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The economic assumption that a present value relation holds between consumption and income 
and between stock prices and dividends, or the statistical assumption that the consumption/ 
income ratio and the dividend/price ratio are stationary imply that the permanent or random 
walk component in each series of a pair must be the same as the permanent component in the 
other series of a pair. Either assumption then allows us to estimate the variance of the permanent 
component of one series (GNP, stock prices) from the variance of the permanent component of 
the other (consumption, dividends), or from the covariance of the two series’ permanent compo- 
nents. This paper presents such estimates, and finds that the permanent components are about 
half those estimated by similar univariate methods. 

1. Introduction 

A series of recent papers has examined the importance of a potential unit 
root to the behavior of real GNP [Campbell and Mankiw (1986, 1987), 
Cochrane (1986), Clark (1987)] and stock prices [Fama and French (1986) Lo 
and Ma&inlay (1986), Poterba and Summers (1986, 1987)]. The simplest 
interpretation of these papers is that they all ask the question: if we observe a 
unit innovation in a series (GNP or stock prices) today, how much does that 
event raise our long-term forecasts of the series? If by one unit, then the series 
is a pure random walk; if by 0, the series is stationary. The response can be 
any real number, which is the innovation in these estimates: instead of forcing 
us to ask the dichotomous question ‘is there a unit root or not’, they allow us 
to continuously measure the importance of a potential unit root. 

The actual estimating technique used in these papers varied somewhat. 
Cochrane, Poterba and Summers, and Lo and Ma&inlay examined the 
variance of long differences. The idea here is that if a series is a random walk, 
the variance of its k differences will be k times the variance of its first 
differences; if a series is stationary, the variance of k differences will tend to 

*A precursor to this paper appeared under the title ‘Spectral Density Estimates of Unit Roots’. 
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twice the unconditional variance of the series. If a series is a combination of a 
stationary and a random walk component, l/k times the variance of k 

differences tends to the variance of the random walk or permanent compo- 
nent. 

It turns out that we can think interchangeably of series which contain a unit 
root and series which are composed of a stationary and a random walk 
component, and that the variance of the random walk component can be 
directly related to the effect of a univariate innovation on long horizon 
forecasts. 

These papers all provided interesting point estimates and unfortunately 
large standard errors. The problem is that there are few nonoverlapping ‘long 
runs’ of data available, so unless strong restrictions are imposed on the form 
of the estimated time series process, the response of ‘long-run’ forecasts to a 
unit innovation will necessarily be imprecisely measured. 

A natural response is to try to examine more series, in the hope that 
observations of several series over a short time horizon can in some sense 
proxy for the observation of one series over a long horizon. In this vein, 
Campbell and Mankiw (1987) examined GNP from many countries, and 
Poterba and Summers (1987) examined stock prices from many countries. The 
defect of this approach in its present implementation is that it is not clear how 
much, if any, independent information is contained in estimates from several 
countries at the same time. 

This paper brings multivariate evidence to bear in the following way: 
consider a pair of time series, with the property that the ratio of the two series 
is stationary. For example, it is possible that the consumption/GNP ratio is 
stationary, even if log consumption and 1ogGNP each have random walk 
components, or that the dividend/price ratio is stationary even if log 
dividends and log stock prices each have random walk components. 

If the ratio of two series is stationary, the random walk component of the 
two series must be exactly the same - we can express each series as a sum of a 
common random walk component and separate stationary components. If we 
couldn’t do this, the ratio of the two series would contain a random walk. 

More precisely, if log( X,) and log(W,) must be differenced to obtain 
stationary series (if they contain random walk components), yet log( X,/W,) is 
stationary, then there must be a representation 

log(X,)=z,+c,,, log( W,) = z, + C,[, (1) 

where z, is a random walk and c,, and c,, are stationary. If the Z, entered 
with different coefficients or if there was a random walk component in one 
series not present in the other, then log( X,/W,) would contain a random walk. 

Now, if the two series can be expressed as the sum of a common random 
walk component and distinct stationary components, then l/k times the 
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variance of k di’erences of each series, as well as l/k times the covariance of 
k diflerences of the two series, must tend to exactly the same number, the 
innovation variance of the common random walk component. In the representa- 
tion (1) all these quantities are l/k var(z, - z,_~) = var(z, - z,+t) for large 
enough k. 

Then, we can estimate the variance of the permanent or random walk 
component of one series (GNP, stock prices) from l/k times the variance of 
k differences of the other series (consumption, dividends), or l/k times the 
covariance of k differences of the two series, 

How do we decide what k is ‘large enough’, or that the limit has been 
adequately reached? The choice of k is exactly the choice of a window width 
of a spectral density estimator: larger k (smaller window) gives less bias but 
more uncertain estimates, while smaller k (larger window) gives more precise 
but more biased estimates. Operationally, we stop at a k large enough that 
‘business cycle’ fluctuations are ironed out and only the ‘long run’ remains, on 
the order of 20 or 30 years. We also stop at k = half the sample size, which 
amounts to taking a variance based on two data points. Since we have no 
reason to prefer k = 20 or k = 30, etc., we present results for a variety of k, 
and hope that the results are robust in a range of k. 

Figs. 1 and 2 present l/k times the variance and covariance of k differences 
for stock prices and dividends, and GNP and consumption, respectively. Once 
we impose the assumption that the consumption/GNP ratio or the 
dividend/price ratio is stationary, the three lines in each figure are each 
estimates of the variance of one underlying random walk component. 

Which of the three estimates, or which combination of the three is the best 
estimate of the underlying random walk component? As long as the difference 
k is finite, each variance or covariance is a biased estimate of the variance of 
the underlying random walk component, because some stationary components 
are still included in the k-differenced series. On the other hand, though each 
variance or covariance contains no independent information about the vari- 
ance of the one common random walk component, the stationary components 
are not perfectly correlated, so there is some independent movement in each 
variance or the covariance in finite samples. The optimal combination of the 
variance and covariance is thus a tradeoff between the extra bias of series with 
stronger stationary components, against the reduction in variance that occurs 
when you combine estimates with some independent information. 

Below, we will argue that for pairs of series like GNP and consumption or 
stock prices and dividends, in which one series (consumption, dividends) is 
nearly a random walk (has a flat graph of l/k times the variance of 
k differences), the reduction in standard error is not worth the increase in bias, 
so the best combined estimate is provided by just looking at l/k times the 
variance of k differences of the series which is closest to a pure random walk, 
consumption and dividends. 
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Hence, the best multivariate estimate of the variance of the random walk 
component of GNP is provided by the variance of k differences of consump- 
tion; the best estimate of the variance of the random walk component of stock 
prices is provided by the variance of k differences of dividends. These 
estimates are about half previous univariate estimates. (See figs. 1 and 2 or 
tables 4 and 5: the consumption and dividends lines are about half of the price 
and GNP lines). 

1.1. Some comments on the estimation strategy 

The major advantage of using several time series in this way is that it 
reduces the bias associated with finite k differencing of the time series of 
interest (GNP, stock prices). The standard errors are mostly associated with 
the standard error of measuring the common random walk component and not 
the individual stationary components; hence these bivariate estimates do not 
significantly reduce the standard errors associated with univariate estimates. 

Hence, it does not seem useful to generalize the procedures of this paper to 
multiple time series that are all cointegrated, for example to include many 
other components of GNP. The other components of GNP have more sta- 
tionary components than consumption (their graph of l/k times the variance 
of k differences starts higher and slopes down more than the consumption 
graph, winding up slightly higher than l/k times the variance of k differences 
of GNP), so including them will only bias the estimate of the common random 
walk component while adding little independent information. 

In order to use multivariate information to reduce the standard errors, we 
would have to find other series that are not cointegrated with GNP (stock 
prices), but have the same variance of a random walk component or variance 
ratio. Then, observations of several series will add some independent observa- 
tions on the variance of a random walk component. For example, if the GNP 
or stock prices of several countries are not cointegrated (if the ratios of their 
prices are not stationary, or if the squared covariance of their k differences is 
not equal to the product of the variances of their k differences), and yet each 
follows the same process (has the same variance of k differences at all k), then 
a pooled estimate can reduce the standard errors. We leave this as a suggestion 
for future research. 

1.2. Plan of the paper 

The rest of this paper formalizes these arguments, and presents our results 
for stock prices and dividends, and for consumption and GNP. In section 2, 
we discuss the decomposition of first difference stationary series into sta- 
tionary and random walk components, and relate that decomposition to the 
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property that ratios of the series may be stationary. In particular, we derive 
the representation (1) above. 

In section 3 we discuss estimation, and present some of the properties of the 
l/k times the variance of k differences technique. In particular, this section 
argues that just looking at the variance of the series closest to a random walk 
is the best combined estimate in cases like ours. 

Section 4 presents our results. First we prove that the present value relation 
implies that the dividend/price and consumption/GNP ratios should be 
stationary. We also apply univariate variance ratios to these series to check 
this stationarity assumption. Then, we impose the assumption that the divi- 
dend/price and consumption/GNP ratios are stationary to measure the 
random walk components in GNP and stock prices from l/k times the 
variance of k differences of consumption and dividends. 

2. Representation of time series with unit roots 

2.1. Decomposition into stationary and random walk components 

Let y, be an N-dimensional vector time series. Throughout we will assume 
that yt is stationary in first differences; in particular we will assume that 
(1 - L)y, has a moving average representation 

(1 -L)y,=/.&+A(L)&,. (2.1) 

L is the lag operator (Ly, = Y,_~); ~1 is an N-dimensional vector of means; 
A(L) is an N x N matrix of lag polynomials with A(0) = IN, the N X N 
identity matrix [i.e., A( L)E, = ZNe, + ~~_IAje,_j]; and Ed is an N-dimensional 
vector of innovations. E(E~) = 0, E(E,E;) = 2 (Ir is a positive definite matrix) 
and E(E,E;_~) = 0 for j f 0. 

We can construct a decomposition of yt into a stationary component and a 
random walk component with a multivariate generalization of the Beveridge 
and Nelson (1981) decomposition: 

y, = z, + c I, 

(1- L)z,=/.l+A(l)Et, (2.2) 

-c,=A*(L)q where AT= E A, and A(1) = E A,. 
k-j+1 k-0 
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In this decomposition, z, = lim, _ mEty,+k - kp, so z, can be interpreted as 
a ‘stochastic trend’ or ‘permanent component’ of y,. Also, A(l)& gives the 
limiting response of E,y,+, to an E innovation at time t. [Stock and Watson 
(1986) derive this and some other representations.] 

