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Abstract

The empirical Dynamic Stochastic General Equilibrium (DSGE) literature pays surprisingly little attention

to the behavior of the monetary authority. Alternative policy rule specifications abound, but their relative

merit is rarely discussed. We contribute to filling this gap by undertaking a systematic comparison of the fit

of several families of interest rate rules within two popular New Keynesian models. We find that the best

fitting rules are those in which the nominal interest rate tracks the evolution of the model-consistent efficient

real interest rate—an empirical hypothesis not previously explored in the literature.
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1. Introduction

Most central banks around the World pursue some form of flexible inflation targeting,

striving to stabilize inflation while keeping a watchful eye on real economic developments.

In the United States, the Federal Reserve Act requires the monetary authority to pursue the

dual mandate of stabilizing prices and promoting “maximum employment.” In a seminal

contribution, Taylor (1993) proposed a parsimonious approach to capturing the implications
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of this dual objective for central banks’ interest rate decisions—the now famous Taylor

rule. According to this policy rule, the monetary authority sets the nominal interest rate

in response to deviations of inflation from its target and to some measure of real economic

activity, such as the output gap. Although originally proposed as a simple normative guide

for monetary policy, the observation that the rule tracked the actual behavior of the Fed

under Chairman Greenspan between 1987 and 1992 quite closely turned interest rate feedback

rules into an ubiquitous positive tool used to describe actual policy decisions. This evolution

of Taylor rules from normative to positive devices has been supported by a large literature

documenting their excellent empirical performance using single equation estimation methods

(Judd and Rudebusch, 1998; Clarida et al., 1999, 2000; English et al., 2003; Orphanides, 2003

and, most recently, Coibion and Gorodnichenko, 2011).

Their parsimony, convenience, and empirical fit has also made Taylor-type rules the

most common formulation for the description of monetary policy within dynamic stochastic

general equilibrium (DSGE) models. Most DSGE studies, however, simply posit an interest

rate feedback rule broadly inspired by Taylor (1993), usually with no discussion of its details

and potential alternatives. This casual treatment of the behavior of the monetary authority

in DSGE papers stands in stark contrast with the attention more generally dedicated to the

modeling of the private sector. As a result, this literature has witnessed a proliferation of

policy specifications—especially with respect to the choice of the real variables the central

bank reacts to—but with very little guidance on their empirical performance within the

model under consideration.1

The research summarized in this paper represents an attempt to put some order in this

chaotic situation by systematically comparing the fit of a large set of interest rate rules

1See Schmitt-Grohé and Uribe (2007) for a recent normative analysis of alternative simple interest rate

rules within a calibrated DSGE model. Svensson (2003) recommends modeling central banks as optimizing

agents that maximize an objective function, as customary for the private sector, rather than as automatons

committed to an interest rate feedback rule. The optimal targeting rule obtained in this framework, however,

still depends on the arguments of the loss function policymakers are assumed to minimize. See Adolfson

et al. (2008) for a state-of-the-art implementation of this approach within a DSGE model for Sweden.
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within an estimated DSGE model of the U.S. economy. Most of the rules we analyzed

have previously appeared in the literature. Others, including the best-fitting one, have

not. The most notable feature of the best-fitting rule is that the monetary authority tracks

the evolution of the efficient real interest rate—the real interest rate that would prevail in

equilibrium if the economy were perfectly competitive—as an indicator of real economic

developments. In fact, this measure of the equilibrium interest rate is a better proxy for

the real economic developments to which monetary policy seems to respond than any of

the several measures of output gap we experimented with. This result sets our contribution

apart from the literature on single-equation estimation of Taylor rules, as we need a complete

general equilibrium model to compute the measure of real interest rate analyzed here.

This policy rule echos Wicksell’s suggestion that a “natural”rate of return determined by

real factors represents a useful target for monetary policy (Woodford 2003), an idea familiar

to Fed policymakers at least since the early 1990s (e.g. Greenspan, 1993). To our knowledge,

we are the first to estimate interest rate rules consistent with this idea and to document

their strong empirical performance.2

Our extensive investigation of the empirical properties of these rules within a DSGE

framework suggests that the inclusion of the efficient real interest rate as a time-varying

intercept in the policy equation improves model fit across different specifications of the

policy rule and of the private sector behavior. In its current version, the paper documents

this fact by focusing on a few especially representative cases. Cúrdia et al. (2011b) show that

similar results hold across a much wider spectrum of policy specifications, which includes

most of the interest rate equations posited in the DSGE literature and those estimated with

single equation methods.

Methodologically, we follow a Bayesian empirical strategy. First, we embed each of the

policy rules whose fit we wish to evaluate within a DSGE framework, defined by given tastes

and technology describing the private sector. This step produces a set of models, one for

2Trehan and Wu (2007) discuss the biases in the reduced-form estimation of policy rules with a constant

intercept, when in fact the central bank responds to a time-varying equilibrium real rate, but do not estimate

this response.
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each different policy specification. We then estimate each of these models with Bayesian

methods and compare their fit using marginal data densities.3 This criterion produces a

ranking of the different models, as well as a quantitative measure of their relative ability

to fit the data. Importantly, the resulting measure evaluates the congruence of the entire

model with the data, rather than of the policy equation alone. In a general equilibrium

context, this approach provides an fully coherent ranking, although we also look at other,

more informal, indicators of the extent to which different policy rules make the estimated

model more or less “reasonable.”

Overall, our findings suggest that the specification of the interest rate rule can have a

significant impact on the fit of DSGE models. The gap in marginal likelihoods between

the best and worst fitting rules ranges between fifty and eighty log-points depending on the

model under consideration. As a reference point, these differences in fit are of the same

order of magnitude as those between similar structural models estimated with or without

stochastic volatility (Cúrdia et al., 2011a). This evidence underscores the importance for

DSGE researchers of paying significantly more attention to the specification of monetary

policy than is common practice to date.

The rest of the paper proceeds as follows. Section 2 presents a small-scale model of

private sector behavior together with the baseline interest rate rule. Section 3 discusses

the econometric methodology and the estimation results for the baseline model. Section 4

introduces the alternative classes of policy rules we consider and compares their empirical

performance. Section 5 extends the analysis to a medium-scale model. Section 6 concludes.

2. A Simple Model of the Monetary Transmission Mechanism

We augment the purely forward-looking textbook New Keynesian framework (Woodford,

2003) with two sources of inertia to improve its ability to fit the data. On the demand side,

3An and Schorfheide (2007) provide a comprehensive survey of the application of Bayesian methods to the

estimation and comparison of DSGE models. Lubik and Schorfheide (2007) use similar methods to estimate

the response of monetary policy to exchange rate movements in several small open economies.
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we include habits in consumption in the utility specification. On the supply side, we allow

for partial indexation to past inflation of the subset of prices that are not reoptimized in

each period. We also allow for exogenous growth in total factor productivity and shocks to

its growth rate.

The resulting model is smaller than the workhorse empirical DSGE model, such as Smets

and Wouters (2007). In particular, we abstract from capital accumulation and the attending

frictions (endogenous utilization and investment adjustment costs) and from non-competitive

features in the labor market (monopolistic competition and sticky wages). This modeling

choice allowed us to estimate and compare the fit of a very large number of interest rate rules

at various stages of this project, without having to worry about computational constraints.

In this paper, we only present the highlights of the results. Cúrdia et al. (2011b) report

results for all the rules—55 in total—and their detailed ranking in terms of fit.

