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Outline

This Online Appendix provides additional detail regarding our methodology, on data used
in the article and some additional results. In Section A we describe in detail the Gibbs
sampler used for estimating our BMA-based models. More specifics about the data are
provided in Section B. Convergence properties for our MCMC approach can be found in
Section C, whereas Section D reports on a prior sensitivity analysis for our framework that
uses a simulated data set. Finally, in Section E we investigate some properties regarding the
in-sample fit of our BMA-based specifications. Note that when we refer in this Appendix
numerically to equations, tables, sections and so on, these pertain to the ones in the main
article. For example, when we refer below to (8) this is in reference to equation (8) in the

main article. All notations and model definitions are similar to those in the main article.

A Gibbs Sampler

In this section we derive the full conditional posterior distributions of the latent variables
and the model parameters as discussed in Section 2.3. Before we describe in detail the
different steps of sampler, we need to define the densities that make up the joint density

of the data and the latent variables (8). These densities are given by
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where ABj; = Bjt — Bji—1, Alno? = Ino? —Ino? ;| and §(-) is a Dirac delta function.! The
densities for 8; and Ino? in (A.1) each consist of two parts. First one where breaks occurs
(kjt =1,7=0,1,...,k+ 1) and these are drawn from their corresponding distributions.
The second component is the case of no break (xj; = 0) which results in a degenerate dis-
tribution of either the 3;;’s or In o? at their previous period values, i.e., PrBjs = Bj1—1] =1

and Pr[lno? = Ino? ;] = 1, represented with a Dirac delta function.

'A Dirac delta function §(z) = 0 if z # 0 and [§(x)dr = 1, and one can interpret the value §(0) as
probability 1 at z = 0. The latter follows from the fact that the Dirac delta function can be regarded
as the limit of a sequence of zero-mean normal distributions with variance o2 as 62 — 0. It is similar to
using an indicator function that equals 1 when z = 0 and zero otherwise as a distribution for z. See, e.g.,
Kanwal (1998) for more details.



Step 1: Sampling the variable selection parameters in D

We follow Kuo and Mallick (1998), which is a simplified version of the George and McCul-
loch (1993) algorithm. Starting from the previous iteration, the variable D is drawn from
its full conditional posterior distribution. We compute the value of the posterior density
(9) for 6; = 0 and 6; = 1 given the value of the other parameters which results in pjo and

pj1, respectively. The full conditional posterior simplifies to
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for j =1,...,k, where D_j = (61,...,6j-1,0j41,...,0;)" and where the density of y;yp is
given in (A.1). We randomly choose the order in which we sample the k §; parameters. As

starting value of the Gibbs sampler we consider a model which includes all k z; variables.

Step 2: Sampling Kp

The structural breaks in the regression parameters B, measured by the latent variable
Kkj¢, are drawn using the algorithm of Gerlach et al. (2000, Section 3), which derives its
efficiency from generating xj; without conditioning on the states 8j;. The conditional

posterior density for xj, t =1,...,T, j = 0,...,k unconditional on B is
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where Kg_; = {{ﬁjs}é?zo}sl_ffs#. The density p(kot, - - -, kx| Kg,—t, Ky, S, 0, ) is equal
to H?:o W;jt(l — ;)1 7"t since kj¢ does not depend on §;. The two remaining densities
PWYttht1s - YT—hlYnt1s - - s Yern, 1, 9,0, 2) and p(Yern|Ynt1s -+ Yern—1, K15 - - -y Kty Koy S, 0, 7)
can easily be evaluated as shown in Gerlach et al. (2000, Section 3). There is no closed
form representation for the integrating constant. However, because x; can take a finite
number of values, we follow Gerlach et al. (2000, Section 3.2) and compute the integrating

constant by normalization. When 6; =0, kj for t =1,...,T — h is sampled using (4).

Step 3: Sampling the regression parameters in B

The full conditional posterior density for the latent regression parameters B is computed
using a simulation smoother. We follow Carter and Kohn (1994). The Kalman smoother

is applied to derive the conditional mean and variance of the latent factors. For the



initial values of fBy,...,Br we use a multivariate normal prior with the mean equal to
the corresponding OLS parameter estimate and a covariance matrix equal to the diagonal
matrix of the covariance matrix of the OLS parameter estimates. These OLS parameter
estimates result from estimating a model that includes all potential predictor variables,
and is re-estimated in real-time when forecasting out-of-sample. When we have d; = 0,
Bj¢ is recursively simulated according to (A.1) conditional on the values of kj; and the

variance q?.

Steps 4 and 5: Sampling the variance parameters K, and S

To draw K, and S we want to follow a similar approach as above. As the model for
Ino? does not result in a linear state space model the Kalman filter cannot be applied.
Therefore, we apply the approach of Giordani and Kohn (2008) and rewrite the model
(2)—(3) as

k
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where u; = Ine? has a log x? distribution with 1 degree of freedom. We follow Carter and
Kohn (1994, 1997), Shephard (1994) and Kim et al. (1998) and approximate the In x?(1)
distribution by a finite mixture of normal distributions. We consider a mixture of five

normal distributions such that the density of u; is given by

> 1 Up — 2
) = Yo (- Lty (A.5)
with Zi:l ¢s = 1. The appropriate values for us, w? and ¢ can be found in Carter and
Kohn (1997, Table 1). In each step of the Gibbs sampler we simulate for each observation
t a component of the mixture distribution from the distribution of the mixing distribution.
Given the value of the mixture component we can apply standard Kalman filter techniques.
Hence, the variables K, and S can be sampled in a similar way as Kg and B in step 2

and 3. 2 For In O'g we take a normal prior with mean —1 and variance 0.1.

