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Abstract

This paper proposes a new method of simulated MLE for discrete choice mod-

els which is easy to implement and �exible enough to accommodate a variety of

model speci�cations, and yet entirely free from the simulation bias for each �nite

number of simulations. By a deliberate transformation of the likelihood function,

the estimation method is designed to generate consistent estimators even with a

small number of simulations. The transformation is explicit, containing no un-

knowns that demand an additional step of estimation. The estimator achieves

the e¢ ciency of MLE as the simulation number increases fast enough. In order

to emphasize the �exibility of the framework, we performed a Monte Carlo study

using a dynamic model of schooling choice in which heterogeneity is introduced

for discount factors and ability.
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Cube-Root Asymptotics
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1 Introduction

Discrete choice models have long been very popular in applied researches across a wide range

of empirical �elds of economics. While a discrete choice model typically speci�es the data
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are indebted to Sean D. Campbell for his valuable comments and inputs. We are also grateful to the
seminar participants at Columbia University, Econometric Society Meeting, Greater New York Econometrics
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of the authors and do not necessarily re�ect the views of the Federal Reserve Bank of New York or the Federal
Reserve System.

2Federal Reserve Bank of New York, 33 Liberty Street, New York, NY, 10045.
3Department of Economics, University of Pennsylvania, 528 McNeil Building, 3718 Locust Walk, Philadel-

phia, Pennsylvania 19104-6297.
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generating process up to a parametric family of distributions, maximum likelihood estimation

is infeasible in practice except for extremely simple models because the explicit evaluation

of the likelihood is infeasible. The approach of simulation-based inference has been instru-

mental for overcoming this di¢ culty, providing the researcher with a much wider spectrum

of �exibility in modeling. However, this simulation-based approach entails simulation error

in the inference, and the problem of analyzing and controling this simulation bias has drawn

attention in the literature. (See Hajivassiliou and Ruud (1994), Stern (1997) and Gouriéroux

and Monfort (1997) for a review of the literature and references therein.)

There are mainly two popular methods of simulation-based inference: a method-of-

moments approach and a likelihood-based approach. The method of simulated moment

(MSM) approach developed by McFadden (1989) has been very popular and widely used in

empirical researches. See Lee (1992), McFadden and Ruud (1994) and Keane (1994) for some

surveys and improvements. First, the approach allows for �exible modeling of discrete re-

sponses as the latent process is permitted to be non-normal and nonlinear in errors. Second,

the estimator from the simulated method of moment approach is known to be
p
n-consistent

even with a �nite number of simulations. However, MSM does not achieve the e¢ ciency of

MLE even with a large simulation number because the estimating equation does not utilize

fully the likelihood information. Furthermore, MSM has an unattractive feature of having to

choose moment conditions in practice. When the number of choice and the number of covari-

ates are large, the choice of moment conditions can be a nontrival problem to an empirical

researcher. Most importantly, the computation of an e¢ cient weighting matrix for MSM is

complicated as one has to simulate the �rst order derivative of the moment condition. The

use of an e¢ cient weighting matrix also requires estimating the same parameter twice, and

hence in terms of computational cost, it is not clear to compare the performance of MSM

using an optimal weighting matrix with that of MLE in �nite samples.

On the other hand, the likelihood-based approach has the merit of achieving e¢ ciency as

the simulation number increases to in�nity along with the sample size (Lerman and Manski

(1981)). However, the existing methods of simulated MLE (SMLE) incur simulation bias

(with the sample size n ! 1 and the simulation number R �xed) that does not disappear

unless one increases the simulation number to in�nity. Most existing literatures on simulated

MLE have focused on simulating the choice probabilities. Among the popular examples

are the simulated frequency method of Lerman and Manski (1981), smoothed simulated

MLE, the simulation method of Stern (1992), or a simulated MLE using the GHK simulator

(Geweke (1989), Hajivassiliou (1990) and Keane (1993).) However, these methods induce

simulation bias that disappears only when R increases to in�nity. This is true even when

simulated choice probabilities are unbiased because the expected logarithm is not equal to
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the logarithm of expected values. (See Lee (1995) for an extensive analysis of asymptotic bias

in simulated MLE.) There have been approaches in the literature to reduce the magnitude

of this simulation bias by using bias correction. (See e.g. Lee (1995) and Gouriéroux and

Monfort (1997)).

Hajivassiliou (1990) and McFadden and Hajivassiliou (1998) proposed a di¤erent method

of SMLE that uses simulated scores to construct simulated moment conditions and proved

e¢ ciency of the estimators. (See Börsch-Supan and Hajivassiliou (1993) for a review and a

simulation study.) The estimators do not su¤er from simulation bias under a �nite simulation

number, but this is achieved only when the latent process follows a normal linear structure.

This paper suggests an entirely di¤erent approach in which the simulation bias is elimi-

nated completely for each �nite R, while maintaining the �exibility of modeling. In partic-

ular, we do not assume that the latent process is normal linear. Furthermore, the estimator

achieves asymptotic e¢ ciency as R increases to in�nity. These desirable features are achieved

by identifying a sequence of transforms of simulated probabilities that lead to identi�cation

of the parameter for each �nite R. The sequence of transforms converge to a logarithmic

function as R increases to in�nity, so that the estimator achieves asymptotic e¢ ciency when

R increases fast enough. We summarize the characteristics of this new approach in the

following.

(1) While our approach generates an estimator free from simulation bias under a �nite

simulation number, the estimator achieves the e¢ ciency of MLE when the simulation number

increases to in�nity.

(2) While our method allows for �exible modeling as in Lerman and Manski (1981),

especially admitting latent processes that are not normal linear, it does not su¤er from a

zero-probability problem.

(3) The method is very easy to implement, causing virtually no additional complication

beyond that entailed by Lerman and Manski (1981)�s procedure.

To the best of our knowledge, our method is unique among the existing simulation based

approaches in that it satisifes both Properties of (1) and (2). The existing methods of

simulation-based inference either (a) fail to achieve the e¢ ciency or (b) su¤er from the

simulation bias when the simulation number is small or (c) heavily rely on the assumption

that the latent process is normal linear. In particular, Property (2) is signi�cant for many

empirical researches. For example, the latent process is allowed to be nonlinear in unobserved

stochastic terms whose distributions are not normal. This feature is not shared by the

approaches involving GHK simulators. While the original idea of Lerman and Manski (1981)
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does not assume a normal linear latent process, it is well-known that their method su¤ers

from a zero-probability problem. Some literatures have suggested proposals to deal with

this problem (e.g. Stern (1992), Geweke (1989), Hajivassiliou (1990) and Keane (1993).)

However, such proposals either assume normal linear latent processes or requires smoothing.

In either case, the suggested properties fail to satisfy Property (1). Our approach does not

su¤er from this problem while maintaining the merit of �exible modeling. We illustrate the

usefulness of this property in our simulation study based on the modeling of heterogeneity in

schooling choices. Property (3) also deserves attention. Our estimator is obtained through

a one-step optimization of an objective function. The evaluation of the objective function is

computationally as fast as many existing SMLEs.

In this paper, we formally present conditions for identi�cation and derive the asymptotic

theory for the estimator in both the cases of simulation numbers �xed and increasing with

the sample size. Our exposition is made through easily veri�able, high-level conditions

to emphasize the �exibility of our approach. The conditions require only weak regularity

conditions for the stochastic link between the decision variables and the observed covariates

that ensures the identi�cation of the parameters. We also demonstrate how our framework

can also be immediately adapted to the case where only the cohort-level aggregate data are

available. This set-up is often relevant to empirical researches in Industrial Organizations.

Here is the summary of the asymptotic theory of our estimators. When the simulation

number is �nite, the estimator follows the cube-root asymptotic theory in Kim and Pollard

(1990). Similarly as for the maximum score estimator (Manski (1975)), this slower rate of

convergence stems from "the sharp edge e¤ect" due to the presence of discontinuities in the

objective function. The simplex-based optimization algorithm is well-known to be useful for

optimizing a discontinuous objective function.

In the case of an increasing number of simulations, we establish that the estimator is
p
n-consistent and asymptotically normal as the simulation number increases to in�nity

at a rate slightly faster than
p
n: This latter condition is only slightly stronger than the

existing condition for many SMLEs. (See e.g. Lerman and Manski (1981) and Gourieroux

and Monfort (1997).) Under this same condition, the estimator achieves the asymptotic

e¢ ciency of MLE.

To illustrate the usefulness of our approach, we performed a Monte Carlo simulation

study based on a schooling choice model which involves heterogeneity in discount factor

and ability. More speci�cally, the discount factor is assumed to be correlated with other

observed individual characteristic and also an unobserved characteristic. The simultation

methods considered in this study are, Lerman-Manski�s SMLE, smoothed SMLE, MSM

without using optimal weighting matrix and MSM with using optimal weighting matrix.

4



The optimal weighting matrix is not that which ensures the e¢ ciency of MLE, but that of

the usual optimal weighting matrix in GMM. Recall that the MSS based on a normal linear

process and inferences based on GHK simulators cannot be employed for this model. Here

is the summary of the �ndings from the study.

First, our estimator mostly dominates Lerman and Manski�s simulation method and

smoothed SMLEs regardless of the simulation number. The domination is prominent es-

pecially when the simulation number is small and the sample size is large. It is worth

noting that when discrete choice models are complicated in structural modeling, re�ecting

various heterogenous components, the Lerman-Manski simulation method often emerges as

one of the most attractive simulation methods. The general principle of Lerman-Manski�s

method, in particular, does not require that observed components are related to unobserved

components in a speci�c manner.

Second, our estimator overall dominates MSM that does not use the optimal weighting

matrix. When the sample size is small and the simulation number is large, our estimator

performs better than MSM that uses the optimal weighting matrix. For other cases, our

estimator performs well, comparable to this MSM with optimal weighting matrix. However,

this direct comparison may not be fair because in order to estimate this optimal MSM, one

has to estimate the parameters in the �rst step. Hence the computation of the optimal MSM

takes roughly twice long as MSM without the optimal weighting matrix.

The remainder of this paper is organized as follows. In section 2, we de�ne the class of

discrete choice models and discuss SMLE. In section 3, we introduce transformed simulated

frequency (TSF) and present our main result of identi�cation of parameters for each �nite

simulation number. Section 4 establishes the asymptotic properties of the estimator. Section

5 is devoted to two examples. The �rst example concerns with static random utility models

and the second one discusses the case when only cohort-level aggregate data are available.

In Section 6, we present and discuss results from a Monte Carlo simulation study. Section 7

concludes. All the technical proofs are relegated to the appendix.

2 A Discrete Choice Model and SMLE

We introduce a discrete choice model and notations. Suppose that a binary decision variable,

Dij, of an agent i choosing the j-th choice, is stochastically linked with an observed covariate

vector Xi as follows:

Dij = �j(Xi; �i; �0);
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where Xi = (Xi1; � � �; XiJ)0 represents a vector of observed covariates, �i = (�i1; � � �; �iJ)0

denotes a random vector representing unobserved shocks, and �0 2 � � Rd represents the

parameters to be estimated. The number J represents the number of the choices the agent

encounters and n represents the number of agents in the data set. For example, �j can be

speci�ed as follows,

�j(Xi; �i; �0) = 1

�
uj(Xi; �i; �0) � max

1�k�J
uk(Xi; �i; �0)

�
:

Here the function uj(Xi; �i; �) often has a structural interpretation as a random utility (Mc-

Fadden (1974)). While such a structural interpretation is a prime example, our framework

does not strictly require that �j(Xi; �i; �) have a random utility speci�cation of the above

form.

