Measuring Mismatch in the U.S. Labor Market

Ayşegül Şahin
Federal Reserve Bank of New York

Joseph Song
Federal Reserve Bank of New York

Giorgio Topa
Federal Reserve Bank of New York, and IZA

Gianluca Violante
New York University, CEPR, and NBER
Motivation

- Recent surge in US unemployment sharp and persistent

Source: Bureau of Labor Statistics

Note: Şahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market"
Motivation

- High unemployment puzzling in light of recent rise in vacancies

Beveridge Curve

Source: Bureau of Labor Statistics

Şahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market"
Potential explanations

1. Lower workers’ search effort (e.g., extension of UI benefits)

2. Lower employers’ recruiting effort (e.g., high uncertainty)

3. Higher sectoral mismatch
 - skills/occupations/industries/locations of idle labor are poorly matched with those of job openings
Potential explanations

1. Lower workers’ search effort (e.g., extension of UI benefits)

2. Lower employers’ recruiting effort (e.g., high uncertainty)

3. Higher sectoral mismatch

 - skills/occupations/industries/locations of idle labor are poorly matched with those of job openings

We develop a framework to measure:

1. how much of (the rise in) unemployment is due to (the rise in) mismatch

2. which dimensions of mismatch are the most important
Methodology

- Economy with I distinct frictional labor markets
- $\{u_i\}$: observed allocation
- $\{u_i^*\}$: allocation selected by a planner who can freely move unemployed across markets (constrained first-best)
- Difference between $\{u_i\}$ and $\{u_i^*\} \rightarrow$ lower job finding rate \rightarrow additional (mismatch) unemployment
Methodology

• Economy with I distinct frictional labor markets

• $\{u_i\}$: observed allocation

• $\{u_i^*\}$: allocation selected by a planner who can freely move unemployed across markets (constrained first-best)

• Difference between $\{u_i\}$ and $\{u_i^*\}$ → lower job finding rate → additional (mismatch) unemployment

• Same insight as “misallocation” literature: distance from first-best

• Specifically, we build on Jackman-Roper (OBES, 1987)
What we don’t do

1. We have little to say about the deep causes of mismatch:
 • moving/retraining costs
 • borrowing constraints
 • information imperfections
 • wage rigidity
 • government policies
What we don’t do

1. We have little to say about the deep causes of mismatch:
 • moving/retraining costs
 • borrowing constraints
 • information imperfections
 • wage rigidity
 • government policies

2. We can’t tell whether mismatch is constrained efficient
 • need a model where mismatch is an equilibrium outcome
What we don’t do

1. We have little to say about the deep causes of mismatch:
 - moving/retraining costs
 - borrowing constraints
 - information imperfections
 - wage rigidity
 - government policies

2. We can’t tell whether mismatch is constrained efficient
 - need a model where mismatch is an equilibrium outcome

3. We abstract from the effect of mismatch on vacancy creation
From mismatch to unemployment: two channels

\[u = \frac{s}{s + f} \]

1. More mismatch ⇒ lower job finding rate \(f \) ⇒ higher \(u \)
From mismatch to unemployment: two channels

\[u = \frac{s}{s + f} \]

1. More mismatch ⇒ lower job finding rate \(f \) ⇒ higher \(u \)

2. Effect of higher sep. rate on \(u \) increasing in mismatch through \(f \)

\[
\frac{du}{ds} = \frac{f}{(s + f)^2} > 0
\]

\[
\frac{d^2u}{dsdf} = \frac{s - f}{(s + f)^3} < 0 \quad \text{since} \quad f \gg s
\]
Outline of the rest of the talk

1. Environment and solution to planner’s problem

2. Derivation of mismatch indexes and their interpretation

3. Explanation of counterfactuals

4. Results based on JOLTS vacancies

5. Results based on HWOL job advertisements
1. Economic Environment and Planner’s Problem
Demographics, preferences and “geography”

- Measure one of ex-ante equal agents
- Individuals can be employed, unemployed, or OLF
- Linear utility over consumption, disutility of search effort ξ
- I distinct frictional labor markets (sectors)
- Free mobility of labor across sectors
- Aggregate labor force: $\ell = \sum_{i=1}^{I} (e_i + u_i) \leq 1$
Frictions, heterogeneity and uncertainty

• New production opportunities (vacancies) v_i arise exogenously in each market i

• Labor markets are frictional: $h_i = \Phi \phi_i m (u_i, v_i)$

• Existing matches in sector i produce $Z z_i$ units of output

• Matches destroyed exogenously at common rate δ

• Employed workers can quit into unemployment/OLF
Timing of events

1. Exogenous states $S = (Z, \delta, \Phi)$, and $s = (v, \phi, z)$ are observed. Endogenous states $e = \{e_1, ... e_I\}$ and u also given.

