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Abstract

The empirical Dynamic Stochastic General Equilibrium (DSGE) literature pays surprisingly little attention
to the behavior of the monetary authority. Alternative policy rule specifications abound, but their relative
merit is rarely discussed. We contribute to filling this gap by undertaking a systematic comparison of the fit
of several families of interest rate rules within two popular New Keynesian models. We find that the best
fitting rules are those in which the nominal interest rate tracks the evolution of the model-consistent efficient

real interest rate—an empirical hypothesis not previously explored in the literature.
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1. Introduction

Most central banks around the World pursue some form of flexible inflation targeting,
striving to stabilize inflation while keeping a watchful eye on real economic developments.
In the United States, the Federal Reserve Act requires the monetary authority to pursue the
dual mandate of stabilizing prices and promoting “maximum employment.” In a seminal

contribution, Taylor (1993) proposed a parsimonious approach to capturing the implications
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of this dual objective for central banks’ interest rate decisions—the now famous Taylor
rule. According to this policy rule, the monetary authority sets the nominal interest rate
in response to deviations of inflation from its target and to some measure of real economic
activity, such as the output gap. Although originally proposed as a simple normative guide
for monetary policy, the observation that the rule tracked the actual behavior of the Fed
under Chairman Greenspan between 1987 and 1992 quite closely turned interest rate feedback
rules into an ubiquitous positive tool used to describe actual policy decisions. This evolution
of Taylor rules from normative to positive devices has been supported by a large literature
documenting their excellent empirical performance using single equation estimation methods
(Judd and Rudebusch, 1998; Clarida et al., 1999, 2000; English et al., 2003; Orphanides, 2003
and, most recently, Coibion and Gorodnichenko, 2011).

Their parsimony, convenience, and empirical fit has also made Taylor-type rules the
most common formulation for the description of monetary policy within dynamic stochastic
general equilibrium (DSGE) models. Most DSGE studies, however, simply posit an interest
rate feedback rule broadly inspired by Taylor (1993), usually with no discussion of its details
and potential alternatives. This casual treatment of the behavior of the monetary authority
in DSGE papers stands in stark contrast with the attention more generally dedicated to the
modeling of the private sector. As a result, this literature has witnessed a proliferation of
policy specifications—especially with respect to the choice of the real variables the central
bank reacts to—but with very little guidance on their empirical performance within the
model under consideration.’

The research summarized in this paper represents an attempt to put some order in this

chaotic situation by systematically comparing the fit of a large set of interest rate rules

1See Schmitt-Grohé and Uribe (2007) for a recent normative analysis of alternative simple interest rate
rules within a calibrated DSGE model. Svensson (2003) recommends modeling central banks as optimizing
agents that maximize an objective function, as customary for the private sector, rather than as automatons
committed to an interest rate feedback rule. The optimal targeting rule obtained in this framework, however,
still depends on the arguments of the loss function policymakers are assumed to minimize. See Adolfson

et al. (2008) for a state-of-the-art implementation of this approach within a DSGE model for Sweden.



within an estimated DSGE model of the U.S. economy. Most of the rules we analyzed
have previously appeared in the literature. Others, including the best-fitting one, have
not. The most notable feature of the best-fitting rule is that the monetary authority tracks
the evolution of the efficient real interest rate—the real interest rate that would prevail in
equilibrium if the economy were perfectly competitive—as an indicator of real economic
developments. In fact, this measure of the equilibrium interest rate is a better proxy for
the real economic developments to which monetary policy seems to respond than any of
the several measures of output gap we experimented with. This result sets our contribution
apart from the literature on single-equation estimation of Taylor rules, as we need a complete
general equilibrium model to compute the measure of real interest rate analyzed here.

This policy rule echos Wicksell’s suggestion that a “natural”rate of return determined by
real factors represents a useful target for monetary policy (Woodford 2003), an idea familiar
to Fed policymakers at least since the early 1990s (e.g. Greenspan, 1993). To our knowledge,
we are the first to estimate interest rate rules consistent with this idea and to document
their strong empirical performance.?

Our extensive investigation of the empirical properties of these rules within a DSGE
framework suggests that the inclusion of the efficient real interest rate as a time-varying
intercept in the policy equation improves model fit across different specifications of the
policy rule and of the private sector behavior. In its current version, the paper documents
this fact by focusing on a few especially representative cases. Curdia et al. (2011b) show that
similar results hold across a much wider spectrum of policy specifications, which includes
most of the interest rate equations posited in the DSGE literature and those estimated with
single equation methods.

Methodologically, we follow a Bayesian empirical strategy. First, we embed each of the
policy rules whose fit we wish to evaluate within a DSGE framework, defined by given tastes

and technology describing the private sector. This step produces a set of models, one for

2Trehan and Wu (2007) discuss the biases in the reduced-form estimation of policy rules with a constant
intercept, when in fact the central bank responds to a time-varying equilibrium real rate, but do not estimate

this response.



each different policy specification. We then estimate each of these models with Bayesian
methods and compare their fit using marginal data densities.®> This criterion produces a
ranking of the different models, as well as a quantitative measure of their relative ability
to fit the data. Importantly, the resulting measure evaluates the congruence of the entire
model with the data, rather than of the policy equation alone. In a general equilibrium
context, this approach provides an fully coherent ranking, although we also look at other,
more informal, indicators of the extent to which different policy rules make the estimated
model more or less “reasonable.”

Overall, our findings suggest that the specification of the interest rate rule can have a
significant impact on the fit of DSGE models. The gap in marginal likelihoods between
the best and worst fitting rules ranges between fifty and eighty log-points depending on the
model under consideration. As a reference point, these differences in fit are of the same
order of magnitude as those between similar structural models estimated with or without
stochastic volatility (Curdia et al., 2011a). This evidence underscores the importance for
DSGE researchers of paying significantly more attention to the specification of monetary

policy than is common practice to date.

The rest of the paper proceeds as follows. Section 2 presents a small-scale model of
private sector behavior together with the baseline interest rate rule. Section 3 discusses
the econometric methodology and the estimation results for the baseline model. Section 4
introduces the alternative classes of policy rules we consider and compares their empirical

performance. Section 5 extends the analysis to a medium-scale model. Section 6 concludes.

2. A Simple Model of the Monetary Transmission Mechanism

We augment the purely forward-looking textbook New Keynesian framework (Woodford,

2003) with two sources of inertia to improve its ability to fit the data. On the demand side,

3An and Schorfheide (2007) provide a comprehensive survey of the application of Bayesian methods to the
estimation and comparison of DSGE models. Lubik and Schorfheide (2007) use similar methods to estimate

the response of monetary policy to exchange rate movements in several small open economies.



we include habits in consumption in the utility specification. On the supply side, we allow
for partial indexation to past inflation of the subset of prices that are not reoptimized in
each period. We also allow for exogenous growth in total factor productivity and shocks to
its growth rate.

The resulting model is smaller than the workhorse empirical DSGE model, such as Smets
and Wouters (2007). In particular, we abstract from capital accumulation and the attending
frictions (endogenous utilization and investment adjustment costs) and from non-competitive
features in the labor market (monopolistic competition and sticky wages). This modeling
choice allowed us to estimate and compare the fit of a very large number of interest rate rules
at various stages of this project, without having to worry about computational constraints.
In this paper, we only present the highlights of the results. Curdia et al. (2011b) report
results for all the rules—55 in total-—and their detailed ranking in terms of fit.