From (2.1) the spectral density of (1 - L)y, at frequency 0 is 

so the variance-covariance matrix of changes in the permanent components 
(1 - L)z, is the same as the spectral density of (1 - L)y, at frequency 0, and is 
the same as the spectral density matrix of (1 - L)z, as well. To avoid 
repeating these three interpretations, we will denote this matrix by \k: 

9 =A(l)ZA(l)‘= S,,_,,,,,(l) = var((l - L)z,) = S~i_,_jZ,(e-iO). 

We’ll denote the elements of \k by $,,, so that #,, is the variance of the 
permanent component in element i of y, and $,, is the covariance of the ith 
and jth permanent components. 

Although it is derived in the context of one of many possible decomposi- 
tions, the matrix 9 gives a complete characterization of the unit root or 
cointegration properties of a series in a finite sample. Given the spectral 
density of (1 - L)y, at frequencies other than 0, we can always construct a 
trend stationary series by changing the value of the spectral density to be 0 at 
frequency 0. [Cochrane (1987) discusses this point in detail.] 

2.2. Cointegration 

In this system, the time series y, are said to be cointegrated if there is an 
N x M matrix (Y (rank 44) such that e’yr is stationary. [These concepts and 
terminology are due to Engle and Granger (1987).] The columns of (Y are 
called the cointegrating vectors. Now. ‘~‘y( = a’z, + (Y’c,, LY’C~ = - &‘A*( L)E,, 
and since linear combinations of stationary series are stationary, this term 
imposes no restrictions on A(L). However, (Y’z~ = (~‘z,_i + a’~ + a’A(l)e,. For 
this term to be stationary, we require 

a’~ = 0 and LY’A (1) = 0. (2.3) 

In turn, &A(l) = 0 implies cw’A(l)Z A(1)’ = OL’!P = 0, so both A(1) and \k must 
be of rank N - M for the system to be cointegrated. Since we will use logs of 
series, cointegration amounts to the statement that ratios of the series are 
stationary. 

Granger and Engle (1987) show that, if y, is cointegrated, there is an 
equivalent error correction representation: 
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where B is a matrix of constants and y is a N X M matrix. [See Granger and 
Engle for the construction of this representation from (2.1).] This representa- 

tion shows how changes in y, depend on how far away a’y,_r is from its 
equilibrium value. 

Fama and French’s (1987) regressions of future returns on dividend price 
ratios are estimates of this error correction form; our variance based estimates 
properties of the original representation. Since either representation can be 
derived from the other, we are after the same phenomenon, just as Fama and 
French’s (1986) regressions of future returns on past returns are measures of 
the same phenomenon as Poterba and Summer’s univariate variance ratios. 

2.3. A representation of cointegrated series that measures the importance of 
cointegration by the size of random walk components 

Cochrane (1986) emphasized that the univariate * [spectral density at 0, 
variance of random walk component, and (Ca,)2u,2] is a useful as well as a 
complete characterization of the unit root properties of a series, because it 
allows us to measure the importance of a unit root on a continuous scale from 
0 to cc rather than just ask ‘is there or isn’t there a unit root?’ For a vector of 
time series y,, we can ask the further question: how many unit roots (‘common 
trends’ in the Stock-Watson language) are there? This section derives a 
rewriting of the Beveridge-Nelson representation that allows us to quantify 
the importance of the N potential unit roots, rather than ask simply what is 
their number.’ 

Express the spectral density matrix at frequency 0 as 

where A is a diagonal matrix of eigenvalues of the spectral density matrix, 
organized from highest to lowest, 

(2.5) 

and Q is a corresponding orthogonal matrix of eigenvectors. Since \k is 
symmetric, it has a full set of linearly independent eigenvectors, so this 

r With this representation, multivariate variance-covariance ratio estimates (or other multi- 
variate spectral density estimates) can play the same role with regard to Stock and Watson’s tests 
for the number of random walk components that the univariate variance ratio tests do to the 
Dickey-Fuller, etc. tests for the presence or absence of a single unit root - they allow one to 
estimate the same quantities while imposing less additional structure. 
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representation exists. When the spectral density matrix 9 is of rank N - M 
less than N, M of the hj are 0. 

Define a new N-dimensional series of innovations by Y, = Q’A(l)&,. Then, 
we can rewrite the random walks z, in terms of these innovations as 

(I-,c)z~=~+@J, where E(v~)=O, E(y,v:)=A. (2.6) 

Since the variances of the last N - M elements of Y are 0, this representation 
expresses yt in terms of N - M random walks (or common trends), whose 
innovation variances are the eigenvalues of \k. 

Consider the problem of finding M + L nearly cointegrating vectors when 
there are really M. In a large sample, we want to find M + L vectors aj, 
j=1,2 , . . . , M + L, that minimize 

fin var( cy,‘( I - L) z,) = Ol,‘*aj = aj’Q A Q’aj (2.7) 

(subject to an arbitrary normalization for the vector ai). The answer is,* pick 
for aj the eigenvectors corresponding to the M + L lowest eigenvalues of the 
spectral density matrix. The (minimized) variance of the permanent compo- 
nent of the corresponding linear combinations of y, are then 

var(1 - L)a;z, = Xj. (2.8) 

The representation (2.6) and its interpretation (2.7)-(2.8) provide a multi- 
variate extension of the quantity a(l)*u,* used for univariate time series. If 
there are M cointegrating vectors, M of the Xj elements of A are 0, there are 
M linear combinations of y, that are stationary, and so the N-dimensional 
series yt can be expressed as a sum of only N - M random walk components 
plus stationary components. As the series yt becomes closer and closer to 
being cointegrated with M + 1 cointegrating vectors, the (M + 1)th hj will 
approach 0, and the (N - M + 1)th random walk vN_ M+ 1,1 will contribute less 
and less to the variance of the long-term forecasts z,.~ In applications where it 
is more interesting to measure the size of a univariate random walk component 
rather than test for its presence or absence of a unit root, this representation 
suggests we estimate the variance of the N potential vif rather than test for 
their number. 

*Take the normalization as ICY,] = 1. Then, we want to minimize (nJQAQ’u,/ol;a,). Any linear 
algebra textbook [e.g., Wang (1976, p. 253) under ‘Rayleigh’s Quotient’] shows that this quotient 
is minimized by taking ai as one of the eigenvectors or columns of Q, and the value of the 
minimized quotient is the corresponding eigenvalue or element of A. 

3Phillips and Ouharis (1986) derive the asymptotic distribution of eigenvalues of the spectral 
density matrix at frequency 0, under the null that the matrix is in fact of full rank. 
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2.4. EfSect of cointegration on + 

Later on, we will impose the restriction that the consumption/income ratio 

and the dividend/price ratios are stationary. This assumption implies that the 
logs of these series are cointegrated with cointegrating vector [l - 11’. In this 
section, we ask: what effect does this assumption have on the matrix 9? 

Consider a pair of time series, y, = [x, w,]‘, cointegrated with cointegrating 
vector (Y = [l -(YJ’ (x, - (Y,w, is stationary). (Think of x as GNP and w as 
consumption, or x as stock prices and w as dividends.) Cointegration implies 
a’A(1) = 0 and hence a’A(l)EA(l)’ = a’\k = 0. This requirement means, for 
the elements of q, 

(2.9) 

(2.10) 

J/L = \c/llh. (2.11) 

(2.9) shows that cxl can be found from an OLS regression of the permanent 
components; (2.10) shows that the relative variance of the random walk 
components is determined by the cointegrating vector a; and (2.11) reminds us 
that \k is singular, so that there is effectively only one random walk compo- 
nent. We can rewrite (2.9)-(2.11) as 

Q= 4 a1 I 1 1 ( 
constant), 

a1 

(2.12) 

or, in a common trends representation, 

x, = a1z, + c,t, 

w, = z, + cw,, (2.13) 

z, = z,_i + nl, nt i.i.d. 

If (Y = [l - l]‘, then (x, - w,) is stationary; or, with x, = log( X,) and 
wt = log(w), log( X,/W,) is stationary. Otherwise, log( X,/v-l) is stationary. 

When (Y = [l - 11’ and log( X,/W,) is stationary, then (2.13) reduces to 

x, = z, + cx,, 

wf=z,+cw,, (2.14) 

z, = z r-l + nt, 9, i.i.d. 

J.E.D.C.- C 
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This is eq. (1) in the introduction. In words, x, and wt can be expressed as the 
sum of a common random walk component and a stationary component. In 
this case 

\k= 1 l 
[ I 1 1 

(constant). (2.15) 

We will use l/k times the variance of k differences of x and w to estimate 
the diagonal elements of ‘k, and l/k times their covariance to estimate the 
off-diagonal elements. From (2.15), if the log( X,/W,) is stationary, l/k times 

the variance of k differences of x,, l/k times the variance of k diflerences of w,, 
and l/k times the covariance of their k differences all approach the same number 

as k grows. We can read the variance of the random walk component of 
income, for example, from the variance of the k differences of consumption, 
and from the covariance of the k differences of consumption and income as 
well as from the variance of k differences of income. 

3. Estimation 

3.1. l/k times variance of k diflerences as a spectral density estimator 

Most tests for cointegration, like tests for unit roots, are based on parsi- 
monious VAR representations. For examples, see Stock and Watson (1986) or 
Granger and Engle (1987). In retrospect, this is surprising, because the 
cointegration and unit root properties of a series are entirely a function of ‘k, 
the spectral density at 0, and spectral density is usually not estimated from 
parsimonious VAR or VARMA representations. 

These techniques impose restrictions across frequencies to estimate the 
spectral density at 0 from high frequency information in any finite sample. 
Most commonly, one has to impose that the errors are described by a short 
AR or MA process. This assumption essentially bounds the slope of the 
spectral density near zero. Direct estimation of the spectral density at frequency 
0 (‘k) often imposes fewer such restrictions. As in the univariate case, it can 
capture classes of time series behavior, such as long horizon mean reversion, 
that are precluded by the restrictions imposed by estimating parsimonious 
VAR representations. 

