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1. Introduction

The asset pricing kernel summarizes investor preferences for payoffs over different states of the

world. In the absence of arbitrage, all asset prices can be expressed as the expected value of the

product of the pricing kernel and the asset payoff. Thus, the pricing kernel, when it is used with a

probability model for the states, gives a complete description of asset prices, expected returns, and

risk premia.

In this paper, we estimate the pricing kernel using current asset prices and a predicted asset payoff

density. We define the empirical pricing kernel (EPK) as the preference function that provides the

“best fit” to asset prices, given the forecast payoff density. By estimating the EPK at a sequence of

points in time, we can observe and model the dynamic structure of the pricing kernel itself. From this

analysis, we obtain improved option pricing relations, hedging parameters, and a better understanding

of the pattern of risk premia.

We estimate the EPK each month from 1991 to 1995, using S&P 500 index option data and a

stochastic volatility model for the S&P 500 return process. We find substantial evidence that the

pricing kernel exhibits counter-cyclical risk aversion over S&P 500 return states. Empirical risk

aversion is positively correlated with indicators of recession (widening of credit spreads) and

negatively correlated with indicators of expansion (steepening of term structure slope).

We develop an option hedging methodology to compare the accuracy of several pricing kernel

specifications. Our tests measure relative performance in hedging out-of-the-money S&P 500 put

options using at-the-money S&P 500 put options and the S&P 500 index portfolio. We find that

hedge ratios formed using a time-varying pricing kernel reduce hedge portfolio volatility more than

hedge ratios based on a time-invariant pricing kernel.
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Although there is a large literature on pricing kernel estimation using aggregate consumption data,

problems with imprecise measurement of aggregate consumption can weaken the empirical results of

these papers. Hansen and Singleton (1982, 1983) postulate that the pricing kernel is a power function

of aggregate U.S. consumption. They use maximum-likelihood estimation and the generalized method

of moments to estimate the pricing kernel. Chapman (1997) uses functions of consumption and its

lags as pricing kernel state variables, and he specifies the pricing kernel function as an orthogonal

polynomial expansion. Hansen and Jagannathan (1991) derive bounds for the mean and standard

deviation of the consumption-based pricing kernel in terms of the mean and standard deviation of the

market portfolio excess returns.

Recently, Ait-Sahalia and Lo (2000) have used option data and historical returns data to non-

parametrically estimate the pricing kernel projected onto equity return states. This technique avoids

the use of aggregate consumption data or a parametric pricing kernel specification. Along similar

lines, Jackwerth (2000) nonparametrically estimates the “risk aversion function” using option data

and historical returns data.

Ait-Sahalia and Lo (2000) and Jackwerth (2000) estimate investor expectations about future

return probabilities by smoothing a histogram of realized returns over the past four years. Implicitly,

these papers assume that investors form probability beliefs by equally weighting events over the prior

four years and disregarding previous events.1 These assumptions are inconsistent with evidence from

the stochastic volatility modeling literature — e.g. Bollerslev, Chou, and Kroner (1992) — indicating

that future state probabilities depend more on the recent events than long-ago events, but that long-

ago events still have some predictive power. Misspecification of state probabilities induces error in

                                                
1 For example, using a four-year window, the October 1987 stock market crash influences probability beliefs until October
1991. In November 1991, the crash no longer has an effect on beliefs.
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the estimation of the pricing kernel, since the denominator of the state-price-per-unit probability is

incorrectly measured.

In Ait-Sahalia and Lo (2000) and Jackwerth (2000), state prices and probabilities are averaged

over time, so their estimates are perhaps best interpreted as a measure of the average pricing kernel

over the sample period. Since the sample periods used are at least one year in length, neither paper

detects time-variation at less than an annual frequency. Average pricing kernels are also limited in

their ability to price and hedge assets on an ongoing basis, since assets are correctly priced only when

risk aversion and state probabilities are at their average level.2

The remainder of the paper is organized as follows. Section 2 describes the theory and previous

research related to the pricing kernel. Section 3 presents the empirical pricing kernel estimation

technique, EPK specification, and hedge ratio specification. Section 4 describes the data used for

estimation, and Section 5 presents the estimation results. Section 6 contains the hedging test results,

and Section 7 concludes the paper.

2. Theory and previous research

Our initial discussion of asset pricing kernel theory and previous research introduces several

pricing kernel specifications and discusses some potential estimation problems. We then consider the

characteristics of pricing kernel projections.

                                                
2 Ait-Sahalia and Lo (2000) discuss the issue of time-variation of the state price density (SPD) within the averaging
period: “In contrast, the kernel SPD estimator is consistent across time [emphasis added] but there may be some dates for
which the SPD estimator fits the cross section of option prices poorly and other dates for which the SPD estimator
performs very well.”
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2.1. The asset pricing kernel

The asset pricing kernel is also known as the stochastic discount factor, since it is a state-

dependent function that discounts payoffs using time and risk preferences.3 In the absence of

arbitrage, the current price of an asset equals the expected pricing-kernel-weighted payoff:

� �1�� tttt XMEP (1)

where Pt is the current asset price, Mt is the asset pricing kernel, and Xt+1 is the asset payoff in one

period.

In Lucas’s (1978) consumption-based asset pricing model, the pricing kernel is equal to the

intertemporal marginal rate of substitution, so Mt = U’(Ct+1)/U’(Ct). Under the assumption of power

utility, the pricing kernel is Mt = e-�(C t+1/Ct)-�, with a rate of time preference of � and a level of

relative risk aversion of �.

One of the basic characteristics of the pricing kernel is its slope, and standard risk-aversion

measures are usually functions the pricing kernel slope. For example, the Arrow-Pratt measure of

absolute risk aversion is the negative of the ratio of the derivative of the pricing kernel to the pricing

kernel. The Arrow-Pratt measure of relative risk aversion is absolute risk aversion multiplied by

current consumption.

� � )(/)( 11
'

1 ���
�� tttttt CMCMC� (2)
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Generally, the pricing kernel will depend not only on current and future consumption, but also on

all variables that affect marginal utility. In the habit persistence models of Abel (1990),

Constantinides (1990), or Campbell and Cochrane (1999), the pricing kernel depends on both past and

current consumption. Eichenbaum, Hansen, and Singleton (1988) let the pricing kernel depend on

leisure, while Startz (1989) uses durable goods purchases. Bansal and Viswanathan (1993) specify the

pricing kernel as a function of the equity market return, the Treasury bill yield, and the term spread.

When the pricing kernel is a function of multiple state variables, the level of risk aversion can also

fluctuate as these variables change. Campbell (1996) shows that a habit persistence utility function

exhibits time-varying relative risk aversion, where relative risk aversion is decreasing in the amount

that consumption exceeds the habit (the surplus consumption ratio). In Campbell’s (1996) model, we

observe decreases in relative risk aversion during economic expansions when consumption is high

relative to the habit. Furthermore, we observe increases in relative risk aversion during economic

contractions when consumption falls closer to the habit. In contrast, the power utility function exhibits

relative risk aversion that is time-invariant.

To investigate the characteristics of investor preferences, many researchers have used Eq. (1) as

an identifying equation for the pricing kernel. For example, Hansen and Singleton (1982) identify the

pricing kernel with an unconditional version of this equation: 

� �1)/(0 1 ��
� ttt MPPE (3)

                                                                                                                                                                    
3 Campbell, Lo, and MacKinlay (1997) and Cochrane (2001) provide comprehensive treatments of the role of the pricing
kernel in asset pricing. Other related papers include Ross (1978), Harrison and Kreps (1979), Hansen and Richard (1987),
and Hansen and Jagannathan (1991).
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Hansen and Singleton (1982), using an approach followed in many subsequent papers, specify the

aggregate consumption growth rate as a pricing kernel state variable. They measure consumption

using data from the National Income and Products Accounts (NIPA). 

However, measurement error in the NIPA consumption data can pose a significant problem.

Ermini (1989), Wilcox (1992), and Slesnick (1998) discuss issues such as coding errors, definitional

problems, imputation procedures, and sampling error. Ferson and Harvey (1992) consider problems

introduced by the Commerce Department’s seasonal adjustment technique. Breeden, Gibbons, and

Litzenberger (1989) address problems induced by use of time-aggregated rather than instantaneous

consumption.