The choice probability of the agent choosing the j-th option is de�ned by

pj(Xi; �) = E [�j(Xi; �i; �)jXi] :

The choice probability is obtained by "integrating out" the unobserved variable �i conditional

on the observed covariate Xi: It is interpreted as the probability of the j-th choice being

made by an agent i with a covariate Xi: Given the choice probabilities pj(Xi; �); it is natural

to form the log-likelihood of a random sample fDi; Xig as follows:

ln(�) =
1

n

nX
i=1

JX
j=1

Dij log(pj(Xi; �)):

In the case that pj(x; �) has a closed form representation, the maximum likelihood esti-

mation is straightforward. (e.g. Amemiya (1985).) However, the choice probability is often

hard to evaluate, in particular when the number of choices, J; is large and one wants to

admit �exibility in specifying the joint distribution of �i: One can bypass this di¢ culty by

using a choice probability simulator p�jR and constructing a simulated log-likelihood,

l�n;R(�) =
1

n

nX
i=1

JX
j=1

Dij log(p
�
jR(Xi; �)): (1)

The number R represents the repitition number of simulated stochastic variables. Then, the

simulated maximum likelihood estimator (SMLE) is de�ned as a maximizer of the above

simulated likelihood function,
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�̂
�
n;R � argmax

�2�
l�n;R(�):

As mentioned in the introduction, many literatures have focused on improving the simulation

of p�jR: The simulation bias in this case disappears only with R increasing. This paper

suggests a di¤erent approach of SMLE that is entirely free from the simulation bias even

with �xed R: We explain this approach in the following section in detail.

3 Transformed Simulated Frequency MLE

3.1 Transformed Simulated Frequency

Suppose that the R number of stochastic errors ��i;r; r = 1; � � �; R; are drawn from the known
distribution F . Then �j(Xi; �

�
i;r; �); r = 1; � � �; R; denotes simulated choices for each value

of �: The simulated frequency of each choice is obtained by

mjR(Xi; �
�
i ; �) =

RX
r=1

�j(Xi; �
�
i;r; �)

where ��i = (�
�
i;1; � � �; ��i;R) is a random sample from the distribution F of �i: The quantity

mjR(Xi; �
�
i ; �) represents the number of incidences that the j-th choice is made by an agent

i that has covariates Xi and simulated stochastic errors ��i . From now on, we write brie�y

mji(�) = mjR(Xi; �
�
i ; �) (2)

and mi(�) = (m1i(�); � � �;mJi(�))
0:

Our method uses an objective function that involves a transformed version of the simu-

lated frequencies mjR: More speci�cally, let NR = f0; 1; 2; � � �; Rg and de�ne

NR;J =
�
(m1; � � �;mJ) : mj 2 NR; j = 1; � � �; J; and �Jj=1mj = R

	
:

The set NR;J denotes the space of J-tuples of simulated frequencies. Suppose that we are
given a set of maps T jR : NR;J ! R, j = 1; � � �; J: Then, we can construct an objective
function whose maximization yields an estimator of �0 as follows:

�̂(fT jRg) = argmax
�2�

l�n;R(�; fT
j
Rg)
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where

l�n;R(�; fT
j
Rg) =

1

n

nX
i=1

JX
j=1

DijT
j
R(mi(�)): (3)

The estimator �̂(fT jRg) certainly depends on the maps T
j
R : NR;J ! R. For example, when

we choose the map T jR to be

T jR(m) = log
�mj

R

�
; (4)

the estimator �̂(fT jRg) is reduced to the SMLE of Lerman and Manski (1981). As is well
known, this choice of T jR leads to an estimator �̂(fT

j
Rg) that su¤ers from a simulation bias.

Our paper�s goal is to identify transforms T jR such that the estimator �̂(fT
j
Rg) does not su¤er

from a simulation bias at all when n!1 for each �nite R:

Absence of simulation bias implies that we can identify the true parameter when the simu-

lation number R is �nite and the sample size n is su¢ ciently large. To describe identi�cation

under �xed R; we consider the following population objective function

lR(�; fT jRg) � El�n;R(�; fT
j
Rg): (5)

The function lR(�; fT jRg) can be thought of as the probability limit of the simulated objective
function divided by n as n goes to in�nity. The identi�cation of �0 is proceeded in two steps:

the identi�cation of the choice probability function pj(x; �0) from the data set and the identi-

�cation of the parameter �0 from the choice probability function pj(x; �0): The second step is

standard in the literature of discrete choice models and we will delineate su¢ cient conditions

later. For now, it su¢ ces to note that transforms fT jRg a¤ects the identi�cation of �0 only
through a¤ecting the identi�cation of the choice probability. Therefore, the main question is

what choice of transforms fT jRg guarantees the identi�cation of the choice probabilities for
each �nite R:

There are two main challenges in the search of transforms fT jRg that leads to identi�cation
of �0 under �xed R. First, it is not even known a priori whether such transforms exist.

Second, even when such transforms exist, the transforms may depend on unknown aspects

of the data generating process so that the transforms eventually have to be estimated from

the data. Such transforms are not attractive, because the procedure introduce additional

noise into the inference procedure and may lead to ine¢ cient estimator even when R is

large. The major contribution of this paper is the discovery of the set of transforms fT jRg
that have an algebraically simple and explicit form and are independent of the underlying

data generating process.

Intuitively, the search for such transforms that are independent of unknown aspects of
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P should utilize only information that is fully known. De�ne a simplex SJ = fp 2 [0; 1]J :
�Jj pj = 1g: Given a transform fT jRg; we introduce a function �R(p; p0; fT

j
Rg) : SJ � SJ ! R

as follows:

�R(p; p0; fT jRg) =
JX
j=1

pj0

Z
T jR(m)dFR(m; p);

where FR(�; p) is the multinomial distribution function on NR;J with parameter (R; p); p =
(p1; � � �; pJ)0 2 SJ ; p0 = (p10; � � �; pJ0)0 2 SJ : The function �R is uniquely determined once
R and the transform fT jRg are chosen, and it does not depend on any other speci�cs of the
data generating process.

This function �R "links" between the transform fT jRg and the population objective func-
tion lR(�; fT jRg) in the following way. First note that

�R(p(x; �); p(x; �0); fT jRg) = E
�
l�n;R(�; fT

j
Rg)jXi = x

�
;

where p(x; �) = (p1(x; �); � � �; pJ(x; �))0: From this, it follows that we can write

lR(�; fT jRg) = E
�
�R(p(Xi; �); p(Xi; �0); fT jRg)

�
:

Therefore, the identi�cation of the choice probability p(x; �0) hinges on the way fT jRg is
related to �R: In other words, the condition for fT jRg that ensures the identi�cation of p(x; �0)
can be characterized as that for �R: In fact the condition for �R can be characterized from

the �rst order necessary condition for the identi�cation of p(x; �0):

To see this, we assume the interchangeability of the derivative and expectation. Then,

the �rst order condition (FOC) for �0 for maximizing lR is written as,

@lR(�; fT jRg)
@�

j�=�0 =
JX
j=1

E

�
�jR(p(Xi; �0); p(Xi; �0); fT jRg)

@pj(Xi; �0)

@�

�
= 0, (6)

where

�jR(p; p0; fT jRg) =
@�R(p; p0; fT jRg)

@pj
: (7)

Since the choice probabilities sum up to one for all x and �, di¤erentiability of pj(x; �) at

each � implies
JX
j=1

@pj(x; �)

@�
= 0: (8)

Therefore, the �rst order condition immediately follows if the following condition is satis�ed:

9



for each p0 2 SJ ;

�jR(p0; p0; fT jRg) = �kR(p0; p0; fT
j
Rg); for all j; k = 1; 2; � � �; J: (9)

The condition in (9) has an important merit of not depending on any aspect of the data

generating process. This means that if there are fT jRg such that (9) is satis�ed, we may be
able to select a transform that does not depend on the data generating process and hence is

fully known. The main idea of this paper is that we utilize the restriction in (9) to �nd an

appropriate set of transforms fT jRg:
While (9) is stronger than the original �rst order condition in (6) for many data generating

processes, our focusing on the restriction in (9) is almost necessary because the condition in

(9) becomes equivalent to the original �rst order condition for some data generating processes.

For example, consider an extreme case where J = 2 and Xi has a degenerate distribution

with a single point mass at x and @p1(x; �0)=@� = 1=2 and @p2(x; �0)=@� = �1=2: Then the
�rst order condition is equal to

0 =
JX
j=1

�jR(p(x; �0); x; fT jRg)
@pj(x; �0)

@�

=
1

2
�1R(p(x; �0); x; fT jRg)�

1

2
�2R(p(x; �0); x; fT jRg):

In this case, the condition (9) implies that �jR is invariant to j: Since we do not want to

impose a priori additional restrictions upon the data generating process, our search for fT jRg
should accommodate this kind of situation, i.e., a situation where the conditions (6) and (9)

are equivalent. Therefore, it appears natural to focus on the condition (9) and let it guide the

search for an appropriate fT jRg: It remains to identify fT
j
Rg that satis�es (9). The solution

is given in the following algebraic result.

Lemma 1: Transforms fT jRg satisfy (9) if for each j = 1; � � �; J;

T jR(m) = �
R�mj�1X
s=0

1

R� s +
�(m�j)

R
; (10)

where �(m�j) =
PJ

k=1;k 6=j 1fmk > 0g: Here we take the summation
P�1

s=0 to be zero.

Lemma 1 is a pure algebraic result that does not involve any unknown speci�cs of the

data generating process in the model. The proof of Lemma 1 is very simple, involving only

algebraic computations. To �nd the form T jR; we �rst extract su¢ cient conditions for (9) and

see what conditions are needed for T jR to satisfy these conditions. Then, these conditions
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for T jR lead to an a¢ ne transform of the form in (10). We o¤er a proof of Lemma 1 that

illuminates this discovery process.

It is not immediately clear how the choice of (10) is related to the MLE obtained by using

(4) with su¢ ciently large R: To see this closely, note �rst that the simulated frequencies

mji(�)=R!P pij(�) 2 (0; 1] with R!1; by the law of large numbers, and that

�(m�ji(�))

R
� J � 1

R
! 0:

Finally, observe that

�
R�mji(�)�1X

s=0

1

R� s ! log(pij(�)):

This latter convergence is immediate as the sum is a Rieman lower sum of �
R 1
mji(�)=R

(1=x)dx:

Therefore, the objective function l�n;R(�; fT
j
Rg) becomes closer to that of MLE as R!1:

Let mji(�) be as de�ned in (2). Then, the estimator that this paper propses is the

following:

�̂ = argmax
�2�

1

n

nX
i=1

JX
j=1

Dij

8<:�
R�mji(�)�1X

s=0

1

R� s +
�(m�ji(�))

R

9=; : (11)

The estimator is computed from a single-step maximization of the above objective function.

Note that the objective function does not require any preliminary step of estimation. The

form of the objective function is explicit and can be immediately evaluated. The speci�ca-

tion of the discrete choice model a¤ects the objective function only through the simulated

frequencies mj(�). Hence this approach of transformed simulated frequency can be applied

to any discrete choice models in which we can obtain the simulated frequencies mj(�): We

will call T jR(m) transformed simulated frequency (TSF) and the estimator �̂ de�ned in (11)

as TSF-MLE.

Lemma 1 in itself is not immediately seen to lead to the identi�cation of �0 when one

estimates �0 as in (11), because the form of T
j
R is derived from information contained only in

the FOC of the (population) M -estimation problem. In Theorem 1 below, we establish that

the choice of T jR in Lemma 1 indeed yields the identi�cation of �0 for �nite R. We introduce

the following regularity conditions.

Assumption 1 : (i) � is compact with an interior containing �0 and for all � 2 � and x in
the support of Xi; the choice probability pj(x; �) belongs to SJ :

(ii) For each x in the support of Xi and for each j 2 f1; � � �; Jg; pj(x; �) is twice-continuously
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di¤erentiable at � = �0 and for some � > 0;

E






 sup
�2B(�0;�)

@p(Xi; �)

@�







2

<1 and E






 sup
�2B(�0;�)

@2p(Xi; �)

@�@�0







2

<1:

(iii) For all � =2 �0; there exists j 2 f1; � � �; Jg such that Pfpj(Xi; �0) 6= pj(Xi; �)g > 0.

