Mismatch Unemployment in the U.K.

Christina Patterson
MIT

Ayşegül Şahin
Federal Reserve Bank of New York

Giorgio Topa
Federal Reserve Bank of New York, and IZA

Gianluca Violante
New York University, CEPR, and NBER

Bank of England, June 2013
Unemployment rate in the U.K.
Unemployment rate in the U.K.

- increased to above 8% during the recession
- remained persistently high
The mismatch hypothesis

- Growing **misalignment** between distributions of job seekers and job openings across sectors (locations, industries, occupations)
The mismatch hypothesis

• Growing **misalignment** between distributions of job seekers and job openings across sectors (locations, industries, occupations)

• A priori, plausible:

 ▶ Outward shift in the Beveridge curve

 ▶ Job losses concentrated in certain sectors
Job destruction rates

Patterson-Șahin-Topa-Violante, "Mismatch Unemployment in the U.K."
The mismatch hypothesis

• Growing mismatch between distributions of job seekers and job openings across sectors (locations, industries, occupations)

• A priori, plausible:
 ▶ Outward shift in the Beveridge curve
 ▶ Job losses concentrated in certain sectors

• Questions:
 ▶ How much of the rise in unemployment is due to mismatch?
 ▶ Along which dimensions has mismatch worsened?
Methodology analogous to “misallocation” literature
Methodology analogous to “misallocation” literature

- Economy with I frictional labor markets indexed by $\{\phi_{it}, z_{it}, \delta_{it}\}$

- $\{v_{it}\}$: observed allocation of vacancies

- $\{u_{it}\}$: observed allocation of unemployed
Methodology analogous to “misallocation” literature

- Economy with I frictional labor markets indexed by $\{\phi_{it}, z_{it}, \delta_{it}\}$
- $\{v_{it}\}$: observed allocation of vacancies
- $\{u_{it}\}$: observed allocation of unemployed
- $\{u_{it}^*\}$: benchmark allocation under free mobility across markets (constrained first-best)
Methodology analogous to “misallocation” literature

• Economy with I frictional labor markets indexed by \(\{ \phi_{it}, z_{it}, \delta_{it} \} \)

• \(\{ v_{it} \} \): observed allocation of vacancies

• \(\{ u_{it} \} \): observed allocation of unemployed

• \(\{ u^*_{it} \} \): benchmark allocation under free mobility across markets (constrained first-best)

• Discrepancy between \(\{ u_{it} \} \) and \(\{ u^*_{it} \} \)
 \[\rightarrow \] lower aggregate job-finding rate

 \[\rightarrow \] additional (mismatch) unemployment
Environment

- I distinct frictional labor markets

 - New production opportunities v_{it} arise *exogenously*
Environment

- I distinct frictional labor markets
 - Infinite cost-elasticity of vacancy creation
Environment

- I distinct frictional labor markets
 - Infinite cost-elasticity of vacancy creation
 - CRS matching function: $\Phi_t \phi_{it} m(u_{it}, v_{it})$
 - Worker-firm match subject to productivity shocks (Z_t, z_{it})
Environment

• I distinct frictional labor markets
 - Infinite cost-elasticity of vacancy creation
 - CRS matching function: $\Phi_t \phi_{it} m(u_{it}, v_{it})$
 - Worker-firm match subject to productivity shocks (Z_t, z_{it})

• Measure one of infinitely-lived agents with linear utility
 - Agents can be employed (e) or unemployed (u)
 - Unemployed: search directed toward one market only
 - Employed: no OJS, exogenous separation shocks (Δ_t, δ_{it})
Planner’s allocation rule

1. Shocks $\{\phi_{it}, z_{it}, \delta_{it}\}$ are i.i.d. across sectors, orthogonal to each other, and follow positive martingales.

2. No impediment to mobility of labor across markets.
Planner’s allocation rule

1. Shocks $\{\phi_{it}, z_{it}, \delta_{it}\}$ are i.i.d. across sectors, orthogonal to each other, and follow positive martingales

2. No impediment to mobility of labor across markets

The planner’s allocation rule requires equalizing (across sectors):

$$\frac{z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})} \phi_{it} m_{u_{it}} \left(\frac{v_{it}}{u^*_{it}} \right)$$

productive and matching efficiency-weighted v/u ratios
Planner’s allocation rule

1. Shocks \(\{\phi_{it}, z_{it}, \delta_{it}\} \) are i.i.d. across sectors, orthogonal to each other, and follow positive martingales.

2. **No impediment** to mobility of labor across markets.