2If we consider the case were k;; = 1 for j = 0,...,k and all ¢, we use the Metropolis-within-Gibbs
MCMC algorithm as in Cogley and Sargent (2005), which combines Gibbs sampling steps for model co-
efficients with the Metropolis algorithm as in Jacquier et al. (1994). Giordani and Kohn (2008) use a
Metropolis-within-Gibbs MCMC algorithm where Kz and K, are sampled by an adaptive Metropolis al-
gorithm using a proper candidate. Our experiments did not show substantial increase in computing time
for the Cogley and Sargent (2005) approach, so we choose to work with the exact sampling version.



Step 6: Sampling 7

The full conditional posterior density of 7 is given by
k+1 T—h
p(n|D,q? B, S,K,y,x) H W?jfl(l —p;)t! H w;jt(l - ﬂj)(l_”‘jt) (A.6)
j=1 t=1
and hence the individual 7; parameter can be sampled from Beta distributions with pa-
rameters a; + ZZ:_{L kj¢ and b; + ZtT:_lh(l —kj) for j=0,...,k+1.
Step 6: Sampling of ¢?

The full conditional posterior density of q]2~ is given by
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and hence qj2- can be sampled from an inverted Gamma-2 distribution with the scale param-
eter set equal to w; —i—ZtT:_lh kjt(Bjt—Bji—1)? for j =0,...,k or @41 —i—ZtT:_lh Kpt1t(Ino? —
Ino? ;)% and degrees of freedom equal to v; + ZtT:_lh ki for j=0,...,k+ 1.

B Data Sources and Construction

Both our inflation rates and the bulk of our predictor variables get revised on a regular basis
and we therefore do retrieve the original vintages of the underlying data from, largely, the
Federal Reserve Bank of Philadelphia’s RTDSM. The RTDSM proxies the original vintages
for each quarter by selecting the data that was originally available around the middle of
that quarter. When necessary we transform the variables to render them 7(0). The decision
to transform a variable is based on the following: for each variable we randomly take 30%
of the available vintages used in the forecasting analysis and apply the Elliott et al. (1996)
unit root test on the (log of) the level for each of these selected vintages, and we transform
the variable if in case of half or more of selected the vintages we cannot reject the null of
non-stationarity. We summarize the sources, transformation and construction of our data
in Table B.1.
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C MCMC Convergence Analysis

To analyze how well the MCMC sampler from Section 2.3 and Appendix A converges,
we will report in this section on the application of several MCMC convergence analysis
approaches on this sampler for the full BMA-SBB-SBV specification estimated for both
PCE and GDP deflator inflation rates at h = 1 and h = 5. More specifically, we followed
the procedures utilized in, e.g., Primiceri (2005), Justiniano and Primiceri (2008) and Clark
and Davig (2011). They consider computing inefficiency factors and t-tests for equality of
the means across subsamples of the MCMC chain.

For each individual parameter and latent variable, the simulation inefficiency factor
is estimated as (1 + chozl pf), where py is the f-th order autocorrelation of the chain
of draws. This inefficiency factor equals the variance of the mean of the posterior draws
from the MCMC sampler, divided by the variance of the mean assuming independent
draws. Then, if we require that the variance of the mean of the MCMC posterior draws
should be limited to be at most 1% of the variation due to the data (measured by the
posterior variance), the inefficiency factor provides an indication of the minimum number
of MCMC draws to achieve this, see Kim et al. (1998). So, for example, an inefficiency
factor of 20 for a parameter suggests that one needs in theory at least 2000 draws from
the MCMC sampler for a reasonably accurate analysis of this parameter from the model.
When estimating these inefficiency factors, we use the Bartlett kernel as in Newey and
West (1987), with a bandwidth set to 4% of the sample of draws. Finally, we also compute
the p-value of the Geweke (1992) ¢-test for the null hypothesis of equality of the means
computed with the first 20 percent and last 40 percent of the sample of retained draws.
For this particular convergence diagnostic test we compute the variances of the respective
means using the Newey and West (1987) heteroskedasticity and autocorrelation robust
variance estimator with a bandwidth set to 4% of the utilized sample sizes.

The two aforementioned sets of statistics were applied on a range of choices for the
total number of posterior draws as well as burn-in period lengths and thinning for the
BMA-SBB-SBYV specification for both inflation rates and forecasting horizons. Based on
this comparison we felt most comfortable that with the number of posterior draws set
equal to 24000 with a burn-in period of 2000 draws and thinning value of 2, yielding 10000
retained posterior draws, our MCMC sampler would perform satisfactorily. Tables C.1
and C.2 provide a summary of, respectively, the corresponding inefficiency factors and
Geweke (1992) diagnostic tests for this choice of the number of retained posterior draws
for the BMA-SBB-SBV specification. These inefficiency factors and convergence diagnostic
tests are computed for the full (1960Q1-2011Q2) sample estimates of the parameters and

latent variables, as well as the real-time estimates of the predictive densities at h = 1 and



Table C.1: Summary of simulation inefficiency factors: BMA-SBB-SBV model

Parameters Median Mean Min Max 5% 95%

PCE Deflator Inflation

h=1 B 4020 2964 3.806 0.889 13.822 1.531  9.829
S 201 1.186 1.228 1.039 1.601 1.057 1.500