The remainder of this section presents the linearized equilibrium conditions of the model,
which constitute the basis for estimation. Appendix A contains details of the model’s mi-
crofoundations, including the mapping of the tastes and technology parameters into those

of the approximate log-linear equations.

2.1. Private Sector

The model consists of aggregate demand and supply relations and a monetary policy
rule, plus some auxiliary equations to define economic variables that will be useful later in
the interpretation of the results. We present the model in “gap” form. The main benefit of
this approach is that the resulting structure indeed takes the very familiar representation of
the baseline New Keynesian model.

The aggregate demand side of the model is an Euler equation in the measure of real
activity zy

Ty = EyZpq — @;1 (it — Eymipr —1%) (1)

where i, is the (continuously compounded) nominal interest rate, m; is inflation, 7§ is the
efficient real interest rate, and E;(.) is the expectation operator conditional on all available

information at time ¢. The parameter ¢, measures the sensitivity of real activity to the real



interest rate (gap).

The real activity measure in expression (1) is a distributed lag of the efficient output gap
TP =Y — Yy

B = (af —m,2i_1) = B0, By (2540 — n,y25)

where y; is real output and yf is its efficient counterpart. The lead-lag structure in the
definition of Z; reflects the presence of internal habits in consumption, to a degree indexed
by the parameter 7, .

The efficient level of output yf and especially the efficient real interest rate ry are key
constructs in our analysis below. Efficient output represents the level of aggregate production
that would prevail in equilibrium if prices were—and always had been—flexible, absent any

markup shocks. Efficient output evolves according to the difference equation
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from which we observe that y; is a linear combination of the past and future expected
values of productivity growth 7, and intertemporal taste shocks d,. Both these shocks follow
stationary AR(1) processes. Our construction of the efficient level of output implies that the
counterfactual environment in which prices are flexible is a parallel universe, which evolves
independently from the outcomes observed in the actual economy (Neiss and Nelson, 2003).
In this parallel universe, the intertemporal Euler equation defines the efficient real interest
rate as
ry = Et%+1 + B —w (EtyteJ,-l - yf) .

The efficient real interest rate depends positively on the forecastable component of produc-
tivity growth and preference shocks and negatively on the unexpected innovations in efficient
output.

Turning now to the supply side of the model, the optimal pricing decisions of firms

produce a Phillips curve of the form
Ty = & (way + o) + BET 1 + uy, (3)

where

T =T — (M



depends on the degree of indexation to past inflation, parametrized by ¢, and u; is an AR(1)
cost-push shock, generated by exogenous fluctuations in desired markups. These fluctuations
are the only source of tradeoff between inflation and real activity in this model.

Without markup shocks, the efficient level of aggregate production can be achieved to-
gether with price stability (i.e. m; = 0), as we can see by substituting u; = 0 and y; = vy,
or zf = 0, V¢ in equation (3). This is the first best outcome in this economy, since no price
needs to change when aggregate inflation is zero, thus eliminating price dispersion across mo-
nopolistic producers and the associated distortions in the allocation of resources (Woodford,
2003). When markup shocks are present, on the contrary, the efficient allocation is no longer
feasible because the efficient level of aggregate output could only be achieved by allowing
cost-push shocks to pass-through to inflation entirely, as we can see by solving equation (3)

forward with y, = y; Vt

T = (T + Y BBty
s=0

The resulting fluctuations in inflation would then produce an inefficient dispersion of prices
and production levels across varieties. At the other extreme of the policy spectrum, perfect
inflation stabilization would require cost-push shocks to show-through entirely in deviations
of output from its efficient level. Optimal policy, therefore, will distribute the impact of
these shocks between output and inflation, as to balance the objectives of price stability and
efficient aggregate production.

One implication of this trade-off is that an ex-ante real interest rate, 7; — Eymsyq, set to
perfectly shadow the efficient rate of return 7y, would not be optimal, although the Euler
equation (1) implies that such a policy would close the output gap every period and thus
achieve the efficient level of aggregate production. This is the main reason for including
some feedback from inflation and the output gap even in the interest rate rules that include

r¢ in their intercept, as we do below.?

4 Another reason is that a policy rule of the form i; = r{ + Eymip1 would not deliver the efficient output
uniquely, since the nominal interest rate does not respond more than one-to-one to expected inflation (e.g.

Clarida et al., 1999).



2.2. Monetary Policy: Baseline Specification

In the baseline policy specification, the central bank sets the nominal interest rate in
response to the current inflation rate and the efficient output gap, with a certain degree of
inertia

iv = pir-1 + (1= p) (6o + ,7) + €. (4)

Expression (4) represents a natural starting point for our comparative analysis, since
it brings the basic ingredients of the empirical literature on interest rate rules into the
context of our DSGE framework. Inflation and real activity are the standard arguments
of monetary policy rules at least since Taylor (1993), while interest rate inertia typically
improves their ability to fit the data, as shown for example by Clarida et al. (2000). We
choose the efficient output gap as the baseline policy measure of real economic developments
for internal consistency with the rest of our theoretical apparatus. In fact, in our model
this gap is both the fundamental driver of inflation, as shown in equation (3), as well as the
measure of slack that is relevant for welfare analysis (e.g. Woodford, 2003).

Yet, equation (4) is the “baseline” policy rule only in an expositional sense: it is the first
one we consider, for the reasons just described. In economic terms, however, this rule is a
priori on par with all the others we evaluate, since the entire model is re-estimated every
time a new rule is introduced, as described in the next section. A posteriori, the baseline rule

turns out to be a particularly poor choice to close the model, which is one of our results.’

3. Inference

We estimate the model laid out in the previous section—and the variants discussed
below—with Bayesian methods, as surveyed for example by An and Schorfheide (2007).
Bayesian estimation combines prior information on the parameters with the likelihood func-
tion of the model to form a posterior density function. We construct the likelihood using the

Kalman filter based on the state space representation of the rational expectations solution of

This result is even stronger in the working paper version where the number of estimated rules is much

larger than those reported here.



each model under consideration, assuming a prior of zero for the configuration of parameters
that imply indeterminacy.

The observation equations are

AlogGDP, = v+ Yy — %1+ 7
Alog PCE, = 7" +m

FFRt = T‘—{—Tf*‘l—'l.t,

where A is the first difference operator, GDP; is real GDP, PCE; is the core PCE defla-
tor (headline ex-food and energy), and FFR; is the average effective Federal Funds Rate
(henceforth FFR), all sampled at a quarterly frequency. The constants in these equations
represent the average growth rate of productivity (), the long run inflation target (7*), and
the average real interest rate (). The sample period runs from 1987:Q3 to 2009:QQ3, although
the main results are not affected by truncating the sample either at 2008:(QQ4, when the FFR
first hit the zero bound, or at 2006Q4, before the eruption of the recent financial crisis.
We start the sample with Alan Greenspan’s tenure as Fed chairman because, starting with
Taylor (1993), there seems to be general agreement that interest rate setting appropriately
characterizes U.S. monetary policy during this period.