The remainder of this section presents the linearized equilibrium conditions of the model,

which constitute the basis for estimation. Appendix A contains details of the model’s mi-

crofoundations, including the mapping of the tastes and technology parameters into those

of the approximate log-linear equations.

2.1. Private Sector

The model consists of aggregate demand and supply relations and a monetary policy

rule, plus some auxiliary equations to define economic variables that will be useful later in

the interpretation of the results. We present the model in “gap” form. The main benefit of

this approach is that the resulting structure indeed takes the very familiar representation of

the baseline New Keynesian model.

The aggregate demand side of the model is an Euler equation in the measure of real

activity x̃t

x̃t = Etx̃t+1 − ϕ−1γ (it − Etπt+1 − ret ) , (1)

where it is the (continuously compounded) nominal interest rate, πt is inflation, ret is the

efficient real interest rate, and Et(.) is the expectation operator conditional on all available

information at time t. The parameter ϕγ measures the sensitivity of real activity to the real
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interest rate (gap).

The real activity measure in expression (1) is a distributed lag of the efficient output gap

xet ≡ yt − yet
x̃t ≡

(
xet − ηγxet−1

)
− βηγEt

(
xet+1 − ηγxet

)
,

where yt is real output and yet is its efficient counterpart. The lead-lag structure in the

definition of x̃t reflects the presence of internal habits in consumption, to a degree indexed

by the parameter ηγ.

The efficient level of output yet and especially the efficient real interest rate ret are key

constructs in our analysis below. Efficient output represents the level of aggregate production

that would prevail in equilibrium if prices were—and always had been—flexible, absent any

markup shocks. Efficient output evolves according to the difference equation

ωyet +ϕγ
(
yet − ηγyet−1

)
+βϕγηγ

(
Ety

e
t+1 − ηγyet

)
= ϕγηγ

(
βEtγt+1 − γt

)
+

βηγ
1− βηγ

Etδt+1, (2)

from which we observe that yet is a linear combination of the past and future expected

values of productivity growth γt and intertemporal taste shocks δt. Both these shocks follow

stationary AR(1) processes. Our construction of the efficient level of output implies that the

counterfactual environment in which prices are flexible is a parallel universe, which evolves

independently from the outcomes observed in the actual economy (Neiss and Nelson, 2003).

In this parallel universe, the intertemporal Euler equation defines the efficient real interest

rate as

ret = Etγt+1 + Etδt+1 − ω
(
Ety

e
t+1 − yet

)
.

The efficient real interest rate depends positively on the forecastable component of produc-

tivity growth and preference shocks and negatively on the unexpected innovations in efficient

output.

Turning now to the supply side of the model, the optimal pricing decisions of firms

produce a Phillips curve of the form

π̃t = ξ (ωxet + ϕx̃t) + βEtπ̃t+1 + ut, (3)

where

π̃t ≡ πt − ζπt−1
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depends on the degree of indexation to past inflation, parametrized by ζ, and ut is an AR(1)

cost-push shock, generated by exogenous fluctuations in desired markups. These fluctuations

are the only source of tradeoff between inflation and real activity in this model.

Without markup shocks, the efficient level of aggregate production can be achieved to-

gether with price stability (i.e. πt = 0), as we can see by substituting ut = 0 and yt = yet ,

or xet = 0, ∀t in equation (3). This is the first best outcome in this economy, since no price

needs to change when aggregate inflation is zero, thus eliminating price dispersion across mo-

nopolistic producers and the associated distortions in the allocation of resources (Woodford,

2003). When markup shocks are present, on the contrary, the efficient allocation is no longer

feasible because the efficient level of aggregate output could only be achieved by allowing

cost-push shocks to pass-through to inflation entirely, as we can see by solving equation (3)

forward with yt = yet ∀t

πt = ζπt−1 +
∞∑
s=0

βsEtut+s.

The resulting fluctuations in inflation would then produce an inefficient dispersion of prices

and production levels across varieties. At the other extreme of the policy spectrum, perfect

inflation stabilization would require cost-push shocks to show-through entirely in deviations

of output from its efficient level. Optimal policy, therefore, will distribute the impact of

these shocks between output and inflation, as to balance the objectives of price stability and

efficient aggregate production.

One implication of this trade-off is that an ex-ante real interest rate, it − Etπt+1, set to

perfectly shadow the efficient rate of return ret , would not be optimal, although the Euler

equation (1) implies that such a policy would close the output gap every period and thus

achieve the efficient level of aggregate production. This is the main reason for including

some feedback from inflation and the output gap even in the interest rate rules that include

ret in their intercept, as we do below.4

4Another reason is that a policy rule of the form it = ret + Etπt+1 would not deliver the efficient output

uniquely, since the nominal interest rate does not respond more than one-to-one to expected inflation (e.g.

Clarida et al., 1999).
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2.2. Monetary Policy: Baseline Specification

In the baseline policy specification, the central bank sets the nominal interest rate in

response to the current inflation rate and the efficient output gap, with a certain degree of

inertia

it = ρit−1 + (1− ρ) (φππt + φxx
e
t ) + εit. (4)

Expression (4) represents a natural starting point for our comparative analysis, since

it brings the basic ingredients of the empirical literature on interest rate rules into the

context of our DSGE framework. Inflation and real activity are the standard arguments

of monetary policy rules at least since Taylor (1993), while interest rate inertia typically

improves their ability to fit the data, as shown for example by Clarida et al. (2000). We

choose the efficient output gap as the baseline policy measure of real economic developments

for internal consistency with the rest of our theoretical apparatus. In fact, in our model

this gap is both the fundamental driver of inflation, as shown in equation (3), as well as the

measure of slack that is relevant for welfare analysis (e.g. Woodford, 2003).

Yet, equation (4) is the “baseline” policy rule only in an expositional sense: it is the first

one we consider, for the reasons just described. In economic terms, however, this rule is a

priori on par with all the others we evaluate, since the entire model is re-estimated every

time a new rule is introduced, as described in the next section. A posteriori, the baseline rule

turns out to be a particularly poor choice to close the model, which is one of our results.5

3. Inference

We estimate the model laid out in the previous section—and the variants discussed

below—with Bayesian methods, as surveyed for example by An and Schorfheide (2007).

Bayesian estimation combines prior information on the parameters with the likelihood func-

tion of the model to form a posterior density function. We construct the likelihood using the

Kalman filter based on the state space representation of the rational expectations solution of

5This result is even stronger in the working paper version where the number of estimated rules is much

larger than those reported here.
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each model under consideration, assuming a prior of zero for the configuration of parameters

that imply indeterminacy.

The observation equations are

∆ logGDPt = γ + yt − yt−1 + γt

∆ logPCEt = π∗ + πt

FFRt = r + π∗ + it,

where ∆ is the first difference operator, GDPt is real GDP, PCEt is the core PCE defla-

tor (headline ex-food and energy), and FFRt is the average effective Federal Funds Rate

(henceforth FFR), all sampled at a quarterly frequency. The constants in these equations

represent the average growth rate of productivity (γ), the long run inflation target (π∗), and

the average real interest rate (r). The sample period runs from 1987:Q3 to 2009:Q3, although

the main results are not affected by truncating the sample either at 2008:Q4, when the FFR

first hit the zero bound, or at 2006Q4, before the eruption of the recent financial crisis.

We start the sample with Alan Greenspan’s tenure as Fed chairman because, starting with

Taylor (1993), there seems to be general agreement that interest rate setting appropriately

characterizes U.S. monetary policy during this period.