Kg, K, 4221 4.377 4425 0.765 9.466 1.0561  8.202

D 19 28.760 29.008 22.625 38.255 22.997 36.308

P(Yrsnt1ly, x) 126 1.174 1201  0.821 2.072 0946 1.604

h=5 B 4020 3.371  5.122 0.813 27.227  0.939 22.700
S 201 1.308 1.315 0.983 1.696 1.107 1.552

Kg, K, 4221 4.014 3817 0.743 12329 0937 6.697

D 16 28.829 28,949 19.865 38.823 20.049 38.004

P(Yr+h+1ly, x) 122 1.426 1.676 0.960 4.592 1.031  3.446

GDP Deflator Inflation

h=1 B 4020  3.897 4331  0.680 12.073 1.035  9.928
S 201  1.229 1.224 00985 1.496 1.031  1.403

Ks, K, 4221 4170 4259  0.782 10.578  0.983  8.626

D 19 29.721 28.795 21.269 35.331 21.704 35.311

p(yrinitly, z) 126 1.107 1.147 0789 1.904 0.916  1.495
h=5 B 4020 2795  4.612  0.791 27.251  0.972 20.652
S 201  1.294 1291 1.036 1.742 1.109  1.436

Ks, K, 4221 3834 3.609 0.754 10.792 0.922  7.599

D 16 28.961 27.524 11.968 38.907 14.308 38.040

p(yrinitly, o) 122 1.337 1.606 0.954 5.093 1.066 3.103

Note: The table summarizes the simulation inefficiency factors, (1 + 2;021 pys), for the posterior values of
B = {B:}15" with B = (Bot, Bty - -+, Bre)’s S = {02}, K = {Koty - - s ke b ey and Ko = {Kpt1,0 b1y
the variable inclusion parameters D = (61,...,dx)’, see Section 2.3, estimated over the 1960Q1-2011Q2
sample, as well as the predictive densities p(yr4n+1]y, ) in (10), estimated in real-time for each quarter
for the 1980Q1-2011Q2 sample. The estimated inefficiency factors are based on the Bartlett kernel as in
Newey and West (1987) with a bandwidth equal to 4% of the 10000 retained draws.



h =5 for each quarter in the 1980Q1-2011Q2 evaluation sample.

For most parameters and latent variables as well as the real-time estimated predictive
densities, the inefficiency factors in Table C.1 suggest that our MCMC sampler is very
efficient and that it requires far less than 10000 retained posterior draws to be able to do
a reasonably accurate inferential analysis. In case of the time-varying parameters B at
h = 5, with likely values in the 0.9-22 range, and, in particular, for the variable selection
parameters D our sampler is less efficient.®> Nonetheless, the corresponding inefficiency
factors suggest a minimum number of draws of less than 4000 to achieve an accurate
analysis of these parameters, less than our choice of 10000 retained draws. We nonetheless
felt that accurate inference for the density forecast evaluation in Section 4.4 would be
served better with our choice of 10000 retained draws. The convergence diagnostic tests
in Table C.2 indeed confirm our conclusions regarding efficiency based on the results in
Table C.1. For example, in the case of the D parameters the null hypothesis of equal
means across subsamples of these 10000 retained draws is hardly ever rejected.

Thus, inference in our BMA framework appears to be reasonably accurate when we
base posterior inference on 24000 draws with a burn-in of 4000 and thin value of 2. This
also helped us to reduce computing time, as our forecasting exercise with an expanding
data window and real-time data implied that we have to rerun our MCMC sampler many
times. We use a similar choice for the posterior draws for most of the other variants
of our BMA family of models, as unreported results of a similar convergence analysis as
discussed above for these models reached similar conclusions. However, in case of the
BMA-RWB-RWYV specification, which assumes that x;; and ki1 are always equal to 1
for all j, the inefficiency factors and convergence diagnostic tests pointed to much less
efficient estimation when using only 24000 posterior draws. Hence, for the BMA-RWB-
RWYV model we increased the number of draws to 44000, with 4000 initial draws and

selection of every 4th draw.

D Prior Sensitivity Analysis

We investigate in this section the properties of the MCMC algorithm outlined in Section 2.3
and detailed in Appendix A and discuss the influence of prior values on posterior results.

We base our results on the following data generating process [DGP]

Yer1 = Bogt + Brawie + Boiwor + B3px3t + oy, for t =1,...,200 (D.1)

3For both inflation rates at horizon h = 5, Figure E.3 indicate that the real oil price and the two
real commodity price indices are basically never selected, which makes it impossible to check the three
corresponding J; parameters for convergence. They are therefore not part of the convergence analysis at
h =15.