This section shows how l/k times the variance of k differences is a 
conventional spectral density estimate. In particular, it is a member of a class 
of spectral density estimates that we call variance of filtered data estimates. 
Estimates in this class are equivalent implementations of the usual weighted 
covariance and smoothed periodogram estimates, in the sense that for any 
member of one class there is an equivalent member of the other two, available 
by Fourier transformation. 
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Start with a stationary N-dimensional time series, Ay,. Define its 
Fourier transform x(o) as4 

X(W) = T-l/' t e-'"'Ay,, -VTSWlT. 

j=l 

finite 

(3.1) 

Its periodogram is defined for T frequencies between -r and rr, 

'(Oj) =x(W,>x(W,)*> aj=2rj/T, j= -(T- 1)/2 ,..., T/2, 

(3.2) 

where * means complex conjugation and transposition. 
The periodogram is an unbiased but inconsistent estimate of the spectral 

density matrix at w, because its variance does not decline to 0 as T- CO. 
Therefore, the spectral density is conventionally estimated as a weighted sum 
of nearby periodogram ordinates: 

T/2 
S(emiw) = C WbJ, - 4qQ,). (3.3) 

,= -(T-1)/2 

(3.3) is the smoothed periodogrum estimate of the spectral density. If we 
promise that the weighting function will approach a delta function as T + co, 
but at a slower rate than T, (3.3) is a consistent estimate of the spectral 
density. 

If we Fourier transform the weighting function 

w,(k) = 1” eik’Wjv - w)dv, 
-77 

(3.4) 

then the Fourier transform of (3.3) is 

$(eCiw) = $J eCik”w,(k)f(k), 
k=-m 

(3.5) 

where f(k) is a consistent estimate of the kth autocovariance E(Ay,Ay,‘,). 
This is the weighted covariance estimator. 

The variance of long differences is an instance of a third equivalent class of 
estimators. Define a (two-sided) lag polynomial F,(ee’“) such that 

lF,(e-‘“)I* = W(Y - a). (3.6) 

4 We chose to put the 2~ ’ in the inverse Fourier transform rather than include a (2~)-‘/~ in 
both the forward and inverse transform, so that the identity between the spectral density at 0 and 
the variance of (1 - L)z, is preserved, without an intervening 2n-‘/‘. 
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Then form a filtered version of the original series, 

r’(t) = Wd AA. (3.7) 

The variance of this filtered series is 

var(y’(t)) = (2a))’ (” IF,(e-i”)12S,,(e-i’)dv. 
J-71 

(3.8) 

Therefore, the sample variance of filtered data is asymptotically equivalent to 
the weighted covariance and smoothed periodogram estimators of the spectral 

density (3.3) and (3.5). 

We can express the variance of long differences estimate as the variance of 
filtered data: 

!b = g(eCio) = var 

The corresponding smoothed periodogram estimate is [from (3.3)] 

sin2]( k + l/2)0,] 

sin2 ( wj/2) 
‘b/h 

and the weighted covariance estimate is 

$ = $(e-iO) = ‘i’ k k”lry,, 
/=o 

(3.9) 

(3.10) 

(3.11) 

which is the Bartlett estimate of the spectral density at frequency 0. 
The usual procedure is to pick a k or window width and then calculate one 

of the above estimates. If k is too small the estimate will be biased from 
including too many far away periodogram ordinates. If k is too large it will 
have a large variance because few periodogram ordinates are included. A plot 
like figs. 1 and 2 represents the result of experimentation with different k or 
window widths. We hope to find a region in which the results are insensitive to 
the choice of the window width. 

The smoothed periodogram, weighted covariance and variance of filtered 
data estimates are asymptotically equivalent. In a finite sample, there are 
differences between the three estimates. For example, the variance of k 
differences estimate corresponds to a calculation of the autocovariances that 
underweights observations k away from the beginning and end of the data set 
compared to the conventional estimate of the autocovariance. These differ- 
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Fig. 2. l/k X variance and covariance of k differences of GNP and nondurable + services 
consumption. Units: variance of one-year change in GNP. 
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ences give rise to different small sample properties. In particular the small 
sample bias can differ. 

The variance of k differences gives a clear picture of exactly what feature of 
the data drives the estimate. The essential characteristic that any estimate of 
the spectral density at 0 picks out is whether there is a great deal of variability 
left at long horizons. This is, in fact, the only distinguishing feature of a 
random walk component. By taking long differences of the levels of a series, 
which is the same as taking a long moving average of its differences, we are 
filtering out the high frequency variation in the series and leaving in only the 
long horizons. 

In principle, one might get better (more efficient) results by using other 
filters than a simple unweighted moving average, because the unweighted 
moving average lets in a certain amount of high frequency information 
through ‘side lobes’ in its Fourier transform. (Other filters amount to other 
window shapes of smoothed periodogram estimates.) In experiments with 
these data sets, however, we have found very little difference in either results 
or standard errors from using other filters. 

3.2. Standard errors 

The asymptotic distribution of spectral density estimates is also standard. 
Koopmans (1974) gives the asymptotic variance of the Bartlett estimator at 
frequency 0 as 

4k 112 ~ 
S.e. = -fp 1+5~, 

[ 1 (3.12) 

where 4, is l/k times the sample variance of k differences, our estimate of 
the spectral density at frequency 0. 

To assess the accuracy of the Bartlett formula in samples of our typical size, 
we ran a few Monte Carlo experiments, reported in table 1. (The mean value 
of the variance of k differences was close to 1.00 in all these experiments.) In 
the first row of table 1 we simulated 100 observations of a pure random walk 
with no drift, and we report standard errors of l/k times the variance of k 
differences. [We calculated the variance of k differences using formula (3.19). 
That formula includes some corrections for small sample bias, discussed 
below.] 

In the second row, we extend the sample to T = 200 observations. Note that 
the standard errors are very close to the same for equal values of k/T. This 
behavior is typical of all Monte Carlo experiments we ran. 

The third row gives the results when the process includes, and we estimate, a 
drift. Here the process is a random walk with a drift term of 1, and the 
variance of k differences is calculated by (3.18) below. 
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Table 1 

Monte Carlo standard errors for variance of k differences (500 trials).a 

Model when no mean removed: y, = y,- , + E,; 0,’ = 1 

Model when mean removed: y, = 1 + y, _ , + e,; 0,’ = 1 

100 k/T 1 2 3 4 5 10 20 30 40 50 

T=lOO 0.137 0.160 0.200 0.231 0.263 0.409 0.607 0.772 0.888 0.896 
T = 200, no mean 0.105 0.167 0.203 0.232 0.256 0.366 0.561 0.733 0.913 1.093 
T = 100, no mean 0.139 0.178 0.210 0.246 0.271 0.379 0.563 0.710 0.853 0.992 
Bartlett 0.115 0.163 0.200 0.231 0.258 0.365 0.516 0.632 0.730 0.816 

“Sampling error in 500 trials is about 0.02 

The fourth row gives the asymptotic standard error from the Bartlett 
formula (3.12). These are close to the Monte Carlo values, and best for 
k/T CC 0.5. 

When applying the standard errors, we could choose LO use the 4, at each k 
to scale the standard errors, or to choose one qk - the +Lk at the largest k - as 
the estimate of J, for all k. We followed the latter choice in the applications. 
Since we will not use the covariance of k differences or estimates which are 
combinations of variances of k differences, we do not report the correspond- 
ing Monte Carlo results. 

3.3. Optimal combinations: 

We have three estimates 
differences of each series, 

Bias 

of the same quantity: l/k times the variance of k 
and l/k times the covariance of k differences. 

Which one, or which combination should we use? 

The asymptotic distribution theory is of no help here because, asymptoti- 
cally, all three estimates are identical. Eq. (2.14) shows that, when T and k are 
large, l/k times the sample variance of k differences of each series and l/k 
times their sample covariance all approach l/k times the sample variance of k 
differences of z,. Hence, the asymptotic variance-covariance matrix of the 
three estimates, 

1 
I 

var( x, - x,_~) 

Vcovk-’ var(w, - wlek) , (3.13) 

co+, - Lk)(W, - Wl-k) 

is a constant - var(1 - L)z, - times a 3 X 3 matrix of ones. 
For finite differences k and a finite sample T, the stationary components c 

in (2.14) still enter the variance of k differences, so the variance-covariance 
matrix of the sample variance and covariance of k differences is not singular. 
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Also, at finite k, the stationary components bias l/k times the sample 
variance or covariance of k differences away from the innovation variance of 
the random walk component var(1 - L)z[. In frequency domain terms, as long 
as the windows are of finite width, the estimates will be biased. Therefore, the 
optimal combination of the three estimates to use will depend on their finite k 
bias and finite sample variance-covariance matrix. We will examine the 
population bias (finite k, T + co) for bivariate cointegrated MA(l)‘s and 
apply the lessons learned to the actual data. We discuss small sample bias 
below. 

Let the pair [x, w,] have univariate MA(l) representations 

0 - Gx, = PX + (1 + G)% 

(l-L)w,=I*,+(l+&+,, 
(3.14) 

where S(j) = 1 for j = 0 and 0 otherwise. For now, we will take p, = pw = 0. 
The (population) variance-covariance of k differences for this model is 

kvar(l - Lk) x,= ((1 + +p)‘- 26/k)& 

kvar(* - Lk) ~~=((1+8)~--28,‘k)0,2, 

kcov[(l - Lk)x,(l - P)W,] 

I 
(k-1) 

=c,o, (1++)(1 +fl) c 
k - 1 - ]j] 

,= -(k-l) k pJ 

. 
j=l /=I II 

(3.15) 

To impose that x, and w, are cointegrated, we require that the limit of the 
matrix of the elements in (3.15) is singular as k -+ 00, which in turn implies 

f p,=l. 
j=_oo 

(3.16) 

To impose that the cointegrating vector is [l -l]‘, all the elements of (3.15) 
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Table 2 

271 

Variance ratios for cointegrated MA(l)‘s.” 