The planner’s allocation rule requires equalizing (across sectors):

\[
\frac{z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})} \phi_{it} m_{u_{it}} \left(\frac{v_{it}}{u_{it}^*} \right)
\]

productive and matching efficiency-weighted \(v/u \) ratios

Assume: \(m(u_{it}, v_{it}) = v_{it}^\alpha u_{it}^{1-\alpha} \)
Mismatch Index (special case: no heterogeneity)

- Observed aggregate hires: \(h_t = \Phi_t \sum_{i=1}^{I} v_{it}^{\alpha} u_{it}^{1-\alpha} \)

- Planner’s aggregate hires: \(h^*_t = \Phi_t v_t^{\alpha} u_t^{1-\alpha} \)
Mismatch Index (special case: no heterogeneity)

- Observed aggregate hires: \(h_t = \Phi_t \sum_{i=1}^{I} v_{it}^\alpha u_{it}^{1-\alpha} \)

- Planner’s aggregate hires: \(h_t^* = \Phi_t v_t^\alpha u_t^{1-\alpha} \)

- Mismatch index:

\[
M_t \equiv \frac{h_t^* - h_t}{h_t^*} = 1 - \sum_{i=1}^{I} \left(\frac{v_{it}}{v_t} \right)^\alpha \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \in [0, 1]
\]

measures the fraction of hires lost because of misallocation
Mismatch Index (special case: no heterogeneity)

- Observed aggregate hires: \(h_t = \Phi_t \sum_{i=1}^{I} v_{it}^{\alpha} u_{it}^{1-\alpha} \)

- Planner’s aggregate hires: \(h_t^* = \Phi_t v_t^{\alpha} u_t^{1-\alpha} \)

- Mismatch index:

\[
M_t \equiv \frac{h_t^* - h_t}{h_t^*} = 1 - \sum_{i=1}^{I} \left(\frac{v_{it}}{v_t} \right)^{\alpha} \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \in [0, 1]
\]

measures the fraction of hires lost because of misallocation

- Mismatch shifts the aggregate matching function:

\[
h_t = (1 - M_t) \cdot h_t^* = (1 - M_t) \cdot \Phi_t v_t^{\alpha} u_t^{1-\alpha}
\]
Add heterogeneity in ϕ_{it}

\[
\mathcal{M}_{\phi t}^h \equiv \frac{h_t^* - h_t}{h_t^*} = 1 - \sum_{i=1}^{I} \left(\frac{\phi_{it}}{\bar{\phi}_t} \right) \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \left(\frac{u_{it}}{v_t} \right)^{\alpha}
\]

where

\[
\bar{\phi}_t = \left[\sum_{i=1}^{I} \phi_{it} \left(\frac{v_{it}}{v_t} \right)^{\frac{1}{\alpha}} \right]^\alpha
\]
Add heterogeneity in ϕ_{it}

\[
M_{\phi t}^h \equiv \frac{h_t^* - h_t}{h_t^*} = 1 - \sum_{i=1}^{I} \left(\frac{\phi_{it}}{\bar{\phi}_t} \right) \left(\frac{v_{it}}{v_t} \right)^\alpha \left(\frac{u_{it}}{u_t} \right)^{1-\alpha}
\]

where

\[
\bar{\phi}_t = \left[\sum_{i=1}^{I} \phi_{it} \left(\frac{v_{it}}{v_t} \right) \right]^\alpha
\]

- With heterogenous $\left(\phi_{it}, z_{it}, \delta_{it} \right) \rightarrow M_{xt}^h$
Counterfactual unemployment

- Observed unemployment:

\[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]
Counterfactual unemployment

• Observed unemployment:

\[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]

• Aggregate job finding rate:

1. observed: \[f_t = (1 - M_t) \cdot \Phi_t \cdot \left(\frac{v_t}{u_t} \right)^\alpha \]

2. no mismatch: \[f_t^* = \Phi_t \cdot \left(\frac{v_t}{u_t^*} \right)^\alpha = f_t \cdot \frac{1}{1 - M_t} \cdot \left(\frac{u_t}{u_t^*} \right)^\alpha \]

Direct Effect

Feedback through \(u \)
Counterfactual unemployment

- Observed unemployment:
 \[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]

- Aggregate job finding rate:
 1. observed: \[f_t = (1 - M_t) \cdot \Phi_t \cdot \left(\frac{v_t}{u_t} \right)^\alpha \]
 2. no mismatch: \[f^*_t = \Phi_t \cdot \left(\frac{v_t}{u^*_t} \right)^\alpha = f_t \cdot \frac{1}{1 - M_t} \cdot \left(\frac{u_t}{u^*_t} \right)^\alpha \]