Conditions in Assumption 1 are standard in the MLE of discrete choice models. Condition

(i) requires that the choice probability function p(x; �) is well-de�ned for all � 2 �: Condition
(ii) is stronger than needed for identi�cation. The twice di¤erentiability is assumed envisag-

ing the derivation of asymptotic normality in the next section. Condition (iii) is a minimal

necessary condition used to iden�ty �0 from the choice probabilities.

Theorem 1 (Identi�cation) : Suppose that Assumption 1 holds. Then for each � > 0;

lR(�0; fT jRg) > max
�2�nB(�0;�)

lR(�; fT jRg);

where B(�0; �) = f� 2 � : jj� � �0jj < �g:

The identi�cation result in Theorem 1 is obtained by showing that the population ob-

jective function �R(p; p0; fT jRg) is globally strictly concave in p 2 SJ for each p0 2 SJ :

Therefore, the population objective function lR(�; fT jRg) is uniquely maximized at � = �0:

4 Asymptotic Properties

In this section we investigate the asymptotic properties of the estimator �̂ de�ned in (11).

The asymptotic properties of �̂ are developed for two separate cases: when R is �xed and

when R tends to in�nity jointly with the sample size n. Let X be the support of Xi: We

introduce the following assumptions.

Assumption 2 : (i) f(Di; Xi; �i)gni=1 is i.i.d. from a common distribution.

(ii) For each ~� 2 �; supx2XE[sup�2B(~�;") j�j(Xi; �i;
~�)� �j(Xi; �i; �)j2jXi = x] � C", for some

C > 0:

(iii) For some � > 0; inf�2B(�0;�) infx2X pj(x; �0) > "p > 0; j = 1; � � �; J; for some "p > 0:
(iv) (Xi; �i)

n
i=1 and (Xi; �

�
i )
n
i=1 are distributionally identical.

Condition (ii) controls the manner the random decision rule �j(Xi; �i;r; �) depends on

� and (Xi; �i;r): The condition requires that the decision rule � is locally uniformly L2-

continuous in � (e.g. Chen, Linton, van Keilegom (2003)). This condition is a very useful
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high-level condition that can be used to establish the stochastic equicontinuity of an empirical

process involving a discontinuous function, and �exibly admits a wide class of speci�cations

of �:We present lower-level conditions in the case of random utility models in a later section

(See Lemma 2 below.) Condition (iii) requires that the choice probabilities be bounded

away from zero, and implies that pj(Xi; �0) < 1 � "p for each j = 1; � � �; J: Conditions in
Assumption 2(ii) and (iii) can be weakened at the cost of introducing a more complicated

procedure that involves a trimming sequence. Condition (iv) is certainly satis�ed when

Xi and �i are independent and �
�
i are drawn i.i.d from F , as commonly assumed in the

simulation literature.

Theorem 2 (The Rate of Convergence for Fixed R) : Suppose that Assumptions 1-2
hold. Then for each �xed R � 2; we have

n1=3(�̂ � �0) = OP (1):

The rate of convergence follows the cube-root asymptotics of Kim and Pollard (1990).

This rate of convergence is due to the fact that the objective function is discontinuous in

the parameter. Not all the objective functions that are discontinuous in parameters yield

an estimator with the cube-root asymptotics. For example, while the method of simulated

moments (MSM) estimator of McFadden (1989) and the maximum rank correlation estimator

of Sherman (1993) are obtained from maximizing discontinuous objective functions, they are

asymptotically linear with bounded information and hence
p
n-consistent. However, the usual

asymptotic linearity of an estimator breaks down in our case, and the rate of convergence

becomes slower than the parametric rate. When R tends to in�nity slightly faster than
p
n,

not only is the
p
n-rate of convergence restored, but also the estimator achieves the e¢ ciency

of MLE.

Theorem 3 (Asymptotic Normality of the Estimator As (n;R) ! 1 Jointly) :
Suppose that Assumptions 1-2 hold. As n;R!1 jointly, with

p
n log(R)=R! 0;

p
n(�̂ � �0)!p N(0;


�1);

where


 = E

" 
JX
j=1

Dij
@

@�
log pj(Xi; �0)

! 
JX
j=1

Dij
@

@�0
log pj(Xi; �0)

!0#
:

The rate condition
p
n log(R)=R ! 0 is satis�ed when R increases slightly faster than

p
n:

This condition is nearly close to the usual condition in the simulated MLE literature. In

13



particular, when
p
n=R ! 0; it is known that regardless of when one uses the simulation

frequency of Lerman and Manski (1981) or the GHK simulator for p�jR(Xi; �) in (1), the

estimator is consistent and asymptotically normal. (See Gourieroux and Monfort (1991)).

5 Examples

5.1 Static Random Utility Models

We consider a static random utility model. Suppose that the utility of agent i with covariates

Xi and stochastic errors �i when she makes the j-th choice is given by uj(Xi; �ij; �) =

�j(Xi; �) + �ij for some function �j: Then she makes the j-th choice when

�j(Xi; �i; �) = uj(Xi; �ij; �)� max
1�k�J;k 6=j

uk(Xi; �ik; �)

is greater than zero. In this case, the decision rule �j is de�ned by

�j(Xi; �i; �) = 1 f�j(Xi; �i; �) > 0g :

Then the following lemma provides su¢ cient conditions that ensure the local uniform Lp-

continuity of the random decision rule �j(Xi; �i; �) in � in Assumption 2(ii).

Lemma 2 : Suppose that for each � 2 �; and for each x in the support of X;

sup
1�j�J

����j(x; �)� �j(x; ~�)��� � Cjj� � ~�jj:
Furthermore, assume that the conditional density of �ij � �ik given Xi = x is bounded

uniformly over x in the support of X: Then the condition of Assumption 2(ii) holds with

r = 1.

It is also easy to show the condition of Assumption 2(ii) for di¤erent speci�cations

of random utilities. For example, consider the random utility speci�ed as u(Xi; �ij; �) =

A(�; �ij)
0Xi where A(�; �) = B(�) + ��(�) and Xi has a bounded support. In this case, the

Lp-uniform continuity condition in Assumption 2(ii) is proved as follows. First consider

u(Xi; �ij; �)� u(Xi; �ij;
~�)

= (B(�)�B(~�))
KX
m=1

Xim +
KX
m=1

(�m(�)� �m(~�))�ijXim:
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Hence the Lp-continuity condition follows immediately when B(�) and �(�) are Lipschitz

continuous in � at �0: When Xi has an unbounded support, we may rede�ne ~u(Xi; �ij; �) =

�(A(�; �ij)
0Xi) where � is a bounded strictly increasing function that is �rst order continu-

ously di¤erentiable with derivative � such that supx2RdX �(x)jjxjj <1:

5.2 Simulated MLE with Cohort-Level Aggregate Data

In this section, we demonstrate that our results can be applied without di¢ culty to the

case where we have only cohort-level aggregate data. The use of cohort-level aggregate data

is common in the literature of empirical industrial organizations. (e.g. Pakes (1986) and

Berry, Levinsohn, and Pakes (1995)). In such situations, modeling unobserved heterogeneity

has drawn special attention in the literature, as the aggregate data do not contain direct

information about the heterogeneity among agents. Our estimation method can be useful in

this case because it allows for �exible modeling of unobserved heterogeneity.

Suppose that we haveK number of cohorts and n(k) number of agents in the k-th cohort.

The individual decision variable Dij(k) corresponding to the agent i in cohort k choosing

the j-th choice is de�ned as a binary variable such that

Dij(k) = �j(X(k); �ij(k); �); when the j-th choice is made by the agent i in cohort k:

Note that the observed variableX(k) is only a cohort-level aggregate covariate. The variables

Dij(k) and �ij(k) represent the unobserved micro variables for each individual. De�ne

Dj(k) =
1

n(k)

n(k)X
i=1

Dij(k)

and D(k) = (D1(k); � � �; DJ(k))
0: The variable Dj(k) indicates a proportion of agents in

cohort k that have chosen the j-th choice. The econometrician observes only the cohort-

level aggregate data fD(k); X(k)gKk=1: The (infeasible) log-likelihood of the micro data after
normalizing by n(k) is equal to

KX
k=1

JX
j=1

1

n(k)

n(k)X
i=1

Dij(k) logP fDij(k) = 1jX(k); �g

When the conditional distribution of the stochastic error �ij(k) given X(k) is identical for

each individual i; the conditional probability P fDij(k) = 1jX(k); �g is identical for all the
individuals in the k-th cohort. This is the case when f�ij(k) : i = 1; � � �; n(k); k = 1; � � �; Kg
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is i.i.d. and independent of fX(k) : k = 1; � � �; Kg: In this case, we can write the cohort-level
likelihood as

KX
k=1

JX
j=1

Dj(k) logP fDij(k) = 1jX(k); �g :

This is the log-likelihood using only the observable cohort characteristics and the proportion

of agents in each cohort that made certain decisions. Let F be the fully known marginal

distribution of (�i1(k); � � �; �iJ(k)): Then, one draws R random sample from F to obtain

f��r(k)gRr=1 where ��r(k) = (��r1(k); � � �; ��rJ(k)): We de�ne the simulated frequency

mjR(k; �) =
1

R

RX
r=1

�j(X(k); �
�
r;j(k); �):

Then using the transform that we propose here, we can construct an objective function as

follows

l�K;R(�; fT
j
Rg) =

1

K

KX
k=1

JX
j=1

Dj(k)T
j
R(mR(k; �)):

Note that

E [Dj(k)jX(k)] = P fDij(k) = 1jX(k)g :

Hence one can check su¢ cient conditions with this choice probability. The results of Theo-

rems 1-3 carry over to this case as long as the data fD(k); X(k)gKk=1 are cohort-wise i.i.d.

6 A Monte Carlo Study: A Model of Schooling Choice

6.1 The Model and the Simulation Design

In this section, we present and discuss results from a Monte Carlo simulation study. The

model considered in the study is a model of schooling choice with observed ability and

unobserved heterogeneous discount factor and preference. See Willis and Rosen (1982) and

Keane and Wolpin (1997) for models of discrete choices under unobserved heterogeneity in

the preferences.

Suppose that people make schooling decisions at the age 16 endowed with 10 years of

education. They can choose among the 4 alternatives: 1) to drop out of high school and

start working right away, 2) to graduate from high school attaining 12 years of education,

3) to graduate a 2-year college with 14 years of education, and 4) to graduate from college

with 16 years of education. After �nishing their respective schooling, they work until age 65

and there is no labor supply decision. Therefore, the number of periods in the model is 50
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periods.

People are assumed to be heterogeneous in 1) two observed measures of ability (X1 and

X2) which a¤ect their labor market income, 2) unobserved discount factor and 3) unobserved

random utility value of schooling. Labor market income is determined by individuals�ability

and years of schooling and is assumed to follow the Mincer-type exponential distribution.

wt = exp (�0 + �1X1 + �2X2 + �3E + "1) ;

where E is the years of education taking values of 10, 12, 14, and 16 and "1 is normal, i.i.d.,

across individuals and periods with standard deviation of �1. Once an individual enters

labor market and starts working, going back to school is not permitted. In each period t, the

utility is given by U1t if the individual works, and U2t if he attends school. Also, we assume

that the individual observes the labor income shock only after he enters the labor market

and, therefore, the expected value of the wage only enters the utility function. This set-up

yields the following two utilities corresponding to entering the labor market and attending

school:

U1t = E (w) = exp

�
�0 + �1X1 + �2X2 + �3E +

1

2
�21

�
U2t = 
11fin high schoolg+ 
21fin two-year collegeg+ 
31fin four-year collegeg+ "2;

where Et denotes the years of education received up to t, so that

Et+1 = Et + 1fschooling is chosen at tg:

Here 
1 is the average utility of attending high school (we assume that there�s no tuition for

attending high school), 
2 the average utility of attending two year college including tuition

cost, 
3 the average utility of attending four year college including tuition cost, "2 is mean

zero and normally distributed individual speci�c random e¤ect on schooling utility which

is independent across individuals, but is �xed over time for each individual. The standard

deviation of "2 is denoted by �2:

We assume that people have di¤erent discount factor �, which is correlated with observed

X3 and speci�ed as

� = "3 + �0 + �1X3

where "3 is normally distributed with mean 0 and standard deviation �3 and does not change
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over time for each individual. The errors "1; "2; and "3 are independent.