Table C.2: Summary of convergence diagnostic tests: BMA-SBB-SBV model

Parameters 10% reject rate 5% rejection rate

PCFE Deflator Inflation

h=1 B 4020 0.000 0.000
S 201 0.000 0.000

Ks, K, 4221 0.000 0.000

D 19 0.000 0.000

p(yrini1ly, @) 126 0.000 0.000

h=5 B 4020 0.000 0.000
S 201 0.000 0.000

Kg, K, 4221 0.000 0.000

D 16 0.000 0.000

p(yrini1ly, z) 122 0.000 0.000

GDP Deflator Inflation

h=1 B 4020 0.001 0.000
S 201 0.005 0.000

Kz, Ky 4221 0.007 0.003

D 19 0.063 0.063

P(Yrsnt1ly, x) 126 0.000 0.000

h=5 B 4020 0.001 0.000
S 201 0.000 0.000

Kg, K, 4221 0.000 0.000

D 16 0.000 0.000

P(Yrins1ly, x) 122 0.000 0.000

Note: The table summarizes the convergence test results by reporting the percent-
age for which the null hypothesis is rejected at significance levels of 10% and 5%.
This is done for the posterior values of B = {,Bt}tT:]h with B: = (Bot, Bit,-- - Brt)’,
S = {2 Kg = {Kot, .., kwe } " and Ko = {kry1.4}—", the variable inclusion
parameters D = (81,...,0)’, see Section 2.3, estimated over the 1960Q1-2011Q2 sam-
ple, as well as the predictive densities p(yr+n+1|y, z) in (10), estimated in real-time
for each quarter for the 1980Q1-2011Q2 sample. For each of these, we compute the
p-value of the Geweke (1992) t-test for the null hypothesis of equality of the means
computed for the first 20% and the last 40% of the retained 10000 draws. The variances
of the means are estimated with the Newey and West (1987) variance estimator using
a bandwidth of 4% of the respective sample sizes.
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with £441 ~ NID(0,1) and x;¢ ~ NID(0,1) for j = 1,...,3. The B3, =0 fort = 1,...,200
and hence x3; is not included in the model. For the first regressor we take as parameters
Bt =04fort=1,...,89, f1;=0.9fort =90,...,139 and 31 = 0.5 for ¢ = 140, ..., 200.
For the second regressor we have 3o, = 0.8 fort =1,...,89, B2 = 0.4 for t =90,...,119
and B2 = 0.2 for t = 140, ...,200. Furthermore, Bp; = 1/2 for all t and Ino? = —2 for
t=1,...,89,Inc? = —1for t = 90,...,139 and Ino? = —1.5 for t = 140, ...,200. Hence,
we allow for breaks in the parameters at different points in time but we also include breaks
which occur at the same time.

We apply our Bayesian model averaging framework with structural breaks (2)—(3)
with A = 1, 24000 posterior draws (with a burn-in of 4000 draws and a thinning of 2),
and different prior settings to investigate the sensitivity of posterior results with respect
to prior specification. We consider x1¢, zo; and z3; as potential regressors and allow for
breaks in all parameters including the variance. Note that the intercept is always included.
In the base case we take the prior parameter \; in (5) equal to 50% for j =1,...,3. We
set ap = 0.50 and by = 100 in (6), and wp = 0.85 and vy = 100 in (7) for the intercept
parameter. For the other regression parameters we choose a; = 0.5, by = 100, by = b3 = 5,
wj = 0.75 and v; = 50 for j =1, ..., 3, which implies a smaller expected size of breaks and,
often, a lower break probability than for the intercept. The prior parameters concerning
the variance equation are a4 = 0.8, by = 5, wg = 0.2 and v4 = 50, respectively. The base
case prior settings are such that the BMA-SBB-SBV approach provides the best fit for the
simulated data. For example, the posterior inclusion probabilities for our base case prior
settings are well in line with DGP (D.1) for the simulated data, i.e., they equal 0.988,
0.980, and 0.030 for s, w9 and xgs, respectively. As a further illustration of this, we
report in Figure D.1 posterior estimates of parameters 514, fo; and o1 (B3¢ = 0 always
as it is basically never selected) together with the corresponding DGP parameters. The
results from this figure show that our approach is quite accurate in estimating both the
timing and the size of the breaks, where the estimate of (B9, is slightly more volatile due
to our prior choice for by that is lower than b;.

In our prior sensitivity analysis, we will consider four alternative prior specifications
where we decrease or increase the prior probability of a break and decrease or increase
the prior expectation of the size of the break. These changes in the priors are applied to,
respectively, the intercept, the regression parameters and the variance specification, which
implies that we consider 12 different prior specifications in total. A lower probability of
a break than in the base case means that we multiply b; by 10 and, correspondingly, a

higher probability means that we divide b; by 10 for j = 1, ..4% A higher expected prior

4The prior parameters by and b; are already large so in the case of a lower probability of a break in the
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Figure D.1: Posterior estimates of the time-varying parameters implied by DGP (D.1):
Base case prior settings

Notes: The solid lines represent the posterior medians of the 51;: parameter (first column), B2 parameter
(second column) and o¢ parameter (third column). The dashed lines denote the 25th and 75th percentiles

of the posterior distributions. The dark solid line displays the values used to generate the data generating
process in DGP (D.1).

break size than in the base case is obtained by multiplying w; and v; Vj by 5 and, thus, a
lower expected prior break size is obtained by dividing these parameters by 5. Table D.1
summarizes the prior settings. Note, some of the prior settings are quite extreme but they

serve to illustrate our prior sensitivity analysis.

Table D.1: Summary of the prior settings for the different cases

break exp. prior intercept prior regressors prior variance
prob.  size ap bo  wo v arz bibay wiz vz as by wyg oy

base  base 0.50 100 0.85 100 0.5 100,5 0.75 50 08 5 0.2 30

low small 0.50 100 0.17 20 0.5 1000,50 0.15 10 0.8 50 0.04 10
low large 0.50 100 4.25 500 0.5 1000,50 3.75 250 0.8 50 1 250
high  small 0.50 10 0.17 20 0.5 10,050 0.15 10 0.8 0.50 0.04 10
high large 0.50 10 4.25 500 0.5 10,0.50 3.75 250 0.8 0.50 1 250

We first focus on the posterior inclusion probabilities. Table D.2 report these probabil-
ities for the standard prior setting, which are shown in the first line of the table, together
with the 12 different cases. As mentioned earlier, the posterior inclusion probabilities for
x1¢ and w9; are close to 1 and for xg; are close to zero which corresponds with our DGP.
In columns 3-5 we consider situations where we only change the prior settings for the
intercept parameters. We see that the posterior inclusion are hardly affected by these
changes, even if the inclusion probabilities of x3; is in some examples slightly larger than

for the base case. In the final three columns of the table we display the results where we

base case we multiply these parameters by 1.5.
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only change the prior settings of the variance parameters. Again, the posterior inclusion
probabilities are not affected much by these prior changes, except maybe for the case where
we consider both an increase in the prior break probability and the prior break size, as
the inclusion probabilities for x1; and xo; decline to levels just below 0.90. Columns 68,
finally, show that the posterior inclusion probabilities for z1; and x9; become substantially
smaller when we assume a larger expected size of the break in z-variables than for the

base case, especially when we also have a higher prior probability of a break.