Columns 2 through 5 of Table 1 report our choice of the priors, which are maintained
across all the model specifications we consider. On the demand side, we calibrate the dis-
count factor as f = 0.99, and impose a loose prior between zero and one on the habit
coefficient 7, only slightly favoring higher values. These two parameters, together with the
1

average balanced growth rate 7 , determine the slope of the Euler equation (1), ¢7

(1 — 777) (1 — 57}7), where 1, = ne™7.

On the supply side, the prior on the indexation parameter ( is centered around 0.6, but
is quite dispersed over the unit interval. The slope of the Phillips curve is a convolution
of deep parameters, £ = (1 — «a) (1 — af) /[a (1 +wb)] where « is the fraction of firms that
do not change their price in any given period, € is the elasticity of demand faced by each
monopolistic producer and w is the inverse Frisch elasticity of labor supply. Only the slope &

can be identified from our observables. We formulate our prior on this parameter as a Gamma



distribution with mean 0.1. This value is somewhat higher than the partial information
estimates of the New Keynesian Phillips curve (e.g. Gali and Gertler, 2007; Sbordone, 2002),
but is consistent with the low degree of price stickiness found in microeconomic studies such
as Bils and Klenow (2004), given reasonable values for w and 6.°

Turning now to the interest rate rule, the prior on the smoothing parameter p follows a
Beta distribution centered at 0.7, with a 90% probability interval wide enough to encompass
most existing estimates. The priors for the feedback coefficients on inflation ¢, and real
activity ¢, are normally distributed with means 1.5 and 0.5 respectively, as in the original
Taylor (1993) rule.

The autocorrelations of the exogenous shocks, the p,’s in the table (for each shock 1),
have Beta prior distributions with mean 0.5, while the standard deviations, denoted by o;,
have Inverse Gamma prior distributions centered at 0.5.

We obtain the posterior mode and inverse Hessian by minimizing the negative of the
log posterior density function and use Markov Chain Monte Carlo (MCMC) methods, more
specifically a Random Walk Metropolis algorithm, to build a representative sample of the
parameters’ joint posterior distribution. We monitor the convergence of the chains of draws
in each step using a variety of tests. Finally, upon convergence, we combine the chains in the
last step, after discarding the initial 25% of the draws in each chain, to form a full sample
of the posterior distribution, which represents the source of our inference information.”

To evaluate the fit of different policy rules, we compare the marginal data densities (or
posterior probabilities) of the corresponding DSGE models. All these models share the
tastes and technologies that result in the aggregate demand and supply equations described

in Section 2.1, but each is closed with a different interest rate rule. ®

SFor example, with w = 1 and 6 = 8, which corresponds to a desired markup of 14%, & = 0.1 implies

a = 0.4, or an expected duration of prices of about five months.
"Detailed convergence and inference analysis for each specification discussed in the paper is available

upon request.
8We follow the standard practice (e.g. Lubik and Schorfheide, 2007) that we, as econometricians, remain

agnostic about the policy rule while agents in the model exactly know the rule, as well as the rest of the

structure of the model, in each case.
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We estimate each model separately on the same data, and compute its posterior probabil-
ity using Geweke (1999)’s modified harmonic mean estimator. To compare fit, we calculate
the log of the Bayes factor (multiplied by two) of each alternative specification against the
baseline (i.e. the model closed with policy rule (4)). Kass and Raftery (1995) recommend
this measure of relative fit since its scale is the same as that of a classic Likelihood Ratio
statistic.” This procedure results in an overall ranking of the interest rate rules under con-
sideration (as well as in a measure of their individual fit against a common benchmark) and

thus implicitly against each other.

3.1. Estimation Results in the Baseline Model

Columns 6 through 9 of Table 1 report selected moments of the marginal posterior distri-
butions of the parameters under the baseline interest rate rule. Although the data are quite
informative on most parameters and many of the posterior estimates fall within reasonable
ranges, close inspection of the results reveals some puzzling features. To better visualize
these anomalies, Figure 1 graphs the prior and posterior marginal distributions for a subset
of the parameters.

First, the posterior estimate of the slope of the Phillips curve £ is minuscule, with a mean
of 0.002, two orders of magnitude smaller than the prior mean and at the extreme lower end
of the available estimates in the DSGE literature (see for example the survey by Schorfheide,
2008). This posterior estimate implies no discernible trade-off between inflation and real
activity, so that inflation is close to an exogenous process driven by movements in desired
markups. As a consequence, there is little hope of distinguishing between dynamic inflation
indexation and persistent markup shocks as drivers of the observed inflation persistence.
This lack of identification is reflected in the bimodal marginal posterior distributions of the

parameters ¢ and p,—which are generated by MCMC draws with high ¢ and low p, or

9The Bayes factor of model 1 against model 2 is the ratio of their marginal likelihoods. Kass and Raftery
(1995) suggest that values of 2log BF' above 10 can be considered very strong evidence in favor of model 1.
Values between 6 and 10 represent strong evidence, between 2 and 6 positive evidence, while values below 2

5

are “not worth more than a bare mention.” We refer to this statistic as the KR criterion.
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vice versa—that correspond to local peaks of the joint posterior density of similar heights.
Finally, the last two panels of Figure 1 show that the estimated parameters of the interest
rate rule imply a strong reaction of policy to the output gap and an extremely weak reaction
to inflation, with about half of the posterior draws for ¢, below one. These values are
puzzling, especially in light of the large literature that has argued that a forceful reaction to
inflation has been one of the hallmarks of U.S. monetary policy since the mid-eighties.!®
The anomalies of the posterior distribution highlighted above reduce the baseline model’s

marginal data density and contribute to its extremely poor overall fit.!!

4. Evaluating Alternative Interest Rate Rules

Many aspects of our baseline model could be problematic. In the rest of the paper, we
focus on one potential source of these problems, which in our judgement has been largely—
and surprisingly—overlooked in the DSGE literature: the specification of the interest rate
rule. In particular, the inclusion of the efficient real interest rate in the intercept of the
policy rule is the one modification of the baseline rule that provides the most significant and
reliable improvement in model fit. This relatively minor adjustment contributes to solving
some of the anomalous parameter estimates and identification problems illustrated in Figure
1.'2 If we further modify the policy rule to include a time varying inflation target we obtain
an even better model fit, but the gain is not as significant as that of introducing the efficient
interest rate. Combining both modifications offers the best fit. Furthermore, the resulting
improvement in fit is robust to a large set of changes in the other elements of the policy rule,

as well as to changes in the model of private sector behavior.