Let U(E = a) be the discounted utility from schooling choice E = a at the beginning

of life cycle. Given that working is an absorbing state, we can represent this multi period

dynamic programming model in the following 4-choice static model:

U(E = 10) =
50X
t=1

�t�1e�0+�1X1+�2X2+�3�10+
1
2
�21

U (E = 12) =

2X
t=1

�t�1 (
1 + "2) +

50X
t=3

�t�1e�0+�1X1+�2X2+�3�12+
1
2
�21

U (E = 14) =

2X
t=1

�t�1 (
1 + "2) +

4X
t=3

�t�1 (
2 + "2)

+
50X
t=5

�t�1e�0+�1X1+�2X2+�3�14+
1
2
�21

U (E = 16) =
2X
t=1

�t�1 (
1 + "2) +
6X
t=3

�t�1 (
3 + "2)

+
50X
t=7

�t�1e�0+�1X+�2X2+�3�16+
1
2
�21 :

Given the model structure, we expect people with higher ability X1 and X2; higher discount

factor � and higher utility value of schooling "2 to attain a higher level of schooling.

We assume that the econometrician observes the ability measures X1 and X2; the school-

ing outcome, and characteristics X3 that a¤ect discount factor. Discount factor � and the

utility value of schooling "2 are not observed. Given that there is no selection into the labor

market, the parameters in the wage equation are simply estimated by a linear regression of

wage on observable characteristics. Given the purpose of this simulation excercise, we as-

sume that the parameters in the wage equation are known and focus only on the parameters

in the schooling utility and the parameters in the discount factor. Hence the parameters of

interest in this exercise is as follows:

schooling utility parameters : 
1; 
2; 
3; �2 and

discount factor parameters : �0; �1; �3:

For estimation, we consider our TSF-MLE, simulated MLE following Lerman and Manski

(1981)�s proposal, McFadden (1989)�s smoothed SMLE, and the method of simulated mo-

ments of McFadden (1989). Our comparison is not exhaustive, but we believe that the

simulated MLE of Lerman and Manski (1981) and the MSM of McFadden (1989) are the
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most common approach that an empirical researcher adopts in this type of models. Note that

we cannot apply simulation methods that involve GHK simulators because the unobserved

heterogeneity in discount factor is nonlinear in the latent process. The moment conditions

that we consider for MSM are as follows:X
i

(Dj � pj(Xi; �))� 1 = 0, j = 2; 3; 4X
i

(Dj � pj(Xi; �))�Xk = 0, j = 2; 3; 4; k = 1; 2; 3:

The sample size was chosen among f100; 200; 500; 1000g and the simulation number from
f10; 20; 50; 100g: When the simulation number was equal to or greater than 100; the com-
parison was not much informative as most estimators perform well in our data generating

process. The Monte-Carlo simulation number was set to be 1000:

6.2 TSF-MLE, Lerman-Manski SMLE, and Smoothed SMLE

This section compares the performance of our estimator, the Lerman-Manski�s procedure,

and smoothed SMLE. The Lerman-Manski procedure uses simulated frequencies to compute

simulated choice probabilities. To prevent the zero-probability problem, we substituted

0:5=R for simulated probabilities that turned out to be zero. The second kind is a smoothed

SMLE which is computed by using the following smoothed simulated choice probability:

pj;R =
1

R

RX
r=1

exp(Uj;r=�)

�Jj=1 exp(Uj;r=�)
:

Here the parameter � is a smoothing parameter, larger values indicating more smoothing, and

Uj;r denotes the simulated value function of choice j at the r-th simulation. The smoothing

parameter chosen from f0:1; 0:01g performed relatively better than other choices. The results
are reported in Tables 1-4.

Table 1 compares the overall simulation errors in terms of the log-likelihood evaluation of

the simulation-based estimator using the true log-likelihood ln(�): This number is bounded by

ln(�̂MLE) with �̂MLE denoting the MLE of �0: As the number is higher, the simulation-based

estimator su¤ers from a smaller overall simulation error. First, note that the performance

of the Lerman-Manski is di¤erent from smoothed SMLEs. The simulation results show that

the use of smoothing does not improve the performance, and sometimes, even worsen the

quality of the estimator.

When the sample size is small, the performance of Lerman-Manski�s procedure and
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Table 1: TSF-MLE and Lerman-Manski SMLEs: Log Likelihood

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE -1,001.3 -992.3 -985.9 -984.6

n = 100 Lerman-Manski -1,015.9 -994.6 -986.0 -984.6

Smoothed SMLE (� = 0:1) -1,018.3 -996.9 -985.6 -983.9

Smoothed SMLE (� = 0:01) -1,015.7 -996.4 -985.4 -983.9

TSF-MLE -1,008.0 -1,002.1 -998.0 -997.0

n = 200 Lerman-Manski -1,018.2 -1,003.8 -998.2 -997.3

Smoothed SMLE (� = 0:1) -1,035.6 -1,000.6 -998.9 -997.4

Smoothed SMLE (� = 0:01) -1,031.1 -1,012.6 -999.1 -997.3

TSF-MLE -1,008.7 -1,005.3 -1,002.9 -1,002.4

n = 500 Lerman-Manski -1,019.0 -1,006.6 -1,003.9 -1,002.5

Smoothed SMLE (� = 0:1) -1,048.8 -1,028.1 -1,007.6 -1,004.0

Smoothed SMLE (� = 0:01) -1,043.8 -1,027.7 -1,007.7 -1,004.1

TSF-MLE -1,007.8 -1,005.9 -1,004.5 -1,004.0

n = 1000 Lerman-Manski -1,018.1 -1,006.8 -1,004.6 -1,004.2

Smoothed SMLE (� = 0:1) -1,057.4 -1,040.3 -1,013.1 -1,006.5

Smoothed SMLE (� = 0:01) -1,052.9 -1,037.7 -1,012.8 -1,006.5
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Table 2: TSF-MLE and Lerman-Manski SMLEs: MAE of Estimated Standard Deviation of Dis-
count Factor (�100), (�3 = 0:02:)

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.53 0.47 0.42 0.40

n = 100 Lerman-Manski 0.57 0.51 0.43 0.40

Smoothed SMLE (� = 0:1) 0.66 0.54 0.42 0.40

Smoothed SMLE (� = 0:01) 0.68 0.55 0.43 0.40

TSF-MLE 0.39 0.35 0.31 0.28

n = 200 Lerman-Manski 0.44 0.36 0.29 0.27

Smoothed SMLE (� = 0:1) 0.55 0.44 0.31 0.28

Smoothed SMLE (� = 0:01) 0.52 0.42 0.31 0.27

TSF-MLE 0.26 0.22 0.18 0.17

n = 500 Lerman-Manski 0.37 0.25 0.19 0.18

Smoothed SMLE (� = 0:1) 0.55 0.47 0.28 0.20

Smoothed SMLE (� = 0:01) 0.47 0.47 0.27 0.20

TSF-MLE 0.21 0.18 0.15 0.14

n = 1000 Lerman-Manski 0.36 0.22 0.16 0.14

Smoothed SMLE (� = 0:1) 0.52 0.54 0.32 0.19

Smoothed SMLE (� = 0:01) 0.49 0.53 0.31 0.19
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Table 3: TSF-MLE and Lerman-Manski SMLEs: MAE of the estimator of �1 = 0:02 (�100).

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.57 0.52 0.48 0.47

n = 100 Lerman-Manski 0.67 0.52 0.47 0.46

Smoothed SMLE (� = 0:1) 0.55 0.47 0.43 0.41

Smoothed SMLE (� = 0:01) 0.54 0.47 0.42 0.41

TSF-MLE 0.43 0.37 0.34 0.32

n = 200 Lerman-Manski 0.52 0.40 0.34 0.31

Smoothed SMLE (� = 0:1) 0.58 0.36 0.28 0.27

Smoothed SMLE (� = 0:01) 0.54 0.38 0.28 0.26

TSF-MLE 0.28 0.24 0.22 0.20

n = 500 Lerman-Manski 0.38 0.26 0.21 0.20

Smoothed SMLE (� = 0:1) 0.69 0.44 0.20 0.17

Smoothed SMLE (� = 0:01) 0.61 0.43 0.21 0.17

TSF-MLE 0.21 0.18 0.16 0.15

n = 1000 Lerman-Manski 0.31 0.19 0.16 0.15

Smoothed SMLE (� = 0:1) 0.84 0.59 0.20 0.13

Smoothed SMLE (� = 0:01) 0.76 0.55 0.20 0.13
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Table 4: TSF-MLE and Lerman-Manski SMLEs: Utility for Attending High School (
1 = 0).

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 968 856 740 667

n = 100 Lerman-Manski 989 875 747 655

Smoothed SMLE (� = 0:1) 1,196 897 746 659

Smoothed SMLE (� = 0:01) 1,173 877 728 641

TSF-MLE 702 613 515 465

n = 200 Lerman-Manski 762 654 530 468

Smoothed SMLE (� = 0:1) 1,270 778 524 464

Smoothed SMLE (� = 0:01) 1,240 764 533 463

TSF-MLE 492 408 348 315

n = 500 Lerman-Manski 541 462 362 316

Smoothed SMLE (� = 0:1) 1,565 812 405 306

Smoothed SMLE (� = 0:01) 1,515 831 412 324

TSF-MLE 338 302 256 243

n = 1000 Lerman-Manski 406 351 269 252

Smoothed SMLE (� = 0:1) 1,800 1,031 394 239

Smoothed SMLE (� = 0:01) 1,782 1,008 397 243
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smoothed SMLEs becomes comparable to our methods, although sometimes, the former

does not appear to perform inferior to our method. However, when the sample size is large,

the improved performance of our estimator becomes prominent over that of the competing

procedures. This fact remains unchanged even with smoothing. This con�rms our theoret-

ical result that our estimator is consistent even when the simulation number is small, but

the Lerman-Manski�s procedures and the smoothed SMLEs do not possess this property.

Tables 2-4 report the di¤erence between the estimated utilities from the true ones in terms

of mean absolute errors (MAE). A similar comparison among the estimators is made for the

performance in estimating the utility parameters. While not reported here, we observed a

similar patten of performance for other parameters.

6.3 TSF-MLE and MSM

The next results compare the performance of MSM and TSF-MLE. We consider two MSMs

in this case. The �rst MSM does not use optimal weighting matrix and the second MSM

does. The optimal weighting matrix used here is not the weighting matrix that ensures the

e¢ ciency of the estimator as equivalent to MLE. Since the latter is much more complicated to

compute, we choose to use rather the usual optimal weighting matrix from the GMM. Both

estimators are known to be
p
n-consistent for each �nite simulation number. The results are

reported in Tables 5-8.