2.2. Projections of the pricing kernel

Because there is considerable debate among researchers over the state variables that enter into the

pricing kernel, we examine a pricing kernel projection that can be estimated without specifying these

variables. We are particularly interested in projecting the pricing kernel onto the payoffs of a traded

asset (Xt+1). As discussed in Cochrane (2001), this projected pricing kernel has exactly the same

pricing implications as the original pricing kernel for assets with payoffs that depend on Xt+1.

To allow complete generality, we write the original pricing kernel as Mt = Mt(Zt, Zt+1), where Zt is

a vector of pricing kernel state variables. We then rewrite Eq. (1) by factoring the joint density

ft(Xt+1,Zt+1) into the product of the conditional density ft(Zt+1|Xt+1) and the marginal density ft(Xt+1).

We evaluate the expectation in two steps. First, the pricing kernel is integrated using the conditional
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density, which gives the projected pricing kernel, Mt
*(Xt+1).4 Second, the product of the projected

pricing kernel and the payoff variable is integrated using the marginal density, which gives the asset

price, Pt.

� � � �111
*

11
* |),()(        )(

�����
�� tttttttttttt XZZMEXMXXMEP (4)

The original pricing kernel depends on the realization of the state vector (Zt+1), while the projected

pricing kernel depends on the realization of the asset payoff (Xt+1). Thus, for the valuation of an asset

with payoffs that depend only on Xt+1, the pricing kernel is summarized as a function of the asset

payoff. This univariate function can vary over time, reflecting time-variation in the pricing kernel

state variables.

Eq. (4) can also be used to identify the projected pricing kernel. For example, Ait-Sahalia and Lo

(2000) and Jackwerth (2000) estimate pricing kernels projected onto equity return states using equity

index option prices. These papers assume that investors have a finite horizon and that the equity index

level is equal to the aggregate wealth. Under these assumptions, a pricing kernel that is projected onto

the equity index level is equal to the original pricing kernel.5

In general, we can interpret the projected pricing kernel the same way we interpret the original

pricing kernel, even though the two are not necessarily identical. When Mt
*(Xt+1) is constant,

                                                
4 By taking this conditional expectation, we do not assume that Xt+1 is known at date t. Rather, we are making a statement
about the value of next period’s pricing kernel, for each possible realization of next period’s payoff variable. Since there is
not necessarily a deterministic relation between next period’s pricing kernel and the payoff variable, we measure this
relation by taking the expectation based on information known at date t. The projected pricing kernel depends on the state
of the world next period through Xt+1 in the same way that the original pricing kernel depends on the state of the world
next period through Zt+1.
5 Earlier papers, such as Rubinstein (1976) and Brown and Gibbons (1985), derive conditions such that a pricing kernel
that has the consumption growth rate as a state variable is equivalent to a pricing kernel that has the equity index return as
a pricing kernel state variable.
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investors are indifferent to a unit payoff across payoff states. When Mt
*(Xt+1) is decreasing

(increasing), investors show a decreasing (increasing) desire for a unit payoff across payoff states.

We define a measure of risk aversion (�t
*) for the projected pricing kernel that is related to the

Arrow-Pratt measure of relative risk aversion. We set the projected pricing kernel risk aversion equal

to the opposite of the normalized slope of the projected pricing kernel.6

� � )(/)( 1
*

1
*'

1
*

���
�� tttttt XMXMX�  (5)

The level of projected risk aversion determines the relative preference for a unit payoff across

payoff states. High levels of �t
* correspond to a steep, negatively sloped pricing kernel projection, i.e.,

a strong demand for hedging securities that pay off when the asset is low.

3. Empirical pricing kernel estimation strategy

In this section, we describe our methodology for estimation of a time-varying pricing kernel

projected onto asset return states. We propose an optimization technique that selects the pricing

kernel that best fits traded asset prices, and we suggest two pricing kernel specifications. We then

present the stochastic volatility model used to estimate payoff probabilities, and we derive option

hedge ratios in a setting with time-varying probabilities and a time-varying pricing kernel.

3.1. Estimation technique

                                                
6 Ait-Sahalia and Lo (2000) and Jackwerth (2000) use similar formulas in their definitions of relative and absolute risk
aversion functions.
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The accuracy of a candidate pricing kernel can be judged by how well it reproduces prices of

traded assets. This criterion motivates our estimation procedure. We select the empirical pricing

kernel as the function that provides the best fit to current derivative prices, given current expectations

about future payoffs. Therefore, the EPK represents an estimate of the pricing kernel projection on a

particular date, rather than an estimate of an average pricing kernel over a period of a year or more.

We begin by writing Eq. (4) for a derivative with a payoff that depends on the return to the

underlying asset (rt+1):

� � 1111
*

11
*

, )()()()()(
������ ��� ttttitttitttti rdrfrgrMrgrMEP (6)

In Eq. (6), Pi,t is the price of the ith asset with a payoff function of gi(rt+1), and ft(rt+1) is the probability

density of one-period underlying asset returns. Eq. (6) also shows that the pricing kernel projection,

Mt
*(rt+1), is an implicit function of prices, payoffs, and probabilities.

Next, we rewrite Eq. (6) to find the formula for the fitted asset price ( tiP ,
ˆ ) using an estimated

pricing kernel projection ( )( 1
*

�tt rM
�

) and estimated payoff density ( )(ˆ
1�tt rf ).

� � 1111
*

11
*

, )(ˆ)()(ˆ)()(ˆ
������ ��� ttttitttitttti rdrfrgrMrgrMEP

�

(7)

We then estimate the pricing kernel projection as the function that makes fitted prices closest to

observed prices, using the estimated payoff density. To simplify the estimation problem, we let the

pricing kernel projection be a parametric function, );( 11
*

�� ttt rM �
�

, where �t is an Nx1 parameter

vector. We use the sum of squared errors as a distance measure.
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We refer to the projected pricing kernel that solves the following optimization problem as the

EPK:

� �
2

1
,, )(ˆ�

�

�

L

i
ttiti PPMin

t

�

�

(8)

where L represents the number of asset prices, and )(ˆ
, ttiP �  is the fitted price as a function of the

pricing kernel parameter vector. To identify the pricing kernel parameter vector, we must observe at

least as many derivative prices as there are parameters.

If we define the payoff density using a set of J realized (or simulated) returns, then we can

estimate the fitted asset price using the following approximation to Eq. (7), where averaging replaces

integration:

� ��
�

��

�

�

J

j
jtitjttti rgrMJP

1
,1,1

*1
, )();()(ˆ �� (9)

3.2. Pricing kernel specifications

We consider two specifications for the projected pricing kernel. In the first specification, the

pricing kernel is a power function of the underlying asset’s gross return:

 M*(rt+1;�t) = �0,t(rt+1)-�1,t (10)
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In Eq. (10), the first parameter (�0,t) is a scaling factor and the second parameter (�1,t) determines

the slope of the pricing kernel at date t. When �1,t is positive, the pricing kernel is negatively sloped,

which implies that the value of a unit payoff increases as the underlying asset return decreases. The

level of projected risk aversion is �t
* = �1,t.. If �1,t changes over time, then this specification exhibits

time-varying risk aversion.

Our second specification permits more flexibility in the shape of the pricing kernel, and also

allows time-variation in risk aversion.7 We consider a pricing kernel with N+1 parameters (�0,t…�N,t)

and N+1 polynomial terms (T0(rt+1)… TN(rt+1)):

 M*(rt+1;�t) = �0,tT0(rt+1) + �1,tT1(rt+1) + �2,tT2(rt+1) + … + �N,tTN(rt+1) (11)

If there are an infinite number of terms in this polynomial expansion, then the specification will

accurately approximate any continuous function. However, in the context of our estimation problem,

the number of observed asset prices places an upper bound on the order of the approximating

polynomial. Thus, we use a class of polynomials that provides the most accurate approximations with

the smallest possible number of terms.

Orthogonal polynomials are designed to provide more precise approximations using lower order

expansions than alternative classes of polynomials. In an orthogonal polynomial expansion, each term

is mutually orthogonal to all other terms. The number of required terms is minimized, since each term

provides unique information that is not contained in previous terms.

Although there are several families of orthogonal polynomials (e.g. Legendre, Chebyshev,

Laguerre, Hermite), the Chebyshev family provides an approximation that comes close to minimizing
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the maximum approximation error.8 As shown by Judd (1998), Chebyshev polynomials are nearly

optimal polynomial approximations under the L� norm.