Model: 

x,=x,-, +e,+9e,_1 Et E, “r -, ) = ~‘v P, 

W, = w,-1 + v* + BY!_, Cp,=l o,(l + l#B)2 = a,(1 + C9)2 = 1 
/ 

(A) Two random walks 

+ 0 P-1 PO Pl VAX VAW cov VxlO VW10 COVlO 

0 0 0 1 0 1 1 1 1 0 0 1 0 0 1101 : :9\ VAY 
0 0 0 0 1 1101 1 0.9 1 dc 
0 0 0.5 0 0.5 1 1 0 1 1 0.9 cov 

0 0 -0.5 1 0.5 1 1 1 1 1 1 
0 0 -1 1 1 1 1 1 1 1 1 k 

0 0 1 -1 1 1 1-l 1 1 0.8 
0 0 0.75 -0.5 0.75 1 1 -0.5 1 1 0.85 

(B) W, a random walk, (1~ L)x, an MA(l) 

+ 0 P-l PO PI VAX vAw cov VxlO VW10 COVlO 

-0.1 0 0 1 0 1.25 1 
-0.5 0 0 1 0 5 1 2 
-0.9 0 0 1 0 181 1 10 19 

-0.5 0 1 0 0 5 1 1 
-0.9 0 1 0 0 181 1 0.9 19 1 

-0.5 0 0 0 1 5 1 -1 
-0.9 0 0 0 1 181 1 -9 10 1 0 

must be equal as k + 60, so 

(1 + +)“cr,’ = (1 + e>‘c,z. (3.17) 

Table 2 reports the variance of first and l/10 times the variance of 10th 
differences for a variety of models of this form, and presents graphs of l/k 

times the variance of k differences for a few of these models. We picked 
parameter values that give variance of k differences reminiscent of figs. 1 and 
2; one series nearly a random walk and the other containing a strong 
stationary component. (Negative MA coefficients correspond to declining l/k 
variance of k differences graphs, which accounts for their preponderance in 
the models of table 2.) We picked the innovation variances u,’ and u,’ so that 
the variance of the random walk component is 1 in each row of table 2. 

Part A of the table reports results for the case in which both series are 
random walks. The l/k variance of k differences is obviously flat for both 
series, while the covariance varies depending on the correlation of the innova- 
tions. 
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Table 2 (continued) 

(C) Both (1 - L)w, and (1 - L)x, MA(l) 

+J 8 P-1 PO Pl VAX VAW CO” vxl0 VW10 COVlO 

- 0.1 -0.1 0 1 0 1.25 1.25 1.25 1.03 1.03 1.03 
-0.5 -0.5 0 1 0 5 5 5 1.5 1.5 1.5 
-0.9 -0.5 0 1 0 181 5 29 19 1.4 3.8 

-0.5 -0.1 0 1 0 5 1.25 2.3 1.4 1.03 1.13 
- 0.5 0.1 0 1 0 5 0.84 1.73 1.4 0.98 1.07 + 
-0.5 0.5 0 1 0 5 0.56 1 1.4 0.96 1 1 
-0.9 0.5 0 1 0 181 0.56 3.7 19 0.96 1.27 

-0.1 -0.1 1 0 0 1.25 1.25 0 1.03 1.03 0.9 
-0.5 -0.5 1 0 0 5 5 0 1.4 1.4 0.9 
-0.9 -0.5 1 0 0 181 5 8 19 1.4 1.7 

-0.5 -0.1 1 0 0 5 1.25 0.89 1.4 1.03 0.98 
-0.5 0.1 1 0 0 5 0.84 1.09 1.4 0.98 1.01 
-0.5 0.5 1 0 0 5 0.56 1.3 1.4 0.96 1.03 
- 0.9 0.5 1 0 0 181 0.56 9.3 19 0.96 1.83 

-0.1 -0.1 0 0 1 1.25 1.25 0 1.03 1.03 0.89 
-0.5 -0.5 0 0 1 5 5 0 1.4 1.4 0.89 
-0.9 -0.5 0 01181 5 -8 19 1.4 0.1 

-0.5 -0.1 0 0 1 5 1.25 -0.89 1.4 1.03 0.81 
- 0.5 0.1 0 0 1 5 0.83 -1.1 1.4 0.98 0.79 
PO.5 0.5 0 0 1 5 0.56 -1.3 1.4 0.96 0.77 
PO.9 0.5 0 0 1 181 0.56 -9.3 19 0.96 -0.03 

- CO” 

Y vAc 

“VAX, VAW, and cov give the variance or covariance of first differences. VxlO, ~~10, and covl0 
give l/10 the variance or covariance of 10th difference. The parameters are chosen so that the 
variance of the common random walk component is always 1. 

Part B presents results for the case in which one series follows a random 
walk and the other follows an MA(l) in first differences. The variance of the 
random walk series is unbiased at all k, of course. The bias of the covariance 
is less than the bias of the variance of the MA(l) series, with absolute value 
that depends on the correlation of the innovations. 

The least biased estimate was a foregone conclusion in parts A and B 
because one series was a pure random walk, and hence unbiased at all k. Part 
C explores the bias when both series are MA(l)‘s, but one (w) is closer to a 
random walk than the other (x). The typical case is graphed in the table. With 
a few exceptions, the series closer to a random walk is the least biased. The 
only exceptions occur when the variance of x line declines, the variance of w 
line rises, and the correlation of the innovations is such that the covariance 
line lies between the two variance lines. 

3.4. Optimal combinations: Variance and covariance 

The optimal combination of the elements of the sample variance-covariance 
matrix of k differences depends on the small sample distribution as well as the 
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finite k bias. One can reduce the mean squared error of a combination of 
estimates by including a biased, but independent estimate. 

Table 3 presents some Monte Carlo estimates that address this issue. They 
use the estimates of the variance of k differences that are applied to the data, 
including small sample corrections described in the next section. We generated 
artificial data by a variety of the MA(l) models presented above, varying both 
the permanent/transitory components of each series and the correlation of 
each series’ innovations, while maintaining the assumption of cointegration. 

The rows marked ‘E(G)’ give the expected value of l/k times the variance 
and covariance of k differences, which confirms the bias calculations above. 
The rows marked ‘ variance-covariance/correlation of Y@’ and ‘standard 
deviation’ give what they say. To calculate the row marked ‘variance and std. 
dev. of minimum variance linear combination’ we calculated the minimum 
variance linear combination of the three estimates.5 Note that the 
variance-covariance matrices are all nearly singular: the correlations are 
typically 0.98 or 0.99. The minimum variance combinations produce variances 
almost identical to the individual variances. 

‘Let V denote the 3 X 1 matrix [VI V2 V3]‘, 

V=[k-‘var(x,~x,_~) km’var(w,-w,_,) km’cov(x,-x,_L)(w,-w,_,)]‘. 

Each of the 5 is a possible estimate of the common random walk component, 4. Let the bias of V 
be p and let Its variance-covariance matrix be 0. i.e., 

E(V) =p+$, E((V-(P+IC))(V-(p++))‘)=Q. 

Consider estimating IJ by taking linear combinations of V, y’V. The sum of the y, is 1, which 
we can write y’l = 1, with 1 a vector of 1’s. The bias, variance and mean squared error of the new 
estimate is 

bias(y’V) = y’~_l, var(y’V) = y’Oy, MSE(y’V) = y’(pp’ + s2)y. 

The y that minimizes mean squared error is 

while the y that minimizes variance is 

The minimized mean squared error is therefore 

while the minimized variance is 

We used these formulas to evaluate the optimal combination of V to use, and the costs of using 
just one (the least biased) and ignoring the others. 

We do not report the minimum mean squared error calculations in table 3. We did not 
constrain linear combinations to be positive, so these calculations basically exploited the bias and 
ignored the nearly singular variance-covariance matrix. (If one estimate has bias = 1 and another 
has bias = 2, an ‘optimal combination’ is - 1 times the first + 0.5 times the second.) Since we 
don’t know the bias in applications, these calculations are not interesting. 
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Table 3 

Monte Carlo variance-covariance of l/k variance-covariance of k differences I; 500 trials; 
k = 10.a 

Model 1: 
(1 - L)x, = (1 - O.SL)&, 

(l-L)w,=v, 

EC’@) 
Variance-covariance/ 

correlation of + 

Standard deviation 

Weights to min. varianceb 

Variance and std. dev. of 
min. variance 
linear combination 

wl) 

wl2) 
w22) 

wl) 
w2) 
1J1(22) 

Model 2: 
(1 - L)x, = (1 - 0.5L)q 

(1 - L)w, = (1 - O.lL)u, 

W-6 
Variance-covariance/ 

correlation of G 

Standard deviation 

Weights to min. varianceb 

Variance and std. dev. of 
min. variance 
linear combination 

wl) 

w21 
w221 

wl) 
w21 
w22) 

cl? = 2 

0” = 1 
pml=p,=o PO”1 

Wl) W2) W22) 

1.401 1.103 

0.166 0.156 

0.992 0.148 
0.985 0.999 

0.407 0.395 
0.385 

3.20 6.00 

0.130 0.360 

1.003 

0.152 

0.146 
0.144 

0.390 
0.382 
0.379 

1.80 

9 = 2 

0” = 1.11 

$(11) 
__- 

1.383 

0.152 

0.994 
0.986 

0.390 

-1.12 

0.11 

p-l=P,=o PO'1 

1(D) W22) 

1.114 1.005 

0.143 0.139 

0.136 0.132 
0.999 0.129 

0.378 0.372 
0.368 0.363 

0.360 

6.40 - 4.28 

0.33 

We conclude from these simulations that the most important issue in 
choosing an optimal combination is the small-k bias discussed above. The 
extra information available from adding an even more biased estimate is not 

worth the extra bias. In turn, the small-k bias evaluations of table 2 suggest 
that the series closest to a random walk is generally the least biased. Our 
conclusion, which we will apply to the data, is: When one series has an 
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Table 3 (continued) 

Model 3 : 
(l-L)x,=e, I?? = 1 

(1-L)w,=v, 0” = 1 
pml=l p,=o p,=o 

E@) 
Variance-covariance/ 

correlation of * 

Standard deviation 

Weights to min. varianceb 

Variance and std. dev. of 
min. variance 

linear combination 

Wll) W2) w3) 
________ 

0.982 0.882 0.983 

*(ll) 0.141 0.140 0.142 

*r(121 0.999 0.138 0.140 
*(22) 0.998 0.999 0.143 

*(ll) 0.376 0.374 0.377 
*cl21 0.372 0.375 
*11(22j 0.380 

~ 1.11 6.40 -4.28 

0.141 0.341 

Model 4: 

i 

(1 - L)x, = (1 -OX)&, 9 = 2 

(1 - L)w, = (1 + 0.2L)Y, 0” = 0.83 
p-t=p,=o PO’1 

Wl) W2) w2-3 

W-6 
Variance-covariance/ 

correlation of * 

Standard deviation 

Weights to min. varianceb - 2.69 6.54 

Variance and std. dev. of 
min. variance 
linear combination 

1.437 

‘Ir(ll) 0.177 

*(12) 0.988 
*(22) 0.981 

901) 0.421 

*(12) 
1(22) 

0.130 0.360 

1.082 

0.162 

0.152 
0.999 

0.403 
0.390 

1.002 

0.159 

0.150 
0.148 

0.399 
0.387 
0.384 

- 2.85 

“All models are MA(l)‘s in first differences, cointegrated with cointegrating vector [l - l]‘, and 
with variance of random walk component = 1. The form is given in eqs. (3.14) and (3.15). The 
sarnpling uncertainty (500 trials) is about 0.01 in all the above experiments. 