Table 5 again compares the performance of MSM and TSF-MLE in terms of the log-

likelihood evaluation. First, our estimator performs better than MSM that does not use

optimal weighting matrix. This is true for most ranges of simulation numbers and sample

sizes considered. Outperformance by our estimator becomes conspicuous in particular when

the sample size is 100 and simulation number is 100. This appears to re�ect the fact that our

estimator becomes more like an MLE as the simulation number becomes large while MSM

does not. When an optimal weighting matrix was used, the quality of MSM substantially

improves, and sometimes outperforms our estimator, especially when the sample size is large

and the simulation number is small. This may be due to the slower rate of convergence of

our estimator than MSM estimators. However, it should be noted that the computation of

MSM using the optimal weighting matrix involves the �rst step estimation of the parameters.

Therefore, the direct comparison of these two estimators does not appear to be fair as one can

increase the simulation number of TSF-MLE taking advantage of its fast computing time.

In our simulations, the Lerman-Manski SMLE estimators and MSM that does not use an
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Table 5: TSF-MLE and MSM: Log Likelihood

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE -1,001.3 -992.3 -985.9 -984.6

n = 100 MSM w/o Optimal Weighting Matrix -1,036.0 -1,033.1 -1,031.5 -1,027.9

MSM w/ Optimal Weighting Matrix -1,014.6 -1,006.6 -1,004.9 -1,003.3

TSF-MLE -1,008.0 -1,002.1 -998.0 -997.0

n = 200 MSM w/o Optimal Weighting Matrix -1,029.2 -1,027.3 -1,026.6 -1,023.8

MSM w/ Optimal Weighting Matrix -1,001.8 -1,000.6 -999.7 -999.2

TSF-MLE -1,008.7 -1,005.3 -1,002.9 -1,002.4

n = 500 MSM w/o Optimal Weighting Matrix -1,019.4 -1,018.0 -1,016.2 -1,014.9

MSM w/ Optimal Weighting Matrix -1,002.2 -1,001.8 -1,001.4 -1,001.3

Table 6: TSF-MLE and MSM: MAE of Estimated Standard Deviation of Discount Factor shock
(�100), (�3 = 0:02:)

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.53 0.47 0.42 0.40

n = 100 MSM w/o Optimal Weighting Matrix 0.88 0.87 0.87 0.85

MSM w/ Optimal Weighting Matrix 0.70 0.68 0.66 0.63

TSF-MLE 0.39 0.35 0.31 0.28

n = 200 MSM w/o Optimal Weighting Matrix 0.71 0.44 0.31 0.28

MSM w/ Optimal Weighting Matrix 0.45 0.42 0.31 0.27

TSF-MLE 0.26 0.22 0.18 0.17

n = 500 MSM w/o Optimal Weighting Matrix 0.55 0.47 0.28 0.49

MSM w/ Optimal Weighting Matrix 0.47 0.47 0.27 0.23
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Table 7: TSF-MLE and MSM: MAE of the estimator of �1 = 0:02 (�100).

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.57 0.52 0.48 0.47

n = 100 MSM w/o Optimal Weighting Matrix 0.61 0.60 0.59 0.59

MSM w/ Optimal Weighting Matrix 0.56 0.55 0.54 0.53

TSF-MLE 0.43 0.37 0.34 0.32

n = 200 MSM w/o Optimal Weighting Matrix 0.44 0.43 0.43 0.43

MSM w/ Optimal Weighting Matrix 0.35 0.34 0.33 0.33

TSF-MLE 0.28 0.24 0.22 0.20

n = 500 MSM w/o Optimal Weighting Matrix 0.28 0.28 0.27 0.27

MSM w/ Optimal Weighting Matrix 0.21 0.20 0.20 0.20

Table 8: TSF-MLE and MSM: Utility for Attending High School (
1 = 0).

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 968 856 740 667

n = 100 MSM w/o Optimal Weighting Matrix 836 807 790 785

MSM w/ Optimal Weighting Matrix 946 913 894 879

TSF-MLE 702 613 515 465

n = 200 MSM w/o Optimal Weighting Matrix 549 532 531 526

MSM w/ Optimal Weighting Matrix 570 549 545 544

TSF-MLE 492 408 348 315

n = 500 MSM w/o Optimal Weighting Matrix 325 321 322 318

MSM w/ Optimal Weighting Matrix 346 336 330 330
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optimal weighting matrix took approximately the same computation time as our estimator.

The MSM estimator that uses an optimal weighting matrix took about twice as long.

7 Conclusion

In this paper we propose an alternative to the conventional simulated maximum likelihood

estimator for discrete choice models that is consistent when the number of simulations is

�nite. This alternative approach involves a simple transform of simulated frequency and

hence incurs no computational burden beyond that of the conventional simulated MLE. We

have derived the estimator�s convergence rate when the number of simulations is �xed and

we have established a rate of the increase in simulation numbers that ensures the estimator�s

asymptotic equivalence with MLE. Monte Carlo simulation studies show that the perfor-

mance of our estimator is satisfactory, dominating Lerman and Manski (1981)�s SMLE using

simulated frequencies, and SMLE using smoothed simulated choice probabilities. MSM es-

timators are shown to perform better than SMLEs when the simulation number is small.

However, the performance of MSM becomes inferior to SMLEs when the simulation number

becomes large.

While the simulation bias is completely eliminated in our estimation method, the rate of

convergence for �nite R does not achieve the
p
n-rate. It would be interesting to extend the

method of this paper so that the estimator may achieve the parametric rate. A research in

this direction is in progress by the authors.

8 Appendix: Proofs of the Results

Throughout the proofs, the notation C denotes a constant that can take di¤erent values in di¤erent places.

Proof of Lemma 1 : The proof is algebraically straightforward. Indeed, we can write out �k(p; p0;TR) as
in (13) and check the condition (9). However, we o¤er a di¤erent proof which reveals the discovery process

of the transforms fT jRg: First, we let fT
j
Rg take the following form:

T jR(m) = TR(mj ;m�j) (12)

for some map TR: Observe that

�R(p; p0; fT jRg) =
JX
j=1

pj0
X

m2NR;J

T jR (m)

 
R

m1; � � �;mJ

!
p1
m1 � � � pJmJ :
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Note that the derivative of �R with respect to pk at p = p0 is

�k(p0; p0; fT jRg) =
@

@pk
�R(p; p0; fT jRg)jp=p0 (13)

=
JX
j=1

pj0
X

m2NR;J

T jR (m)

 
R

m1; � � �;mJ

!
mkp

m1
10 p

m2
20 � � � p

mk�1
k0 � � � pmJ

J0 :

Let ck(m1; � � �;mJ) be the coe¢ cient of p
m1
1 :::pmJ

J in the expansion of �k(p; p0; fT jRg) as above. For brevity,
put p = p0 so that we write �1(p) � �1(p; p; fT jRg) as

�1(p) =
JX
j=1

X
m2NR;J

T jR (m)

 
R

m1; � � �;mJ

!
m1p

m1�1
1 pm2

2 :::p
mj�1
j�1 p

mj+1
j p

mj+1

j+1 � � � pmJ

J :

Let us compute c1(m1; � � �;mJ). Then it su¢ ces to show that cj(m1; � � �;mJ) is the same for all j = 1; � � �; J;
or, without loss of generality, that

c1(m1; � � �;mJ) = c2(m1; � � �;mJ):

First observe that c2 (m1;m2; � � �;mJ) = c1 (m2;m1; � � �;mJ) by the form of fT jRg in (12) and �R: Hence it
su¢ ces to show that

c1 (m1;m2; � � �;mJ) = c1 (m2;m1; � � �;mJ) :

To show this, �rst note that

c1(m1; � � �;mJ) = T 1R (m)

 
R

m1; � � �;mJ

!
m1 + UR (14)

where

UR =
JX
j=2

TR (mj � 1;m1 + 1;m2; � � �;mj�1;mj+1; � � �;mJ)

�
 

R

m1 + 1;m2; � � �;mj�1;mj � 1;mj+1; � � �;mJ

!
(m1 + 1) :

The relation in (14) holds for any (m1; � � �;mJ) 2 NR;J and we can simply extend the domain of TR to

negative numbers by taking TR (mj ;m�j) = 0 if mj < 0: By noting 
R

m1 + 1;m2; � � �;mj�1;mj � 1;mj+1; � � �;mJ

!
(m1 + 1) =

 
R

m1; � � �;mJ

!
mj ;

we write the coe¢ ent c1(m1; � � �;mJ) in (14) as 
R

m1; � � �;mJ

!24m1TR (m1;m�1) +
JX
j=2

mjTR (mj � 1;m1 + 1;m2; � � �;mj�1;mj+1; � � �;mJ)

35 :
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Since the factor in front of the above bracket does not depend on "1"; it su¢ ces to show that

c1 (m1;m2; � � �;mJ)

= m1TR (m1;m2; � � �;mJ) +
X
j 6=1

mjTR (mj � 1;m1 + 1;m2; � � �;mJ)

= m2TR (m2;m1; � � �;mJ) +
X
j 6=2

mjTR (mj � 1;m2 + 1;m1; � � �;mJ)

= c1(m2;m1;m3 � ��;mJ):

By rearranging terms on both sides of the second equality, we obtain

m1 [TR (m1;m2; � � �;mJ)� TR (m1 � 1;m2 + 1;m3; � � �;mJ)] (15)

+
JX
j=3

mj [TR (mj � 1;m1 + 1;m2; � � �;mJ)� TR (mj � 1;m2 + 1;m1; � � �;mJ)]

= m2 [TR (m2;m1;m3; � � �;mJ)� TR (m2 � 1;m1 + 1;m3; � � �;mJ)] :

Therefore, the proof is complete once we show that the above equality is satis�ed by our choice of (24).

One can check this equality immediately by considering each case: m1 = m2 = 0 and m1;m2 > 0 and

m1 > 0; m2 = 0 and �nally m1 = 0; m2 > 0: However, here we take a di¤erent route, showing how the form

of (24) was discovered. In the proof we generate su¢ cient conditions for the equality in (15). Then these

su¢ cient conditions lead to the solution of (24).

Without loss of generality, we assume m1 � m2 and m3 � m4 � � � � � mJ : If m1 = m2 = 0, the equality

in (15) is trivially satis�ed.

Case 1) m1;m2 > 0: Then, the condition (15) is satis�ed if

m1 [TR (m1;m2; � � �;mJ)� TR (m1 � 1;m2 + 1;m3; � � �;mJ)] = 1; (16)

and

TR (mj � 1;m1 + 1;m2; � � �;mJ)� TR (mj � 1;m2 + 1;m1; � � �;mJ) = 0: (17)

Restriction (17) implies that TR (m1;m2; :::;mJ) depends on (m2; ���;mJ) only through �(m2; ���;mJ); the

number of non-zero elements from the non-choices fm2; :::;mJg. To see this, choose (m0
2; � � �;m0

J) such that

�(m0
2; � � �;m0

J) = �(m2; � � �;mJ): Then, we can show that

TR (m1;m2; :::;mJ) = TR (m1;m
0
2; :::;m

0
J) ;

by repeating the process in (17) with adding and subtracting by 1 between two non-zero members from

fm2; :::;mJg.
Therefore we write

TR (m1;m2; :::;mJ) = TR(m1; � (m2; :::;mJ));

where � denotes the number of non-zero elements in the non-choice set. Using the observation in (17), (16)

can be re-written as

m1 [TR (m1; � (m2; � � �;mJ))� TR (m1 � 1; � (m2 + 1;m3; � � �;mJ))] = 1; (18)
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and note that � (m2; � � �;mJ) = � (m2 + 1;m3; � � �;mJ) : Hence we extract one condition for TR that leads

to (18):

TR (m; �)� TR (m� 1; �) =
1

m
for all possible m: (19)

Case 2) m1 > 0 and m2 = 0: If further, m3 = 0 then m1 is simply R: In this case,

m1 [TR (m1;m2; � � �;mJ)� TR (m1 � 1;m2 + 1;m3; � � �;mJ)] (20)