Table D.2: Posterior variable inclusion probabilities for different prior specifications

prior sens. intercept

prior sens. regressors

prior sens. variance

break prob. exp. size  xy¢ Tog T3¢ T1¢ Tog T3¢ T1¢ Tog T3

base base 0.988 0.980 0.030 0.988 0.980 0.030 0.988 0.980 0.030
low small 0.995 0.992 0.000 1.000 0.992 0.056 0.988 0.974 0.123
low large 0.989 0.972 0.085 0.621 0.648 0.005 0.976 0.946 0.036
high small 0.995 0.977 0.004 1.000 0.993 0.000 0.997 0.989 0.021
high large 0.988 0.974 0.123 0.499 0.571 0.002 0.839 0.878 0.098

Posterior results for different prior break probability and expected prior size of a break, see Table D.1

From Table D.2 it is clear that when we increase the prior expected break size for the
predictor variables, irrespective of the prior break probability, relative to the base case,
the impact is the most substantial in terms of the posterior inclusion probabilities. This
coincides with a substantial deterioration of the posterior medians of the parameters in
(D.1) relative to the base case. For example, in case of a higher prior break probability
and a higher expected prior break size for the predictor variables, Figure D.2 reports the
posterior estimates of Bz, B2 and ;. The figure makes it clear that for this case the
posterior medians of the parameter are quite off in terms of the timing of the breaks,
with a large uncertainty for the posterior estimates of 81; and (Bo; as well as a o; that is
significantly lower towards the end of the sample than is implied by the DGP.

Another interesting case that emerges from the posterior inclusion results in Table D.2
is if we assume for the error variance o7 a higher prior probability of breaks of larger
prior expected size than in the base case, as this leads to a slightly downward bias in the
posterior inclusion probabilities. Again, as before, this seems to be a symptom of severely
imprecise posterior parameter estimation results when the prior settings for, in this case,
the error variance is changed in such a way, and Figure D.3 summarizes them. From

Figure D.3 it is clear that assuming a priori large sized breaks in o7 will result in a very

5The posterior estimates for the case of a lower prior break probability and a higher expected prior
break size for the x variables are very similar.
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Figure D.2: Posterior estimates of the time-varying parameters implied by DGP (D.1):
Higher prior break probabilities and higher prior break sizes for the z-variables

Note: See Figure D.1, but now the posterior results are based on a higher prior break probability as well

as a higher prior break size for the regressors 1+, x2¢, and x3; than in the base case.

Figure D.3: Posterior estimates of the time-varying parameters implied by DGP (D.1):
Higher prior break probabilities and higher prior break sizes for o7

Note: See Figure D.1, but now the posterior results are based on a higher prior break probability as well

as a higher prior break size for o7 than in the base case.

uncertain posterior estimate of the error standard deviation and that the timing of breaks
in both 814 and Po; are biased relative to those implied by DGP (D.1).

Altering the prior assumptions for the intercept also can lead to peculiar posterior
estimation results. In Figure D.4 we report the posterior median and interquantile range
for 1+ P2r and oy when we impose a low prior break probability of breaks of larger prior
expected size than in the base case. What becomes clear from this figure is that lowering
the prior break probability of the intercept and attempting to compensate for that by
increasing the corresponding prior expected break size, results in a process for 5y; that
exhibits frequent smaller sized breaks than what we impose in the underlying DGP, which
thus often result in false break signals for this parameter. For (9; and o; not only the
posterior estimates of the break dates are wrong but also the parameter levels themselves

are often inconsistent with those from the DGP.
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Figure D.4: Posterior estimates of the time-varying parameters implied by DGP (D.1):
Lower prior break probabilities and higher prior break sizes for the intercept

Note: See Figure D.1, but now the posterior results are based on a lower prior break probability and a

higher prior break size for the intercept than in the base case.

For the remaining prior sensitivity exercises,® the effect on the posterior parameter
estimation results are less strong but nonetheless noticeable. Especially the estimated
sizes of the breaks in the variance are substantially affected. In several of these alternative
prior cases, the posterior medians of the variance parameters do not correspond to the true
value after a break has occurred, even if the timing of the break is determined correctly.
The regression parameters S, . .., J2: seem to be less affected by the same prior cases,
although we did notice much more uncertainty in the estimate of the timing of the breaks
and there is often more posterior uncertainty in the estimated parameters. A general
pattern we observe is that when the prior settings correspond to a higher probability of
larger or smaller breaks than in the base case, the posterior medians of £1; and (o are
much more volatile over time than in Figure D.1, and a lower prior probability of larger or
smaller breaks than in the base case increases the posterior uncertainty of these regression

parameter estimates.