The Chebyshev polynomial is defined over the domain [-1,1] with terms given by Tn(x) = cos( n *

cos-1(x) ). The first and second Chebyshev terms are T0 = 1 and T1 = x. The higher order terms are

periodic functions. To obtain an accurate approximation over a closed domain [a,b], we use the

generalized Chebyshev polynomial. In this polynomial, x = ((2rt+1 – a – b)/(b-a)), where a and b are

the endpoints of the approximation interval.

We adopt the generalized Chebyshev polynomial approximation for our second pricing

specification. To ensure that the pricing kernel is strictly positive, we take the exponential of the

polynomial expansion.

M*(rt+1;�t) = [�0,tT0(rt+1)]exp[�1,tT1(rt+1) + �2,tT2(rt+1) + … + � N,tTN(rt+1)] (12)

3.3. State probability density specification

In the subsequent empirical portions of the paper (Sec. 4, 5, 6), we use the equity index return

probability density for pricing kernel estimation. So, in this section of the paper, we develop a

stochastic volatility model that incorporates the most important features of equity index return

process. Previous studies, such as Ghysels, Harvey, and Renault (1996), have documented that equity

index return volatility is stochastic and mean-reverting, return volatility responds asymmetrically to

positive and negative returns, and return innovations are non-normal.

                                                                                                                                                                    
7 The power specification is only nested in an orthogonal polynomial specification with an infinite number of terms. With
a finite number of orthogonal polynomial terms, the power specification might be a more accurate representation of the
pricing kernel.



14

Researchers often capture stochastic volatility in a discrete-time setting, using extensions of the

autoregressive conditional heteroskedasticity (ARCH) model proposed by Engle (1982).

Comprehensive surveys of ARCH and related models are given by Bollerslev, Chou, and Kroner

(1992) as well as Bollerslev, Engle, and Nelson (1994). In a continuous-time setting, researchers

commonly use stochastic volatility diffusions. Surveys of this literature include Ghysels, Harvey, and

Renault (1996) and Shephard (1996).

 Our model of the equity index return process uses an asymmetric GARCH specification with an

empirical innovation density. The GARCH specification of Bollerslev (1986) incorporates stochastic,

mean-reverting volatility dynamics. The asymmetry term in our model is based on Glosten,

Jagannathan, and Runkle (1993). Our empirical innovation density captures potential non-normalities

in the true innovation density.

The asymmetric GARCH model is specified as follows:

),0(~     ,)/ln( 2
1|1 ��

��� tttttt frfSS ���� (13)

2
1

2
2|1

2
121

2
1| ],0[

�����
������ tttttt MaxI ��������� (14)

In Eq. (13), the log-return net of the riskless rate of interest, ln(St/St-1) – rf , has a constant mean

(�). Although a constant expected return is not usually compatible with time-varying risk aversion,

the effect over a short period (e.g. up to one month) has a negligible effect on probability estimates.

                                                                                                                                                                    
8 Chapman (1997) estimates the asset pricing kernel as a function of aggregate consumption using a five term Legendre
polynomial expansion. Bansal, Hsieh, and Viswanathan (1993) estimate an international asset pricing kernel as a function
of powers of the Eurodollar interest rate and a world equity index return. 
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Therefore, Eq. (13) works as an approximation. We draw return innovations (�t) from an empirical

density function (f) with stochastic variance (�2
t|t-1).

Eq. (14) defines conditional return variance (�2
t|t-1) as a function of two constants (�� and ��), the

lagged squared innovation (��t-1), and a non-linear function of the lagged return (Max[0,-�t-1]2). The

second constant (��) permits a shift in long-run volatility using an indicator variable (I = 0 or 1) to

mark the different time periods. 

We estimate the model parameters using maximum likelihood with a normal innovation density.

Bollerslev and Wooldridge (1992) show conditions that allow this technique to provide consistent

parameter estimates even when the true innovation density is non-normal.

We model the empirical innovation density (f) by factoring the innovation density into time-

varying and time-invariant components. To separate these components, we define a standardized

innovation as the ratio of a return innovation (�t) and its conditional standard deviation (�t|t-1). The

standardized innovation density — i.e. the set of standardized innovations — is the time-invariant

component of empirical innovation density. The conditional standard deviation (�t|t-1) is the time-

varying component of the empirical innovation density. On a particular date, we construct the

empirical innovation density by multiplying each standardized innovation by the conditional standard

deviation.

To estimate the standardized innovation density, we take the ratio of each return innovation and

its conditional standard deviation using the estimated stochastic volatility model. This collection of

estimated standardized innovations forms a density function that incorporates excess skewness,

kurtosis, and other extreme return behavior that is not captured in a normal density.

After we estimate the stochastic volatility model, we use Monte-Carlo simulation to determine the

future return density over any desired time horizon. For example, we can create the one-period return

density by simulating many one-period return realizations. We obtain a simulated one-period log-
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return (� + rf + �t+1) and a simulated one-period simple return [exp(� + rf + �t+1)-1] by randomly

selecting an innovation (�t+1) from the empirical innovation density.

We can create a multi-period return density by simulating many multi-period return paths. We

obtain a 20-period return by drawing the first return innovation (�t+1), updating the conditional

variance (�t+2|t+1), drawing the second return innovation (�t+1), updating the conditional variance

(�t+3|t+2), and continuing through the twentieth innovation. The one-period simulated log-return is

equal to �i=1…20 	� + rf + �t+i), and the one-period simulated simple return is equal to exp[�i=1…20 	� +

rf + �t+i)].
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3.4. Hedge ratio specification

We develop a hedge ratio estimation technique that does not depend on a particular specification

of the state probability density or the pricing kernel. Our hedge ratios neutralize an option portfolio to

the first- and second-order effects of changes in the underlying price. In a continuous-time diffusion

setting, a first-order hedge will eliminate all randomness in the hedge portfolio and provide a

minimum-variance hedge. In a discrete-time setting with stochastic volatility, first- and second-order

hedges will reduce, but not eliminate hedge portfolio variability.

We derive these hedge ratios using a Taylor series expansion of the option pricing formula. The

put option price change after one day  (Putt+1 –Putt) is approximately equal to the following function

of the underlying price change (St+1 – St):

2
12

1

1
2

1
1

1
1 )(

2
1)( tt

t

t
tt

t

t
tt SS

S
Put

SS
S

Put
PutPut ���

�
��

�

�

�

�

�

�

�

�

�

�
(15)

The first and second partial derivatives (
Putt +1/
St+1, 
 Putt +1/
St+1
2) in Eq. (15) measure the

sensitivity of the put price to first- and second-order changes in the underlying price. These price

sensitivities are commonly called the option delta and the option gamma.

To form an option portfolio that is hedged against a first-order underlying price change, another

security must be purchased that moves in the opposite manner from the option. This hedging security

has sensitivity to a first-order underlying price change equal to -
Putt +1/
St+1. To further hedge

against second-order effects of the underlying price change, a second security with second-order price

sensitivity equal to -
Putt +1/
St+1
2 is required. 
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We refer to the number of units of the hedging security that are purchased to hedge a single option

as the hedge ratio. To estimate hedge ratios in a setting with an arbitrary pricing kernel, we generalize

the Engle and Rosenberg (1995) methodology for estimation of price sensitivities. Therefore, we

consider three possible one-day underlying price changes. The stock price could rise by one-standard

deviation to St + �, remain constant at St, or fall by one standard deviation to St - �. Each underlying

price change results in a different date t+1 put option price: 
��� tStPut |1 ,

tStPut |1� , or
��� tStPut |1 .

We calculate approximations to the first and second partial derivatives of the option pricing

formula using centered finite difference approximations:

2
|1|1|1

2
1

1
2

|1|1

1

1
2

     
2 ��

�

��

� ���� �����

�

�
����

�

�

��

�

�

�
ttttt StStSt

t

tStSt

t

t
PutPutPut

S
PutPutPut

S
Put

(16)

To evaluate these approximate derivatives, we find the value of the put option next period at

different underlying price levels. We measure the current put price using the pricing kernel projected

onto the T-period underlying asset return (rt,t+T) and the put’s payoff function:

� �],0[);( ,
*

TttTtttt SKMaxrMEPut
��

�� � (17)

Next period, the underlying price is equal to St+1. The new underlying price affects next period’s

put price through the payoff probability density and the pricing kernel. We write the conditional
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expectation using the updated payoff density as Et+1|St+1[·].9 The parameters of the pricing kernel can

also change when the underlying price changes, so we write next period’s parameter vector as �t+1|St+1.