10Still, values of ¢, lower than one do not necessarily generate indeterminacy, especially for high values of
¢,. Following Woodford (2003), in our model the equilibrium is determinate if and only if ¢ +(1— )¢, /€ >

1. At the posterior mode, the left-hand side of the previous inequality is slightly smaller than 4.
HFor a more exhaustive comparison of alternative policy rules, see Ctirdia et al. (2011b). The baseline

specification ranks 47th in terms of marginal likelihood, among the 55 evaluated in that version of the paper.
12\We do not address the extent to which different policy rules aid or hinder the identification of the model’s

parameters, although this issue would deserve further scrutiny. For a recent study of identification in DSGEs,

see Canova and Sala (2009), who find that identification is often problematic in this class of models.
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4.1. Tracking the Efficient Real Interest Rate

The idea that an “equilibrium” interest rate (EIR) might represent a useful reference
point for monetary policy was familiar to Federal Reserve policymakers well before Woodford
(2003) revitalized its Wicksellian roots. For example, in his Humphrey Hawkins testimony
to Congress in May 1993, Chairman Alan Greenspan stated that “...In assessing real rates,
the central issue is their relationship to an equilibrium interest rate, specifically, the real
rate level that, if maintained, would keep the economy at its production potential over
time. Rates persisting above that level, history tells us, tend to be associated with slack,
disinflation, and economic stagnation—below that level with eventual resource bottlenecks
and rising inflation, which ultimately engenders economic contraction. Maintaining the real
rate around its equilibrium level should have a stabilizing effect on the economy, directing
production toward its long-term potential” (Greenspan, 1993).13

Greenspan’s quote reflects a shift of emphasis at the Federal Reserve from monetary
aggregates to the EIR to gauge the stance of monetary policy that occurred between the
end of the 1980s and the beginning of the 1990s (McCallum and Nelson, 2011). Early on,
the EIR presented to policymakers was simply the equilibrium real interest rate prevailing
in a real business cycle model. As the literature started to incorporate nominal rigidities in
the basic neo-classical framework, the EIR became a common feature also of New Keynesian
models used to discuss monetary policy issues (see, for example, King and Wolman, 1999,
and the survey in Amato, 2005).

In this section, we investigate the extent to which Chairman Greenspan’s reasoning had
a measurable impact on the evolution of the observed nominal interest rate over our sample.
To measure the EIR within our DSGE model, we follow the Chairman’s description and
compute the counterfactual “real rate level that, if maintained, would keep the economy at

its production potential over time.” If we define “potential” output as the efficient aggregate

1BQuantitative measures of the EIR are today a regular input in the monetary policy de-
bate at the Federal Reserve, as demonstrated by the fact that a chart with a range of es-
timates of the EIR is included in most published Bluebooks at least since May 2001 (see

http://www.federalreserve.gov /monetarypolicy /fomc_historical.htm).
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level of production y{ in the model—as, for instance, in Justiniano et al. (2011)—the EIR
corresponds to the efficient rate of return r{. This variable is our preferred measure of the
EIR, since its concept is grounded in the microeconomic structure of the DSGE model.'*

We embed this measure of the EIR within the baseline policy rule, which becomes
i = pir1 + (1= p) [rf + dpme + ¢27] + €. (5)

This specification (which we call Re) improves the model’s marginal likelihood by ap-
proximately 20 log-points with respect to the baseline, which represents very strong evidence
in favor of policy rule (5) according to the aforementioned KR criterion. Part of the overall
improvement in fit is due to the increase in explanatory power of the systematic component
of the monetary policy rule. The introduction of the EIR in the interest rate rule reduces the
standard deviation of the monetary policy shock by more than a third. To the best of our
knowledge, this paper is the first to document the good empirical performance of a policy
rule that allows for a gradual adjustment of the nominal interest rate to movements in the
efficient real rate.

Figure 2 plots the posterior median of 7§ (blue solid line) and the 90% uncertainty bands
(green shaded area) implied by the model under rule (5). The vertical grey areas correspond
to the National Bureau of Economic Research recession dates. Overall, the estimated efficient
real interest rate is a good business cycle indicator over our sample, rising during booms and
dropping sharply in recessions. In the last two recession episodes in our sample, the efficient
real interest rate conveys early signals of a future slowdown, decreasing a few quarters before
the recession actually starts.!®

Figure 2 also shows that the inferred movements in r{ mirror quite closely those in the

FFR (red dashed line), which helps to further explain the empirical success of equation

4 Cirdia et al. (2011b) also reports results for alternative definitions of the EIR, corresponding to the
potential output implied by the statistical filters described in section 4.2.1. None of these alternatives

improves on the specification presented here.
15Tn the 1990 recession, the drop of ¢ coincides with the beginning of the recession. Interestingly, the

EIR behaves very similarly to more standard measures of slack in the real economy, such as output gaps.

See Curdia et al. (2011b) for more details.
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(5) as a description of monetary policy. The close co-movement between the FFR and the
estimates of 7y may, however, raise the concern that the observations on the nominal interest
rate fully “explain” the estimates of r{, and not vice versa. Figure 3 shows that this is
clearly not the case. The estimated time path of vy when the interest rate rule includes the
EIR (thick green solid line) is almost identical to the baseline case (thin blue solid line).
This result is also robust to the introduction of a time-varying inflation target (red dashed
line), that we discuss in the next subsection. The main difference between the estimates
(not shown in figure 3) is that the posterior distribution is tighter when r{ enters the interest
rate rule. This enhanced precision of the estimates suggests that the nominal interest rate
carries useful information on r{ in the specification Re, although this information does not
distort the inference on its average time-path.

Some intuition for the robustness of the estimates of 7y across models can be gleaned
from the expression for the efficient real interest rate derived in section 2, which we report

here for convenience
ri = By + B —w (Et?/te+1 - yf) .

If the log-deviations of efficient output from the balanced growth path were a martingale (i.e.
Ewg . = y5), the efficient real interest rate would be equal to the sum of the forecastable
movements in the growth rate of productivity 7, and in the intertemporal taste shock d;.
In our estimated models, the deviations from the condition Ey7 , = y; are “small,”as are
the forecastable movements in v,. The taste shock d;, on the contrary, is persistent, and its
innovations are sizable, so that its forecastable movements tend to be the main driving force
of movements in rf. Our estimates precisely and robustly pin down the cyclical behavior of
these forecastable movements in d;, with little variation across specifications. As a result,
the inference on the evolution of the efficient real rate over time is remarkably consistent
across all the models we consider.

The key role of the intertemporal shock d; in reconciling this class of DSGE models with
the data is a manifestation of the well-known deficiencies of standard Euler equations in
pricing returns, as first documented by Hansen and Singleton (1982) and more recently re-

emphasized in a DSGE context by Primiceri et al. (2006). According to this interpretation,
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intertemporal shocks are reduced-form measures of exogenous changes in financial factors.
The tight connection between 7y and intertemporal shocks and the fact that its inclusion in
the interest rate rule significantly improves the fit of our DSGE model represent suggestive
evidence of the importance of financial conditions for the conduct of monetary policy in the

last two decades.'®

4.2. Robustness to Changes in the Policy Rule

The evidence presented in the previous section suggests that the efficient real interest
rate 7y is a potentially useful indicator of the stance of monetary policy, since its inclusion
among the arguments of the baseline policy rule significantly improves the ability of our
model to fit the data. This section offers some evidence that this result does not depend
on the arbitrary choice of the baseline specification. Regardless of how we specify the other
arguments of the policy rule, the inclusion of r{ uniformly improves the model’s empirical
performance. Aside from illustrating the robustness of the paper’s main result, this exercise
allows us to explore the empirical fit of other interest rate rules. We consider two broad
classes of alternative rules. First, we experiment with a different measure of the output gap.
Second, we allow for time-variation in the inflation target 7*. Some of these rules further
improve on the empirical performance of (5).