Columns 2 through 5 of Table 1 report our choice of the priors, which are maintained

across all the model specifications we consider. On the demand side, we calibrate the dis-

count factor as β = 0.99, and impose a loose prior between zero and one on the habit

coefficient η, only slightly favoring higher values. These two parameters, together with the

average balanced growth rate γ , determine the slope of the Euler equation (1), ϕ−1γ ≡(
1− ηγ

) (
1− βηγ

)
, where ηγ ≡ ηe−γ.

On the supply side, the prior on the indexation parameter ζ is centered around 0.6, but

is quite dispersed over the unit interval. The slope of the Phillips curve is a convolution

of deep parameters, ξ = (1− α) (1− αβ) /[α (1 + ωθ)] where α is the fraction of firms that

do not change their price in any given period, θ is the elasticity of demand faced by each

monopolistic producer and ω is the inverse Frisch elasticity of labor supply. Only the slope ξ

can be identified from our observables. We formulate our prior on this parameter as a Gamma
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distribution with mean 0.1. This value is somewhat higher than the partial information

estimates of the New Keynesian Phillips curve (e.g. Gaĺı and Gertler, 2007; Sbordone, 2002),

but is consistent with the low degree of price stickiness found in microeconomic studies such

as Bils and Klenow (2004), given reasonable values for ω and θ.6

Turning now to the interest rate rule, the prior on the smoothing parameter ρ follows a

Beta distribution centered at 0.7, with a 90% probability interval wide enough to encompass

most existing estimates. The priors for the feedback coefficients on inflation φπ and real

activity φx are normally distributed with means 1.5 and 0.5 respectively, as in the original

Taylor (1993) rule.

The autocorrelations of the exogenous shocks, the ρi’s in the table (for each shock i),

have Beta prior distributions with mean 0.5, while the standard deviations, denoted by σi,

have Inverse Gamma prior distributions centered at 0.5.

We obtain the posterior mode and inverse Hessian by minimizing the negative of the

log posterior density function and use Markov Chain Monte Carlo (MCMC) methods, more

specifically a Random Walk Metropolis algorithm, to build a representative sample of the

parameters’ joint posterior distribution. We monitor the convergence of the chains of draws

in each step using a variety of tests. Finally, upon convergence, we combine the chains in the

last step, after discarding the initial 25% of the draws in each chain, to form a full sample

of the posterior distribution, which represents the source of our inference information.7

To evaluate the fit of different policy rules, we compare the marginal data densities (or

posterior probabilities) of the corresponding DSGE models. All these models share the

tastes and technologies that result in the aggregate demand and supply equations described

in Section 2.1, but each is closed with a different interest rate rule. 8

6For example, with ω = 1 and θ = 8, which corresponds to a desired markup of 14%, ξ = 0.1 implies

α = 0.4, or an expected duration of prices of about five months.
7Detailed convergence and inference analysis for each specification discussed in the paper is available

upon request.
8We follow the standard practice (e.g. Lubik and Schorfheide, 2007) that we, as econometricians, remain

agnostic about the policy rule while agents in the model exactly know the rule, as well as the rest of the

structure of the model, in each case.
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We estimate each model separately on the same data, and compute its posterior probabil-

ity using Geweke (1999)’s modified harmonic mean estimator. To compare fit, we calculate

the log of the Bayes factor (multiplied by two) of each alternative specification against the

baseline (i.e. the model closed with policy rule (4)). Kass and Raftery (1995) recommend

this measure of relative fit since its scale is the same as that of a classic Likelihood Ratio

statistic.9 This procedure results in an overall ranking of the interest rate rules under con-

sideration (as well as in a measure of their individual fit against a common benchmark) and

thus implicitly against each other.

3.1. Estimation Results in the Baseline Model

Columns 6 through 9 of Table 1 report selected moments of the marginal posterior distri-

butions of the parameters under the baseline interest rate rule. Although the data are quite

informative on most parameters and many of the posterior estimates fall within reasonable

ranges, close inspection of the results reveals some puzzling features. To better visualize

these anomalies, Figure 1 graphs the prior and posterior marginal distributions for a subset

of the parameters.

First, the posterior estimate of the slope of the Phillips curve ξ is minuscule, with a mean

of 0.002, two orders of magnitude smaller than the prior mean and at the extreme lower end

of the available estimates in the DSGE literature (see for example the survey by Schorfheide,

2008). This posterior estimate implies no discernible trade-off between inflation and real

activity, so that inflation is close to an exogenous process driven by movements in desired

markups. As a consequence, there is little hope of distinguishing between dynamic inflation

indexation and persistent markup shocks as drivers of the observed inflation persistence.

This lack of identification is reflected in the bimodal marginal posterior distributions of the

parameters ζ and ρu—which are generated by MCMC draws with high ζ and low ρu or

9The Bayes factor of model 1 against model 2 is the ratio of their marginal likelihoods. Kass and Raftery

(1995) suggest that values of 2 logBF above 10 can be considered very strong evidence in favor of model 1.

Values between 6 and 10 represent strong evidence, between 2 and 6 positive evidence, while values below 2

are “not worth more than a bare mention.” We refer to this statistic as the KR criterion.
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vice versa—that correspond to local peaks of the joint posterior density of similar heights.

Finally, the last two panels of Figure 1 show that the estimated parameters of the interest

rate rule imply a strong reaction of policy to the output gap and an extremely weak reaction

to inflation, with about half of the posterior draws for φπ below one. These values are

puzzling, especially in light of the large literature that has argued that a forceful reaction to

inflation has been one of the hallmarks of U.S. monetary policy since the mid-eighties.10

The anomalies of the posterior distribution highlighted above reduce the baseline model’s

marginal data density and contribute to its extremely poor overall fit.11

4. Evaluating Alternative Interest Rate Rules

Many aspects of our baseline model could be problematic. In the rest of the paper, we

focus on one potential source of these problems, which in our judgement has been largely—

and surprisingly—overlooked in the DSGE literature: the specification of the interest rate

rule. In particular, the inclusion of the efficient real interest rate in the intercept of the

policy rule is the one modification of the baseline rule that provides the most significant and

reliable improvement in model fit. This relatively minor adjustment contributes to solving

some of the anomalous parameter estimates and identification problems illustrated in Figure

1.12 If we further modify the policy rule to include a time varying inflation target we obtain

an even better model fit, but the gain is not as significant as that of introducing the efficient

interest rate. Combining both modifications offers the best fit. Furthermore, the resulting

improvement in fit is robust to a large set of changes in the other elements of the policy rule,

as well as to changes in the model of private sector behavior.