- Counterfactual unemployment in absence of mismatch:
 \[u^*_{t+1} = u^*_t + s_t \cdot (1 - u^*_t) - f^*_t \cdot u^*_t \]

- Mismatch unemployment: \[u_t - u^*_t \]
Data used: July 2006 - June 2012

• **Unemployed** \(\{u_{it}\} \): Jobseeker’s Allowance Claimant Counts

• **Vacancies** \(\{v_{it}\} \): Jobcentre Plus Vacancy Statistics

 ▶ Sought occupation

 ▶ Geographic location (Travel To Work Area)
Data used: July 2006 - June 2012

- **Unemployed** $\{u_{it}\}$: Jobseeker’s Allowance Claimant Counts
- **Vacancies** $\{v_{it}\}$: Jobcentre Plus Vacancy Statistics
 - Sought occupation
 - Geographic location (Travel To Work Area)
- **Productivity** $\{z_{it}\}$: Annual Survey of Hours and Earnings (ASHE)
- **EU rates** $\{\delta_{it}\}$: Labor Force Survey (LFS)
- **Matching function parameters** $\alpha, \{\phi_{it}\}$: estimated

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Summary statistics
Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>No. Sectors</th>
<th>Vacancies</th>
<th>Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit occupation</td>
<td>24</td>
<td>7712</td>
<td>23173</td>
</tr>
<tr>
<td>3-digit occupation</td>
<td>76</td>
<td>1510</td>
<td>6471</td>
</tr>
<tr>
<td>Travel To Work Areas</td>
<td>215</td>
<td>619</td>
<td>2288</td>
</tr>
<tr>
<td>TTWA x 2-digit</td>
<td>1059</td>
<td>118</td>
<td>314</td>
</tr>
<tr>
<td>Region</td>
<td>11</td>
<td>26920</td>
<td>113725</td>
</tr>
</tbody>
</table>
Unemployment: Claimant Count vs. LFS
Unemployment: Claimant Count vs. LFS

Correlation = 0.98

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Vacancies: Jobcentre Plus vs. ONS vacancy survey
Vacancies: Jobcentre Plus vs. ONS vacancy survey

Correlation = 0.92
Comparisons

- **Claimants**: more prime-age males relative to LFS.

- Interesting pattern re unemployment duration:
 - fewer ST unemployed than in LFS, **pre-recession**;
 - duration distribution matches LFS, **post-recession**.

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
<table>
<thead>
<tr>
<th></th>
<th>Labor Force Survey</th>
<th></th>
<th></th>
<th>Claimant Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Recession</td>
<td>Post-Recession</td>
<td>Pre-Recession</td>
<td>Post-Recession</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-24</td>
<td>0.42</td>
<td>0.39</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>25-49</td>
<td>0.43</td>
<td>0.45</td>
<td>0.52</td>
<td>0.57</td>
</tr>
<tr>
<td>50+</td>
<td>0.14</td>
<td>0.15</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.57</td>
<td>0.59</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>Female</td>
<td>0.43</td>
<td>0.41</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under 6 months</td>
<td>0.60</td>
<td>0.52</td>
<td>0.47</td>
<td>0.54</td>
</tr>
<tr>
<td>6-12 months</td>
<td>0.16</td>
<td>0.19</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>12-24 months</td>
<td>0.13</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>24+ months</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Comparisons

- **Claimants**: more prime-age males relative to LFS.

- Interesting pattern re unemployment duration:
 - fewer ST unemployed than in LFS, **pre-recession**;
 - duration distribution matches LFS, **post-recession**.

- **Jobcentre Plus vacancies**: more concentrated in banking, finance and insurance.

- Under-represent manufacturing; distribution, hotels and restaurants; transport and communications.
Jobcentre Plus vacancies vs. ONS

<table>
<thead>
<tr>
<th>Industry</th>
<th>Vacancy Survey</th>
<th>JobCentre Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Rec</td>
<td>Post-Rec</td>
<td>Pre-Rec</td>
</tr>
<tr>
<td>Energy and Water</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Construction</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Distribution, Hotels & Restaurants</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Transport and Communications</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Banking, Finance & Insurance</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Public Admin., Education & Health</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>Other Services</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Source: Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Change in unemployment shares across occupations
Change in unemployment shares across occupations

Skilled Construction, Corporate Managers particularly hit

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Change in vacancy shares across occupations
Change in vacancy shares across occupations

Sharp decline in Construction, Customer Service, Manufacturing

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Correlation between \((u, v)\) shares across occupations
Correlation between \((u, v)\) shares across occupations