E In-Sample Posterior Inference

In this section we report on some in-sample properties of different specifications of our
general forecasting model (2)—(3) based on our prior choices in Table 2 over our full sample,
1960Q1-2011Q2, for both the PCE deflator and GDP deflator inflation measures. The
purpose of this full-sample estimation is to investigate how informative the data are for
posterior inference on time-variation (Section E.1), whether our specifications can replicate
some of the stylized facts of post-WWII U.S. inflation dynamics that have been uncovered

by the vast literature we surveyed in the Introduction (Section E.2), and an analysis on how

5We do not report them in order to preserve space, but they are available upon request from the authors.
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the combination of model averaging and differing degrees of structural instability affects
predictor variable selection in our framework (Section E.3). For the in-sample estimation,
we use the 2011Q3 data vintage for all variables, which contains data up to in 2011Q2.
We focus here on the most frequently used prediction horizons in this literature, that is,

the current quarter or nowcasting horizon (h = 1) and the one-year horizon (h = 5).

E.1 Posterior Inference on Time-Variation

The marginal posterior distributions of the regression parameters and latent breaks for all
19 predictor variables within our BMA-based specifications are averaged over all possible
model specifications, and in each of the individual regression specifications the regression
parameter (3j; of a predictor j as well as the corresponding latent break variable £ ;; (which
determines the timing of a break in 3;;) may therefore be different. A proper interpretation
is only possible when we condition on each individual regression specification, which is
an arduous task given the number of specifications we consider in this paper.” But,
as we mentioned in Section 3.2, analyzing the posterior means of the individual break
probabilities 7; can still be useful for determining how informative the data has been for
the break estimation in our BMA-based specifications given our prior choices (see Table 2).
We report these in Table E.1 for the BMA-SBB-SBV model.®

What immediately becomes clear from Table E.1 is that at 1% the posterior means
of the break probability of the intercept my are well below the mean implied by the prior
settings in Table 2. In contrast, for our predictor variables the posterior means of the
corresponding 7; parameters is on average equal to 13% for both inflation series at h = 1,
and for h = 5 they average to about 23% (18%) in case of PCE deflator inflation (GDP
deflator inflation). It is clear that this implies far more time-variation, on average, in the
regression parameters of our predictor variables than what is implied by our prior settings.
Only for the error variance the posterior mean break probability remains fairly close to its
prior counterpart. The patterns in Table E.1 suggest that parameter time-variation for the
predictor variables increases with the forecast horizon, in particular for the real activity
series, and that there is quite a bit of heterogeneity amongst these variables. For example,
for PCE deflator inflation at h = 1, the posterior results suggests that the regression
parameter of the real oil price will break on average, over time and across all possible
regression specifications, about every 4 quarters, whereas for the survey-based inflation

expectations this is about every 13 quarters.

"For example, the analysis in Section E.3 about variable selection makes it clear that in case of the
BMA-SBB-SBV specification we would have to do this for at least 250 models.

8We should note that if a variable is not selected, the posterior distribution of 7; is equal to the prior
distribution.
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Table E.1: BMA-SBB-SBV marginal posterior break probabilities 7;: 1960Q1-
2011Q2

PCFE Deflator Inflation GDP Deflator Inflation

h=1 h=5 h=1 h=5

7_‘_?rior 7_‘_jpost 7I_;)ost 7_{_?ost 7_‘_;)ost

Intercept 0.09 0.01 0.01 0.00 0.02
Yt 0.02 0.18 0.26 0.19 0.23
Yt—1 0.02 0.18 0.24 0.15 0.21
Yt—2 0.02 0.12 0.25 0.13 0.19
Yt—3 0.02 0.12 0.19 0.09 0.15
ROUTP 0.02 0.14 0.23 0.15 0.20
RCONS 0.02 0.14 0.37 0.14 0.23
RINVR 0.02 0.12 0.22 0.10 0.14
PIMP 0.02 0.10 0.21 0.09 0.15
UNEMPL 0.02 0.08 0.21 0.18 0.19
HSTS 0.02 0.09 0.46 0.37 0.22
NFPR 0.02 0.13 0.15 0.09 0.17
M2 0.02 0.14 0.16 0.11 0.22
YL 0.02 0.10 0.13 0.09 0.22
TS 0.02 0.17 0.21 0.17 0.17
CS 0.02 0.15 0.20 0.13 0.14
OIL 0.02 0.26 0.16 0.06 0.17
FOOD 0.02 0.15 0.27 0.08 0.21
RAW 0.02 0.10 0.29 0.04 0.04
MS 0.02 0.08 0.11 0.04 0.10
ot 0.28 0.29 0.29 0.29 0.29

Notes: See Section 3.1 and Table B.1 for variable mnemonics. The values in the column
headed ‘wfrio” represent the prior break probabilities for each 7 = 0, ..., k+1 implied by
(6) based on the prior choices from Table 2, whereas the columns headed ‘PO report
on the posterior means of 7; for each j =0, ...,k + 1 across different inflation rates and

horizons h.
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For the other BMA specifications with discrete breaks, BMA-SBB and BMA-SBV,
unreported results indicate qualitatively similar conclusions as for the BMA-SBB-SBV case
in Table E.1. In case of BMA-SBB, the posterior mean break probability for the intercept
is essentially zero for the intercept and the average across predictor variables is about 17%
for both inflation series at h = 1, 28% (20%) for PCE deflator inflation (GDP deflator
inflation) at h = 5, with a similar degree of heterogeneity across predictors as for BMA-
SBB-SBYV. The error standard deviation o; for the BMA-SBV specification has a posterior
mean break probability of 15% across both inflation rates and horizons, which is below the
corresponding prior mean based on the settings in Table 2. Given this, it therefore appears
that in case of BMA-SBB-SBV, which uses similar prior settings, the error variance break
probability is less well identified than in case of BMA-SBV. Overall, we can conclude that
the data appears to be very informative within our BMA-based approach for posterior

analysis on instability in all possible model specifications for inflation forecasting.