10Still, values of φπ lower than one do not necessarily generate indeterminacy, especially for high values of

φx. Following Woodford (2003), in our model the equilibrium is determinate if and only if φπ+(1−β)φx/ξ >

1. At the posterior mode, the left-hand side of the previous inequality is slightly smaller than 4.
11For a more exhaustive comparison of alternative policy rules, see Cúrdia et al. (2011b). The baseline

specification ranks 47th in terms of marginal likelihood, among the 55 evaluated in that version of the paper.
12We do not address the extent to which different policy rules aid or hinder the identification of the model’s

parameters, although this issue would deserve further scrutiny. For a recent study of identification in DSGEs,

see Canova and Sala (2009), who find that identification is often problematic in this class of models.
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4.1. Tracking the Efficient Real Interest Rate

The idea that an “equilibrium” interest rate (EIR) might represent a useful reference

point for monetary policy was familiar to Federal Reserve policymakers well before Woodford

(2003) revitalized its Wicksellian roots. For example, in his Humphrey Hawkins testimony

to Congress in May 1993, Chairman Alan Greenspan stated that “...In assessing real rates,

the central issue is their relationship to an equilibrium interest rate, specifically, the real

rate level that, if maintained, would keep the economy at its production potential over

time. Rates persisting above that level, history tells us, tend to be associated with slack,

disinflation, and economic stagnation—below that level with eventual resource bottlenecks

and rising inflation, which ultimately engenders economic contraction. Maintaining the real

rate around its equilibrium level should have a stabilizing effect on the economy, directing

production toward its long-term potential” (Greenspan, 1993).13

Greenspan’s quote reflects a shift of emphasis at the Federal Reserve from monetary

aggregates to the EIR to gauge the stance of monetary policy that occurred between the

end of the 1980s and the beginning of the 1990s (McCallum and Nelson, 2011). Early on,

the EIR presented to policymakers was simply the equilibrium real interest rate prevailing

in a real business cycle model. As the literature started to incorporate nominal rigidities in

the basic neo-classical framework, the EIR became a common feature also of New Keynesian

models used to discuss monetary policy issues (see, for example, King and Wolman, 1999,

and the survey in Amato, 2005).

In this section, we investigate the extent to which Chairman Greenspan’s reasoning had

a measurable impact on the evolution of the observed nominal interest rate over our sample.

To measure the EIR within our DSGE model, we follow the Chairman’s description and

compute the counterfactual “real rate level that, if maintained, would keep the economy at

its production potential over time.” If we define “potential” output as the efficient aggregate

13Quantitative measures of the EIR are today a regular input in the monetary policy de-

bate at the Federal Reserve, as demonstrated by the fact that a chart with a range of es-

timates of the EIR is included in most published Bluebooks at least since May 2001 (see

http://www.federalreserve.gov/monetarypolicy/fomc historical.htm).
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level of production yet in the model—as, for instance, in Justiniano et al. (2011)—the EIR

corresponds to the efficient rate of return ret . This variable is our preferred measure of the

EIR, since its concept is grounded in the microeconomic structure of the DSGE model.14

We embed this measure of the EIR within the baseline policy rule, which becomes

it = ρit−1 + (1− ρ) [ret + φππt + φxx
e
t ] + εit. (5)

This specification (which we call Re) improves the model’s marginal likelihood by ap-

proximately 20 log-points with respect to the baseline, which represents very strong evidence

in favor of policy rule (5) according to the aforementioned KR criterion. Part of the overall

improvement in fit is due to the increase in explanatory power of the systematic component

of the monetary policy rule. The introduction of the EIR in the interest rate rule reduces the

standard deviation of the monetary policy shock by more than a third. To the best of our

knowledge, this paper is the first to document the good empirical performance of a policy

rule that allows for a gradual adjustment of the nominal interest rate to movements in the

efficient real rate.

Figure 2 plots the posterior median of ret (blue solid line) and the 90% uncertainty bands

(green shaded area) implied by the model under rule (5). The vertical grey areas correspond

to the National Bureau of Economic Research recession dates. Overall, the estimated efficient

real interest rate is a good business cycle indicator over our sample, rising during booms and

dropping sharply in recessions. In the last two recession episodes in our sample, the efficient

real interest rate conveys early signals of a future slowdown, decreasing a few quarters before

the recession actually starts.15

Figure 2 also shows that the inferred movements in ret mirror quite closely those in the

FFR (red dashed line), which helps to further explain the empirical success of equation

14Cúrdia et al. (2011b) also reports results for alternative definitions of the EIR, corresponding to the

potential output implied by the statistical filters described in section 4.2.1. None of these alternatives

improves on the specification presented here.
15In the 1990 recession, the drop of ret coincides with the beginning of the recession. Interestingly, the

EIR behaves very similarly to more standard measures of slack in the real economy, such as output gaps.

See Cúrdia et al. (2011b) for more details.
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(5) as a description of monetary policy. The close co-movement between the FFR and the

estimates of ret may, however, raise the concern that the observations on the nominal interest

rate fully “explain” the estimates of ret , and not vice versa. Figure 3 shows that this is

clearly not the case. The estimated time path of ret when the interest rate rule includes the

EIR (thick green solid line) is almost identical to the baseline case (thin blue solid line).

This result is also robust to the introduction of a time-varying inflation target (red dashed

line), that we discuss in the next subsection. The main difference between the estimates

(not shown in figure 3) is that the posterior distribution is tighter when ret enters the interest

rate rule. This enhanced precision of the estimates suggests that the nominal interest rate

carries useful information on ret in the specification Re, although this information does not

distort the inference on its average time-path.

Some intuition for the robustness of the estimates of ret across models can be gleaned

from the expression for the efficient real interest rate derived in section 2, which we report

here for convenience

ret = Etγt+1 + Etδt+1 − ω
(
Ety

e
t+1 − yet

)
.

If the log-deviations of efficient output from the balanced growth path were a martingale (i.e.

Ety
e
t+1 = yet ), the efficient real interest rate would be equal to the sum of the forecastable

movements in the growth rate of productivity γt and in the intertemporal taste shock δt.

In our estimated models, the deviations from the condition Ety
e
t+1 = yet are “small,”as are

the forecastable movements in γt. The taste shock δt, on the contrary, is persistent, and its

innovations are sizable, so that its forecastable movements tend to be the main driving force

of movements in ret . Our estimates precisely and robustly pin down the cyclical behavior of

these forecastable movements in δt, with little variation across specifications. As a result,

the inference on the evolution of the efficient real rate over time is remarkably consistent

across all the models we consider.

The key role of the intertemporal shock δt in reconciling this class of DSGE models with

the data is a manifestation of the well-known deficiencies of standard Euler equations in

pricing returns, as first documented by Hansen and Singleton (1982) and more recently re-

emphasized in a DSGE context by Primiceri et al. (2006). According to this interpretation,
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intertemporal shocks are reduced-form measures of exogenous changes in financial factors.

The tight connection between ret and intertemporal shocks and the fact that its inclusion in

the interest rate rule significantly improves the fit of our DSGE model represent suggestive

evidence of the importance of financial conditions for the conduct of monetary policy in the

last two decades.16

4.2. Robustness to Changes in the Policy Rule

The evidence presented in the previous section suggests that the efficient real interest

rate ret is a potentially useful indicator of the stance of monetary policy, since its inclusion

among the arguments of the baseline policy rule significantly improves the ability of our

model to fit the data. This section offers some evidence that this result does not depend

on the arbitrary choice of the baseline specification. Regardless of how we specify the other

arguments of the policy rule, the inclusion of ret uniformly improves the model’s empirical

performance. Aside from illustrating the robustness of the paper’s main result, this exercise

allows us to explore the empirical fit of other interest rate rules. We consider two broad

classes of alternative rules. First, we experiment with a different measure of the output gap.

Second, we allow for time-variation in the inflation target π∗. Some of these rules further

improve on the empirical performance of (5).

Table 2 reports the overall fit of several alternative rules. The column labeled “logML”

shows the log-marginal likelihood for each specification, while the column labeled “KR”

shows the Kass and Raftery (KR) measure described in Section 3 (where positive values imply

an improvement in fit relative to the “Baseline” specification). The rules “Baseline” and “Re”

correspond to the specifications (4) and (5), respectively. Both of these specifications have

been discussed above. The next subsections discuss the other formulations.