� �],0[);(
111 |1,1

*
|1|1 TtStTttStSt SKMaxrMEPut

ttt ������
��

���

� (18)

We then form an approximate pricing equation by replacing next period’s parameter vector with

its conditional expectation in the current period.
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We represent the pricing kernel parameter vector as a linear function of a constant vector (�),

lagged parameter vectors (�t-1 … �t-K), and an error vector (et+1):

101 ......
���

����� tKtKtt e������ (20)

Thus, we can evaluate the conditional expectation Et[�t+1].

KtKtttE
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We use Monte-Carlo simulation to estimate tomorrow’s option price, conditional on tomorrow’s

underlying asset price, as:

                                                
9 If the underlying price follows a geometric Brownian motion, then the underlying price at date t+1 (St+1) provides
additional information about the expected price at date t+T (St+T).  If the underlying price follows an asymmetric GARCH
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4. Data

We develop our options dataset from a subset of Berkeley Options Database covering the period

1991 - 1995. One of the advantages of this dataset is that option quotes are time-stamped and

recorded along with the simultaneously measured underlying price making it easier to construct a

database of time-synchronized daily option “closing” prices.

To create our database of option closing prices, we first collect “end-of-day” option prices for all

contracts. We do so by averaging the last recorded bid-ask quote of the day between 2:00 and

3:00 PM Central Time. The cross-section of midquotes from the last hour of trading is not entirely

synchronized, since the S&P 500 index level can change over the last hour of trading. 

To correct for this effect, we calculate a Black-Scholes (1973) implied volatility each day for each

option contract. We then find the closing price for each contract by evaluating the Black-Scholes

formula. We use the same inputs and the implied volatility, except that the closing S&P 500 index

level replaces the synchronized S&P 500 level. Finally, we average each call (put) price with the

synthetic put (call) price that we determine using put-call parity adjusted for dividends. This average

price is used in the estimation procedure.

This technique does not require the Black-Scholes model to be correct. It simply uses the Black-

Scholes formula as an extrapolation device to calculate an option price adjustment when the S&P 500

level changes from the time of the last option quote to the close of option trading.

                                                                                                                                                                    
process, then the underlying price at date t+1 provides additional information about the expected price as well as higher
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Our implied volatility calculation uses the end-of-day option midquote, the contemporaneous S&P

500 index level, the riskless interest rate, time until expiration (in trading days), and dividend yield.

We measure the riskless interest rate using Datastream’s bid and ask discount rates for U.S. Treasury

Bills with maturities of one, three, and six months. The riskless rate for a particular option is

calculated by linear interpolation of the interest rates of Treasury Bills that straddle the option

expiration date. We calculate the dividend yield over the life of each option contract by taking the

present value of future S&P 500 dividends and dividing by the current index level.

To eliminate data errors and ensure that closing option prices are representative of market

conditions at the end of the trading day, we use several screening criteria. We base some of these on

Bakshi, Cao, and Chen (1997). In our sample, we include options with moneyness -0.10 � (K/St - 1) �

0.10, mid-quotes greater than $3/8 and less than $50, annualized implied volatilities greater than 5%

or less than 90%, and prices that satisfy the no-arbitrage lower bound (Pt 
 Max[0, Ke-r(T-t) - St + Dt,T]

or Ct 
 Max[0, St - Ke-r(T-t) - Dt,T]). We delete from the sample cross-sections of calls (puts) that

violate the no-arbitrage condition that option premia are decreasing (increasing) in the exercise price

options and options that violate the maximum vertical spread premium condition (Ct(K1,T-t) -

Ct(K2,t) � K2 - K1; Pt(K2,T-t) - Pt(K1,t) � K2 - K1). Finally, we include in the sample only dates on

which at least eight options (both calls and puts) satisfy the preceding criteria.

We use the following procedure to construct a dataset of options with one month (20 trading days)

until expiration. We first eliminate all options with greater than 24 or fewer than 16 trading days until

expiration. For each trading date, we choose the option series with time until expiration closest to 20

days. We are left with a single cross-section of call and put options each month (around the twentieth

of the month) with a time-until-expiration of approximately one month. This sampling methodology

is similar to that of Christensen and Prahbala (1998).

                                                                                                                                                                    
moments of the price distribution.
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In Table 1, we report the properties of the one-month option contracts that we use for pricing

kernel estimation. In the sample, there are 53 months (of 60 total) for which we have a cross-section

of options that satisfies our screening criteria. In 39 months, there is an option series with exactly 20

days until expiration. We use a series with 21 days until expiration eight times, and the remaining six

dates have option series with 18, 19, and 22 days until expiration. There is no satisfactory data in

seven of the 60 months of the sample.

On a given estimation date, there are between 8 and 13 options available. There are roughly equal

numbers of options with moneyness (K/St - 1) from 3% to 0%, 0% to –3%, and –3% to -6%. There

are somewhat fewer options with moneyness between -6% and -10%. The smallest number of options

has moneynesses ranging from 3% to 6%, and there are no options available with moneyness greater

than 6%. In our sample, option contracts with higher moneyness generally have lower implied

volatilities, a pattern known as a “volatility skew.”

Due to put-call parity, we gain no additional information if we include a call and a put with the

same exercise price (or moneyness) in our estimation procedure. Therefore, we estimate pricing

kernels using only out-of-the-money put options (moneyness � 0%) and out-of-the-money call options

(moneyness > 0%).

Fig. 1 graphs five representative cross-sections of one-month option closing prices for June of

1991 through June of 1995 against percent moneyness (K/St-1)*100. The curves exhibit an inverted-V

shape, since put premia increase in exercise price and call premia decrease in exercise price. The

variation in the slope and height reflects differences in investor probability beliefs and risk aversion

over time.

Table 2 reports summary statistics for the daily S&P 500 index returns series (1970 - 1995) used

for estimation of the state probability model. Over this period, the average annualized S&P 500 index

return (capital appreciation only) is 7.55%, and the annualized S&P 500 return standard deviation is
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14.79%. S&P 500 returns exhibit negative skewness and positive kurtosis, and there is evidence of

return serial correlation.

5. Estimation of the empirical pricing kernel projected onto S&P 500 return states

In this section, we estimate a monthly pricing kernel using a cross-section of S&P 500 index option

prices and the S&P 500 return density function. We then analyze the relationship between empirical

risk aversion and business conditions. 

5.1. Estimation of S&P 500 return state probability densities

To find the most accurate model of the S&P 500 return density, we estimate and test three nested

GARCH models: ARCH(1), GARCH(1,1), and asymmetric GARCH(1,1).10 We define the

asymmetric GARCH (1,1) model using Equations (13) and (14). We define the other two models

using the same equations, but set �=0 for the GARCH(1,1) model and both �=0 and �=0 for the

ARCH(1) model. We use a likelihood ratio test to measure the statistical significance of the increase

in likelihood for each model generalization. Table 3 reports the model estimates.

In Table 3, we find that the GARCH model offers a statistically significant improvement over the

ARCH model with a likelihood ratio test p-value less than 0.0001. Our tests also show that the

asymmetric GARCH model provides a better fit than the GARCH model. We see that the robust t-

statistic for the volatility asymmetry parameter (�) is 2.41, which confirms the presence of an

asymmetric volatility effect. We set the indicator variable equal to one during the EPK estimation

                                                
10 We also estimate the GARCH components model of Engle and Lee (1999) but do not find that it is a statistically
significant improvement over the GARCH (1,1) model. To conserve space, we do not report these results.
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period (1991-1995) and equal to zero for the rest of the sample. This variable is not significant in the

GARCH or asymmetric GARCH models.

We create the standardized innovations (�t/�t|t-1) for the asymmetric GARCH model by taking the

ratio of each return innovation and its conditional standard deviation. If we have correctly specified

the stochastic volatility model, then the standardized innovations will be free of time-dependence. We

perform specification tests on the standardized innovations to measure autocorrelation in the

standardized innovations and in the squared standardized innovations. In Table 4, Panel A, we report

results of these specification tests.