A decline in the correlation is a sign of worsening mismatch

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Unemployment outflow data
We use the average of the two series to estimate α and $\{\phi_i\}$.
Matching function estimation

- At the aggregate level:

\[
\ln \left(\frac{h_{it}}{u_{it}} \right) = const + \gamma'QTT_t + \alpha \ln \left(\frac{v_{it}}{u_t} \right) + \epsilon_t
\]
Matching function estimation

- At the aggregate level:

\[
\ln \left(\frac{h_{it}}{u_{it}} \right) = \text{const} + \gamma' QTT_t + \alpha \ln \left(\frac{v_{it}}{u_t} \right) + \epsilon_t
\]

- At the sectoral level:

\[
\ln \left(\frac{h_{it}}{u_{it}} \right) = \gamma' QTT_t + \chi_{t\leq 8.03} \ln \phi_i^{pre} + \chi_{t>8.03} \ln \phi_i^{post} + \alpha \ln \left(\frac{v_{it}}{u_{it}} \right) + \epsilon_t
\]
Estimation results
Estimation results

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>0.559***</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>ϕ_i Fixed</td>
<td>0.472***</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>ϕ_i Varying</td>
<td>0.463***</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
</tbody>
</table>

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K." p. 26 /41
Estimation results

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>0.559***</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>ϕ_i Fixed</td>
<td>0.472***</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>ϕ_i Varying</td>
<td>0.463***</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
</tbody>
</table>

Distribution of estimated ϕ_i varies between 0.43 and 0.67.
Occupational mismatch (2-digit)

About 6 pct of hires lost in the recession bc of higher mismatch

About 0.5 pct points increase in mismatch unemployment
About 7 pct of hires lost in the recession bc of higher mismatch

About 0.75 pct points increase in mismatch unemployment
Geographic mismatch (TTWA’s)

Negligible increase in mismatch unemployment

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Occupation X geography mismatch (2-digit x TTWA)

About 6 pct of hires lost in the recession bc of higher mismatch

About 0.6 pct points increase in mismatch unemployment
Routine-Cognitive Occupations

• Notion of *job polarization*:

 ▶ more jobs in highest/lowest skill (non-routine) occupations;

 ▶ fewer opportunities in middle skill (routine) occupations.
Routine-Cognitive Occupations

• Notion of job polarization:
 ▶ more jobs in highest/lowest skill (non-routine) occupations;
 ▶ fewer opportunities in middle skill (routine) occupations.

• Some examples:
 ▶ (C, NR): Managers; professionals; culture, media, sports;
 ▶ (C, R): Office and administrative support occupations;
 ▶ (M, R): Skilled trades (metal, construction, printing, ...);
 ▶ (M, NR): Sales and customer service occupations.
Routine-Cognitive Occupations

About 6 pct of hires lost in the recession bc of higher mismatch

About 0.4 pct points increase in mismatch unemployment
Summary of results
Summary of results

\[\Delta (u - u^*) / \Delta u \]

<table>
<thead>
<tr>
<th>Category</th>
<th>Change in Unemployment ((\Delta u))</th>
<th>Change in Unemployment Relative ((\Delta (u - u^*) / \Delta u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit occupation</td>
<td>0.53 ppts</td>
<td>18.9%</td>
</tr>
<tr>
<td>3-digit occupation</td>
<td>0.75 ppts</td>
<td>26.9%</td>
</tr>
<tr>
<td>Travel To Work Areas</td>
<td>0.03 ppts</td>
<td>1.2%</td>
</tr>
<tr>
<td>TTWA x 2-digit</td>
<td>0.59 ppts</td>
<td>21.2%</td>
</tr>
<tr>
<td>Region</td>
<td>0.07 ppts</td>
<td>2.6%</td>
</tr>
<tr>
<td>Routine-Cognitive</td>
<td>0.36 ppts</td>
<td>12.8%</td>
</tr>
</tbody>
</table>

Contribution of mismatch unemployment highest for 3-digit occupations and occupations X geography.
Endogenous vacancy creation

- **Equilibrium:**
 1. Free entry

 ★ vacancy creation cost: \(K_i(v_{it}) = \kappa_{it}^\varepsilon \cdot \frac{v_{it}^{1+\varepsilon}}{1+\varepsilon} \)
 2. Hosios condition
Endogenous vacancy creation