16Shocks to ret are sometimes used as a shortcut for more fundamental financial disturbances that generate

large crises (e.g. Eggertsson, 2008). In the early stages of the recent financial crisis, McCulley and Toloui

(2008), Meyer and Sack (2008), and Taylor (2008) proposed spread-adjusted Taylor rules to appropriately

capture the effects of the turmoil in credit markets on the level of the FFR. In a model in which credit

spreads induce fluctuations in the efficient real interest rate, Cúrdia and Woodford (2010) show that such

an adjustment is indeed desirable, although less than to a one-to-one extent.
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4.2.1. Output Gap

The measure of economic slack that we chose to include in the baseline interest rate rule

(4) is the deviation of real GDP from its efficient level. This choice is fairly common in

DSGE work (e.g. Smets and Wouters, 2007), although far from universal. One drawback of

this approach is that the resulting policy rule is impossible to compare with those estimated

in the vast literature that employs partial information econometric techniques (see Coibion

and Gorodnichenko (2011) for a recent contribution and survey of this literature), since the

construction of the counterfactual efficient level of output requires a general equilibrium

model. Moreover, the efficient output gap might be considered an implausible choice as

a summary statistic for policymakers’ views on the level of resource utilization, precisely

because of its model dependency.

To bridge the gap between our general equilibrium framework and the work based on sin-

gle equation methods, we consider the Hodrick and Prescott (HP) filter as a tool to construct

smooth versions of potential output, given its popularity in applied macroeconomics.17

One difficulty in making the HP filter operational within a DSGE model is that its ideal

representation is a two-sided, infinite moving average, whose standard approximation to finite

samples requires different coefficients on the observations at the beginning, in the middle,

and at the end of the sample. Such a pattern of coefficients is difficult to replicate within

a dynamic system of rational expectation equations with a parsimonious state space. To

circumvent this problem, we adapt the methodology proposed by Christiano and Fitzgerald

(2003) for the approximation of ideal band pass filters. Christiano and Fitzgerald (2003)

suggest to use forecasts (and backcasts) from an auxiliary time-series model—in their case

a simple unit root process—to extend the sample in the past and in the future. In our

implementation of their idea, the auxiliary model that generates the dummy observations is

the linearized DSGE itself.

This approach is particularly convenient for our purposes because it produces a very

17See Orphanides and Van Norden (2002) for a comprehensive survey of the use of statistical filters as

measures of the output gap and their pitfalls.
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parsimonious recursive expression for the DSGE-HP gap[
1 + λ(1− L)2 (1− F )2

]
xHPt = λ(1− L)2 (1− F )2 yt, (6)

where the operators L and F are defined by Lyt = yt−1 and Fyt = Etyt+1, and the smoothing

parameter λ is set at the typical quarterly value of 1600. This expression can thus be added

to the system of rational expectations equations that defines the equilibrium of the model.

More details on the derivation of equation 6 and on its interpretation, together with some

background on linear filtering, can be found in Appendix B.

The time series for the output gap obtained through this procedure (DSGE-HP) is very

similar to the standard finite sample approximation of the HP filter. This result is comforting

and supports our use of the DSGE-HP filter as an effective de-trending tool, which produces

a measure of capacity utilization similar to those often used in single-equation estimates of

the Taylor rule.

When we estimate the model replacing the efficient output gap with xHPt in the interest

rate rule, the presence of ret continues to make a difference, although the improvement

becomes less significant. Without the efficient real interest rate in the policy rule, the KR

criterion deteriorates by four points, as shown in Table 2. To be sure, both specifications

perform substantially better than the baseline but the presence of the EIR reduces the need

for a measure of slack to be included in the policy rule. In fact, a rule with the efficient real

interest rate but no output gap (i.e. with φx = 0) ranks slightly better than a rule with the

efficient real interest rate and the statistical output gap xHPt .

Overall, conditional on the presence of the efficient real interest rate, the rule with the

model-based efficient output gap ranks higher than any rule with a statistical filter of out-

put.18

4.2.2. Time-Varying Inflation Target

In this section, we further enlarge the set of policy rules subject to our evaluation, by

introducing a time-varying inflation target (TVIT), a fairly common feature in the recent

18Cúrdia et al. (2011b) consider additional statistical filters, including smoother trends and exponential

filters. Also for these rules, the presence of ret is crucial.
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empirical DSGE literature (Ireland, 2007; Cogley et al., 2010). This addition creates a new

class of feedback rules, of the form

it = ρit−1 + (1− ρ) [ret + π∗t + φπ (πt − π∗t ) + φxxt] + εit, (7)

where π∗t is an exogenous AR(1) process that represents persistent deviations of the inflation

target from its long-run value π∗.19

Introducing a TVIT in the baseline policy rule helps capture the low-frequency move-

ments in inflation and the nominal interest rate that are evident even in our relatively short

sample. Inflation hovered around 4% in the late 1980s and started to converge toward its

more recent range around 2% only after the recession of the early 1990s. This process of

so-called “opportunistic disinflation” took until the middle of the decade to complete. One

simple way of capturing the central bank’s willingness to delay the achievement of its ulti-

mate inflation objective until the “next” recession, which is at the heart of the opportunistic

approach to disinflation, is to allow smooth time-variation in its short-run inflation target,

as in specification (7).

The fit of the model improves by 24 points in the KR scale (rule “Pistar” in Table 2),

very strong evidence in favor of the inclusion of a TVIT in the policy rule. However, this

improvement is still not nearly as good as the introduction of the EIR by itself in the rule.

The best rule is the one that combines these two components, denoted by “RePistar,” which

achieves an improvement over the baseline case of 54 points in the KR scale. Adding the

EIR to the Pistar specification improves the KR criterion by 30 points, which constitutes a

significant increase in fit. Interestingly, this gain is comparable to the one obtained when the

EIR is included in the equivalent specifications with a constant inflation target, i.e. when

comparing the baseline rule to rule Re.

Table 3 suggests a similar conclusion by looking at the fit of the interest rate rule only.

The first column (“In-sample”) reports the posterior median standard error of the monetary

policy shock εit over the sample.20 The second column of the table (“Population”) is the

19The autocorrelation coefficient of π∗
t has a Beta prior tightly distributed around a mean of 0.95.

20We draw from the posterior distributions of the parameters 1000 times. For each draw, we compute the
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posterior median of the estimated standard deviation of the monetary policy shock σi. As

mentioned for the EIR, the introduction of a TVIT reduces the standard error of the mone-

tary policy rule by roughly one third. The combination of both elements lowers this measure

even further, although the improvement is not as big as for the KR criterion.

These results suggest that the efficient real rate and a smoothly evolving inflation target

enhance the empirical performance of the model through fairly independent channels and

should thus be complementary features in policy specifications with good empirical proper-

ties.

As previously anticipated, figure 3 shows that the introduction of the TVIT does not

substantially change the behavior of the posterior estimates of the EIR (red dashed line).

This measure remains fairly resilient to changes in the policy rule. The reason why the EIR

and the TVIT are complementary features of the best specification is that the former helps

improve the business cycle properties of the model, while the latter helps capture the low

frequency component of inflation.

The overall improvement in fit also reflects in better parameter estimates. Figure 4

compares the marginal prior and posterior distributions for selected model parameters. The

estimated slope of the Phillips curve is now 0.018 at the posterior median, compared to less

than 0.002 under the baseline rule. Given the calibrated parameters, the implied average

frequency of price adjustment when evaluating ξ at the posterior median is a much more

reasonable 4 quarters, compared to more than 8 in the baseline case.