We use the Ljung-Box (1978) Q-statistic to test for autocorrelation in the standardized

innovations. The asymmetric GARCH model passes this test with a p-value of .7378. Next, we use

Engle’s (1982) ARCH LM test to test for autocorrelation in the squared standardized innovations. The

asymmetric GARCH model passes this test with a p-value of .7004. Since the asymmetric GARCH

model provides the best fit to the return data and passes the specification tests, we choose this model

for state probability estimation.

We then estimate standardized innovation density using the collection of the standardized

innovations from asymmetric GARCH model. Table 4, Panel A shows that this density exhibits

negative skewness (-0.36) and positive excess kurtosis (4.26) compared to a normal density. 

In Table 4, Panel B, we compare extreme return probabilities using the standardized innovation

density and a standard normal density. Under the standard normal assumption, innovations of

magnitude greater than five or ten standard deviations almost never occur (less than 1:1,000,000). In

practice, the probability of these extreme events is non-negligible. For example, empirical return

innovations less than -5 standard deviations are observed six times in 10,000, while empirical return

innovations less than -10 standard deviations are observed three times in 10,000.
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Fig. 2 uses 200,000 Monte-Carlo simulation replications to graph the estimated one-month state

probability densities each June. The time-variation in state probabilities is apparent. As we can see,

there are higher probabilities for large negative return states in June 1991 and June 1992 than in June

of subsequent years.11

Fig. 3 graphs the conditional volatility forecasts using the asymmetric GARCH model. Over this

period, the estimated annualized S&P 500 volatility ranges from 6.75% to 112.86% with a standard

deviation of 6.36%. The highest volatility forecasts over this period are around the time of the

October 1987 market crash.

5.2. Estimation of the S&P 500 empirical pricing kernel

For estimation of the S&P 500 empirical pricing kernel, we use a power specification and a four-

parameter orthogonal polynomial specification. We set the return domain for orthogonal polynomial

equal to the range of option moneyness (-10% to 10%). Outside of this domain, we set the pricing

kernel equal to its estimated value at -10% or 10%.

Once per month, we identify the pricing kernel that best fits the cross-section of one-month S&P

500 option premia using each specification. In the optimization procedure, we use the estimated

asymmetric GARCH model to create a simulated one-month probability density with 200,000

replications. To ensure that the estimated pricing kernel accurately prices a riskless one-month bond,

we also set the scaling factor (�0,t) to satisfy the pricing equation Bt = Et[M*(rt+1;�t)].

Table 5 reports the estimation results. The orthogonal polynomial specification fits S&P 500

option prices more closely than the power specification. The average pricing error standard deviation

                                                
11 The annualized return standard deviation estimates (in chronological order for June 1991 through June 1995) are:
15.55%, 13.03%, 11.74%, 9.98%, and 10.88%. The return density skewness estimates are -0.36, -0.43, -0.46, -0.46, and
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for the orthogonal polynomial specification is $0.09 with a minimum of $0.03 and a maximum of

$0.24. The average forecast error standard deviation for the power specification is $0.63 with a

minimum of $0.28 and a maximum of $1.34.

In Fig. 4, we graph power pricing kernel estimates each June of the sample period. We find that

the level of risk aversion varies across time, as illustrated by the changing slope of the estimated

pricing kernels. The negatively sloped pricing kernel estimates show that investors experience

declining marginal utility over S&P 500 return states.

Fig. 5 graphs orthogonal polynomial pricing kernel estimates. Compared to the power pricing

kernels, the orthogonal polynomial pricing kernels assign greater value to large negative S&P 500

return states and lesser value to large positive S&P 500 return states. The state-price-per-unit

probability for large negative return states is especially volatile, and could reflect time-varying

demand for insurance against a significant market decline. There is also some evidence of a region of

increasing marginal utility for small positive S&P 500 return states.

We then estimate an average power pricing kernel and an average orthogonal polynomial kernel

by evaluating each specification at the average parameter estimates. Table 5 reports characteristics of

the parameter estimates (including their means), and Fig. 6 graphs the average pricing kernels. The

average orthogonal polynomial EPK has some similarities to the estimate of Ait-Sahalia and Lo

(2000). Both pricing kernels are steeply upward sloping for large negative returns and downward

sloping for large positive returns, and both pricing kernels have a region of increasing marginal utility.

Jackwerth’s (2000) absolute risk-aversion function is closely related to the pricing kernel and can

be expressed as the negative of the ratio of the first derivative of the pricing kernel and the pricing

kernel (-Mt’(rt+1)/Mt(rt+1)). Jackwerth notes two key empirical findings for the absolute risk aversion

functions: “… post-crash risk aversion functions are negative around the center [return states close to

                                                                                                                                                                    
-0.47. The return density kurtosis estimates are 5.06, 5.35, 5.66, 5.54, and 5.73.
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zero]… [and] risk aversion functions rise for wealth levels greater than about 0.99 [return states

greater than –1%].” 

We do not find either of these characteristics for our estimates of the power pricing kernel. In this

specification, the absolute risk aversion function equal to the exponent of the power function

multiplied by the inverse of the gross return [�1,t*(rt+1)-1]. Thus, the power pricing kernel exhibits

declining (but positive) absolute risk aversion as long as the exponent (�1,t) is positive. This is the

result that we find over the period 1991-1995.

Our estimates of the orthogonal polynomial pricing kernel exhibit some of the risk-aversion

characteristics noted by Jackwerth. We estimate the average absolute risk-aversion function using the

average orthogonal polynomial pricing kernel graphed in Fig. 6. We find that there is a region of

negative absolute risk aversion over the range from –4% to 2%, and that absolute risk aversion

increases for returns greater than -4%. The shape of our estimated average absolute risk aversion

function is similar to Jackwerth’s estimate over a similar time period.

5.3. Linking empirical risk aversion to business conditions

We use the risk aversion of the estimated power pricing kernel (�1,t) as our measure of empirical

risk aversion. We analyze the time-series of �1,t estimates to gain insight into risk aversion dynamics

and links between risk aversion and the business cycle.

Table 6 provides summary statistics for empirical risk aversion. Over the sample period, empirical

risk aversion averages 7.36. However, the level fluctuates substantially, ranging from 2.26 to 12.55.

Empirical risk aversion is positively autocorrelated (�=0.45) and mean-reverting. Fig. 7 graphs the

time-series of empirical risk aversion estimates.
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Other studies, such as Fama and French (1989), show that risk premia are correlated with the

business cycle. Specifically, risk premia are lowest at business cycle peaks and highest at business

cycle troughs. We provide evidence of time-varying risk aversion through the business cycle, which

supports the Fama and French (1989) results.

To measure the relation between empirical risk aversion and the business cycle, we construct

several variables that reflect current and expected business conditions. We calculate one-month

percentage changes in business condition indicators by using the indicator measured on the current

and previous pricing kernel estimation date.

Fama and French (1989) and Lahiri and Wang (1996) use credit spreads (the difference between

the yield on risky and riskless bonds) as an indicator of business conditions. As the economy weakens

(strengthens), credit spreads widen (narrow) to compensate investors for an increased probability of

default. 

We calculate credit spreads using a risky bond yield equal to Moody’s long-term Baa corporate

bond yield index. This index measures the average yield-to-maturity of approximately 100 seasoned

corporate bonds with maturities as close as possible to 30 years and at least 20 years. We set the

riskless bond yield equal to the Federal Reserve’s thirty-year constant maturity Treasury yield. We

collect both data items from the Federal Reserve’s H.15 release.

Estrella and Hardouvelis (1991) show that the slope of the yield curve (term spread) is pro-

cyclical. Steepening of the slope indicates expansion, while flattening of the slope indicates

contraction. We use the H.15 release information to measure the yield curve slope as the thirty-year

constant maturity Treasury yield minus the three-month constant maturity Treasury yield.

Estrella and Hardouvelis (1991) also suggest that the level of short-term interest rates might reveal

the state of the business cycle. They summarize the view that high short-term rates are associated with

a tight monetary policy, low current investment opportunities, and low output. They present empirical
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evidence that demonstrates this relation. We use the percentage change in the three-month constant

maturity Treasury yield as proxy for this indicator.

In our analysis, we use the one-month percentage change in the S&P 500 level as reported in the

CRSP database as a potential business cycle indicator. We also include the aggregate U.S.

consumption growth rate, since it is used in many studies of the stochastic discount factor such as

Hansen and Singleton (1982). We measure consumption growth using per-capita non-durable goods

and services (monthly, real, seasonally adjusted) from the Federal Reserve’s FRED database. Our

monthly U.S. resident population estimates are from the Census Bureau.