- **Equilibrium:**
 1. Free entry
 - vacancy creation cost: \(K_i(v_{it}) = \kappa_{it}^\varepsilon \cdot \frac{v_{it}^{1+\varepsilon}}{1+\varepsilon} \)
 2. Hosios condition

\[
(k_{it}v_{it})^\varepsilon = \Phi_t \phi_{it} \left(\frac{u_{it}}{v_{it}} \right)^{1-\alpha} \alpha \frac{Z_t z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})}
\]

- **Given** \(\varepsilon \), back out \(\{k_{it}\} \) which replicates data on \(\{v_{it}\} \)
Endogenous vacancy creation

- **Equilibrium** free-entry condition:

\[
(k_{it}v_{it})^\varepsilon = \Phi_t \phi_t \left(\frac{u_{it}}{v_{it}} \right)^{1-\alpha} \frac{Z_t z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})}
\]

- **Planner’s** optimal vacancy creation:

\[
(k_{it}v_{it}^*)^\varepsilon = \Phi_t \phi_t \left(\frac{u_{it}^*}{v_{it}^*} \right)^{1-\alpha} \frac{Z_t z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})}
\]
Endogenous vacancy creation

• **Equilibrium** free-entry condition:

\[
(k_{it}v_{it})^{\varepsilon} = \Phi_t \phi_{it} \left(\frac{u_{it}}{v_{it}} \right)^{1-\alpha} \alpha \frac{Z_{it}z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})}
\]

• **Planner’s** optimal vacancy creation:

\[
(k_{it}v_{it}^*)^{\varepsilon} = \Phi_t \phi_{it} \left(\frac{u_{it}^*}{v_{it}^*} \right)^{1-\alpha} \alpha \frac{Z_{it}z_{it}}{1 - \beta (1 - \Delta_t) (1 - \delta_{it})}
\]

• **Comparison:**

\[
\frac{v_{it}}{v_{it}^*} = \left(\frac{u_{it}}{u_{it}^*} \right)^{\frac{1-\alpha}{1-\alpha+\varepsilon}}
\]
Endogenous vacancy creation

• Planner vs. observed job finding rate

\[f_t^* = f_t \cdot \frac{1}{1 - M_t} \cdot \left(\frac{u_t}{u_t^*} \right)^\alpha \cdot \left(\frac{v_t^*}{v_t} \right)^\alpha \]

Direct Effect Feedback through u Feedback through v

More misallocation \(\rightarrow\) fewer vacancies \(\rightarrow\) more mismatch unemployment.
Mismatch u with endogenous vacancies

Mismatch Unemployment Rate (ppts)
Mismatch u with endogenous vacancies

- Quantitatively, the value of ε is critical
- With $\varepsilon = 0.5$, increase in mismatch u is twice as large as baseline
Endogenous vacancies: sensitivity
Endogenous vacancies: sensitivity

<table>
<thead>
<tr>
<th>2-digit occupation</th>
<th>$\Delta(u - u^*)$</th>
<th>$\Delta(u - u^*) / \Delta u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.53 ppts</td>
<td>18.9%</td>
</tr>
<tr>
<td>$\epsilon = 0.5$</td>
<td>1.16 ppts</td>
<td>41.2%</td>
</tr>
<tr>
<td>$\epsilon = 1$</td>
<td>0.88 ppts</td>
<td>31.5%</td>
</tr>
<tr>
<td>$\epsilon = 2$</td>
<td>0.70 ppts</td>
<td>25.1%</td>
</tr>
</tbody>
</table>

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Conclusion and future work

- **Contribution of mismatch** to unemployment in the U.K.
 - Mismatch explains about 1/3 of rise in unemployment
 - Unlike the U.S., mismatch is on the rise again
Comparison to the U.S.

• More gradual increase and decline of mismatch in the U.S.
• Mismatch has been increasing again in the U.K. since 2011

Patterson-Şahin-Topa-Violante, "Mismatch Unemployment in the U.K."
Conclusion and future work

- **Contribution of mismatch** to unemployment in the U.K.
 - Mismatch explains about 1/3 of rise in unemployment
 - Unlike the U.S., mismatch is on the rise again

- **Direct measurement of skill mismatch:**
 - Distance in terms of skill content between $\{v_{it}\}$ and $\{u_{it}\}$
Conclusion and future work

• **Contribution of mismatch** to unemployment in the U.K.

 ▶ Mismatch explains about 1/3 of rise in unemployment

 ▶ Unlike the U.S., mismatch is on the rise again

• **Direct measurement of skill mismatch:**

 ▶ Distance in terms of skill content between \(v_{it} \) and \(u_{it} \)

• **Structural equilibrium models**

 ▶ Sources of mismatch? Skill specificity, wage rigidity, policy, ...