameter on disutility of labor ω = 1.4211
Elasticity of demand θ = 4
Intermediate inputs share in production sm = 0.7
Speed of mean reversion in idiosyncratic productivity ρ = 0.7
Mean growth rate of nominal aggregate demand µ = 0.002
Std. deviation of the growth rate of nominal aggregate demand ση = 0.0037

This table reports the Nakamura and Steinsson (2010) calibration of the multisector menu-

cost model with intermediate inputs.
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Table 2: Conditional inflation-CAPM for the model
mean std

inflation πt 2.16 0.51
price of inflation risk λπt 3.10E-03 4.91E-06

risk-free rate Rf
t 4.27 0.38

expected market-return Et[R
m
t+1] 4.27 0.38

market inflation exposure βπ,mt 3.03 0.66

This table presents the aggregate variables of the multisector menu cost model with in-

termediate inputs for the conditional inflation CAPM given by equation (17). Results are

from a 400-period simulation. Mean and standard deviation are annualized and reported as

percentage points.

Table 3: Unconditional inflation-CAPM for the Model
mean std

inflation difference 4πt 0.00 0.36
market-return Rm

t 4.27 1.10

unconditional risk-free rate Rf
t 4.27 N/A

price of inflation-difference risk λ4π 3.52E-03 N/A
market inflation difference exposure β4π,m 3.03 N/A

This table presents the aggregate variables of the multisector menu cost model with inter-

mediate inputs for the unconditional inflation-CAPM given by equation (18). Results are

from a 400-period simulation. Mean and standard deviation are annualized and reported as

percentage points.

28



T
ab

le
4:

S
ec

to
r

va
ri

ab
le

s
of

co
n
d
it

io
n
al

an
d

u
n
co

n
d
it

io
n
al

in
fl
at

io
n
-C

A
P

M
fo

r
th

e
m

o
d
el

se
ct

or
K

*
10

(̂-
2)

σ
ε
×

10
−

2
w

ei
gh

t
re

tu
rn

b
et

a
u
n
co

n
d
.

b
et

a
m

ea
n

st
d

m
ea

n
st

d
V

eh
ic

le
fu

el
u
se

d
ca

rs
0.

00
2

5.
1

7.
66

4.
27

0.
38

3.
03

0.
65

3.
03

T
ra

n
sp

.
go

o
d
s/

u
ti

li
ti

es
/t

ra
ve

l
0.

32
5

6.
85

19
.0

9
4.

27
0.

38
3.

04
0.

65
3.

03
U

n
p
ro

ce
se

d
fo

o
d

1.
02

9.
2

5.
92

4.
27

0.
38

25
5

3.
04

0.
65

3.
02

P
ro

ce
ss

ed
fo

o
d

ot
h
er

go
o
d
s

1.
02

5.
7

13
.6

8
4.

27
0.

38
3.

03
0.

67
3.

03
S
er

v
ic

es
(e

x
cl

.
tr

av
el

)
0.

69
4.

05
38

.5
3

4.
27

0.
38

3.
02

0.
73

3.
03

H
h
.

fu
rn

./
ap

p
ar

el
/r

ec
.

go
o
d
s

1.
8

5.
4

15
.1

2
4.

27
0.

38
3.

02
0.

70
3.

01

T
h
is

ta
b
le

p
re

se
n
ts

se
ct

or
le

ve
l

va
ri

ab
le

s
of

th
e

m
u
lt

is
ec

to
r

m
en

u
co

st
m

o
d
el

w
it

h
in

te
rm

ed
ia

te
in

p
u
ts

.
T

h
e

cl
as

si
fa

ct
io

n
an

d

ca
li
b
ra

ti
on

of
m

en
u

co
st

s
K

,
st

an
d
ar

d
d
ev

ia
ti

on
of

p
ro

d
u
ct

iv
it

y
sh

o
ck
σ
ε,

an
d

w
ei

gh
t

in
th

e
ec

on
om

y
ar

e
fr

om
N

ak
am

u
ra

an
d

S
te

in
ss

on
(2

01
0)

.
W

e
re

p
or

t
th

e
m

ea
n

an
d

st
an

d
ar

d
d
ev

ia
ti

on
of

re
tu

rn
s

an
d

in
fl
at

io
n

ex
p

os
u
re

s
on

th
e

se
ct

or
le

ve
l

fo
r

th
e

co
n
d
it

io
n
al

in
fl
at

io
n
-C

A
P

M
in

co
lu

m
n
s

5-
8.

In
co

lu
m

n
9

w
e

al
so

re
p

or
t

th
e

ex
p

os
u
re

to
in

fl
at

io
n
-d

iff
er

en
ce

s
in

th
e

u
n
co

n
d
it

io
n
al

in
fl
at

io
n
-C

A
P

M
.