= R [TR (R;m2 = 0; � � �;mJ = 0)� TR (R� 1;m2 + 1;m3 = 0; � � �;mJ = 0)] = 0

or

TR (R; 0) = TR (R� 1; 1) : (21)

If on the other hand m3 > 0; we have from (9)

m1 [TR (m1;m2; � � �;mJ)� TR (m1 � 1;m2 + 1;m3; � � �;mJ)]

+

JX
j=3

mj [TR (mj � 1;m1 + 1;m2; � � �;mJ)� TR (mj � 1;m2 + 1;m1; � � �;mJ)]

= 0:

By subtracting and adding back TR (m1 � 1;m2;m3 + 1; � � �;mJ) ; we can write the above equation as

m1 [TR (m1;m2;m3; � � �;mJ)� TR (m1 � 1;m2;m3 + 1; � � �;mJ)] (22)

= m1 [TR (m1 � 1;m2 + 1;m3; � � �;mJ)� TR (m1 � 1;m2;m3 + 1; � � �;mJ)]

+
JX
j=3

mj [TR (mj � 1;m2 + 1;m1; � � �;mJ)� TR (mj � 1;m1 + 1;m2; � � �;mJ)]

Note that the left hand side in (22) is 1 by (18) and the di¤erence in the number of non-zero elements

in TR for each di¤erence term on the right-hand side is exactly 1. For example, � (m2 + 1;m3; � � �;mJ) =

� (m2;m3 + 1; � � �;mJ) + 1 and � (m2 + 1;m1; � � �;mJ) = � (m1 + 1;m2; � � �;mJ) + 1: Therefore, if

TR (m; �)� TR (m; � � 1) = c

for some c independent of m and �, (22) is satis�ed. In this case, (22) becomes

1 =
JX
j=1

cmj = cR or c =
1

R
:

Therefore, we extract a condition for (22):

TR (m; �)� TR (m; � � 1) =
1

R
(23)

for all m and �: To summarize, conditions (19), (21), and (23) are su¢ cient for (15).

Now, if we de�ne

TR(mj ;m�j) = �
R�mj�1X
s=0

1

R� s +
�(m�j)

R
; (24)

30



this choice of TR satis�es conditions (19), (21), and (23), and hence the equation (15) follows, completing

the proof. On the other hand, it is also worth noting that the conditions (19), (21), and (23) for TR also

lead to the form of (24) up to an a¢ ne transform. This is the way the transform TR is determined.

Proof of Theorem 1 : We �rst consider the case of J = 3. Recall

�R

�
p; p0; fT jRg

�
=
X
j

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TRj (m1;m2;m3) p

m1
1 pm2

2 pm3
3

where we de�ne TRj (m1;m2;m3) = TR(mj ;m�j):We show that �R(p; p0; fT jRg) is globally (strictly) concave
in p 2 SJ : Then �R(p; p0; fT jRg) is uniquely maximized at p = p0 and by Assumption 1(iii), we obtain the

identi�cation result.

Recall that �j denotes the derivative of �R(p; p0; fT jRg) with respect to pj ; so that

�1 � �3 =
X
j

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TRj (m1;m2;m3)

�
�
m1p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g �m3p

m1
1 pm2

2 pm3�1
3 1fm3 > 0g

	
:

By relabeling the terms (m3 as m3 + 1 and m1 as m1 � 1),

�3 =
X
j

pj0
X

m2NR;3

 
R

m1 � 1;m2;m3 + 1

!
TRj (m1 � 1;m2;m3 + 1) (m3 + 1)p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g

=
X
j

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TRj (m1 � 1;m2;m3 + 1)m1p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g:

Hence the di¤erence �1 � �3 is equal to
P

m2NR;3 BR(m)p
m1�1
1 pm2

2 pm3
3 ; where

BR(m) =
3X
j=1

pj0

 
R

m1;m2;m3

!
fTRj (m1;m2;m3)� TRj (m1 � 1;m2;m3 + 1)gm11fm1 > 0g

However, by the de�nition of TRj ; we have

m1 [TRj (m1;m2;m3)� TRj (m1 � 1;m2;m3 + 1)]

= m1 � 1fj = 1g
�
1

m1
� 1fm3 = 0g

R

�
+m1 � 1fj = 2g

�
1fm1 = 1g

R
� 1fm3 = 0g

R

�
+m1 � 1fj = 3g

�
�1

m3 + 1
+
1fm1 = 1g

R

�
:

Plugging this back into BR(m) we obtain

BR(m) = p10

 
R

m1;m2;m3

!h
1� 1fm3 = 0g

m1

R

i
+ p20

 
R� 1

m1 � 1;m2;m3

!
[1fm1 = 1g � 1fm3 = 0g]

+p30

 
R

m1 � 1;m2;m3 + 1

!�
�1 + 1fm1 = 1g

m3 + 1

R

�
:
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Now, write the summand in �1 � �3:

BR(m)p
m1�1
1 pm2

2 pm3
3 =

(
p10
p1

 
R

m1;m2;m3

!
pm1
1 pm2

2 pm3
3 � p10

 
R� 1

m1 � 1;m2; 0

!
pm1�1
1 pm2

2

)
I(m1 > 0)

+p20

 
R� 1

0;m2;m3

!
pm2
2 pm3

3 � p20

 
R� 1

m1 � 1;m2; 0

!
pm1�1
1 pm2

2 I(m1 > 0)

�p30
p3

 
R

m1 � 1;m2;m3 + 1

!
pm1�1
1 pm2

2 pm3+1
3 I(m1 > 0) + p30

 
R� 1

0;m2;m3

!
pm2
2 pm3

3 :

Summing the above over m 2 NR;3 and rearranging the terms, we obtain that �1 � �3 is equal to

p10
p1

241� X
m2NR;3

 
R

0;m2;m3

!
pm2
2 pm3

3

35� p10 (p1 + p2)R�1 + p20 (p2 + p3)R�1 � p20 (p1 + p2)R�1
�p30
p3

241� X
m2NR;3

 
R

m1 � 1;m2; 0

!
pm1�1
1 pm2

2

35+ p30 (p2 + p3)R�1
or

p10

�
1

p1

�
1� (p2 + p3)R

�
� (p1 + p2)R�1

�
+ p20

h
(p2 + p3)

R�1 � (p1 + p2)R�1
i

�p30
�
1

p3

�
1� (p1 + p2)R

�
� (p2 + p3)R�1

�
:

Using the fact that p1 + p2 + p3 = 1 and p10 + p20 + p30 = 1; we �nd that the above becomes,

p10
p1

h
1� (1� p1)R

i
+ (1� p10) (1� p1)R�1 �

p30
p3

h
1� (1� p3)R

i
� (1� p30) (1� p3)R�1

=
p10
p1
+

�
1� p10

p1

�
(1� p1)R�1 �

p30
p3
�
�
1� p30

p3

�
(1� p3)R�1 :

Therefore, @ (�1 � �3) =@p1 is equal to

�11 � �31 = �
p10
p21
+
p10
p21
(1� p1)R�1 �

�
1� p10

p1

�
(R� 1) (1� p1)R�2

and by symmetry, @ (�3 � �1) =@p3 is equal to

�33 � �31 = �p30
p23
+
p30
p23
(1� p3)R�1 �

�
1� p30

p3

�
(R� 1) (1� p3)R�2 :

:

We also obtain that @ (�1 � �3) =@p2 = �12 � �32 = 0: Likewise, from

�2 � �3 =
p20
p2
+

�
1� p20

p2

�
(1� p2)R�1 �

p30
p3
�
�
1� p30

p3

�
(1� p3)R�1 ;

32



we obtain

�22 � �32 = �p20
p22
+
p20
p22
(1� p2)R�1 �

�
1� p20

p2

�
(R� 1) (1� p2)R�2 ;

�33 � �32 = �p30
p23
+
p30
p23
(1� p3)R�1 �

�
1� p30

p3

�
(R� 1) (1� p3)R�2 ; and

�21 � �31 = 0:

Note that �13 � �33 = �23 � �33: Now it su¢ ces to show that the matrix 
�11 � �31 � (�13 � �33) �21 � �31 � (�23 � �33)
�12 � �32 � (�13 � �33) �22 � �32 � (�23 � �33)

!

=

 
�11 � �31 �21 � �31
�12 � �32 �22 � �32

!
�
 
�13 � �33 �13 � �33
�13 � �33 �13 � �33

!

=

 
�11 � �31 0

0 �22 � �32

!
� (�13 � �33)

 
1 1

1 1

!

is negative de�nite. This matrix is the hessian matrix of �R(p; p0; fT jRg) under the restriction that p 2 SJ : For
this, it su¢ ces to show that �11 � �31 < 0 for all p1 and p10; when this condition is satis�ed, we can obtain,
by symmetry, �22 � �32 < 0 and �13 � �33 > 0 as well.

Note that �11 � �31 is only a function of p10 and p1. We want to show

�11 � �31 = �
p10
p21
+
p10
p21
(1� p1)R�1 �

�
1� p10

p1

�
(R� 1) (1� p1)R�2 < 0

The above is linear in p10 and hence bounded by the maximum over the two points, the �rst one with

p10 = 1 and the one with p10 = 0: Therefore, it su¢ ces to check these two extreme cases.

First, when p10 = 1,

�11 � �31 = � 1
p21
+
1

p21
(1� p1)R�1 +

1

p1
(R� 1) (1� p1)R�1

= � 1
p21
+
1

p21
[1 + p1 (R� 1)] (1� p1)R�1 :

However, note that 1 + p1 (R� 1) � (1 + p1)
R�1 for any R � 2 and p1 > 0 and strictly so when R � 3:

Hence

�11 � �31 � � 1
p21
+
1

p21
(1 + p1)

R�1
(1� p1)R�1

� � 1
p21
+
1

p21

�
1� p21

�R�1
< 0:

Second, when p10 = 0; trivially, �11 � �31 = � (R� 1) (1� p1)R�2 < 0: Therefore, � is globally concave
over p 2 SJ for any p0 2 SJ when J = 3:

Consider the case J > 3. First, we get

�j � �k =
pj0
pj
+

�
1� pj0

pj

�
(1� pj)R�1 �

pk0
pk

�
�
1� pk0

pk

�
(1� pk)R�1
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for all j; k = 1; 2; :::; J: Then it su¢ ces to check the negative de�niteness of the matrix0BBB@
�11 � �J1 0 ::: 0

0 �22 � �J2 ::: 0

::: ::: ::: :::

0 0 ::: �J�1;J�1 � �J;J�1

1CCCA� (�1J � �JJ)
0BBB@

1 1 ::: 1

1 1 ::: 1

::: ::: ::: :::

1 1 ::: 1

1CCCA :

And as before, it su¢ ces to show that �11 � �J1 < 0 for all p1 and p10 because then, by symmetry,

�jj � �J;j < 0 for all j = 1; 2; :::; J � 1. This can be proved exactly in the same way as before.

Proof of Lemma 2 : Fix " > 0; ~� 2 � and choose � 2 B(~�; "): By construction, the absolute di¤erence����j(Xi; �
�
i;r;
~�)� �j(Xi; �

�
i;r; �)

��� is equal to
������

JY
k=1;k 6=j

gjk(~�)�
JY

k=1;k 6=j
gjk(�)

������ ; (25)

where gjk(�) = 1
�
u(Xij ; �ij ; �) � u(Xik; �ik; �)

	
: Using the fact that sup�2B(~�;")

���gjk(�)� gjk(~�)��� � 1 for

all k 2 f1; � � �; Jg; we bound the di¤erence above by

C max
1�k�J

sup
�2B(~�;")

���gjk(�)� gjk(~�)���
for some C > 0: De�ne �Dijk(�) = �(Xij ; �) � �(Xik; �) and hijk(") = sup�2B(~�;")

����Dijk(�)� �Dijk(~�)��� : We
deduce

E

"
sup

�2B(~�;")

���gjk(�)� gjk(~�)���2 jXi

#
� P

n
�Dijk(

~�)� hijk(") � �ik � �ij � �Dijk(
~�) + hijk(")jXi

o
= Fikj(�

D
ijk(

~�) + hijk(")jXi)� Fikj(�Dijk(~�)� hijk(")jXi)

� C

�
sup
x
sup
�
fikj(�jx)

�
sup

�2B(~�;")
jj� � ~�jj � C";

where Fikj(�jXi) is the conditional cdf of �ik � �ij given Xi and fikj(�jXi) its conditional density function.