To measure autocorrelation in risk aversion, we include the one-month lag of empirical risk

aversion. In addition, we use the difference between at-the-money implied and objective volatility as a

proxy for risk aversion. This volatility spread measures the mark-up of an at-the-money option price

above the price that a risk-neutral investor would accept.

Table 7 reports a multiple regression of empirical risk aversion on all of the above variables. We

present univariate correlations and their p-values in the last two columns. We measure independent

variables in percent (except lagged empirical risk aversion). Therefore, a one basis point (0.01)

increase in the independent variable raises empirical risk aversion by one one-hundredth of the

regression coefficient.

The Table 7 results show that empirical risk aversion varies counter-cyclically with business

conditions. One business cycle indicator variable is significant in the multiple regression (credit

spread), and two business cycle variables have significant correlation with empirical risk aversion
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(credit spread and term structure slope).12 The signs of the regression parameter estimates and

correlation coefficient estimates are all consistent with counter-cyclical risk aversion.

For example, in the multiple regression, the credit spread is statistically significant and has a

positive estimate of 9.95. Hence, a one-basis point widening of the credit spread increases empirical

risk aversion by 0.0995. The correlation between empirical risk aversion and credit spreads is also

positive and statistically significant (�=0.50, p-value = 0.0004) in the univariate analysis. Since the

credit spread is a counter-cyclical indicator, these results show that empirical risk aversion is counter-

cyclical.

The slope of the term structure is not statistically significant in the multiple regression, but it has a

statistically significant negative correlation with risk aversion (�=-0.36, p-value = 0.0129). This result

is further evidence of counter-cyclical risk aversion, since risk aversion is negatively correlated with a

pro-cyclical indicator.

Our empirical findings provide some support for habit persistence models of investor utility. Habit

models such as Campbell (1996) and Campbell and Cochrane (1999) predict that Arrow-Pratt relative

risk aversion is counter-cyclical. In an economic expansion, the surplus consumption ratio (the

proportion that current consumption exceeds the habit) is high and risk aversion is low. In a recession,

the reverse is true. 

If our measure of empirical risk aversion is positively correlated with Arrow-Pratt relative risk

aversion, then our finding of counter-cyclical empirical risk aversion shows that Arrow-Pratt relative

risk aversion might be counter-cyclical. In this setting, our finding would provide empirical support

for a key implication of habit models.

                                                
12 Two other variables, lagged risk aversion and volatility spread, are significant in the regression and correlation analysis.
The positive coefficient on lagged risk aversion shows that risk-aversion is positively auto-correlated. The positive
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6. Hedging tests

In this section, we use hedging performance to measure the importance of time-variation in the

pricing kernel and to compare the accuracy of the power and orthogonal polynomial specifications.

To implement our tests, we create hedge portfolios for a $100 position in out-of-the-money (OTM)

S&P 500 index options. We estimate hedge ratios using time-invariant and time-varying pricing

kernels with power and orthogonal polynomial specifications. We use at-the-money (ATM) put

options and/or the S&P 500 index portfolio as hedging instruments.

We construct a hedging sample using the same screening criteria as we did for estimation of the

pricing kernels. However, the hedging sample comprises options with approximately one month

(from 16 to 24 days) until expiration, instead of exclusively one-month options. 

On each sample date, we select a put with moneyness (K/St - 1) closest to zero but no more than

1% in absolute value. This is the at-the-money put. As the out-of-the-money put, we select the option

with moneyness closest to –3%, but no greater than -3%. When we cannot find suitable options with

closing prices on the sample date and the next trading date, we exclude the sample date from the

analysis. Using these criteria, we have 243 observations available for the hedging tests. Table 8

summarizes the sample characteristics.

To form one-day ahead option prices that are the basis for the hedge ratio estimates, we require

estimates of the expected one-day ahead pricing kernel. For the time-invariant pricing kernels, the

expected pricing kernel parameter vector is equal to the average parameter vector using the 53

observations from EPK estimation. We show the average parameter estimates in Table 9.

                                                                                                                                                                    
coefficient on the volatility spread shows that an increase in empirical risk aversion is associated with a widening of the
spread between implied and objective volatility.
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For the empirical pricing kernel, we estimate a model in which tomorrow’s parameter vector is a

linear function of today’s parameter vector (Eq. 20 with one lag). We use the hedging sample for

estimation, but we drop sequential observations more than one day apart, leaving 133 observations.

Table 10 shows that this model predicts reasonably well, with adjusted R-squares that range from

12% to 52%. 

Panel A, Table 10, reports the �1,t+1 model estimates for the power pricing kernel specification. In

this model, �1,t+1 is forecast by the sum of 2.26 and .69*�1,t+1. Both parameters (����1) are statistically

significant, and the regression adjusted R-squared is 50%. This model generates an average one-day

ahead forecast of �1,t+1 equal to 7.49 with a standard deviation of 1.87.

We form hedge one-day ratios for S&P 500 put options by measuring the impact of a one-day

change in the S&P 500 index on the put price. We create three possible realizations for the next day’s

S&P 500 level, and calculate three corresponding put prices. These put prices depend on the expected

pricing kernel and the payoff density function (estimated by 200,000 Monte-Carlo replications using

the asymmetric GARCH model). 

For each pricing kernel specification, we use the corresponding hedge ratios to calculate the time-

series of hedging errors and the standard deviation of hedge portfolio prices. We also compare the

relative hedging performance using a statistic similar to Diebold and Mariano (1995). Our relative

performance measurement is equal to the t-statistic for the difference between squared hedging errors

for each model. We calculate standard errors using the heteroskedasticity and autocorrelation

consistent covariance matrix of Newey and West (1987). 

In Table 11, we report the hedging test results. We find strong evidence that the pricing kernel is

time-varying. When we use a time-varying pricing kernel, we improve hedging performance from 1%

to 3% over a time-invariant pricing kernel. The hedging improvement is statistically significant in

three of six cases and marginally significant in one case.
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When the ATM put is used as a hedging instrument, the hedge portfolio formed using the EPK

power specification has a standard deviation of $11.10 per day. This is the least volatile hedge

portfolio. The hedge portfolio formed using time-invariant power pricing kernel has a standard

deviation of $11.21. The t-statistic for the hedging performance difference is 2.82.

Compared to hedging using the ATM put, hedging using the S&P 500 portfolio somewhat

diminishes performance for all the specifications. Once again, the EPK power specification creates

the most effective hedge ratios. Its hedge portfolio standard deviation is $12.11, while the hedge

based on the time-invariant power specification has a standard deviation of $12.41. 

We also see that hedging with both the S&P 500 portfolio and the ATM put is inferior to hedging

with the ATM put alone. If we know the true hedge ratios, it is always better to add more hedging

instruments. However, including additional hedging instruments can decrease hedging performance

when we estimate hedge ratios with error. Of the four tested specifications, we find that EPK power

specification has lowest hedge portfolio standard deviation ($11.29).

Our tests show that the hedging performance of the power specification is consistently superior to

the performance of the orthogonal polynomial specification. Using any of the hedging instruments,

the power specification reduces the hedge portfolio standard deviation more than the orthogonal

polynomial specification. The same is true for the time-invariant hedges. These performance

differences are statistically significant at the 5% level in five of six pair-wise comparisons (not

reported in Table 11).

7. Conclusions

Our paper uses the no-arbitrage relationship between asset prices, payoff probabilities, and the

pricing kernel to estimate an empirical pricing kernel. The empirical pricing kernel is the preference
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function that most closely reproduces observed asset prices, based on a forecast payoff density. Using

a sequence of forecast asset payoff densities and cross-sections of asset prices, we can construct a

time-series of empirical pricing kernels and empirical risk aversion estimates.

We use S&P 500 index option prices and estimated S&P 500 return densities to estimate the

empirical pricing kernel and empirical risk aversion each month from 1991- 1995. Our analysis shows

that empirical risk aversion is counter-cyclical. Empirical risk aversion is positively correlated with

indicators of recession such as widening of credit spreads and negatively correlated with indicators of

expansion such as steepening of the term structure slope. This finding supports the results of Fama

and French (1989).