E.2 Some Implied Inflation Characteristics

We now investigate whether our BMA-based framework from Section 2.1 indeed implies
similar inflation properties as identified by the existing literature. Figure E.1 shows pos-
terior estimates of inflation persistence for h = 1 given by the BMA-SBB and BMA-SBB-
SBYV specifications of our framework, both of which allow for time variation (in the form
of breaks) in this persistence.” In this figure we also display similar posterior results for
the AR-BMA-SBB-SBV specification (16) described in Section 4.1. The time-varying av-
erage persistence and error variance terms produced by this AR-BMA-SBB-SBV model
can be seen as representative of those produced by existing studies. Additionally, Figure
E.2 displays posterior estimates for the innovation standard deviations o, for h = 1 for
model specifications BMA-SBV, BMA-SBB-SBV and AR-BMA-SBB-SBV, respectively.
Although there are some differences in the level and variation of inflation persistence
for BMA-SBB versus the other models, Figure E.1 overall suggests a similar pattern for
inflation persistence across models: relatively low in the 1960’s, a substantial increase
in the 1970’s, and reducing drastically in the second part of the 1980’s. In case of the
shock variance (Figure E.2), all models exhibit a downward shift from the late 1980s, early
1990s onwards, albeit that the innovation variance for BMA-SBV varies in a more smooth
manner. The shock variances move up, of course, towards the end of the sample as the
2007-2009 Great Recession starts to impact the data. Both figures make it clear that

members of our BMA family of models with appropriate channels of time-variation are

9In order to save space, we focus only h = 1, as this is comparable to the representations that are
typically used to assess the time-varying properties of inflation. The results for A = 5 are available from
the authors.
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Figure E.1: Posterior estimates of time-varying inflation persistence
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Note: The solid lines represent the posterior medians of the persistence parameters for the BMA-SBB
(first column), BMA-SBB-SBV (second column) and AR-BMA-SBB-SBV (third column). Persistence is
computed by averaging the sum of the included autoregressive parameters across all model specifications
using the posterior model probabilities. The dashed lines denote the 16th and 84th percentiles of the

posterior distributions.

able to reproduce in a satisfactorily manner the stylized facts on inflation persistence and

volatility for the post-WWII U.S. period.

19



Figure E.2: Posterior estimates of the time-varying innovation standard deviation
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Note: The solid lines represent the posterior medians of the innovation standard deviation parameters for
the BMA-SBV (first column), BMA-SBB-SBV (second column) and AR-BMA-SBB-SBV (third column).
The dashed lines denote the 16th and 84th percentiles of the posterior distributions.

E.3 Posterior Variable Selection

In Figure E.3 we display the marginal posterior inclusion probabilities for each of our po-
tential predictor variables (excluding the intercept), that is, Pr[d; = 1|y, z] for j = 1,...,k,
for a number of variants of our framework outlined in Section 2.1.'° We notice some inter-
esting contrasts across these BMA-based specifications, which highlight the importance of
conditioning predictor variable selection and model averaging on structural breaks. When
structural breaks are ignored in the variable selection (this is the BMA variant), the in-
clusion probabilities are generally higher than the prior value, with the average inclusion
probability hovering around 80% across inflation rates and horizons which corresponds to
an average model size of about 16 to 17 predictors, including the intercept. The other
extreme is where we combine BMA with structural breaks in the regression parameters

and a constant error variance specification (BMA-SBB): inclusion probabilities are now

1076 preserve space as well as the fact that we want to focus on the impact of ignoring instability in
certain parts of the specification on variable selection, we did not report the results for the BMA-RWB-
RWYV model. They are qualitatively the same as for the the other BMA models with structural instability.
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much lower than the prior value and the average inclusion probabilities range from 10%
for PCE inflation at h = 1 to 17% for GDP inflation at h = 1, suggesting an expected
number of predictors of about 3 to 4 (including intercept).

The BMA-SBV and, more general, BMA-SBB-SBV specifications represent interme-
diate cases. For the BMA-SBV variant the average marginal inclusion probability in Fig-
ure E.3 is approximately 39% for h = 1 and 42% for h = 5. In case of the BMA-SBB-SBV
model these average marginal inclusion probabilities are about 30% for h = 1 and about
15% for h = 5, which suggests that the average model size for the BMA-SBB-SBV varies
with the forecasting horizon. For the BMA-SBB-SBV model, the expected number of ex-
planatory variables (including the intercept) is in the 6 to 7 range for the current quarter
horizon across inflation measures, whereas for h = 5 this number fluctuates between 3 and
4. One can conclude from Figure E.3 that allowing for structural breaks results in more
parsimonious models. In particular when we allow for breaks in the mean and variance, as
in the BMA-SBB-SBV variant, the model size seems to adapt more to the forecast horizon,
with more parsimony at longer horizons.

To shed more light on what combinations of explanatory variables dominate the Bayesian
model averaging, we can consider the top 10 models with the highest posterior model prob-
ability. In the interest of brevity we report these only for the BMA-SBB-SBV variant of
(2), see Table E.2. In general, the conclusions drawn from the results in Figure E.3 are
confirmed, that is, the most selected variables do show up most frequently amongst those
top 10 models. Furthermore, we see again that the number of included predictors in the
models with h = 1 is in general larger than for the models with A = 5. The second best
model for GDP deflator inflation for h = 5, for example, only contains an intercept and
the Michigan survey. Finally, we notice a fair amount of variability in the composition of
these specifications.