Table 2 reports the overall fit of several alternative rules. The column labeled “logML”
shows the log-marginal likelihood for each specification, while the column labeled “KR”
shows the Kass and Raftery (KR) measure described in Section 3 (where positive values imply
an improvement in fit relative to the “Baseline” specification). The rules “Baseline” and “Re”
correspond to the specifications (4) and (5), respectively. Both of these specifications have

been discussed above. The next subsections discuss the other formulations.

16Shocks to r¢ are sometimes used as a shortcut for more fundamental financial disturbances that generate
large crises (e.g. Eggertsson, 2008). In the early stages of the recent financial crisis, McCulley and Toloui
(2008), Meyer and Sack (2008), and Taylor (2008) proposed spread-adjusted Taylor rules to appropriately
capture the effects of the turmoil in credit markets on the level of the FFR. In a model in which credit
spreads induce fluctuations in the efficient real interest rate, Cirdia and Woodford (2010) show that such

an adjustment is indeed desirable, although less than to a one-to-one extent.
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4.2.1. Output Gap

The measure of economic slack that we chose to include in the baseline interest rate rule
(4) is the deviation of real GDP from its efficient level. This choice is fairly common in
DSGE work (e.g. Smets and Wouters, 2007), although far from universal. One drawback of
this approach is that the resulting policy rule is impossible to compare with those estimated
in the vast literature that employs partial information econometric techniques (see Coibion
and Gorodnichenko (2011) for a recent contribution and survey of this literature), since the
construction of the counterfactual efficient level of output requires a general equilibrium
model. Moreover, the efficient output gap might be considered an implausible choice as
a summary statistic for policymakers’ views on the level of resource utilization, precisely
because of its model dependency.

To bridge the gap between our general equilibrium framework and the work based on sin-
gle equation methods, we consider the Hodrick and Prescott (HP) filter as a tool to construct
smooth versions of potential output, given its popularity in applied macroeconomics.!”

One difficulty in making the HP filter operational within a DSGE model is that its ideal
representation is a two-sided, infinite moving average, whose standard approximation to finite
samples requires different coefficients on the observations at the beginning, in the middle,
and at the end of the sample. Such a pattern of coefficients is difficult to replicate within
a dynamic system of rational expectation equations with a parsimonious state space. To
circumvent this problem, we adapt the methodology proposed by Christiano and Fitzgerald
(2003) for the approximation of ideal band pass filters. Christiano and Fitzgerald (2003)
suggest to use forecasts (and backcasts) from an auxiliary time-series model—in their case
a simple unit root process—to extend the sample in the past and in the future. In our
implementation of their idea, the auxiliary model that generates the dummy observations is
the linearized DSGE itself.

This approach is particularly convenient for our purposes because it produces a very

17See Orphanides and Van Norden (2002) for a comprehensive survey of the use of statistical filters as

measures of the output gap and their pitfalls.
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parsimonious recursive expression for the DSGE-HP gap
1+ M1 -0 (1= F)? 2" = X1-L)*(1 - F)’y, (6)

where the operators L and F' are defined by Ly; = ;1 and Fy; = Fy;41, and the smoothing
parameter A is set at the typical quarterly value of 1600. This expression can thus be added
to the system of rational expectations equations that defines the equilibrium of the model.
More details on the derivation of equation 6 and on its interpretation, together with some
background on linear filtering, can be found in Appendix B.

The time series for the output gap obtained through this procedure (DSGE-HP) is very
similar to the standard finite sample approximation of the HP filter. This result is comforting
and supports our use of the DSGE-HP filter as an effective de-trending tool, which produces
a measure of capacity utilization similar to those often used in single-equation estimates of
the Taylor rule.

When we estimate the model replacing the efficient output gap with ¥ in the interest
rate rule, the presence of r{ continues to make a difference, although the improvement
becomes less significant. Without the efficient real interest rate in the policy rule, the KR
criterion deteriorates by four points, as shown in Table 2. To be sure, both specifications
perform substantially better than the baseline but the presence of the EIR reduces the need
for a measure of slack to be included in the policy rule. In fact, a rule with the efficient real
interest rate but no output gap (i.e. with ¢, = 0) ranks slightly better than a rule with the
efficient real interest rate and the statistical output gap z1*.

Overall, conditional on the presence of the efficient real interest rate, the rule with the
model-based efficient output gap ranks higher than any rule with a statistical filter of out-

put.'®

4.2.2. Time-Varying Inflation Target
In this section, we further enlarge the set of policy rules subject to our evaluation, by

introducing a time-varying inflation target (TVIT), a fairly common feature in the recent

18Curdia et al. (2011b) consider additional statistical filters, including smoother trends and exponential

filters. Also for these rules, the presence of r{ is crucial.
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empirical DSGE literature (Ireland, 2007; Cogley et al., 2010). This addition creates a new

class of feedback rules, of the form
iy = pir1 + (L= p) [rf + 7} + b (e — 7)) + da] + ¢, (7)

where 7} is an exogenous AR(1) process that represents persistent deviations of the inflation
target from its long-run value 7*.1

Introducing a TVIT in the baseline policy rule helps capture the low-frequency move-
ments in inflation and the nominal interest rate that are evident even in our relatively short
sample. Inflation hovered around 4% in the late 1980s and started to converge toward its
more recent range around 2% only after the recession of the early 1990s. This process of
so-called “opportunistic disinflation” took until the middle of the decade to complete. One
simple way of capturing the central bank’s willingness to delay the achievement of its ulti-
mate inflation objective until the “next” recession, which is at the heart of the opportunistic
approach to disinflation, is to allow smooth time-variation in its short-run inflation target,
as in specification (7).

The fit of the model improves by 24 points in the KR scale (rule “Pistar” in Table 2),
very strong evidence in favor of the inclusion of a TVIT in the policy rule. However, this
improvement is still not nearly as good as the introduction of the EIR by itself in the rule.
The best rule is the one that combines these two components, denoted by “RePistar,” which
achieves an improvement over the baseline case of 54 points in the KR scale. Adding the
EIR to the Pistar specification improves the KR criterion by 30 points, which constitutes a
significant increase in fit. Interestingly, this gain is comparable to the one obtained when the
EIR is included in the equivalent specifications with a constant inflation target, i.e. when
comparing the baseline rule to rule Re.

Table 3 suggests a similar conclusion by looking at the fit of the interest rate rule only.
The first column (“In-sample”) reports the posterior median standard error of the monetary

policy shock €% over the sample.? The second column of the table (“Population”) is the

The autocorrelation coefficient of 7} has a Beta prior tightly distributed around a mean of 0.95.
20We draw from the posterior distributions of the parameters 1000 times. For each draw, we compute the
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posterior median of the estimated standard deviation of the monetary policy shock o;. As
mentioned for the EIR, the introduction of a TVIT reduces the standard error of the mone-
tary policy rule by roughly one third. The combination of both elements lowers this measure
even further, although the improvement is not as big as for the KR criterion.

These results suggest that the efficient real rate and a smoothly evolving inflation target
enhance the empirical performance of the model through fairly independent channels and
should thus be complementary features in policy specifications with good empirical proper-
ties.

As previously anticipated, figure 3 shows that the introduction of the TVIT does not
substantially change the behavior of the posterior estimates of the EIR (red dashed line).
This measure remains fairly resilient to changes in the policy rule. The reason why the EIR
and the TVIT are complementary features of the best specification is that the former helps
improve the business cycle properties of the model, while the latter helps capture the low
frequency component of inflation.