These weights are extremely unstable in repetitions of the Monte Carlo experiment, because of 
the near singularity of the variance-covariance matrixThey typically also imply very large biases 
of a weighted estimate. 

important stationary component and the other is nearly a random walk, use l/k 
times the variance of k di’erences of whichever series is closest to a random walk 
as the estimate of the permanent component of both series. 

The possible exceptions to this advice are the cases in table 2 in which the 
covariance line was less biased than the variance of the near-random walk 
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series. However, recognizing such a case depends on knowledge of the correla- 
tion at leads and lags of the univariate innovations, p ~ 1 and p + r, and in these 
cases the bias of the covariance line was only slightly better than the bias of 
the near-random walk series. Therefore, we judge that these cases are of little 

practical usefulness. In our applications (tables 4 and 5) the covariances give 
answers that are quite close to the variance of the near random walk series, so 

the distinction is of little importance. 

3.5. Small sample corrections 

We corrected for two sources of small sample bias in estimating the 
variance-covariance matrix of k differences. First, when we removed an 
estimated drift term, we used for all k the sample mean of the first differences 
to estimate the drift term p, instead of using the mean of k differences at each 
k. Second, we made a degrees of freedom correction that gives unbiased 
estimates for the variances when the processes follow pure random walks. 
With these corrections, the variance estimates are precisely unbiased at all k 
for a random walk. The covariance estimates suffer a downward bias that 
depends on the correlation between innovations of the two series at leads and 
lags. Since we can’t correct for this bias without knowledge of these correla- 
tions, this observation argues further for our procedure which ignores the 
covariance estimates. 

When we remove a drift term, the estimator we use for l/k times the 
variance-covariance matrix of k differences is 

A T 

“‘= k(T-k)(T-k+l) xr-xx,-k 
- &-x,,,)‘. 

n . T 

‘h2=‘21= k(T-k)(T-k+l) 

T 

x c x,--x,-k- 
t=k 

;(xT-xd](w~- wr-k- ;(w+b)), 

L = 
T 

k(T- k)(T- k + 1) 
(3.18) 

where T is the sample size (T differences or T + 1 levels). 
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In some cases, like the price/dividend or consumption/income ratios, it is 
inappropriate to remove a drift term. In these cases, we impose that the drift 
term p is zero, and we use the following estimator: 

1 
I t=k 

= k(T-k+1) 

I 

i txt - xt-k)(wt - w,-k 
t=k 

.> 1 
(3.19) 

To evaluate the potential bias of these estimators, assume that X, and wt are 
each random walks with no drift - the model of eq. (3.14) with B = Cp = I”, = 

Jo, = 0. Now, 

k-l 

xt - xt-k =kP,+ C 0 ++L)Et-j2 

j=O 

and (3.20) 

xT-xo= Tpx+ i (1 ++I+,. 
j=l 

Analogous expressions hold for ,w,. Then the estimator of l/k times the 
variance of k differences for x, (Gll) is, by substitution, 

(3.21) 

Since E(E,E,) = 0 for t # s, the expected value of the term in brackets in 
(3.21) is 

and this term cancels with the fraction outside the sum in (3.21). The variance 
estimators are unbiased for a random walk: E($,,) = 0,‘. 
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For the covariance term, $r2, the summation in (3.18) reduces to 

(3.22) 

To get an idea of the behavior of this term, we examine the case in which the 
correlations pJ are nonzero at most up to order 1. Then we can write the 
expected value of the term in brackets in eq. (3.22) as 

u,a,(T- k + 1) 
k-l 

kpo+ - 
k ( Pl + P-d 1 

1 
l- 

k(T- k+ 1) 

That gives 

E&J = & 
T 

k 

k-l 
PO+ k ---(PI + P-l) 

(3.23) 

2k 1 
-- 

T-k I- k(T-k+l) 
(3.24) 

This estimator is asymptotically unbiased. Taking the limit as T -+ co, 

lim E(~,,)=o,a, PO+ y(Pr+P-r) . 
T-m i i 

(3.25) 

Then, as k + co, the estimator converges to u,a, (Cpj = 1 by the assumption of 
cointegration). However, from (3.24), $,, is still biased for any finite k and T, 
if pt or p-r are nonzero. The bias is always downward, but its value depends 
on the structure of the correlations between E and v at leads and lags, p1 

and P-~. 
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The same conclusions apply to the model with B = Cp = 0 and pX = ~1, = 0 
(no drift term) estimated by (3.19). The diagonal elements are unbiased for 
any k and T, while the off-diagonal elements are downward biased in a way 
that depends on p1 and P_~. 

Next, suppose that the univariate representations for x and w are not 
random walks but MA(l)‘s in first differences - model (3.14) with 0 and 
+ # 0. From (3.18) the diagonal terms are 

The same holds for j,, with B in the place of $, and a, in place of a,. 
As T + co, (3.26) converges to [(l + c#J)~ - (2$/k)]uez, which is the variance 

of k differences of a first differences stationary MA(l) process, and for k -+ co 
as well (3.26) converges to the variance of the random walk component, 

(I++) e. *a* Hence, $,, is an asymptotically unbiased estimate of l/k times 

the variance of k differences of the MA(l) process. The same results hold if 
there is no drift term, and we estimate YR by (3.19). 

For the off-diagonal (covariance) term, the estimators have expected value 

(3.27) 

in the case of no drift term. For k -+ 00, this expression converges to 

eEeV(l + +)(I + 0). 
Therefore, for MA(l) processes, the diagonal elements are asymptotically 

unbiased (T -+ co, k finite) estimates of the variance of k differences of the 
underlying MA(l) processes. They are of course biased estimates of the 
random walk component as k -e 00. The off-diagonal or covariance terms are 
further biased as before, depending on the values of p-r, pl, and the MA(l) 
parameters lJ and +. 

4. Application to stock prices and GNP 

We will impose the cointegration of prices and dividends and of consump- 
tion and income to read the random walk or permanent component of prices 
(income) from that of dividends (consumption). We can cast the maintained 
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assumption of cointegration either as a result of theory or as a plausible 
statistical characterization of the actual data. 

4.1. Proof that the present value relation implies a stationary dividend/price 
ratio 

It is well known that, if prices are given by the expected present value of 

dividends, the discount rate is constant and dividends are a random walk, then 
the dividend/price ratio is a constant. In this section, we generalize this 
statement: we show that the d/p ratio is stationary even if the discount rate is 
stochastic, so long as the discount rate and dividend growth are stationary and 
so long as dividends don’t grow ‘too fast’. [Hansen, Roberds and Sargent 
(1987) and Campbell and Shiller (1987) present related derivations.] 

Assume that stock prices are generated from their underlying dividends by a 
present value relation, 

(4.1) 

The discount factors yr could be generated from consumer’s first-order 

conditions in complete markets, Y,+~ = u’(c,+~_ i)/u’(c,). In this case (4.1) is 

P, = E, ft P’U’(ct+,)/U’(c,)d,+,. 
J=l 

W-4 

If we are applying the model to nominal quantities yt+ k also includes the ratio 
of price levels. 

Dividing (4.1) by d,, we obtain 

C/d,= E, : P’ d,+J/d, 
/=1 

(4.3) 
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where 

6 ri-k =d,+k/dt+k-1. 

Next, we assume that yt and 8, are strongly stationary (the joint distribution 

Of {Y,~Yt+l,--~?Yr+k } does not depend on t, and similarly for S,), and that 
they have at least second moments. These assumptions imply that y, and S, 
are also weakly stationary [E(y,) exists and is independent of t, E(y,‘) exists 
and is independent of t, cov(y,, yt _,) exists and depends only on s]. 

The function (4.3) is time invariant, so P/d, is strongly stationary. To show 
that it is also weakly stationary, we must show that its second moment exists. 
Hence, we must show that 

Hansen and Sargent (1980) show that this is guaranteed if 

(4.4) 

(4.5) 

In turn, the condition (4.5) is guaranteed if (but not only if) 

and 

lim/3’Jnyl+k=0 a.s. for E>O. 
J-m k=l 

(4.6) 

This condition says that marginal utility doesn’t grow asymptotically, and that 
dividends grow at less than the rate j3Jj2. 

We have just shown that if the discount factors y, (marginal rates of 
substitution, times inflation if we use nominal quantities) and dividend growth 
6, are strongly and weakly stationary, if they satisfy the bounds on their 
growth (4.6) and if prices are set by the present value relation (4.1), then the 
d/P, ratio is also both strongly and weakly stationary. 

4.2. Proof that the permanent income hypothesis implies that consumption and 
income are cointegrated 

In the standard version of the permanent income theory [Hall (1978) Flavin 
(1981), Hansen (1987)] a representative consumer maximizes a quadratic 
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expected utility function 

max E, - : g p’( c,+j - 2)’ ) 
j=O 1 (4.7) 

subject to the resource constraint 

A r+l=(l+r)A,+e,-c,, 

;i;pJi4,+j = 0 a.s., fi = (1 + r))‘, 

where e, denotes labor income (or an endowment), and A, is wealth at time t. 
The optimal consumption sequence is 

= rA, + (1 - /3)E, f p’e,+j. 
J=o 

(4.8) 

Substituting (4.8) back in the resource constraint, we get 

A ,ti-A,=e,-(l-B)E,fBJe,+,. 
j=O 

(4.9) 

Output (GNP) includes both labor income and property income, y, = rA, + e,. 
With this definition, (4.8) implies 

c, - y, = (1 - /3)E, f /Ijet+j - e,. 
j=O 

(4.10) 

Therefore, to show that x, = c, - yt is a stationary process, or that c, and yt 
are cointegrated with cointegrating vector (Y = [l - l]‘, we need to prove that 
the right-hand side of (4.10) is a stationary process. This is trivially true if e, is 
stationary, stationary about a linear trend, or stationary about a geometric 
trend of order less than p, so that the sum in (4.10) converges. 