Furthermore, the posterior distributions for the indexation parameter ζ and the per-

sistence of the markup shock ρu are no longer bimodal. The disappearance of the multiple

modes depends on the introduction of the EIR in the policy rule. The posterior distributions

for these two parameters in the Re specification also display single modes. The presence of

the TVIT, however, plays a key role for the persistence of the markup shock. In its absence,

the posterior distribution of ρu concentrates on high values. Figure 4 shows that the opposite

standard deviation of the difference between the observed FFR and the FFR predicted by the systematic

component of each monetary policy rule. We report the median of the distribution of standard errors

obtained.
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result holds in the RePistar specification. In the absence of a TVIT, the model attributes

the low frequency movements in inflation to the only source of persistence available, which

is the markup shock process. When we introduce the TVIT, the data favor this channel to

explain the low frequency movements in inflation.

Finally, the posterior distribution for the feedback coefficients on inflation φπ and the

output gap φx are now more in line with the conventional values discussed in the literature.

If anything, the posterior distribution φx is not very different from the prior, suggesting

possible lack of identification. Figure 5 hints to the potential reason. This picture shows the

posterior median estimate of the output gap measure under three different specifications for

the interest rate rule (Baseline, Re, RePistar). Unlike the EIR, the posterior estimates of the

output gap significantly depend on the policy rule specification. In the baseline specification

(thin blue solid line), the output gap captures the business cycle reasonably well. However,

when the policy rule includes the EIR only (thick green solid line), the output gap partly

looses its cyclical properties, especially early in the sample. The output gap in the RePistar

specification (red dashed line), albeit much more muted than in the baseline case, retains

some features of a business cycle indicator but the uncertainty surrounding the posterior

estimates (not shown) casts doubts on the usefulness of this measure even in this case.

Taken together, these results suggest that, to appropriately account for the movements

in the FFR since the Greenspan’s tenure, the interest rate rule that closes a monetary

DSGE model should feature the efficient interest rate and a time-varying inflation target.

Other measures of slack in real activity, such as the output gap, become almost completely

redundant. Indeed, Table 2 shows that the fit of the model does not dramatically worsen if

we consider an interest rate rule with EIR and TVIT but no output gap.

5. A Medium-Scale DSGE Model

We conclude our investigation of interest rate rules by evaluating the robustness of the

results obtained so far within a medium-scale DSGE model, along the lines of Christiano

et al. (2005) and Smets and Wouters (2007). The exact specification we adopt for the

private sector behavior follows the work of Justiniano et al. (2010, henceforth, JPT), to
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which we refer the reader for further details. Within this framework, we revisit the role of

the equilibrium interest rate and time-varying inflation target in the policy rule. In order

to properly compare the results to those of the small model, we estimate the JPT model on

the same same set of observables—GDP growth, inflation and the FFR—and on the same

sample. This way any changes in relative ranking are solely due to the increased complexity

of the model.

Table 4 ranks the improvement in fit of changing the policy rule from the baseline to one

that includes the EIR (Re), the TVIT (Pistar), or both (RePistar). For ease of comparison,

we report the KR measure for both the small model previously considered and for the JPT

model.21

The results strongly corroborate the findings from the small model. First, adding a

time-varying inflation target to the rule increases the fit by similar magnitudes. Second, the

presence of the equilibrium interest rate in the interest rate rule increases the fit even more.

Interestingly, the increase in fit in the JPT model is even larger than in the small model.

Third, adding both the EIT and TVIT to the policy rule achieves the best fit among these

alternatives—and the increase in fit is again higher than in the small model.

Beyond fit, one important question is whether a more complex model structure affects the

estimated path for the EIR. Figure 6 shows the posterior median for this variable in the small

model (dark/blue) and in JPT (light/red) for the specifications with (thick dashed line) and

without the TVIT (thin solid line). The first observation is that the presence of the TVIT

does not make a substantial difference for the estimated path of the EIR. Qualitatively, the

different models produce remarkably similar measures of the EIR. In particular, ret always

drops at beginning of each recessions in our sample, or just before. The main difference

between small model and JPT is quantitative. The estimated path of the EIR is less volatile

in JPT. Consequently, the estimated depth of contractions in the JPT model is milder,

especially for the last two recession episodes, and booms are more moderate. Yet the main

21The interested reader may want to refer to Cúrdia et al. (2011b) for additional rules estimated in the

JPT model.

22



result stands: the EIR is a good business cycle indicator in both the small model and JPT,

independently of the presence of a TVIT.

In sum, this section confirms that adding the EIR to the policy rule increases the fit of

the model with respect to inflation, output and the interest rate. Furthermore, the posterior

estimates of the EIR do not significantly depend on the presence of a TVIT. Finally, the

EIR remains quite comparable across models of different degree of complexity.

6. Conclusions

The positive DSGE literature focuses an overwhelming share of its modeling attention on

the behavior of the private sector, while treating that of the central bank as an afterthought.

This state of affairs is not too surprising, since reducing the complexity of the private sector

to fit into a macroeconomic model offers a vast menu of modeling choices. In comparison,

capturing the behavior of one monetary authority is certainly easier and perhaps less con-

troversial. Yet, paying virtually no attention to this step in the specification of a general

equilibrium model seems suboptimal, for at least two reasons. First, in the current vintage

of monetary DSGE models, the systematic response of the central bank to economic devel-

opments can have significant effects on the equilibrium, as demonstrated by the vast body

of normative work in the field (see Woodford (2011) for a survey). Second, one of the main

objectives of DSGE models is to offer a quantitative tool to study the consequences of differ-

ent approaches to the conduct of monetary policy. This study is complicated by the lack of

systematic guidance on the extent to which different plausible policy rules, once embedded

into a general equilibrium apparatus, contribute to its ability to account for the historical

relations between the macroeconomic variables of interest.

This paper—and the research that it summarizes—attempted to provide some of that

guidance by estimating a large set of interest rate rules in the context of two standard

DSGE models and comparing their empirical fit. The most notable (and robust) result of

this extensive investigation is that allowing the interest rate to track the evolution of the

efficient real interest rate—the real interest rate that would prevail in equilibrium if the

economy were perfectly competitive—significantly improves the fit of the DSGE models we
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estimated. In fact, this measure of the equilibrium interest rate is a better proxy for the real

economic developments to which monetary policy seems to respond than any of the several

measures of the output gap we experimented with.

Our results are subject to two important caveats. First, model specification matters,

since our criterion of fit depends on the way the policy rule interacts with the rest of the

model. This is a feature of the general equilibrium nature of the models we work with, and of

the full information empirical methods we adopted for their estimation. These methods are

necessary for our purposes, however, since the efficient real interest rate is a counterfactual

equilibrium object built within the model. More work across different models would therefore

be desirable, although we attempted to address this issue by illustrating the robustness of our

results across two fairly popular DSGE specifications. Second, model comparison through

marginal data densities and Bayes factors applied to DSGE models is subject to some pitfalls,

highlighted for example by Del Negro and Schorfheide (2011). However, the large differences

in fit we uncovered suggest that the specification of the policy rule does make a difference.

Going forward, we expect to devote some of our research to further scrutinize the role of

the efficient real interest rate ret as a useful explanatory factor for the movements in observed

nominal interest rates. In particular, we would like to better understand the origins of this

combination of shocks, which especially in our baseline model is partly a reflection of the

empirical shortcomings of the intertemporal Euler equation, as captured by the presence of

the shock δt. Moreover, it would be interesting to explore more realistic assumptions on the

information available to policy makers when making their decisions, focusing in particular on

the fact that the efficient real interest rate is not observable in practice, unlike in our model.