The overall improvement in fit also reflects in better parameter estimates. Figure 4
compares the marginal prior and posterior distributions for selected model parameters. The
estimated slope of the Phillips curve is now 0.018 at the posterior median, compared to less
than 0.002 under the baseline rule. Given the calibrated parameters, the implied average
frequency of price adjustment when evaluating ¢ at the posterior median is a much more
reasonable 4 quarters, compared to more than 8 in the baseline case.

Furthermore, the posterior distributions for the indexation parameter ( and the per-
sistence of the markup shock p, are no longer bimodal. The disappearance of the multiple
modes depends on the introduction of the EIR in the policy rule. The posterior distributions
for these two parameters in the Re specification also display single modes. The presence of
the TVIT, however, plays a key role for the persistence of the markup shock. In its absence,

the posterior distribution of p, concentrates on high values. Figure 4 shows that the opposite

standard deviation of the difference between the observed FFR and the FFR predicted by the systematic
component of each monetary policy rule. We report the median of the distribution of standard errors

obtained.
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result holds in the RePistar specification. In the absence of a TVIT, the model attributes
the low frequency movements in inflation to the only source of persistence available, which
is the markup shock process. When we introduce the TVIT, the data favor this channel to
explain the low frequency movements in inflation.

Finally, the posterior distribution for the feedback coefficients on inflation ¢, and the
output gap ¢, are now more in line with the conventional values discussed in the literature.
If anything, the posterior distribution ¢, is not very different from the prior, suggesting
possible lack of identification. Figure 5 hints to the potential reason. This picture shows the
posterior median estimate of the output gap measure under three different specifications for
the interest rate rule (Baseline, Re, RePistar). Unlike the EIR, the posterior estimates of the
output gap significantly depend on the policy rule specification. In the baseline specification
(thin blue solid line), the output gap captures the business cycle reasonably well. However,
when the policy rule includes the EIR only (thick green solid line), the output gap partly
looses its cyclical properties, especially early in the sample. The output gap in the RePistar
specification (red dashed line), albeit much more muted than in the baseline case, retains
some features of a business cycle indicator but the uncertainty surrounding the posterior
estimates (not shown) casts doubts on the usefulness of this measure even in this case.

Taken together, these results suggest that, to appropriately account for the movements
in the FFR since the Greenspan’s tenure, the interest rate rule that closes a monetary
DSGE model should feature the efficient interest rate and a time-varying inflation target.
Other measures of slack in real activity, such as the output gap, become almost completely
redundant. Indeed, Table 2 shows that the fit of the model does not dramatically worsen if

we consider an interest rate rule with EIR and TVIT but no output gap.

5. A Medium-Scale DSGE Model

We conclude our investigation of interest rate rules by evaluating the robustness of the
results obtained so far within a medium-scale DSGE model, along the lines of Christiano
et al. (2005) and Smets and Wouters (2007). The exact specification we adopt for the

private sector behavior follows the work of Justiniano et al. (2010, henceforth, JPT), to
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which we refer the reader for further details. Within this framework, we revisit the role of
the equilibrium interest rate and time-varying inflation target in the policy rule. In order
to properly compare the results to those of the small model, we estimate the JPT model on
the same same set of observables—GDP growth, inflation and the FFR—and on the same
sample. This way any changes in relative ranking are solely due to the increased complexity
of the model.

Table 4 ranks the improvement in fit of changing the policy rule from the baseline to one
that includes the EIR (Re), the TVIT (Pistar), or both (RePistar). For ease of comparison,
we report the KR measure for both the small model previously considered and for the JPT
model.?!

The results strongly corroborate the findings from the small model. First, adding a
time-varying inflation target to the rule increases the fit by similar magnitudes. Second, the
presence of the equilibrium interest rate in the interest rate rule increases the fit even more.
Interestingly, the increase in fit in the JPT model is even larger than in the small model.
Third, adding both the EIT and TVIT to the policy rule achieves the best fit among these
alternatives—and the increase in fit is again higher than in the small model.

Beyond fit, one important question is whether a more complex model structure affects the
estimated path for the EIR. Figure 6 shows the posterior median for this variable in the small
model (dark/blue) and in JPT (light/red) for the specifications with (thick dashed line) and
without the TVIT (thin solid line). The first observation is that the presence of the TVIT
does not make a substantial difference for the estimated path of the EIR. Qualitatively, the
different models produce remarkably similar measures of the EIR. In particular, ry always
drops at beginning of each recessions in our sample, or just before. The main difference
between small model and JPT is quantitative. The estimated path of the EIR is less volatile
in JPT. Consequently, the estimated depth of contractions in the JPT model is milder,

especially for the last two recession episodes, and booms are more moderate. Yet the main

21The interested reader may want to refer to Ctrdia et al. (2011b) for additional rules estimated in the

JPT model.
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result stands: the EIR is a good business cycle indicator in both the small model and JPT,
independently of the presence of a TVIT.

In sum, this section confirms that adding the EIR to the policy rule increases the fit of
the model with respect to inflation, output and the interest rate. Furthermore, the posterior
estimates of the EIR do not significantly depend on the presence of a TVIT. Finally, the

EIR remains quite comparable across models of different degree of complexity.

6. Conclusions

The positive DSGE literature focuses an overwhelming share of its modeling attention on
the behavior of the private sector, while treating that of the central bank as an afterthought.
This state of affairs is not too surprising, since reducing the complexity of the private sector
to fit into a macroeconomic model offers a vast menu of modeling choices. In comparison,
capturing the behavior of one monetary authority is certainly easier and perhaps less con-
troversial. Yet, paying virtually no attention to this step in the specification of a general
equilibrium model seems suboptimal, for at least two reasons. First, in the current vintage
of monetary DSGE models, the systematic response of the central bank to economic devel-
opments can have significant effects on the equilibrium, as demonstrated by the vast body
of normative work in the field (see Woodford (2011) for a survey). Second, one of the main
objectives of DSGE models is to offer a quantitative tool to study the consequences of differ-
ent approaches to the conduct of monetary policy. This study is complicated by the lack of
systematic guidance on the extent to which different plausible policy rules, once embedded
into a general equilibrium apparatus, contribute to its ability to account for the historical
relations between the macroeconomic variables of interest.

This paper—and the research that it summarizes—attempted to provide some of that
guidance by estimating a large set of interest rate rules in the context of two standard
DSGE models and comparing their empirical fit. The most notable (and robust) result of
this extensive investigation is that allowing the interest rate to track the evolution of the
efficient real interest rate—the real interest rate that would prevail in equilibrium if the

economy were perfectly competitive—significantly improves the fit of the DSGE models we
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estimated. In fact, this measure of the equilibrium interest rate is a better proxy for the real
economic developments to which monetary policy seems to respond than any of the several
measures of the output gap we experimented with.

Our results are subject to two important caveats. First, model specification matters,
since our criterion of fit depends on the way the policy rule interacts with the rest of the
model. This is a feature of the general equilibrium nature of the models we work with, and of
the full information empirical methods we adopted for their estimation. These methods are
necessary for our purposes, however, since the efficient real interest rate is a counterfactual
equilibrium object built within the model. More work across different models would therefore
be desirable, although we attempted to address this issue by illustrating the robustness of our
results across two fairly popular DSGE specifications. Second, model comparison through
marginal data densities and Bayes factors applied to DSGE models is subject to some pitfalls,
highlighted for example by Del Negro and Schorfheide (2011). However, the large differences
in fit we uncovered suggest that the specification of the policy rule does make a difference.