Suppose then that e, is a first difference stationary process with representa- 
tion: 

(l-L)e,=p+A(L)q, (4.11) 

where E, is a white noise process; by the Beveridge-Nelson decomposition [eq. 
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(2.2)], we can write e, = zt + u,, where zt is a random walk representing the 
stochastic trend component of e,, 

(1 -L)z,=/.l+f(1)&,, 

and u, is stationary. Using the decomposition e, = z, + u,, 

E,zF’ez+,=Ez( Ft’Zl+j) +E,( Ft’uz+,). 

(4.12) 

(4.13) 

Now, 

Et E PJZt+j =z,+E, f ,B’ z,+j,+A(l) i E,+~ 
J=o /=I i k=l 

1 FLP 
= l-pZ’ + (1 _ B)’ ’ 

and from (2.2) 

E, ~ PJU,+J= - ~ pjCAl*Et,j_,. 
j=O j=O i2.i 

Substituting (4.14) and (4.15) into (4.13), 

(4.14) 

(4.15) 

E, E P/e,+, = &zr + PP 
- ~ P’C Ar*Et+j-i, 

(l-P)2 j=O izj 

(4.16) 
j-0 

and substituting this into (4.10), note that the random walk terms z, cancel, so 

PP 
- - (1 - /J’) f pjc A:E,+/_~ - u,. Ct-Yt= Cl _g 

j=O i2j 
(4.17) 

Therefore, the right-hand side of (4.10) or (4.17) is stationary. 
Two warnings are in order about this result. First, it holds for total 

consumption, including the flow of services provided by durable goods. We 
use data on components of consumption, e.g., nondurable and services. If the 
income elasticity of the various components isn’t one, the ratio of components 
to GNP can drift up and down even though the ratio of total consumption to 
GNP is steady. In this case, the components are cointegrated with GNP with a 
cointegrating factor q + 1. 
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Second, this model of consumption cannot easily accommodate the ob- 
served growth in consumption and income. With growing income, it has the 
easily refutable prediction that savings are predominantly negative. Savings 
are equal to the expected decline in future income, so they are negative if 
income is expected to grow. The model also predicts that the difference of the 
levels of (per capita) income and consumption are stationary, not the more 
intuitively plausible ratio of consumption to income, or the difference of their 
logs. 

A model that delivers cointegration of the logs of consumption and GNP is 
presented in King, Plosser, Stock and Watson (1987). It is a one-sector growth 
model driven by a production function shock that follows a logarithmic 
random walk. Their representative agent maximizes 

and faces a production function 

K r+l=(l-G)K,+I,, 

log(b) = P + l%(L) + 17,> q1 i.i.d. 

(4.19) 

They show that the optimal decision rules for this economy include 

log(Y) = (I- 4odk,) + ~log(N(k,)) + (b’+x(k), 
(4.20) 

log(C) = logV%,)) + (I/a)log(U 

where k, = K,/A:/” 1s stationary. (4.20) shows that log(C,) and log(Y,) have a 
common trend (l/ol)log( X,), and so are cointegrated with cointegrating vector 
[l - 11’ or log( Y,) - log( C,) is stationary.6 

4.3. Results for stock prices and dividends 

4.3.1. Data 

The price is the value-weighted New York Stock Exchange portfolio index 
constructed by the Center for Research in Security Prices; dividends are 

‘Note that the permanent income model generates unit roots in consumption and GNP even if 
the forcing process e, is stationary. The King-Plosser-Stock-Watson model requires that the 
forcing process have a unit root. 
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Fig. 3. Dividend/price ratio. 

constructed by comparing the with and without dividend portfolios, 

div( t) = P( t)(e’(‘) - erx(‘)), 

where P(t) is the price, r(t) is the return on the VWNYSE, and LX(~) is the 
return on the price-only VWNYSE. This technique is taken from Fama and 
French (1987). We use annual data to avoid the seasonal in dividends. Our 
dividend series is the total dividends for the year, and our price series is the 
December value. 

4.3.2. Variance ratios for the dividend/price ratio 

First, we checked the statistical assumption that the dividend/price ratio is 
stationary. Fig. 3 presents the dividend/price ratio. (Given the way we 
constructed our data, the units are arbitrary.) The first block of table 4 
presents the variance of k differences and variance ratios (variance of k 
differences / variance of first differences) for log(dividends) - log(price). Typi- 
cal point estimates of the variance ratio are 0.16 (+ 0.16) at k = 30 and 0.31 
(of: 0.08) at k = 10. 

Unfortunately the hypotheses of stationarity vs. unit root are adjacent, so 
any test for stationarity has no power against the alternative of a stationary 
series plus a small random walk component, in a finite sample. These variance 
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ratios could as easily be generated by a stationary series with moderate 
persistence as by a small random walk plus another less persistent stationary 
series. A formal statistical test of stationarity is therefore inappropriate. 
[Cochrane (1987) discusses this point in detail.] 

The point estimates tell us that it is at least not a bad approximation to treat 
the d/P ratio as a stationary variable. If there is a random walk component, it 
is quite small, and so would have little effect on statistics in this sample, 
though it would dominate asymptotically. 

The standard errors in this block of table 4, and in all the other tables, are 
calculated from the Monte Carlo values reported on table 1, scaled by the 
variance at k = 30 (a point estimate of the variance of the underlying random 
walk component) and by k/T. This is a good approximation for large k, 
where little is left in the variance of k differences but the random walk 
component. It is a worse approximation for small k, because it ignores the 
stationary components. 

4.3.3. Variance and covariance of price and dividends 

Fig. 1 and the second block of table 4 present l/k times the variance of k 
differences of log price and log dividends, and l/k times the covariance of k 
differences. 

When we impose the hypothesis that the d/p ratio is stationary, we can 
read the limiting value of the variance of k differences of price from the 
dividends line. The discussion above argues that this is in fact the best way to 
estimate the variance of the one common random walk component using both 
variances and the covariance. 

Hence, we can calculate the ratio of the innovation variance of the random 
walk component of prices to the variance of first differences of prices (the 
‘variance ratio’) by dividing l/k times the variance of k differences of 
dividends by the variance of first differences of price. These calculations are 
presented in table 4, along with the variance ratio of prices calculated from the 
variance of k differences of price. Some resulting estimates of the variance 
ratios of prices are 0.21 at k = 30 and 0.38 at k = 10. These are l/3 to l/2 of 
the values estimated from the price line alone. 

Table 4 also presents results for the postwar period. The great volatility of 
stock prices through WWII contributes most of the low univariate variance 
ratios. The variance ratio of prices alone declines to 0.75 at a seven-year 
horizon and then rises to 1.12 at a twenty-year horizon. However, the variance 
ratio calculated using dividends is about 0.3 at all horizons. 

The standard errors are constructed as in the first block, by scaling the 
Monte Carlo results by k/T and by the variance of dividends at k = 30. It is 
tempting to note that 1 is more than 2 standard errors above the point 
estimate of the variance ratio, so we finally reject the hypothesis of a pure 
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Table 4 

Results for stock prices and dividendsa 

Log dividend - log price 

K 1 2 3 4 5 6 7 8 9 10 15 20 25 30 

10’ X l/k X variance of k differences 

Var 3.89 3.85 3.02 2.40 1.85 1.60 1.48 1.46 1.32 1.19 1.32 0.97 0.70 0.63 
Se. 0.11 0.14 0.17 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.41 0.49 0.56 0.64 

Ratio to one-year variance 

Ratio 1.00 0.99 0.78 0.62 0.48 0.41 0.38 0.37 0.34 0.31 0.34 0.25 0.18 0.16 
Se. 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.10 0.12 0.14 0.16 

Log price, log dividend, 1926-1984 

K 1 2 3 4 5 6 7 8 9 10 15 20 25 30 

100 x l/k x variance of k differences 

VUP 4.34 4.91 4.52 4.26 3.88 3.31 2.71 2.58 2.56 2.75 3.34 3.27 2.94 2.83 
Covp,d 0.90 1.47 1.80 2.01 2.08 1.90 1.56 1.40 1.38 1.49 1.57 1.57 1.40 1.34 
Vard 1.43 2.02 2.27 2.34 2.31 2.26 2.10 1.91 1.77 1.67 1.57 1.29 0.92 0.90 
S.e. 0.14 0.19 0.24 0.28 0.33 0.37 0.40 0.43 0.46 0.49 0.63 0.74 0.80 0.94 

Ratio of var div to one-year varp 

Ratio 0.33 0.46 0.52 0.54 0.53 0.52 0.48 0.44 0.41 0.38 0.36 0.30 0.21 0.21 
S.e. 0.03 0.04 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.11 0.14 0.17 0.18 0.22 

Ratio of varp to one-year varp 

Ratio 1.00 1.13 1.04 0.98 0.89 0.76 0.62 0.59 0.59 0.63 0.77 0.75 0.68 0.65 
S.e. 0.10 0.14 0.17 0.20 0.24 0.27 0.29 0.31 0.33 0.36 0.45 0.53 0.58 0.68 

Log price, log dividend, 1950-1984 

K 1 2 3 4 5 6 7 8 9 10 15 20 

100 X l/k X variance of k differences 

VXP 2.62 2.41 1.66 1.49 1.88 2.11 1.97 2.10 2.24 2.36 2.81 2.93 
Covp, d 0.44 0.44 0.39 0.39 0.48 0.50 0.42 0.37 0.35 0.29 0.20 0.30 
Vard 0.32 0.42 0.53 0.62 0.71 0.79 0.82 0.82 0.79 0.74 0.55 0.79 
Se. 0.12 0.17 0.21 0.25 0.29 0.33 0.35 0.38 0.41 0.43 0.55 0.65 

Ratio of var div to one-year var p 

Ratio 0.12 0.16 0.20 0.24 0.27 0.30 0.31 0.31 0.30 0.28 0.21 0.30 
S.e. 0.05 0.06 0.08 0.10 0.11 0.12 0.13 0.14 0.16 0.17 0.21 0.25 

Ratio of varp to one-year varp 

Ratio 1.00 0.92 0.63 0.57 0.72 0.81 0.75 0.80 0.86 0.90 1.07 1.12 
Se. 0.17 0.24 0.30 0.35 0.41 0.46 0.50 0.54 0.57 0.61 0.78 0.92 

“Standard errors are calculated from Monte Carlos, scaled by k/T and the variance of the 
implied random walk component at k = 30. 
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Fig. 4. Consumption/GNP ratio. 

random walk at conventional significance levels. However, the standard errors 
scale with the size of the random walk component, so if the variance ratio was 
1, the standard errors would be proportionately larger, and equal to the values 
given on table 1. Comparing that table with table 4, we can’t formally reject 
the hypothesis of a pure random walk at the conventional 5% level, because 
the standard errors are so much larger for a pure random walk. 