Hence Assumption 2(ii) is satis�ed.

Proof of Theorem 2 : We �rst show the consistency of the estimator. Given the identi�cation result, it
su¢ ces for consistency to show that

sup
�2�

��l�n;R(�)� lR(�)��!p 0 as n!1;

where lR(�) = El�n;R(�): Since � is compact and for each � 2 � we have

l�n;R(�)!p lR(�);

by the Law of Large Numbers, it su¢ ces to show the following stochastic equicontinuity condition, i.e., for
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any "; � > 0; there exists � > 0 such that for each ~� 2 �;

P

(
sup

�2B(~�;�)

���l�n;R(�)� l�n;R(~�)��� > �

)
< ":

De�ne TR as in (24). Recall that we can write l�n;R(�) as

1

n

nX
i=1

JX
j=1

DijTR(m
�
ij(�);m

�
�ij(�))

= � 1
n

nX
i=1

JX
j=1

Dij

"
RX

m=0

1fm � R�mjR(Xi; �
�
i ; �)� 1g

R�m

#
+
1

n

nX
i=1

JX
j=1

Dij

�(m�
�ij(�))

R
:

Hence,
���l�n;R(�)� l�n;R(~�)��� is bounded by CPJ

j=1 1fjmjR(Xi; �
�
i ; �)�mjR(Xi; �

�
i ;
~�)j � �g, for any small

� > 0; because mjR(Xi; �
�
i ; �) is an integer. (Note that C may depend on R.) Therefore, for each ~� 2 �;

P

(
sup

�2B(~�;�)

���l�n;R(�)� l�n;R(~�)��� > �

)

� JP

(
sup

�2B(~�;�)
sup
1�j�J

���mjR(Xi; �
�
i ; �)�mjR(Xi; �

�
i ;
~�)
��� � �=(CJ)

)
:

However, note that E
h
sup�2B(~�;�)

���mjR(X; �; �)�mjR(X; �; ~�)
���i is bounded by

RX
r=1

E

"
sup

�2B(~�;�)

����j(Xi; �
�
i;r;
~�)� �j(Xi; �

�
i;r; �)

���# � R�1=2:

This yields the stochastic equicontinuity of the process l�n;R(~�) and thereby, completes the proof for the

consistency of �̂:

Now we turn to the rate of convergence. Following the arguments used to prove Claim 1 in the proof of

Theorem 3 below, we can show that

jEl�n;R(�)�El�n;R(�0)j � Cjj� � �0jj2;

for some constant C: Hence, in view of Theorem 3.2.5 of van der Vaart and Wellner (1996), it su¢ ces

to investigate the continuity modulus of the process
p
nl�n;R(�): Given our de�nition of TR, the objective

function l�n;R(�) can be rewritten as

1

n

nX
i=1

JX
j=1

�j(Xi; �i; �0)hR(p
�
jR(Xi; �); �(m

�
�ij(�)));
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where hR(p; �) = � 1
R

PR�1
m=0 1f1�m=R > pg=(1� (m=R)) + �=R: In the meanwhile,

E

"
sup

�:jj���0jj��

��hR(p�jR(Xi; �); �(m
�
�ij(�)))� hR(p�jR(Xi; �0); �(m

�
�ij(�0)))

��2# (26)

� CRP

(
sup

�:jj���0jj��
sup

1�r�R

���j(Xi; �
�
i;r; �)� �j(Xi; �

�
i;r; �0)

�� � 1)

� CRE

"
sup

�:jj���0jj��
sup

1�r�R

���j(Xi; �
�
i;r; �)� �j(Xi; �

�
i;r; �0)

��2# � C�;

by Assumption 2(ii). Let us de�ne 
j(D;X; �; �) = DhR(mj(X; �; �)=R; �(m�j(X; �; �))) and G = f
(�; �; �; �) :
� 2 �g: From the proof of Theorem 3.1 in Chen, Linton, and van Keilegom (2003), the result of (26) gives

us Z 1

0

q
1 + logN[]("jjGjj2;G; jj � jj2)d" �

Z 1

0

q
1 + logN[]((C"jjGjj2)2;�; jj � jj)d" <1;

where G is an envelope of G. We de�ne G� = f
1 � 
2 : 
1; 
2 2 G; jj
1 � 
2jj2 < �g: Then by the maximal
inequality in terms of the bracketing entropy (e.g. Pollard (1989), van der Vaart (1996)), we have

E

"
sup

�2B(�0;�)

p
n
��l�n;R(�)� l�n;R(�0)�El�n;R(�) +El�n;R(�0)��

#

� C

Z 1

0

q
1 + logN[]("jjG�jj2;G�; jj � jj2)d"jjG�jj2 � CjjG�jj2;

where G� indicates the envelope of G�: The second inequality follows from the fact that

N[]("jjG�jj2;G�; jj � jj2) � N[](2"jjGjj2;G � G; jj � jj2)

By the result of (26), we can take G� such that jjG�jj2 � C�1=2; and deduce that the continuity modulus

of l�n;R(�) in � turns out to be O(�
1=2): Now, following Kim and Pollard (1990) (e.g. see van der Vaart and

Wellner (1996), p.323.), the rate of convergence rn for �̂ satis�es r
2�1=2
n �

p
n: Hence rn � n1=3; yielding the

result of the theorem.

Proof of Theorem 3 : Observe that by Assumption 2(ii),

P
n
sup�2B(�0;�)

��p�ij(�)� pij(�)�� > "p=2jXi = x
o

(27)

� 2

"p
E
h
sup�2B(�0;�)

��p�ij(�)� pij(�)�� jXi = x
i

� 2

"p
p
R

Z C

0

q
1 + logN[](("=C)2;�; jj � jj)d" = O(R�1=2):

The last inequality uses Assumption 2(ii) and the maximal inequality of Pollard (1989). Hence, for su¢ ciently

small � > 0,

P
�
inf�2B(�0;�)p

�
ij(�) > "p=2jXi

	
� P

n
inf�2B(�0;�)pij(�) > "p=2 + sup�2B(�0;�)

��p�ij(�)� pij(�)�� jXi

o
� P

n
"p=2 > sup�2B(�0;�)

��p�ij(�)� pij(�)�� jXi

o
! 1 almost everywhere,
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because P
�
inf�2B(�0;�)pij(�) > "pjXi

	
= 1 by Assumption 2(iii). Hence inf�2B(�0;�)p

�
ij(�) > "p=2 with

conditional probability given Xi converges to one almost surely. We assume that inf�2B(�0;�)p
�
ij(�) > "p=2

for the rest of the proof.

Claim 1 : sup�2B(�0;M�)Eln;R(�)�Eln;R(�0) � C log(R)�2:

Claim 2 : E
h
sup�2B(�0;�)

p
n jln;R(�)� ln;R(�0)�Eln;R(�) +Eln;R(�0)j

i
� �R(�); where

�R(�) = C
n
�1=2

p
� log �=

p
R+ �

o
�
np

log(R) +
p
log(� log �)

o
+ C

p
nR�1:

Combining the results, we can establish the
p
n-rate of convergence as we demonstrate now. Suppose

we have shown Claims 1-2. Take a sequence rn = n1=2 and partition � into "shells" Rj;n = f� : 2j�1 <
rnjj� � �0jj � 2jg with j ranging over integers. For any �;M > 0; we have

P
n
rnjj�̂ � �0jj > 2M

o
�

X
j�M
2j��rn

P

(
sup
�2Rj;n

ln;R(�)� ln;R(�0) � �

)
+P

n
2jj�̂ � �0jj � �

o
: (28)

The second probability on the right-hand side vanishes because �̂ is consistent by Claim 1. For each � 2 Rj;n;
we have

lR(�)� lR(�0) �
C22j�2 log(R)

r2n

by Claim 1. By using Claim 2, the sum of probabilities on the right-hand side in (28) is bounded by

X
j�M
2j��rn

P

(
sup
�2Rj;n

kln;R(�)�Eln;R(�)� ln;R(�0) +Eln;R(�)k �
C22j�2 log(R)

r2n

)

� C
X
j�M
2j��rn

C
p
n

22j�2 log(R)
�R

�
2j�1p
n

�

� Cn1=4
p
log np

R log(R)
�

X
j�M
2j��rn

2�3j=2 +
Cp
logR

�
X
j�M
2j��rn

2�j+1 +
C
p
n

22j�2R log(R)

X
j�M
2j��rn

2�2j+2 ! 0;

as M ! 1; because n1=4
p
log n=

p
R log(R) � Cn1=4

p
logR=

p
R log(R) = Cn1=4=

p
R < 1: Therefore,

p
n-consistency of the estimator �̂ follows.

Having established the
p
n-consistency of �̂, we establish the asymptotic normality of the estimator as

follows. De�ne

T �ij(�) = TR(m
�
ij(�);m

�
�ij(�));

�ij(�) = T �ij(�)� T �ij(�0); and V (Xi) =
JX
j=1

Dij
@

@�
pj(Xi; �0)=pj(Xi; �0):

We �rst show the following.
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Claim 3 :

1p
n

nX
i=1

JX
j=1

[Dij�ij(�)�E (Dij�ij(�)))] (29)

=
1p
n

nX
i=1

JX
j=1

�
Dij(pj(Xi; �)� pj(Xi; �0))

pj(Xi; �0)
�E

�
Dij(pj(Xi; �)� pj(Xi; �0))

pj(Xi; �0)

��
+ oP (1);

uniformly over � 2 B(�0;Mn�1=2):

Now, note that by the mean-value theorem,

JX
j=1

E (Dij�ij(�))) =
JX
j=1

 j(�0)
0(� � �0) +

JX
j=1

(� � �0)
j(��)0(� � �0)

where �� lies on the line segment between � and �0 and  j(�) =
@
@�E (Dij�ij(�))) and 
j(�) = @2

@�@�0E (Dij�ij(�))) :

However,

JX
j=1

 j(�0) =
@

@�

JX
j=1

E (Dij�ij(�))) j�=��0 =
@

@�

JX
j=1

E
�
Dij(T

�
ij(�)� T �ij(�0)

�
j�=��0

=
JX
j=1

@

@�
E (�R(pij(�); pij(�0))� �R(pij(�0); pij(�0))) j�=��0 = 0

by the identi�cation result in Theorem 1. Hence we have

JX
j=1

E (Dij�ij(�))) =
JX
j=1

(� � �0)
j(��)0(� � �0):

Therefore, using the fact that EV (Xi) = 0;

1p
n

nX
i=1

JX
j=1

[Dij�ij(�)�E (Dij�ij(�)))] = (� � �0)0Zn + oP (n�1=2); (30)

uniformly over � 2 B(�0;Mn�1=2); where Zn = 1p
n

Pn
i=1 V (Xi): Now, we follow similar steps in the proof

of Theorem 3.2.16 in van der Vaart and Wellner (1996). Combined with Claim 3, the result of (30) yields

1

n

nX
i=1

JX
j=1

DijT
�
ij(�̂)�

1

n

nX
i=1

JX
j=1

DijT
�
ij(�0) (31)

=
1

n

nX
i=1

JX
j=1

Dij�ij(�̂) =
1

2
(�̂ � �0)0
(�̂ � �0) +

1p
n
(�̂ � �0)0Zn + oP (n�1):
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Similarly

1

n

nX
i=1

JX
j=1

DijT
�
ij(�0 � n�1=2
�1Zn)�

1

n

nX
i=1

JX
j=1

DijT
�
ij(�0) (32)

= � 1

2n
Z 0n


�1Zn + oP (n
�1):

By the de�nition of �̂; the left-hand side of (31) is larger than the left-hand side of (32). We subtract the

second equation from the �rst equation to obtain

1

2
(�̂ � �0 + n�1=2
�1Zn)0
(�̂ � �0 + n�1=2
�1Zn) � �oP (n�1):

Since 
 is negative de�nite, we conclude that

p
n(�̂ � �0) = 
�1Zn + oP (1):

The wanted result follows by the usual CLT. The proof of the theorem is complete.