We analyze two parametric specifications for the empirical pricing kernel. We observe that the

orthogonal polynomial pricing kernel specification fits option price data than does the power

specification. However, the power pricing kernel specification is superior in terms of hedging

performance. We conclude that the evidence is mixed with respect to the correct functional form for

the empirical pricing kernel.
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Table 1
Summary of option data used for pricing kernel estimation

Option moneyness 
(K/St - 1)

Number of 
observations

Average 
implied volatility 

Average call 
price

Average put 
price

-6% to -10% 66 20.85% $34.83 $1.19
-3% to -6% 133 16.58% $21.81 $1.92
0% to -3% 136 13.67% $10.76 $4.13
0% to 3% 137 11.36% $3.25 $9.77
3% to 6% 37 11.61% $0.90 $16.66

The source of our data is the Berkeley Options Database (1991-1995). Each 
month, we extract from the database a cross-section of options (both puts and 
calls) with approximately one month until expiration. We include options with 
moneyness between 10% and –10%. Additional data screening criteria are used 
to ensure that our option closing prices are representative of market conditions 
at the end of the trading day. There are 53 estimation dates in the sample, and 
the number of observations per estimation date ranges from 8 to 13. 

 



Table 2
S&P 500 daily log-return summary statistics, 1970-1995

Number of observations 6571
Annualized mean 7.55%
Annualized std. dev. 14.79%
Skewness -2.31
Excess kurtosis 60.20
Normality test p-value <.0001
Serial correlation test p-value <.0001
ARCH test p-value <.0001

The normality test p-value is the p-value of the Jarque-Bera (1980) normality test 
statistic, which measures the closeness of the empirical S&P 500 log-return density 
to a normal density. The serial correlation p-value is the p-value of the Ljung-Box 
Q-statistic (1978), which measures serial correlation in the innovations using ten 
lagged values. The ARCH test p-value is the p-value of the Engle (1982) ARCH LM 
statistic, which measures the presence of stochastic volatility as represented by 
persistence in return magnitudes. We use ten return lags for this test. 



Table 3
Estimated state probability models

 Coefficient
Robust t-
statistic Coefficient

Robust t-
statistic Coefficient

Robust t-
statistic

µ 0.0004 3.09 0.0004 4.10 0.0003 2.41
θ 0.1483 6.71 0.1363 10.62 0.1361 10.60
ω1 7.06E-05 17.85 1.22E-06 3.45 1.26E-06 3.80
ω2 -3.41E-05 -8.52 -4.64E-07 -1.77 -4.24E-07 -1.69
α 0.1964 2.86 0.0663 2.41 0.0262 3.12
β 0.9212 35.88 0.9264 53.83
δ 0.0672 2.41

Log-likelihood
ARCH p-value
LR test p-value

0.7004
<.0001

<.0001
N/A

0.3426
<.0001

ARCH(1) GARCH(1,1) Asymmetric GARCH(1,1)

21941.39 22368.1022332.09

We estimate an ARCH(1), GARCH(1,1), and asymmetric GARCH(1,1) model by maximizing the likelihood function of daily 
S&P 500 log-returns from 1975-1995. We calculate robust t-statistics using the Bollerslev and Wooldridge (1992) method. 
We define the asymmetric GARCH model as: 
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The ARCH p-value is the p-value of the Engle (1982) ARCH LM statistic using 10 lags. The LR (likelihood ratio) test p-
value measures the statistical significance of the improvement in expanding the model specification. The reported p-value 
is the p-value for twice the difference between the log-likelihood of the unrestricted and restricted models. 



Table 4
Properties of the standardized innovations using the estimated asymmetric GARCH model

Panel A. Summary statistics

Number of observations Mean Std. dev. Skewness
Excess 
kurtosis

Normality 
test p-value

ARCH test p-
value

Serial 
correlation 
test p-value

6571 0.0004 1.0000 -0.36 4.26 <.0001 0.7004 0.7378

Panel B. Probabilities of extreme events

Probability
Empirical 
density

Standard 
normal

Innovation < -10 std. dev. 0.00030 <.000001
Innovation < -5 std. dev. 0.00061 <.000001
Innovation < -3 std. dev. 0.00427 0.00135
Innovation > 3 std. dev. 0.00290 0.00135
Innovation > 5 std. dev. 0.00015 <.000001
Innovation > 10 std. dev. <.000001 <.000001

We calculate the standardized innovations by dividing each ordinary innovation (εt) by its conditional standard 
deviation (σt|t-1). Both variables are taken from the estimated asymmetric GARCH model. In Panel A, We use 
Engle’s (1982) ARCH test statistic to measure unexplained stochastic volatility, and we use the Ljung-Box (1978) 
test statistic to measure unexplained serial correlation. We compare probabilities of extreme innovations for the 
standardized innovation density and a standard normal density in panel B.  



Table 5
Empirical pricing kernel estimation results

Panel A. Power specification parameter estimates

N=53 Mean
Standard 
deviation Min Max

θ0,t 1.0051 0.0063 0.9866 1.0185
θ1,t 7.36 2.58 2.36 12.55
Standard 
deviation of 
pricing errors $0.63 $0.26 $0.28 $1.34

Panel B. Orthogonal polynomial specification parameter estimates

N=53 Mean
Standard 
deviation Min Max

θ0,t 0.19 0.10 0.04 0.40
θ1,t -2.25 1.06 -4.38 -0.25
θ2,t -0.88 0.68 -2.52 0.19
θ3,t -1.08 0.42 -1.94 -0.19
Standard 
deviation of 
pricing errors $0.09 $0.05 $0.03 $0.24

We estimate one-month pricing kernels projected onto S&P 500 return states over 
the period 1991-1995 using two specifications. We report results for the power 
specification, Mt(rt+1) = θ0,t(rt+1)

-θ1,t, in panel A. We report results for the orthogonal 
polynomial specification, Mt(rt+1) = θ0,tT0(rt+1)exp[θ1,tT1(rt+1) + θ2,tT2(rt+1) + 
θ3,tT3(rt+1)], in Panel B.  



Table 6
Summary statistics for empirical risk aversion

Number of observations 53
Mean 7.36

Std. dev. 2.58
Min 2.36
Max 12.55

First-order
autocorrelation 0.45

We estimate empirical risk aversion over the period 1991 – 1995, using 
the exponent of the estimated power pricing kernel. There are seven 
months for which there is insufficient data for estimation of the EPK, 
leaving 53 observations of empirical risk aversion.  



Table 7
Analysis of empirical risk aversion

Variable
Regression 
coefficient t-statistic p-value

Univariate 
correlation

Correlation 
p-value

Intercept 3.99 3.88 0.0004
One-month lagged 
empirical risk aversion 0.48 3.54 0.0011 0.45 0.0018

S&P 500 percent return 0.04 0.29 0.7732 0.03 0.8555
Three-month Treasury 
yield change 0.68 0.37 0.7130 0.24 0.1058
Credit spread change 9.95 2.12 0.0405 0.50 0.0004
Term structure slope 
change 0.23 0.12 0.9035 -0.36 0.0129
Implied vol. - objective 
vol. spread change 0.52 3.36 0.0018 0.39 0.0069
Consumption growth 
change -0.04 -0.72 0.4789 -0.10 0.5224
Adjusted R-square 46.10%

We report estimates from a multiple regression of empirical risk aversion on business 
cycle indicators. We also show univariate correlations of empirical risk aversion with 
business cycle indicators. The seven months in which one-month lagged empirical risk 
aversion is missing are dropped from the regression, leaving 46 observations. We 
measure independent variables on the same date on which we calculate empirical risk 
aversion. We also show OLS t-statistics and p-values. 



 

Table 8
Summary of option data used for hedging tests

ATM put option OTM put option
Number of observations 243 243
Average price $6.34 $2.39
Std. dev. price $1.04 $0.77
Average price change -$0.11 -$0.10
Std. dev. price change $1.38 $0.56
Average time to maturity (days) 19.88 19.88
Std. dev. time to maturity (days) 2.40 2.40
Average moneyness (K/St - 1) 0.00% -3.61%

Std. dev. moneyness (K/St - 1) 0.32% 0.48%
Average implied volatility 12.90% 16.36%
Std. dev. of implied volatility 2.79% 2.76%
Minimum implied volatility 9.04% 11.69%
Maximum implied volatility 30.96% 34.39%

Our hedging sample comprises at-the-money (ATM) and out-of-the-money 
(OTM) options with approximately one month (from 16 to 24 days) until 
expiration from the Berkeley Options Database (1991-1995). On each 
sample date, the ATM put is the closest-to-the-money put (within 1% of the 
money). The OTM put is the put with moneyness closest to –3%, but no 
greater than –3%. When we cannot find suitable options with reported prices 
on the sample date and next trading date, we exclude the sample date from 
the analysis. We measure the option time-until-expiration in trading days. 