4.4. Results for consumption and income 

4.4.1. Data 

We used quarterly seasonally adjusted data on consumption of nondurables, 
consumption of services, and the sum of nondurable and services consumption 

together with GNP, all in 1982 dollars, from 1947:l to 1986:4. Our proximate 
source was the Citibase-mini data set for PCs. 

4.4.2. Consumption/income ratios 

Fig. 4 presents consumption/income ratios for each of our definitions of 
consumption. The nondurable c/y ratio drifted down over the sample, the 
services c/y ratio drifted up, while the nondurable + services has little visible 
trend. Table 5, part A presents l/k tunes the variance of k differences of 
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1ogGNP - log consumption. (No drift term is removed in the calculations.) 
Results for the consumption/GNP ratio are the same to 0.02. 

Here, as in all the l/k times variance of k differences of variance ratios in 
table 5, the variance rises out to a year, and then declines. We suspect that this 
represents a spurious smoothness of quarterly data due to seasonal adjust- 
ment. Therefore, we present variance ratios using the one-year mark in the 
denominator, as well as the one-quarter mark.’ As with the dividend/price 
ratio, table 5 suggests small point estimates of a random walk component in 
the c/y ratio. 

4.4.3. Variance and covariance of income and consumption 

Table 5, part A also presents l/k times the variance and covariance of k 
differences of GNP and nondurable + services consumption. Fig. 2 presents 
the corresponding graph. As above, we constructed variance ratios using 
l/k x the variance of k differences of consumption dividend by the one-year 
and the one-quarter variance of income. Table 5, part A also presents the 
corresponding variance ratios calculated using income alone for comparison. 

The ratio of consumption to yearly income changes is 0.31 at 10 years and 
0.42 at 15 years, while the ratio to quarterly changes is 0.58 at 10 years and 
0.79 at 15 years8 These estimates are roughly l/2 to 2/3 the corresponding 
univariate estimates of 0.60 at 10 years and 0.59 at 15 years using one-year 
changes in the denominator, and 1.14 at 10 years and 1.11 at 15 years using 
quarterly changes in the denominator. 

4.4.4. Other dejinitions of the series 

We also tried using nondurable and services consumption separately. We 
clearly cannot model nondurable or services consumption as series that are 
cointegrated with GNP with cointegrating vector [l - 11’. Hence, we estimated 
a cointegrating vector [l -(~~1’ by OLS, and then we took the variance ratio of 
log(y) - o~i log(c). These are presented in table 5, parts B and C. (The 
estimated cointegrating vector for nondurable + services consumption was 
0.97. Imposing (pi = 1 as above slightly raised the variance ratios, from 0.24 to 
0.28 and from 0.18 to 0.21 at the fifteen-year horizon when one-quarter and 
one-year variances are used in the denominator, respectively.) 

7As far as we can tell, this accounts for most of the difference between Cochrane’s (1986) and 
Campbell and Mankiw’s (1986,1987) results for postwar data: Cochrane used annual and 
Campbell and Mankiw used quarterly data, so Cochrane had a larger denominator (one year) 
than Campbell and Mankiw (one quarter). 

‘We scaled the standard errors based on the fifteen-year estimate of the random walk 
component. If we had scaled based on the ten-year estimate. the standard errors would have been 
proportionally smaller. 
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Table 5 

Results for consumption and GNP. 

(A) Nondurable + services consumption and tiNP 

Logy-loge 

k lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

lo4 X l/k var of k differences 

Var 1.05 1.18 1.41 1.34 1.35 1.26 1.00 0.83 0.66 0.56 0.47 0.36 0.29 
S.e. 0.03 0.04 0.05 0.08 0.10 0.12 0.14 0.15 0.16 0.18 0.19 0.20 0.25 

Ratio to one-quarter variance 

Var ratio 1.00 1.12 1.34 1.27 1.28 1.19 0.95 0.79 0.62 0.54 0.44 0.34 0.28 
Se. 0.02 0.04 0.05 0.07 0.09 0.11 0.13 0.14 0.16 0.17 0.18 0.19 0.24 

Ratio to one-year variance 

Var ratio 0.75 0.84 1.00 0.95 0.96 0.89 0.71 0.59 0.47 0.40 0.33 0.26 0.21 
S.e. 0.02 0.03 0.04 0.06 0.07 0.09 0.10 0.11 0.12 0.13 0.14 0.14 0.18 

Log y, log c 

k lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

Var Y 1.22 
cove, y 0.25 
VUC 0.35 
Se. 0.08 

Var ratio 
S.e. 

Var ratio 0.29 
Se. 0.07 

Var ratio 
S.e. 

Var ratio 
S.e. 

0.15 
0.04 

0.53 
0.05 

1.00 
0.10 

lo4 X l/k var of k differences 

1.69 2.29 2.40 2.33 2.15 1.94 1.84 1.69 
0.45 0.66 0.76 0.70 0.65 0.68 0.72 0.75 
0.40 0.47 0.53 0.53 0.55 0.59 0.61 0.63 
0.14 0.17 0.25 0.33 0.40 0.44 0.49 0.54 

Ratio of var c to one-year var _v 

0.17 0.20 0.23 0.23 0.24 0.26 0.27 0.28 
0.06 0.08 0.11 0.14 0.17 0.19 0.21 0.24 

Ratio of var c to one-quarter vary 

0.33 0.38 0.43 0.43 0.45 0.48 0.50 0.52 
0.11 0.14 0.21 0.27 0.32 0.36 0.40 0.44 

Ratio of vary to one-year vary 

0.74 1.00 1.05 1.02 0.94 0.85 0.80 0.74 
0.08 0.11 0.16 0.20 0.24 0.27 0.30 0.33 

Ratio of vary to one-quarter vary 

1.39 1.88 1.97 1.91 1.76 1.59 1.51 1.39 
0.16 0.20 0.29 0.37 0.46 0.51 0.57 0.62 

1.63 1.51 1.39 1.36 
0.77 0.77 0.78 0.88 
0.66 0.68 0.71 0.97 
0.59 0.63 0.67 0.83 

0.29 0.30 0.31 0.42 
0.26 0.27 0.29 0.36 

0.54 0.56 0.58 0.79 
0.48 0.51 0.55 0.68 

0.71 0.66 0.60 0.59 
0.36 0.38 0.41 0.51 

1.34 1.24 1.14 1.11 
0.68 0.72 0.77 0.96 

Parts B and C of table 5 also report l/k X the variance and covariance of k 
differences of GNP and nondurable and services consumption, and the vari- 
ance ratios as calculated above. 

For nondurable or services taken alone, the calculations of variance ratios 
using the variance of consumption/variance of income impose the stability of 
c/y or the cointegrating vector [l -l]‘, contrary to fact. If we take the trends 
in these ratios seriously, we should modify our estimates of the variance of the 
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Table 5 (continued) 

291 

k 

(B) Nondurable consumption and GNP 
Logy-a,logc (a,=1.24) 

lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

lo4 x l/k var of k differences 

Var 1.59 1.51 1.61 1.34 1.33 1.25 0.96 0.74 0.57 0.46 0.36 0.24 0.22 
Se. 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.11 0.12 0.13 0.13 0.14 0.18 

Ratio to one-quarter variance 

Var ratio 1.00 0.95 1.02 0.85 0.84 0.79 0.61 0.47 0.36 0.29 0.22 0.15 0.14 
Se. 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.11 

Ratio to one-year variance 

Var ratio 0.98 0.94 1.00 0.83 0.82 0.78 0.60 0.46 0.35 0.28 0.22 0.15 0.14 
Se. 0.02 0.04 0.04 0.06 0.08 0.10 0.11 0.13 0.14 0.15 0.16 0.17 0.21 

k lqtr 2qtr 

Vary 1.22 1.69 
cov c y, 0.30 0.55 
Var c 0.73 0.78 
S.e. 0.08 0.14 

Var ratio 0.32 0.34 
Se. 0.04 0.06 

Var ratio 0.60 0.64 
S.e. 0.07 0.11 

Var ratio 0.49 0.52 
S.e. 0.06 0.09 

Var ratio 0.93 0.99 
S.e. 0.11 0.18 

Log y, log c 

lyr 2 3 4 5 6 7 

lo4 x l/k var of k differences 

2.29 2.40 2.33 2.15 1.94 1.84 1.69 
0.81 0.98 0.89 0.82 0.84 0.86 0.87 
0.89 0.93 0.84 0.83 0.82 0.78 0.77 
0.17 0.25 0.33 0.40 0.44 0.49 0.54 

Ratio of var c to one-year vary 

0.39 0.40 0.37 0.36 0.36 0.34 0.34 
0.08 0.11 0.14 0.17 0.19 0.21 0.24 

Ratio of var c to one-quarter vary 

0.73 0.76 0.69 0.68 0.67 0.64 0.63 
0.14 0.21 0.27 0.33 0.36 0.40 0.44 

(1.24)* X ratio of var c to one-year vary 

0.60 0.62 0.57 0.56 0.55 0.53 0.52 
0.12 0.17 0.22 0.27 0.30 0.33 0.36 

(1.24)* X ratio of var c to one-quarter vary 

1.13 1.18 1.07 1.05 1.04 0.99 0.98 
0.22 0.32 0.41 0.50 0.56 0.62 0.69 

8 9 10 15 

1.63 1.51 1.39 1.36 
0.91 0.90 0.89 0.97 
0.80 0.81 0.78 0.97 
0.59 0.63 0.67 0.83 