Going forward, we expect to devote some of our research to further scrutinize the role of
the efficient real interest rate 7y as a useful explanatory factor for the movements in observed
nominal interest rates. In particular, we would like to better understand the origins of this
combination of shocks, which especially in our baseline model is partly a reflection of the
empirical shortcomings of the intertemporal Euler equation, as captured by the presence of
the shock ¢;. Moreover, it would be interesting to explore more realistic assumptions on the
information available to policy makers when making their decisions, focusing in particular on
the fact that the efficient real interest rate is not observable in practice, unlike in our model.
In a similar vein, the use of real-time data would provide an interesting further perspective

on our results.
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Parameter Prior Posterior

Distribution 5% Median 95% Mode 5% Median 95%

w G(1,0.2) 0.70  0.99 1.35 096 0.67 0.96 1.32
13 G(0.1,0.05) 0.03 0.09 0.19 0.001 0.000 0.002  0.004

i B(0.6,0.2) 0.25 0.61 0.90 0.56  0.46 0.59 0.70

¢ B(0.6,0.2) 0.25 0.61 0.90 0.69  0.10 0.53 0.80

p B(0.7,0.15) 0.43  0.72 0.92 0.70  0.62 0.72 0.80
O N(1.5,0.25) 1.09 1.50 1.91 0.89  0.66 1.03 1.49
4¢, N(0.5,0.2) 0.17 050 0.83 1.19  0.97 1.21 1.45
4007* N(2,1) 0.36  2.00 3.64 236 1.89 2.38 2.85
4007 N(2,1) 0.36  2.00 3.64 1.90 0.83 1.90 2.95
400~ N(3,0.35) 242 3.00 3.58 294 248 2.94 3.40
Ps B(0.5,0.2) 0.17  0.50  0.83 092 087 0.92 0.95
vy B(0.5,0.2) 0.17 0.50  0.83 0.56  0.29 0.53 0.72
Pu B(0.5,0.2) 0.17 050  0.83 0.11  0.06 0.32 0.71
o5 IG1(0.5,2) 0.17  0.34 1.24 1.23  0.95 1.37 2.04
On IG1(0.5,2) 0.17  0.34 1.24 205 134 2.13 3.02
Oy IG1(0.5,2) 0.17  0.34 1.24 0.53 0.19 0.43 0.60
o; IG1(0.5,2) 0.17  0.34 1.24 0.27  0.23 0.30 0.39

Table 1: Prior and posterior marginal distributions for the paramaters in the baseline model. G stands for
Gamma, B stands for Beta, N stands for Normal and IG1 stands for Inverse Gamma 1, with mean and

standard deviation in parenthesis.
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without r€ with r¢

RULE logML. KR RULE logML. KR
Baseline (¢, 7t + ¢,2%) -379.0 0.0 Re -359.3  39.4
Pistar -366.8 244 RePistar -351.8 544
HP (¢, + ¢aih) -368.2  21.6 ReHP -366.1 25.7
PistarHP -361.6 349 RePistarHP -356.2 45.6
NoGap (¢,7¢) -393.2 -28.3 ReNoGap -364.6  28.9
PistarNoGap -371.4 151 RePistarNoGap  -353.6 50.7

Table 2: Small model rules. The first column presents the specification with the base rule, log marginal
likelihood and KR criterion. The second column presents the corollary rule (Re) that includes a response to
the efficient real interest rate r°. Rules with Pistar in the name include a time-varying inflation target 7*
and deviations from the target in the rule as discussed in Section 4.5, e.g. in the form of i; = pi;—1 + (1 —
o)ri+mf + ¢ (7 — 7)) + ¢pri] +€i. Rules with HP in the name use a measure of the output gap discussed

in (6). Rules with NoGap in the name mean that the interest rate does not respond directly to the output

gap (¢, =0).
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RULE In-Sample Population

Baseline: ¢ m + ¢, xf 0.2982 0.3001
Pistar: 7% + ¢ (¢ — 77) + dpaf 0.2048 0.2088
Re: 7§ + ¢, m + ¢, ¢ 0.1907 0.1940
RePistar: 7y + 7} + ¢ (7 — 7)) + ¢z 0.1793 0.1827

Table 3: In-Sample and Population estimates of the standard deviation of the monetary policy shock for the
four major rules in the Small model. The In-Sample estimate is the posterior median of the standard error
of the monetary policy rule equation residuals from the estimation period. The Population estimate is the

posterior median of the estimated standard deviation on the monetary policy shock o;.
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RULE Small Model JPT

Baseline: ¢ m + ¢, xf 0.0 0.0
Pistar: 7w} + ¢ (7 — 7}) + ¢ ¥ 24.4 25.7
Re: rf{ + ¢ 74 + ¢ ¢ 39.4 54.6
RePistar: r{ + 7} + ¢ (my — wf) + ¢z 54.4 65.9

Table 4: Kass and Raftery (KR) criterion for the four major rules against their respective Baseline specifi-

cations for the small and JPT models.
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0.0259 0.1096 0.1934

0.1254 0.496 0.8667 0.1106 0.4367 0.7628

0.3822 1.175 1.9677 0.3414 1.0241 1.7067

Figure 1: Prior and posterior distributions for &, ¢, p,,, ¢,., and ¢, under the baseline specification of interest
rate rule: iy = piz_1 + (1 — p) (¢ + ,x¢) + €b. For each parameter, the solid red line represents the prior

while the blue histogram is the posterior.
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Figure 2: Evolution of model efficient real interest rate (r¢) and demeaned Federal Funds Rate (FFR de-
meaned), both annualized and in percentage points. The blue continuous line and the shaded area around
it are the posterior median estimate of the model efficient real interest rate r¢ and the 90% uncertainty
bands when the interest rate rule is iy = pi;—1 + (1 — p) (r{ + ¢, 7 + ¢,25) + . The red dashed line is the
demeaned FFR (sample mean equal to 4.5%).
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Figure 3: Evolution of posterior median estimate of the model efficient real interest rate (r{) across specifi-

cations Baseline (¢, m + ¢, %), Re (1§ + ¢, 1 + ¢,xf), and RePistar (r{ + 7} + ¢, (me — 75) + ¢ xf).
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0.0272 0.1091 0.1911 0.8659 0.9235 0.9812

0.1151 0.4648 0.8145 0.1198 0.4773 0.8348

0.8166 1.4947 2.1728 0.0724 0.6315 1.1907

Figure 4: Prior and posterior distributions for &, ¢, p,,, ¢, and ¢, under the RePistar specification of interest
rate rule: iy = pig_1 + (1 — p)(r§ + 7} + ¢, (71 — 7)) + ¢p,x¢) + €i. For each parameter, the solid red line

represents the prior while the blue histogram is the posterior.
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Figure 5: Evolution of the posterior median estimate of the model output gap across specifications Baseline

(7t + Ppxf), Re (r§ + ¢ + ¢pxf), and RePistar (r{ + 7w} + ¢ (7s — 75 ) + P x8).
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Figure 6: Evolution of posterior median estimate of the model efficient real interest rate () across speci-
fications Baseline (¢, 7 + ¢, xf) and Re (r§ + ¢, 7 + ¢a¢) for the small (dark blue) and JPT (light red)

models.
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Appendix A. The Model

This appendix presents the microfoundations of the model.