In a similar vein, the use of real-time data would provide an interesting further perspective

on our results.
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Parameter Prior Posterior

Distribution 5% Median 95% Mode 5% Median 95%

ω G(1, 0.2) 0.70 0.99 1.35 0.96 0.67 0.96 1.32

ξ G(0.1, 0.05) 0.03 0.09 0.19 0.001 0.000 0.002 0.004

η B(0.6, 0.2) 0.25 0.61 0.90 0.56 0.46 0.59 0.70

ζ B(0.6, 0.2) 0.25 0.61 0.90 0.69 0.10 0.53 0.80

ρ B(0.7, 0.15) 0.43 0.72 0.92 0.70 0.62 0.72 0.80

φπ N(1.5, 0.25) 1.09 1.50 1.91 0.89 0.66 1.03 1.49

4φx N(0.5, 0.2) 0.17 0.50 0.83 1.19 0.97 1.21 1.45

400π∗ N(2, 1) 0.36 2.00 3.64 2.36 1.89 2.38 2.85

400ra N(2, 1) 0.36 2.00 3.64 1.90 0.83 1.90 2.95

400γa N(3, 0.35) 2.42 3.00 3.58 2.94 2.48 2.94 3.40

ρδ B(0.5, 0.2) 0.17 0.50 0.83 0.92 0.87 0.92 0.95

ργ B(0.5, 0.2) 0.17 0.50 0.83 0.56 0.29 0.53 0.72

ρu B(0.5, 0.2) 0.17 0.50 0.83 0.11 0.06 0.32 0.71

σδ IG1(0.5, 2) 0.17 0.34 1.24 1.23 0.95 1.37 2.04

σγ IG1(0.5, 2) 0.17 0.34 1.24 2.05 1.34 2.13 3.02

σu IG1(0.5, 2) 0.17 0.34 1.24 0.53 0.19 0.43 0.60

σi IG1(0.5, 2) 0.17 0.34 1.24 0.27 0.23 0.30 0.39

Table 1: Prior and posterior marginal distributions for the paramaters in the baseline model. G stands for

Gamma, B stands for Beta, N stands for Normal and IG1 stands for Inverse Gamma 1, with mean and

standard deviation in parenthesis.

30



without re with re

Rule logML KR Rule logML KR

Baseline (φππt + φxx
e
t ) -379.0 0.0 Re -359.3 39.4

Pistar -366.8 24.4 RePistar -351.8 54.4

HP (φππt + φxx
HP
t ) -368.2 21.6 ReHP -366.1 25.7

PistarHP -361.6 34.9 RePistarHP -356.2 45.6

NoGap (φππt) -393.2 -28.3 ReNoGap -364.6 28.9

PistarNoGap -371.4 15.1 RePistarNoGap -353.6 50.7

Table 2: Small model rules. The first column presents the specification with the base rule, log marginal

likelihood and KR criterion. The second column presents the corollary rule (Re) that includes a response to

the efficient real interest rate re. Rules with Pistar in the name include a time-varying inflation target π∗

and deviations from the target in the rule as discussed in Section 4.5, e.g. in the form of it = ρit−1 + (1 −

ρ)[r∗t +π∗
t +φπ(πt−π∗

t ) +φxxt] + εit. Rules with HP in the name use a measure of the output gap discussed

in (6). Rules with NoGap in the name mean that the interest rate does not respond directly to the output

gap (φx = 0).
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Rule In-Sample Population

Baseline: φππt + φxx
e
t 0.2982 0.3001

Pistar: π∗t + φπ(πt − π∗t ) + φxx
e
t 0.2048 0.2088

Re: ret + φππt + φxx
e
t 0.1907 0.1940

RePistar: ret + π∗t + φπ(πt − π∗t ) + φxx
e
t 0.1793 0.1827

Table 3: In-Sample and Population estimates of the standard deviation of the monetary policy shock for the

four major rules in the Small model. The In-Sample estimate is the posterior median of the standard error

of the monetary policy rule equation residuals from the estimation period. The Population estimate is the

posterior median of the estimated standard deviation on the monetary policy shock σi.
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Rule Small Model JPT

Baseline: φππt + φxx
e
t 0.0 0.0

Pistar: π∗t + φπ(πt − π∗t ) + φxx
e
t 24.4 25.7

Re: ret + φππt + φxx
e
t 39.4 54.6

RePistar: ret + π∗t + φπ(πt − π∗t ) + φxx
e
t 54.4 65.9

Table 4: Kass and Raftery (KR) criterion for the four major rules against their respective Baseline specifi-

cations for the small and JPT models.
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0.0259 0.1096 0.1934

ξ

0.1254 0.496 0.8667

ζ

0.1106 0.4367 0.7628

ρu

0.3822 1.175 1.9677

φπ

0.3414 1.0241 1.7067

φx

Figure 1: Prior and posterior distributions for ξ, ζ, ρu, φπ, and φx under the baseline specification of interest

rate rule: it = ρit−1 + (1− ρ)(φππt + φxx
e
t ) + εit. For each parameter, the solid red line represents the prior

while the blue histogram is the posterior.
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Figure 2: Evolution of model efficient real interest rate (re) and demeaned Federal Funds Rate (FFR de-

meaned), both annualized and in percentage points. The blue continuous line and the shaded area around

it are the posterior median estimate of the model efficient real interest rate re and the 90% uncertainty

bands when the interest rate rule is it = ρit−1 + (1− ρ) (ret + φππt + φxx
e
t ) + εit. The red dashed line is the

demeaned FFR (sample mean equal to 4.5%).
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Figure 3: Evolution of posterior median estimate of the model efficient real interest rate (ret ) across specifi-

cations Baseline (φππt + φxx
e
t ), Re (ret + φππt + φxx

e
t ), and RePistar (ret + π∗

t + φπ(πt − π∗
t ) + φxx

e
t ).
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0.0272 0.1091 0.1911

ξ

0.8659 0.9235 0.9812

ρπ*

0.1151 0.4648 0.8145

ζ

0.1198 0.4773 0.8348

ρ
u

0.8166 1.4947 2.1728

φπ

0.0724 0.6315 1.1907

φ
x

Figure 4: Prior and posterior distributions for ξ, ζ, ρu, φπ, and φx under the RePistar specification of interest

rate rule: it = ρit−1 + (1 − ρ)(ret + π∗
t + φπ(πt − π∗

t ) + φxx
e
t ) + εit. For each parameter, the solid red line

represents the prior while the blue histogram is the posterior.
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Figure 5: Evolution of the posterior median estimate of the model output gap across specifications Baseline

(φππt + φxx
e
t ), Re (ret + φππt + φxx

e
t ), and RePistar (ret + π∗

t + φπ(πt − π∗
t ) + φxx

e
t ).
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Figure 6: Evolution of posterior median estimate of the model efficient real interest rate (ret ) across speci-

fications Baseline (φππt + φxx
e
t ) and Re (ret + φππt + φxx

e
t ) for the small (dark blue) and JPT (light red)

models.
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Appendix A. The Model

This appendix presents the microfoundations of the model.

Appendix A.1. Households

A continuum of households of measure one populates the economy. All households,

indexed by j ∈ (0, 1), discount the future at rate β ∈ (0, 1) and have the same instantaneous

utility function, additively separable over consumption and labor, so that their objective is

E0

{
∞∑
t=0

βt
t∏

s=0

eδs

[
log(Cj

t − ηC
j
t−1)−

(hjt)
1+ω

1 + ω

]}
.