0.35 0.35 0.34 0.42 
0.26 0.27 0.29 0.36 

0.66 0.66 0.64 0.79 
0.48 0.52 0.55 0.68 

0.54 0.55 0.53 0.65 
0.40 0.42 0.45 0.56 

1.02 1.03 0.99 1.23 
0.75 0.80 0.85 1.06 

random walk component in GNP by the square of the cointegrating factor, 
according to eq. (2.12). Table 5, parts B and C include these estimates of the 
variance ratio of GNP. Since the nondurable/GNP ratio trends down, its 
cointegrating factor 0~~ is 1.2 > 1, so this raises the estimate of the variance 
ratio of GNP; since the services/GNP ratio trends up, its cointegrating factor 
is (it = 0.8 < 1 and including this correction lowers the estimate of the variance 
ratio in GNP. With a few exceptions, these results are similar to the results in 
part A. 
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Table 5 (continued) 

(C) Services consumption and GNP 

Logy - a,log c (01~ = 0.80) 

k lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

10“ x l/k var of k differences 

Var 1.07 1.33 1.63 1.64 1.61 1.46 1.18 1.00 0.79 0.70 0.59 0.44 0.29 
Se. 0.03 0.04 0.06 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.17 0.18 0.24 

Ratio to one-quarter variance 

Var ratio 1.00 1.24 1.52 1.53 1.50 1.36 1.10 0.93 0.74 0.66 0.55 0.42 0.27 
S.e. 0.02 0.04 0.05 0.07 0.09 0.10 0.11 0.13 0.14 0.15 0.16 0.17 0.22 

Ratio to one-year variance 

Var ratio 0.66 0.82 1.00 1.01 0.99 0.90 0.73 0.61 0.48 0.43 0.36 0.27 0.18 
S.e. 0.02 0.03 0.03 0.05 0.06 0.07 0.08 0.08 0.09 0.10 0.11 0.11 0.14 

Log y. log c 

k lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

lo4 x l/k vat of k differences 

var .v 1.22 1.69 2.29 2.40 2.33 2.15 1.94 1.84 1.69 1.63 1.51 1.39 1.36 
cov c y. 0.22 0.37 0.55 0.59 0.57 0.54 0.60 0.66 0.71 0.72 0.73 0.77 0.94 
Var c 0.32 0.37 0.38 0.39 0.46 0.51 0.60 0.67 0.74 0.78 0.83 0.91 1.29 
S.e. 0.11 0.18 0.23 0.34 0.43 0.53 0.59 0.66 0.72 0.78 0.84 0.89 1.11 

Ratio of var c to one-year var _y 

Var ratio 0.14 0.16 0.17 0.17 0.20 0.22 0.26 0.29 0.32 0.34 0.36 0.40 0.56 
Se. 0.05 0.08 0.10 0.15 0.19 0.23 0.26 0.29 0.31 0.34 0.36 0.39 0.48 

Ratio of var c to one-quarter vary 

Var ratio 0.26 0.30 0.31 0.32 0.38 0.42 0.49 0.55 0.61 0.64 0.68 0.75 1.06 
S.e. 0.09 0.15 0.19 0.28 0.36 0.43 0.49 0.54 0.59 0.64 0.69 0.73 0.91 

(0.8)* x ratio of var c to one-year vary 

Var ratio 0.09 0.10 0.11 0.11 0.13 0.14 0.17 0.19 0.21 0.22 0.23 0.25 0.36 
S.e. 0.03 0.05 0.06 0.09 0.12 0.15 0.16 0.18 0.20 0.22 0.23 0.25 0.31 

(0.8)2 X ratio of var c to one-quarter vary 

Var ratio 0.17 0.19 0.20 0.20 0.24 0.27 0.32 0.35 0.39 0.41 0.43 0.48 0.68 
Se. 0.06 0.10 0.12 0.18 0.23 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.58 

We are not sure whether to take these cointegrating factors seriously. A 
cointegrating factor (Y > 1 for a component of consumption implies that the 
ratio of that component to GNP will tend to 0 as income rises, while a 
cointegrating factor cx < 1 implies that the consumption/GNP ratio tends to 
co. Only LX = 1 does not have either property. Also, if the logs of two 
components have cointegrating factors with GNP different from 1, the log of 
their sum is not cointegrated with GNP. (If the levels were cointegrated with 
GNP with 01 Z 1, the sum can be cointegrated with GNP.) A second way of 
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k 

Table 5 (continued) 

(D) Per capita nondurable + services consumption and GNP 

Y - CI~C (01~ = 1.72) 

lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

100 x l/k X var of k differences 

Var 1.21 1.36 1.55 1.44 1.32 1.14 0.87 0.72 0.58 0.53 0.46 0.34 0.25 
Se. 0.02 0.04 0.05 0.07 0.08 0.09 0.11 0.12 0.13 0.14 0.15 0.16 0.20 

Ratio to one-quarter variance 

Var ratio 1.00 1.12 1.27 1.18 1.09 0.94 0.72 0.59 0.48 0.43 0.38 0.28 0.21 
S.e. 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.17 

Ratio to one-year variance 

Var ratio 0.79 0.88 1.00 0.93 0.86 0.74 0.56 0.47 0.38 0.34 0.30 0.22 0.16 
Se. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.09 0.10 0.10 0.13 

Y> c 

k lqtr 2qtr lyr 2 3 4 5 6 7 8 9 10 15 

“UY 1.47 1.98 
covy, c 0.18 0.31 
varc 0.12 0.15 
Se. 0.03 0.05 

Var ratio 
Se. 

Var ratio 0.08 0.10 
S.e. 0.02 0.04 

Var ratio 
Se. 

Var ratio 0.25 0.31 
Se. 0.07 0.11 

Var ratio 
S.e. 

Var ratio 
S.e. 

0.05 0.06 
0.01 0.02 

0.14 0.17 
0.04 0.06 

0.55 0.75 
0.03 0.05 

1.00 1.35 
0.05 0.09 

100 X l/k X var of k differences 

2.65 2.84 2.60 2.18 1.74 1.63 1.55 
0.48 0.60 0.56 0.49 0.43 0.43 0.45 
0.20 0.25 0.25 0.26 0.25 0.24 0.25 
0.07 0.10 0.13 0.16 0.17 0.19 0.21 

Ratio of var c to one-year vary 

0.08 0.09 0.10 0.10 0.09 0.09 0.09 
0.03 0.04 0.05 0.06 0.07 0.07 0.08 

Ratio of var c to one-quarter vary 

0.14 0.17 0.17 0.18 0.17 0.17 0.17 
0.05 0.07 0.09 0.11 0.12 0.13 0.14 

(1.72)2 X ratio of var c to one-year vary 

0.22 0.28 0.28 0.29 0.28 0.27 0.28 
0.08 0.11 0.14 0.17 0.19 0.22 0.24 

(1.72)’ x ratio of var c to one-quarter vary 

0.40 0.50 0.51 0.52 0.50 0.49 0.51 
0.14 0.20 0.26 0.31 0.35 0.39 0.43 

Ratio of vary to one-year vary 

1.00 1.07 0.98 0.82 0.66 0.61 0.58 
0.06 0.09 0.12 0.14 0.16 0.17 0.19 

Ratio of vary to one-quarter var Y 

1.81 1.94 1.78 1.49 1.19 1.11 1.06 
0.11 0.16 0.21 0.25 0.28 0.32 0.35 

1.56 1.56 1.43 0.91 
0.48 0.52 0.54 0.46 
0.27 0.30 0.32 0.38 
0.23 0.25 0.26 0.33 

0.10 0.11 0.12 0.14 
0.09 0.09 0.10 0.12 

0.18 0.20 0.22 0.26 
0.16 0.17 0.18 0.22 

0.30 0.33 0.36 0.43 
0.26 0.28 0.29 0.37 

0.55 0.60 0.65 0.77 
0.47 0.50 0.53 0.66 

0.59 0.59 0.54 0.34 
0.21 0.22 0.24 0.29 

1.06 1.06 0.98 0.62 
0.38 0.40 0.43 0.53 
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stating the same problem is that the ‘trends’ in consumption/GNP ratios are 
generated by different income elasticities for the components, but as income 
+ cc, all the income elasticities must approach 1 for goods whose shares do 
not approach zero. On the other hand, it is clearly inappropriate to ignore 
them in our sample. 

We also tried applying our technique to the per capita levels, rather than the 
log levels, as suggested by a literal interpretation of the permanent income 
model. Table 5, part D presents our results. First we applied the variance ratio 
to GNP per capita - (Ye consumption per capita, using consumption of 
nondurable + services. The variance ratios were around 0.2 at ten and fifteen- 
year horizons. The high value of the cointegrating factor (Ye comes from the 
fact that we are looking at the difirence between output and consumption. 
Since it is the ratio of output to consumption that is steady over time, the 
difference increases steadily. 

The l/k variance of k differences and variance ratios for this case are 
broadly similar to our results in part A out to the ten-year horizon. At the 
fifteen-year horizon, the variance of consumption increases and the variance of 
income declines. However, the values of the variance ratios are still low 
compared to univariate results. 

We regard these latter results as a check that our main results for consump- 
tion and GNP presented in table 5, part A are robust to the definitions of the 
variables. 

5. Conclusions 

The heart of our technique is: to measure the variance of a permanent 
component of a series, or its variance ratio, find another series that is nearly a 

random walk, yet is cointegrated with the original series. Then, use l/k times 
the variance of k differences of the new series to measure the limiting variance 
ratio or the variance of the permanent component of the original series. This 
technique improves the bias, but not the precision, of corresponding univariate 
variance ratios. (Estimated standard errors are lower when the estimated 
random walk component is smaller, but are the same for a given size of 
random walk component.) 

Applying this technique to stock prices and GNP, using dividends and 
consumption as the near random walk variables, we get estimates of the 
variance ratios or variance of permanent components of stock prices and GNP 
about half of corresponding univariate estimates - variance ratios of 0.2 to 0.3 
for stock prices and 0.3 to 0.4 for GNP were typical, compared to correspond- 
ing univariate estimates of 0.65 - 0.75 or more for stocks and 0.6 for GNP. 

These are interesting stylized facts. They indicate that stock prices and GNP 
follow processes that are unlike random walks, by reverting towards a mean at 
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long horizons. The connection of these stylized facts to theory is still tenuous. 
Most interesting business cycle models are capable of generating a variety of 
variance ratios with small changes in their assumptions - by changing the 
process of the forcing variables, for example. Poterba and Summers (1987) 
show that for some very special cases, the variance ratio of stock prices puts a 
lower bound on the variance of discount rates, or marginal rates of substitu- 
tion, and that these seem ‘too high’. If these bounds can be generalized, they 
may provide a sharp statement of the asset pricing puzzle that marginal rates 
of substitution seem ‘too variable’. 
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