W
e

si
m

u
la

te
ov

er
(x

)
p

er
io

d
s

an
d

av
er

ag
e

ov
er

10
0

fi
rm

s
fo

r
ea

ch
se

ct
or

.
M

ea
n

an
d

st
an

d
ar

d
d
ev

ia
ti

on
ar

e

an
n
n
u
al

iz
ed

an
d

re
p

or
te

d
as

p
er

ce
n
ta

ge
p

oi
n
ts

.

29



8.4 8.45 8.5 8.55 8.6

x 10−7

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

2.61

2.62

2.63
x 10−6

Vart (πt+1 )

λ t

Figure 1: Price of inflation risk in the model

This figure shows the contemporaneous linear relationship between the conditional variance
of inflation V art(πt+1) and the price of inflation risk λt for the multisector menu cost model
with intermediate inputs. Results are from a 400-period simluation. On the left hand side
we plot the resulting distribution for the price of inflation risk the price with a normal fit of
mean 2.58E−6 and standard deviation 1.42E−8.
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Figure 2: Impulse response functions in the model

This figure plots the impulse response function of several variables of interest due to a two
standard deviation positive shock in the growth rate of nominal aggregate demand St at
time period 10. The upper left and upper right corner shows the real stochastic discount
factor DR

t,t+1 and the price of inflation risk λt. The middle and bottom rows show sector
variables and the corresponding variable for the market (dashed): profits ΠR

t (z), values Vt(z),
expected returns Et[Rt+1], and exposures to inflation βt(z). We choose one representative
firm for each sector with zero productivity shocks. For minimal distraction we carry over
sector variables 15 periods after the shock. 31
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Figure 3: Exposures to inflation risk in the model

This figure shows the contemporaneous relationship between the scaled derivative of the
value function with respect to inflation (Vt(z)−ΠR

t (z))−1dVt(z)/dπt and the firm exposures
to inflation βt(z) for the multisector menu cost model with intermediate inputs. Each point
represents the exposure to inflation for a specific sector, obtained from an average over
100 firms within that sector. The model is simulated for 400 periods. This relationship is
approximately linear as suggested in Equation (22). The 45◦ line guides the eye. On the left
side we plot the corresponding distribution for the inflation exposures, color-differentiated
by sector.

32



Figure 4: Value Function in the model

This figure shows in the upper left corner the Value function V (At(z), pt−1/Pt, St/Pt) plotted
against the log of its second argument, the log of last periods price measured by today’s
aggregate price level pt−1/Pt, for each sector; in the upper right corner plotted against the
log of its third argument, real aggregate demand St/Pt. In the middle we show the partial
derivatives of the value function with respect to these arguments. In the lower left corner,
we show the total derivative of the value function with respect to inflation obtained from
applying the chain rule (24) for the two sectors with the biggest spread in derivatives. All
plots are at the middle of the grid with respect to the idiosyncratic shock At(z).
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Figure 5: Empirical distribution of unconditional (full-sample) inflation betas

Unconditional inflation betas are the coefficients in full-sample, time-series regressions of
excess stock returns on changes in inflation. Stock returns are from CRSP and inflation is
from PCE of non-durables and services. The sample is quarterly from January of 1959 to
July of 2012.
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Figure 6: Empirical time evolution of inflation betas

Conditional inflation betas βπt are the coefficients in a real-time (i.e. backward looking)
rolling regression of excess stock returns on changes in inflation. We use an exponential
kernel to downweight observations that are further from the current date. The figure shows
the cross-sectional mean (over all firms) of the distribution of inflation betas for each time
period in the sample, together with PCE inflation of non-durables and services. Stock returns
are from CRSP. The sample is quarterly from January of 1959 to July of 2012 (with the first
five years used as a burn-in for the rolling regressions). The cross-section of betas gives the
confidence interval.
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Figure 7: Empirical distribution of conditional (real-time) inflation betas

Conditional inflation betas are the coefficients in a real-time (i.e. backward looking) rolling
regression of excess stock returns on changes in inflation. We use an exponential kernel to
downweight observations that are further from the current date. The histogram shows the
distribution of the time-average of inflation betas (there is one observation per firm). Stock
returns are from CRSP and inflation is from PCE of non-durables and services. The sample
is quarterly from January of 1959 to July of 2012.
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Figure 8: Empirical time-series of the market price of inflation risk

The market price of inflation risk is the coefficienet in a cross-sectional regression of excess
stock returns on their inflation betas. We run one such regression per time period and
plot the resulting annualized time series, together with its mean. Inflation betas are the
coefficients in a real-time (i.e. backward looking) rolling regression of excess stock returns
on inflation. We use an exponential kernel to downweight observations that are further from
the current date. The price of risk can be interpreted as the Sharpe ratio of a portfolio whose
excess returns move one-for-one with inflation. Inflation is from PCE of non-durables and
services and stock returns are from CRSP. The sample is quarterly from January of 1959
to July of 2012 (with the first five years used as a burn-in for the rolling regressions). The
time-series of λt gives the confidence interval.
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