The aggregate preference shock δt shifts the intertemporal allocation of consumption without

affecting the intratemporal margin between labor and leisure.22 We assume that δt follows

a stationary process with mean zero of the form

δt = ρδδt−1 + εδt .

The consumption index Cj
t is a constant elasticity of substitution aggregator over differ-

entiated goods indexed by i ∈ (0, 1)

Cj
t ≡

[∫ 1

0

cjt (i)
θ−1
θ di

] θ
θ−1

. (A.1)

Households supply their specialized labor input for the production of a specific final

good. As a consequence of labor market segmentation, the wage wjt differs across households.

However, household j can fully insure against idiosyncratic wage risk by buying at time t

state-contingent securities Dj
t+1 at price Qt,t+1. Besides labor income, households earn after-

tax Γjt from ownership of the firm. The flow budget constraint for household j is∫ 1

0

pt (i) cjt (i) di+ Et(Qt,t+1D
j
t+1) = wjth

j
t +Dj

t + Γjt ,

where pt (i) is the dollar price of the ith good variety.

22We could have also introduced a purely intratemporal shock affecting labor supply decisions only. How-

ever, in our empirical implementation of the model, hours and wages are not included among the observables.

Therefore, such a shock would only affect the flexible price level of output, making it indistinguishable from

a technology shock.
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Appendix A.2. Firms

Firm i produces the differentiated consumption good yt (i) with a linear production func-

tion in labor

yt (i) = Atht (i) . (A.2)

We assume that productivity grows at rate γt ≡ ∆ logAt and that growth rate shocks display

some persistence

γt =
(
1− ργ

)
γ + ργγt−1 + εγt . (A.3)

Firms take wages as given and sell their products in monopolistically competitive goods

markets, setting prices in a staggered fashion, as in Calvo (1983). Every period, indepen-

dently of previous adjustments, each firm faces a probability (1− α) of optimally choosing

its price. The α firms that do not fully optimize in a given period adjust their price according

to the indexation scheme

pt (i) = pt−1 (i)

(
Pt−1
Pt−2

)ζ
e(1−ζ)π

∗
,

where Pt is the aggregate price level consistent with the consumption aggregator (A.1) and

we allow for partial indexation to the long run central bank’s inflation target π∗. In the event

of a price change at time t, firm i chooses pt (i) to maximize the present discounted value of

profits net of sales taxes τ t

Et

{
∞∑
s=t

αT−tQt,s

[
(1− τ s) pt (i)

(
Ps−1
Pt−1

)ζ
e(1−ζ)π

∗(s−t)yt,s (i)− ws (i)hs (i)

]}
, (A.4)

subject to its production function (A.2) and the demand for its own good conditional on no

further price change after period t

yt,s (i) =

[
pt (i)

Ps

]−θ
Ys, (A.5)

where Yt is an index of aggregate demand of the same form as (A.1).

Appendix A.3. Monetary Policy

The central bank sets the net nominal interest rate it with a certain degree of inertia in

response to departures of aggregate demand and inflation from their respective objectives.
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The non-linear formulation of the baseline interest rate rule is

Rt

R
=

(
Rt−1

R

)ρ [(
Pt

Pt−1eπ
∗

)φπ ( Yt
Y e
t

)φx]1−ρ
eε
i
t , (A.6)

where the gross nominal interest rate is defined as

Rt ≡
1

EtQt,t+1

and its average can be decomposed via the Fisher equation as R = er+π
∗
, which defines the

steady state net real interest rate r. The continuously compounded nominal interest rate in

the text is defined as it ≡ logRt.

Appendix B. Statistical Filters in DSGE Models

This appendix illustrates how to embed a linear filter into a dynamic rational expectation

model. We begin with a brief general description of linear filtering problems. We then focus

on the application to the Hodrick and Prescott (HP) filter (Hodrick and Prescott, 1997).

Appendix B.1. Linear Filters

The objective of “filtering” is to decompose the stochastic process xt into two orthogonal

components

xt = yt + x̃t,

where the process yt has power only in some frequency interval {(a, b) ∪ (−a,−b)} ∈ (−π, π).

Then, we can represent yt as

yt = B (L)xt,

where B (L) – the ideal band-pass filter – is of the form

B (L) =
∞∑

j=−∞

BjL
j.

Therefore, implementation of the ideal filter requires an infinite dataset. We can think

about approximating the ideal filter as a projection problem. Given a sample x = [x1, ..., xT ],

the estimate of y = [y1,..., yT ] is ŷ = P [y|x], which is of the form

ŷt =

p∑
=−f

B̂p,f
j xt−j,
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where f = T − t and p = t−1. The main problem of this estimates is that the B coefficients

require knowledge of fx (ω), the spectral density of x.

Christiano and Fitzgerald (2003) show that, for most macro variables, the coefficients

obtained by assuming that x is a random walk work quite well. One approach to the

calculation of these coefficients is then to “expand” the available sample with the least

squares optimal guesses of the missing data at the beginning and end of the sample. For the

random walk, these data are just x1 and xT . Our proposal is to adopt the same philosophy

(i.e. to expand the available dataset) in the context of our framework, using the rational

expectations forecasts of the missing data obtained from the model.23

Appendix B.2. Application to the HP Filter

In this section, we discuss the application of our methodology to the HP filter. We focus

on the HP filter because of its wide use in macroeconomics as a flexible device (through the

choice of λ) to draw a smooth trend through the data. The HP filter provides a typical

example of a “traditional” smooth measure of potential output and of the associated output

gap. Its added advantage in out context is that the expression for the ideal filter is a relatively

simple function of lag polynomials. The result is a parsimonious (i.e. two leads and lags)

recursive representation, that requires only a modest expansion of the model’s state space.

The ideal HP filter is of the form (e.g. Baxter and King, 1999)

HP g =
λ(1− L)2 (1− F )2

1 + λ(1− L)2 (1− F )2

HP t =
1

1 + λ(1− L)2 (1− F )2

where HP g denotes the filter whose application results in the “gap”, while HP t denotes the

filter whose application produces the trend.24 Practical application of these filters requires an

23Watson (2007) proposes a similar procedure using unrestricted ARIMA processes as forecasting tools.

Juillard et al. (2006) is the only example we could find of an application to DSGEs models. The main

objective of all these papers is to improve the end-of-sample performance of the filters they consider.
24King and Rebelo (1993) originally derived these expressions as the solution of a “smoothing” problem.

However, they also showed that this filter, with λ = 1600, approximates very well a high pass filter with

cutoff frequency π/16 or 32 quarters.
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approximation, since they embed a two-sided, infinite moving average of the data.25 However,

application of Christiano and Fitzgerald (2003) insight to a rational expectations context

allows us to use the ideal filter directly, where the approximation relies on the substitution

of the infinite leads and lags implicit in HP (L) with rational expectation forecasts. In

particular, given observations on logGDPt = yt, we define the HP gap with parameter λ as

[
1 + λ(1− L)2 (1− F )2

]
x
HP (λ)
t = λ(1− L)2 (1− F )2 yt,

where now the forward and backward operators are defined by

Lyt = yt−1

Fyt = Etyt+1

as it is standard in rational expectations models (e.g. Blanchard and Fischer, 1989).

25 Details on this approximation can be found, for example, in Baxter and King (1999).
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