 



Table 9
Time-invariant models of the pricing kernel parameter vector

N=53 Estimate
θ0,t 1.0051
θ1,t 7.3629

N=53 Estimate
θ0,t 0.1945
θ1,t -2.2457
θ2,t -0.8791
θ3,t -1.0752

Panel B. Time-invariant orthogonal polynomial specification

Panel A. Time-invariant power specification

We estimate the time-invariant power model by averaging the 
scaling factor (θ0,t) and the risk-aversion coefficient (θ1,t) using the 
53 monthly estimates from the EPK estimation. We estimate the 
time-invariant orthogonal polynomial model by averaging the 
scaling factor (θ0,t) and generalized Chebyshev coefficients (θ1,t, θ2,t, 
θ3,t) using the 53 monthly estimates from the EPK estimation. 
 



Table 10
Dynamic models of the pricing kernel parameter vector

Panel A. EPK power specification
θ0,t+1 = α + β0θ0,t + β1θ1,t + e 0,t+1

θ1,t+1 = α + β1θ1,t + e 1,t+1

α β0 β1

θ0,t+1 0.8163 0.1885 0.0000 12.25% 1.0053 0.0030
p-value <.0001 <.0001 0.8632
θ1,t+1 2.2608 0.6947 49.92% 7.4872 1.8717
p-value <.0001 <.0001

Panel B. EPK orthogonal polynomial specification
θ0,t+1 = α + β0θ0,t + β1θ1,t + e 0,t+1

θ1,t+1 = α + β1θ1,t + β2θ2,t + β3θ3,t + e 1,t+1

θ2,t+1 = α + β1θ1,t + β2θ2,t + β3θ3,t + e 2 ,t+1

θ3,t+1 = α + β1θ1,t + β2θ2,t + β3θ3,t + e 3 ,t+1

α β0 β1 β2 β3

θ0,t+1 0.1756 0.4321 0.0290 -0.0075 -0.0065 39.45% 0.2210 0.0698

p-value 0.0739 0.0996 0.1568 0.8530 0.8961
θ1,t+1 0.1845 0.8545 -0.4116 0.2034 51.72% -2.0464 0.7858
p-value 0.0429 <.0001 0.0556 0.6154
θ2,t+1 -0.1454 0.1384 0.3496 0.0240 33.60% -0.7196 0.4056
p-value 0.2665 0.2823 0.0217 0.9330
θ2,t+1 -0.2535 0.1455 -0.1492 0.5352 45.67% -0.9768 0.3011
p-value 0.0024 0.0729 0.1166 0.0033

Adj-R2

Average 
one-day 

parameter 
forecast

Std. dev. 
one-day 

parameter 
forecasts

Adj-R2

Average 
one-day 

parameter 
forecast

Std. dev. 
one-day 

parameter 
forecasts

We estimate dynamic models of the pricing kernel parameter vector using a linear 
regression of pricing kernel parameter estimates on one-day lagged parameter 
estimates. We construct a sample of estimated pricing kernels (power and orthogonal 
polynomial) on each of the 243 hedging sample dates. We drop from the sample the 
hedging dates that are not one day apart. We use the remaining 133 observations in 
the forecasting model estimation regressions. We obtain parameter forecasts each of 
the 243 hedging dates using the estimated models. 



Table 11
Hedging test results

Portfolios - pricing kernel 
specification

Hedge 
portfolio 
standard 
deviation

Reduction in 
standard deviation 
(EPK versus time-

invariant 
specification)

Robust t-
statistic (EPK 
versus time-

invariant 
specification)

No hedge:
$100 OTM written put position $22.56
Hedge using underlying:
Time-invariant power $12.41
EPK power $12.11 2.39% 1.16
Time-invariant orthogonal polynomial $13.45
EPK orthogonal polynomial $13.13 2.36% 1.95
Hedge using ATM put:
Time-invariant power $11.21
EPK power $11.10 0.95% 2.82
Time-invariant orthogonal polynomial $11.99
EPK orthogonal polynomial $11.64 2.90% 1.74
Hedge using underlying and ATM put:
Time-invariant power $11.36
EPK power $11.29 0.63% 2.94
Time-invariant orthogonal polynomial $12.08
EPK orthogonal polynomial $11.67 3.39% 2.12

We conduct hedging tests to compare the (time-varying) EPK power and orthogonal 
polynomial pricing kernel specifications with the time-invariant (average) power and 
orthogonal polynomial specifications. The tests cover the period 1991 – 1995 (243 
sample dates). We form hedges of a $100 position in one-month out-of-the-money (OTM) 
S&P 500 index put options using one-month at-the-money (ATM) put options, the 
S&P500 index portfolio, or both. We construct hedge ratios to neutralize the hedge 
portfolio sensitivity to the first-order (and in one case, second order) effects of underlying 
price changes.  



Table 12
Characteristics of hedge portfolios used in hedging tests

Portfolios - pricing kernel 
specification

Average number 
of units of 

underlying per 
written OTM put

Average number 
of units of ATM 
put per written 

OTM put
No hedge:
$100 OTM written put position N/A N/A
Hedge using underlying:
Time-invariant power -0.105 N/A
EPK power -0.100 N/A
Time-invariant orthogonal polynomial -0.190 N/A
EPK orthogonal polynomial -0.116 N/A
Hedge using ATM put:
Time-invariant power N/A 0.298
EPK power N/A 0.293
Time-invariant orthogonal polynomial N/A 0.367
EPK orthogonal polynomial N/A 0.256
Hedge using underlying and ATM put:
Time-invariant power -0.024 0.231
EPK power -0.022 0.229
Time-invariant orthogonal polynomial 0.083 0.526
EPK orthogonal polynomial 0.080 0.428
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Fig. 1. One-month S&P 500 index option prices. This figure graphs the cross-section of one-month S&P 500 option prices from June 
1991 – 1995 against percent moneyness (option exercise price/closing S&P 500 index level - 1)*100. For positive (negative) percent 
moneyness, we report call (put) premia.
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Fig. 2. Estimated S&P 500 return density functions in mid-June 1991, 1992, 1993, 1994, and 1995. We estimate the 
density using Monte-Carlo simulation (200,000 replications) of the estimated asymmetric GARCH model with an 
empirical innovation density. We obtain density functions using a Gaussian kernel density estimator with bandwidth 
equal to .9*N-1/5σ, where σ is the return standard deviation and N is the number of replications. 
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Fig. 3. Annualized S&P 500 conditional volatility, using the asymmetric GARCH model over the period 1970-1995.
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Fig. 4. Empirical pricing kernel using power specification in mid-June 1991, 1992, 1993, 1994, and 1995. We define this pricing 
kernel as M t(rt+1) = θ0,t(rt+1)

-θ1,t. The time-varying slope of the pricing kernel estimates reflects fluctuations in empirical risk 
aversion. 
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Fig. 5. Empirical pricing kernel using orthogonal polynomial specification in mid-June 1991, 1992, 1993, 1994, and 1995. We 
use a four-term expansion: M t(rt+1) = θ0,tT0(rt+1)exp[θ1,tT1(rt+1) + θ2,tT2(rt+1) + θ3,tT3(rt+1)]. The pricing kernel estimates using this 
specification assign greater weight to large negative S&P 500 return states and lesser weight to large positive S&P500 return 
states than do the estimates using the power specification. 
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Fig. 6. Time-invariant (average) pricing kernels in mid-June 1991, 1992, 1993, 1994, and 1995 using the power and orthogonal 
polynomial specifications. We obtain each average pricing kernel by evaluating the specification at the average parameter 
estimates for the period from 1991 to 1995. The figure also shows ±2 standard error bounds the pricing kernels. 
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Fig. 7. Empirical risk aversion each month from 1991 through 1995. Empirical risk aversion is the exponent of 
the estimated power pricing kernel (θ1,t). The seven missing monthly observations are indicated by absence of a 
data point as well as by a gap in the connecting curve. 
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