Appendix A.1. Households

A continuum of households of measure one populates the economy. All households,
indexed by j € (0,1), discount the future at rate 5 € (0, 1) and have the same instantaneous

utility function, additively separable over consumption and labor, so that their objective is

EO {Z ﬁt H 665 } .
t=0 s=0

The aggregate preference shock d; shifts the intertemporal allocation of consumption without

(h{)H“’

log(C’tj - 7705—1) - T w

affecting the intratemporal margin between labor and leisure.?> We assume that §, follows

a stationary process with mean zero of the form
0y = psi—1 + 5?-

The consumption index C’tj is a constant elasticity of substitution aggregator over differ-

entiated goods indexed by i € (0, 1)

_0_
0—1

. 1 . 6—1
i = U d ()7 dz’} | (A1)
0
Households supply their specialized labor input for the production of a specific final
good. As a consequence of labor market segmentation, the wage w{ differs across households.
However, household j can fully insure against idiosyncratic wage risk by buying at time ¢
state-contingent securities D! 41 at price Q;41. Besides labor income, households earn after-

tax IV from ownership of the firm. The flow budget constraint for household j is
1
| p e () di+ Ed@uusaDi) = witd + D] + T,
0

where p; (i) is the dollar price of the i'® good variety.

22We could have also introduced a purely intratemporal shock affecting labor supply decisions only. How-
ever, in our empirical implementation of the model, hours and wages are not included among the observables.
Therefore, such a shock would only affect the flexible price level of output, making it indistinguishable from

a technology shock.
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Appendiz A.2. Firms

Firm i produces the differentiated consumption good ¥, (7) with a linear production func-

tion in labor

We assume that productivity grows at rate v, = Alog A; and that growth rate shocks display

some persistence
Ye=(1=py) v+ 071 + el (A.3)

Firms take wages as given and sell their products in monopolistically competitive goods
markets, setting prices in a staggered fashion, as in Calvo (1983). Every period, indepen-
dently of previous adjustments, each firm faces a probability (1 — «) of optimally choosing
its price. The « firms that do not fully optimize in a given period adjust their price according
to the indexation scheme

pe (1) = pi1 (7) (%)C 1=
where P, is the aggregate price level consistent with the consumption aggregator (A.1) and
we allow for partial indexation to the long run central bank’s inflation target 7*. In the event
of a price change at time ¢, firm ¢ chooses p; (7) to maximize the present discounted value of

profits net of sales taxes 7;

[e.e] C
Et{Za“@t,s [(1—Ts>pt @) (F) e ) = i) @”, (A4

subject to its production function (A.2) and the demand for its own good conditional on no

further price change after period t

ot = [0 7, (A5)

where Y} is an index of aggregate demand of the same form as (A.1).

Appendiz A.3. Monetary Policy

The central bank sets the net nominal interest rate i; with a certain degree of inertia in

response to departures of aggregate demand and inflation from their respective objectives.
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The non-linear formulation of the baseline interest rate rule is

1—
& _ Rt—l P -Pt o E o
R \R Pi_jem Ye

where the gross nominal interest rate is defined as
. 1
- EiQrin

and its average can be decomposed via the Fisher equation as R = ¢"*™ , which defines the

Ry

steady state net real interest rate r. The continuously compounded nominal interest rate in

the text is defined as i; = log R;.

Appendix B. Statistical Filters in DSGE Models

This appendix illustrates how to embed a linear filter into a dynamic rational expectation
model. We begin with a brief general description of linear filtering problems. We then focus

on the application to the Hodrick and Prescott (HP) filter (Hodrick and Prescott, 1997).

Appendix B.1. Linear Filters
The objective of “filtering” is to decompose the stochastic process x; into two orthogonal
components
Ty =Y + Ty,
where the process y; has power only in some frequency interval {(a,b) U (—a, —b)} € (=7, 7).
Then, we can represent y; as
ye = B(L)
where B (L) — the ideal band-pass filter — is of the form

B(L) = i B; L.

j=—00
Therefore, implementation of the ideal filter requires an infinite dataset. We can think
about approximating the ideal filter as a projection problem. Given a sample x = [x1, ..., 7],

the estimate of y = [y1...., yr| is § = P [y|x], which is of the form
p A
g=> Bl
—
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where f =T —t and p =t — 1. The main problem of this estimates is that the B coefficients
require knowledge of f, (w), the spectral density of x.

Christiano and Fitzgerald (2003) show that, for most macro variables, the coefficients
obtained by assuming that x is a random walk work quite well. One approach to the
calculation of these coefficients is then to “expand” the available sample with the least
squares optimal guesses of the missing data at the beginning and end of the sample. For the
random walk, these data are just x; and xz7. Our proposal is to adopt the same philosophy
(i.e. to expand the available dataset) in the context of our framework, using the rational

expectations forecasts of the missing data obtained from the model.??

Appendix B.2. Application to the HP Filter

In this section, we discuss the application of our methodology to the HP filter. We focus
on the HP filter because of its wide use in macroeconomics as a flexible device (through the
choice of \) to draw a smooth trend through the data. The HP filter provides a typical
example of a “traditional” smooth measure of potential output and of the associated output
gap. Its added advantage in out context is that the expression for the ideal filter is a relatively
simple function of lag polynomials. The result is a parsimonious (i.e. two leads and lags)
recursive representation, that requires only a modest expansion of the model’s state space.

The ideal HP filter is of the form (e.g. Baxter and King, 1999)

M1—L)>(1-F)
1+ A1—-L)2(1—F)
HP' = ! 5

1+ AX1-L)2(1-F)

HPI =

where H P9 denotes the filter whose application results in the “gap”, while HP* denotes the

filter whose application produces the trend.?* Practical application of these filters requires an

ZWatson (2007) proposes a similar procedure using unrestricted ARIMA processes as forecasting tools.
Juillard et al. (2006) is the only example we could find of an application to DSGEs models. The main

objective of all these papers is to improve the end-of-sample performance of the filters they consider.
24King and Rebelo (1993) originally derived these expressions as the solution of a “smoothing” problem.

However, they also showed that this filter, with A = 1600, approximates very well a high pass filter with
cutoff frequency 7/16 or 32 quarters.
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approximation, since they embed a two-sided, infinite moving average of the data.?® However,
application of Christiano and Fitzgerald (2003) insight to a rational expectations context
allows us to use the ideal filter directly, where the approximation relies on the substitution
of the infinite leads and lags implicit in HP (L) with rational expectation forecasts. In

particular, given observations on log GDP; = y;, we define the HP gap with parameter \ as
[1+ A1 = L) (1= F)] /™™ =21 - L)*(1 - F)’y,
where now the forward and backward operators are defined by

Ly, = yi

Fy. = Ewyi

as it is standard in rational expectations models (e.g. Blanchard and Fischer, 1989).

25 Details on this approximation can be found, for example, in Baxter and King (1999).
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