Unreported results'! show that for both inflation series the model size for all selected
models within the BMA-SBB-SBV specification for the current quarter horizon fluctuates
between 3 and 15 (including intercept) with a posterior mode of 7 selected predictors. For
the quarterly inflation rate one-year ahead, the model size fluctuates for GDP deflator
inflation between 2 and 10 (2 and 9 for PCE deflator inflation) and the posterior mode
is 5 (4 for PCE deflator inflation). Finally, the number of models with a posterior model
probability larger than 0.1% is about 250 for both inflation series and both horizons. The
variances in the values of the posterior model probabilities are therefore larger for the
models with the larger forecast horizon.

So what does the varying degrees of parsimony of our different BMA-based specifica-

HThese are available upon request from the authors.
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Figure E.3: Posterior variable inclusion probabilities: 1960Q1-2011Q2
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Notes: The graphs depict the variable selection probabilities for specification BMA, BMA-SBB,

BMA-SBV, BMA-SBB-SBV of (2), see also Table 1.
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Table E.2: BMA-SBB-SBV posterior model probabilities (top 10 best models):

1960Q1-2011Q2

GDP Deflator inflation h = 1
yt—o ROUTP RCONS RINVR PIMP UNEMPL OIL MS
yt—2 y+—3 ROUTP RCONS PIMP UNEMPL NFPR MS
yt y1—3 ROUTP RCONS PIMP HSTS MS
ROUTP RCONS HSTS M2 FOOD MS
yi—3 RCONS HSTS FOOD MS
yt—2 RINVR HSTS NFPR MS
Yt Yi—1 Yi—2 RINVR HSTS NFPR YL MS
yt Yi—1 Yr—2 RINVR HSTS NFPR YL MS
yi—2 RCONS RINVR PIMP UNEMPL YL RAW
Yt Yi—1 yi—2 NFPR

GDP Deflator inflation h =5
Yyt Yi—2 yr—3 RCONS PIMP UNEMPL HSTS
MS
Yt Yi—1 Yr—2 Yr—3 ROUTP PIMP UNEMPL HSTS
y:—1 RCONS PIMP UNEMPL HSTS
Yi—1 Yr—2 CS MS
Yt—1
Yt Yi—2 Yi—3 ROUTP RCONS RINVR HSTS M2 NFPR
Yt Yi—1 Yt—2 yr—3 RCONS PIMP UNEMPL HSTS
y, PIMP HSTS M2 NFPR
yt—1 yt—3 RCONS RINVR M2 NFPR YL TS MS

PCE inflation h =1
yt—3 ROUTP RINVR PIMP YL
y: ROUTP RCONS RINVR M2 CS
Yt Yi—1 Yi—3 ROUTP RCONS RINVR PIMP HSTS NFPR YL FOOD MS
y: ROUTP RCONS RINVR M2 CS
Yt Yi—1 Yi—3 ROUTP RCONS RINVR PIMP HSTS NFPR YL FOOD MS
y:—1 RCONS PIMP NFPR YL MS
yi—3 ROUTP UNEMPL HSTS
y:—1 ROUTP PIMP UNEMPL HSTS
Yt Yi—1 Yi—2 RCONS PIMP UNEMPL NFPR CS MS
y:—1 ROUTP RCONS RINVR PIMP M2 YL 0.41
PCE inflation h =5
yt y1—3 ROUTP PIMP UNEMPL HSTS
Yt—2
Yi—1
yt y—o ROUTP PIMP UNEMPL HSTS
yi—1 yi—3 RCONS UNEMPL NFPR TS MS
Yt

Yt Yt—1 Yt—2 Yt-3
Yt Yt—2 Yyr—3 RCONS UNEMPL HSTS M2

v+ -1 ROUTP RINVR YL TS MS
Y11 yi—3 RCONS UNEMPL HSTS M2

0.69
0.66
0.50
0.44
0.43
0.40
0.39
0.39
0.38
0.38

4.98
3.09
2.11
1.86
1.52
1.31
1.07
1.03
0.96
0.94

0.56
0.54
0.54
0.53
0.53
0.51
0.47
0.45
0.41

4.75
4.54
291
2.82
2.46
2.35
2.30
1.88
1.69
1.62

Notes: See Section 3.1 and Table B.1 for variable mnemonics.
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Table E.3: In-sample fit of the BMA-based specifications: 1960Q1-2011Q2

PCFE Deflator Inflation GDP Deflator Inflation

h=1 h=5 h=1 h=5
BMA-SBB-SBV ~ -394.15  -346.41 -495.48  -429.42
BMA-SBV 145862  -327.35 -570.25  -409.51
BMA-SBB -380.52  -263.58 47026 -291.68
BMA -360.70  -255.14 -487.66  -354.03
BMA-RWB-RWV -319.38  -321.47 -336.46  -346.33

Notes: See Table 1 for model mnemonics. The values in the table are posterior means
of the Bayesian information criterion [BIC] for each model.

tions mean for the in-sample fit of these models? One way to get insight into this is to
compute the Bayesian information criterion [BIC] of each model. Posterior marginal BIC
values are reported in Table E.3. The results in this table suggest that the BMA-SBB-
SBV and BMA-SBV specifications generally seem to be the preferred specifications for
the full 1960-2011 sample, with BMA-SBV having an edge at the nowcasting horizon and
BMA-SBB-SBV at h = 5.
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