Proof of Claim 1 : First, observe that lR(�)� lR(�0) is less than or equal to

1

2

24 sup
�2B(�0;�)

(� � �0)0
@2E

hPJ
j=1DijT

�
ij(�)

i
@�@�0

(� � �0)

35 :
Note that

@2E[DijT
�
ij(�)]

@�@�0
= � 1

R

R�1X
m=0

@2

@�@�0E
�
Dij1f1�m=R > p�jR(�)g

�
1�m=R +

1

R

@2

@�@�0
E[�(m�

ij(�))]: (33)

We consider the �rst term. We can write it as

� 1
R

R�1X
m=0

@2

@�@�0E
�
Dij1fR�m >

PR
m=1 �j(Xi; �

�
i;m; �)g

�
1�m=R: (34)

= E

24�pj(Xi; �0)

R

R�1X
m=0

F
(1)
R;pj(Xi;�)

(R�m� 1)
1�m=R:

@2pj(Xi; �)

@�@�0

35
+E

24�pj(Xi; �0)

R

R�1X
m=0

F
(2)
R;pj(Xi;�)

(R�m� 1)
1�m=R:

@pj(Xi; �)

@�

@pj(Xi; �)

@�0

35
where F (1)R;pj(Xi;�)

(�) and F (2)R;pj(Xi;�)
(�) are the �rst order and the second order derivatives of the binomial dis-

tribution function with parameter (R; pj(Xi; �)): By Assumption 1(ii), we have p(Xi; �) 2 B(p(Xi; �0); C(Xi)�)

for all � 2 B(�0; �) where C(Xi) is square integrable and does not depend on � 2 B(�0; �): By taking � small,
we have eventually 1 � pj(Xi; �) > " > 0 for the constant "p in Assumption 2(iii) with large probability. For

this p(Xi; �); the derivatives F
(1)
R;pj(Xi;�)

(�) and F (2)R;pj(Xi;�)
(�) are bounded uniformly over � 2 B(�0; �) with

39



large probability. We can bound the Euclidean norm of the �rst term in (33) by

sup
�2B(�0;�)

s
E





@2pj(Xi; �)

@�@�0





2 + C � 1

R

R�1X
m=0

1

1�m=R:

And note that
C

R

R�1X
m=0

1

1�m=R � C

Z 1�1=R

0

1

1� udu+O(R
�1) = log(R) +O(R�1):

Hence the �rst term on the right-hand side of (33) is O(log(R)):

Now we consider the second term in (33). Note that

@2

@�@�0
E[�(m�

�ij(�))] =
JX

k=1;k 6=j

@2

@�@�0
E

"
P

(
RX

m=1

�k(Xi; �
�
i;m; �) > 0jXi

)#

=
JX

k=1;k 6=j

@2

@�@�0
E
��
1� FR;pk(Xi;�)(0)

	�
=

JX
k=1;k 6=j

E

�
�F (2)R;pk(Xi;�)

(0)
@pj(Xi; �)

@�

@pj(Xi; �)

@�0
� F (1)R;pk(Xi;�)

(0)
@2pj(Xi; �)

@�@�0

�
:

As argued before, we can take � small so that for all � 2 B(�0; �); 1 > p(Xi; �) > " > 0 for some ": And this

leads to the fact that F (s)R;pj(Xi;�)
(0) and F (s)R;pj(Xi;�)

(0); s = 1; 2; are bounded uniformly over � 2 B(�0; �):

Therefore, the Euclidean norm of the second term in (33) is again bounded by

sup
�2B(�0;�)

s
E





@2pj(Xi; �)

@�@�0





2 + C � 1

R
:

Hence we conclude sup�2B(�0;�) [lR(�)� lR(�0)] � C log(R)�2:

Proof of Claim 2 : First, observe that for p; p0 2 ("p=2; 1);

1

R

R�1X
m=0

1f1�m=R > pg � 1f1�m=R > p0g
1� (m=R) (35)

=

Z 1�p

1�p0

1

1� udu+O
�
R�1

�
= log(p)� log(p0) +O

�
R�1

�
=
p� p0
p0

+O(jp� p0j2 +R�1):

Let ~T �ij(�) = log(p
�
ij(�))� log(p�ij(�0)). Since inf�2B(�0;�)p�ij(�) > "p=2, we deduce that

E

24sup�2B(�0;�)
������ 1pn

nX
i=1

JX
j=1

�
DijT

�
ij(�)�DijT

�
ij(�0)�E

�
DijT

�
ij(�)�DijT

�
ij(�0)

��������
35

= E

24sup�2B(�0;�)
������ 1pn

nX
i=1

JX
j=1

�
Dij

~T �ij(�)�DijT
�
ij(�0)�E

h
Dij

~T �ij(�)�Dij
~T �ij(�0)

i�������
35

+O(
p
nR�1):
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We focus on the last expectation. Observe thats
E

�
sup�2B(�0;�)

���Dij
~T �ij(�)�Dij

~T �ij(�0)
���2� � C

r
E
h
sup�2B(�0;�)

��p�ij(�)� p�ij(�0)��2i
� C

r
E
h
sup�2B(�0;�)

��p�ij(�)� pij(�)� fp�ij(�0)� pij(�0)g��2i
+C

r
E
h
sup�2B(�0;�) jpij(�)� pij(�0)j

2
i
:

Using Theorem 2.14.5 of van der Vaart and Wellner (1996), the leading term is bounded by

CE
h
sup�2B(�0;�)

��p�ij(�)� pij(�)� fp�ij(�0)� pij(�0)g��i+ C�1=2=pR:
As for the leading expectation above, we proceed similarly as in (27):

E
h
sup�2B(�0;�)

��p�ij(�)� pij(�)� fp�ij(�0)� pij(�0)g�� jXi = x
i

� Cp
R

Z C�1=2

0

q
1 + logN[](("=C)2;�; jj � jj)d" � C�1=2

p
� log �=

p
R;

using Assumption 2(ii) and the maximal inequality. Therefore,s
E

�
sup�2B(�0;�)

���Dij
~T �ij(�)�Dij

~T �ij(�0)
���2� � C�1=2

p
� log �=

p
R+ C�:

This inequality reveals both a bound for an envelope for the class of functions indexing the empirical process

in Claim 2 and the local uniform L2-continuity condition for this process. (e.g. Chen, Linton, and van

Keilegom (2003).) Using the maximal inequality and after some algebra,

E

24sup�2B(�0;�)
������ 1pn

nX
i=1

JX
j=1

�
Dij

~T �ij(�)�DijT
�
ij(�0)�E

h
Dij

~T �ij(�)�Dij
~T �ij(�0)

i�������
35

� C

Z C�1=2
p
� log �=

p
R+C�

0

q
1� C logf"

p
R=
p
� log �gd"

+C

Z C�1=2
p
� log �=

p
R+C�

0

p
1� C log "d"

� C
n
�1=2

p
� log �=

p
R+ �

o
�
np

log(R) +
p
log(� log �)

o
:

Proof of Claim 3 : Let �n =Mn�1=2 for some large M: De�ne Yi = (Xi; �i;1; � � �; �i;R) and

gR(Yi; �) =
p�ij(�)� p�ij(�0)

p�ij(�0)
� pij(�)� pij(�0)

pij(�0)
:

Since we have (similarly as in the proof of Claim 2)

sup
�2B(�0;�n)

jp�ij(�)� p�ij(�0)j = OP (�
1=2
n R�1=2

p
� log �n + �n) = OP (�n

p
� log �n)
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we write (using (35)),

1p
n

nX
i=1

[Dij�ij(�)�E (Dij�ij(�))]

=
1p
n

nX
i=1

�
Dij

�
pij(�)� pij(�0)

pij(�0)

�
�E

�
Dij

�
pij(�)� pij(�0)

pij(�0)

���
+Dn(�) +OP (�

2
n(� log �n)) +OP (

p
nR�1)

where

Dn(�) =
1p
n

nX
i=1

[DijgR(Yi; �)�E (DijgR(Yi; �))] :

Now, we show that Dn(�) = oP (1) uniformly over � 2 B(�0; �n): Then the proof is complete.
De�ne GR(�n) = fgR(�; �) : � 2 B(�0; �n)g: Then note that

E

"
sup

�2B(�0;�n)
jgR(Yi; �)� gR(Yi; �0)j2

#

= E

24 sup
�2B(�0;�n)

�����
�
p�ij(�)� p�ij(�0)

�
pij(�0)� (pij(�)� pij(�0)) p�ij(�0)
p�ij(�0)pij(�0)

�����
2
35

� E

24 sup
�2B(�0;�n)

�����
�
pij(�0)� p�ij(�0)

�
(pij(�)� pij(�0))

p�ij(�0)pij(�0)

�����
2
35

+E

24 sup
�2B(�0;�n)

�����
�
p�ij(�)� p�ij(�0)� (pij(�)� pij(�0))

�
pij(�0)

p�ij(�0)pij(�0)

�����
2
35 :

Since we have sup�2B(�0;�n)


p�ij(�)� pij(�)

2 = OP (R

�1); the �rst term is bounded by CR�1�2n: De�ne

d�i;r(�) = �(Xi; �
�
i;r; �)� �(Xi; �

�
i;r; �0): Then by Theorem 2.14.5 in van der Vaart and Wellner (1996),

0@E
24 sup
�2B(�0;�n)

����� 1R
RX
r=1

d�i;r(�)�E
�
d�i;r(�)jXi

������
2

jXi

351A1=2

= CE

"
sup

�2B(�0;�n)

����� 1R
RX
r=1

d�i;r(�)�E
�
d�i;r(�)jXi

������ jXi

#
+O(R�1=2�1=2n ) = O(R�1=2�1=2n

p
� log �n):

Hence
�
E
h
sup�2B(�0;�n) jgR(Yi; �)� gR(Yi; �0)j

2
i�1=2

� CR�1=2�1=2n

p
� log �n: From this it follows that

N[](";GR(�n); jj � jj2) � N[](C("R
1=2=

p
� log �n)2;�; jj � jj) � C("�1R�1=2

p
� log �n)2d:

Now, we write

E

"
sup

�2B(�0;�n)
jDn(�)j

#
= E

"
sup

�2B(�0;�n)

����� 1pn
nX
i=1

[DijgR(Yi; �)�E (DijgR(Yi; �))]

�����
#

�
Z CR�1=2�1=2n

p
� log �n

0

q
1 + logN[](";GR(�n); jj � jj2)d"! 0;
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because R�1=2�1=2n

p
� log �n � R�1=2�1=2n

p
log(R) ! 0: Therefore, sup�2B(�0;�n) jDn(�)j = oP (1): We con-

clude that

1p
n

nX
i=1

[Dij�ij(�)�E (Dij�ij(�))]

=
1p
n

nX
i=1

�
Dij

�
pij(�)� pij(�0)

pij(�0)

�
�E

�
Dij

�
pij(�)� pij(�0)

pij(�0)

���
+ oP (1):

We obtain the wanted result.
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