2. Unemployed direct their job search towards sector $i \rightarrow \{u_i\}$

3. Matching process $\rightarrow h_i = \Phi \phi_i m(u_i, v_i)$ new hires

4. Production takes place in the $e_i + h_i$ matches

5. Fraction δ of matches destroyed and σ_i workers quit $\rightarrow e'$

6. Labor force participation decision $\ell' \rightarrow u'$

7. New realizations of exogenous states
Planner’s problem

\[V(u, e; s, S) = \max_{\{u_i, \sigma_i, \ell'\}} \sum_{i=1}^{I} Z z_i (e_i + h_i) - \xi u + \beta E[V(u', e'; s', S')] \]

subject to:

\[\sum_{i=1}^{I} u_i \leq u \]

\[h_i = \Phi \phi_i m(u_i, v_i) \]

\[e'_i = (1 - \delta) (e_i + h_i) - \sigma_i \]

\[u' = \ell' - \sum_{i=1}^{I} e'_i \]

\[u_i \in [0, u], \ell' \in [0, 1], \sigma_i \in [0, (1 - \delta) (e_i + h_i)] \]

\[\Gamma_{Z, \delta, \Phi} (Z', \delta', \Phi'; Z, \delta, \Phi), \Gamma_{V} (v'; v, Z', \delta', \Phi'), \Gamma_{\phi} (\phi'; \phi), \Gamma_{z} (z'; z) \]
Solution

The FOC wrt u_i yields:

$$ZZ_i \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta \mathbb{E} [V_{e_i} (\cdot) - V_u (\cdot)] (1 - \delta) \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$
Solution

The FOC wrt u_i yields:

$$Zz_i \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta \mathbb{E} [V_{e_i} (\cdot) - V_u (\cdot)] (1 - \delta) \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$

The FOC wrt ℓ' is:

$$\mathbb{E} [V_u (u', e'; \phi', z', v', Z', \delta', \Phi')] = 0$$

The Envelope condition wrt u is:

$$V_u (u, e; \phi, z, v, Z, \delta, \Phi) = \mu - \xi$$
Solution

The FOC wrt u_i simplifies to:

$$ZZ_i \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta \mathbb{E} \left[V_{e_i} (u', e'; s', S') \right] (1 - \delta) \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$
Solution

The FOC wrt u_i simplifies to:

$$ZZ_i \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta \mathbb{E} \left[V_{e_i} (u', e'; s', S') \right] (1 - \delta) \Phi \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$

The Envelope condition wrt e_i is:

$$V_{e_i} (u, e; \phi, z, v, Z, \delta, \Phi) = ZZ_i + \beta (1 - \delta) \mathbb{E} \left[V_{e_i} (u', e'; \phi', z', v', Z', \delta', \Phi') \right]$$

Guess and verify that: $V_{e_i} (u, e; \phi, z, v, Z, \delta, \Phi) = Z_i \Psi (Z, \delta, \Phi)$

Conjecture true if: $\mathbb{E}[z'_i] = \rho z_i$
Solution

Using this result into the FOC wrt u_i:

$$Z \Phi z_i \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta (1 - \delta) \rho E \left[\Psi (Z', \delta', \Phi') \right] \Phi z_i \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$
Solution

Using this result into the FOC wrt u_i:

$$Z \Phi z_i \phi_i m_u \left(\frac{v_i}{u_i} \right) + \beta (1 - \delta) \rho \mathbb{E} [\Psi (Z', \delta', \Phi')] \Phi z_i \phi_i m_u \left(\frac{v_i}{u_i} \right) = \mu$$

which yields the generalized Jackman-Roper condition:

$$z_1 \phi_1 m_u \left(\frac{v_1}{u_1^*} \right) = \ldots = z_i \phi_i m_u \left(\frac{v_i}{u_i^*} \right) = \ldots = z_I \phi_I m_u \left(\frac{v_I}{u_I^*} \right),$$

Convenient static condition to manipulate into “mismatch indexes"
2. **Mismatch Indexes**
Mismatch index M_t^u

- At date t, $\{v_{it}\}$ and u_t given, hence $\theta_t = v_t / u_t$ given

- W/o heterogeneity in (z_i, ϕ_i), optimality requires $u_{it}^* = \frac{1}{\theta_t} v_{it}$
Mismatch index M^u_t

- At date t, $\{v_{it}\}$ and u_t given, hence $\theta_t = v_t / u_t$ given

- W/o heterogeneity in (z_i, ϕ_i), optimality requires $u^*_{it} = \frac{1}{\theta_t} v_{it}$

- Number of mismatched unemployed:

$$u^M_t = \frac{1}{2} \sum_{i=1}^{I} |u_{it} - u^*_{it}| = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \frac{1}{\theta_t} \cdot \frac{v_{it}}{u_t} \right| u_t = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \frac{v_{it}}{v_t} \right| u_t$$
Mismatch index M^u_t

- At date t, $\{v_{it}\}$ and u_t given, hence $\theta_t = v_t/u_t$ given

- W/o heterogeneity in (z_i, ϕ_i), optimality requires $u^*_{it} = \frac{1}{\theta_t} v_{it}$

- Number of mismatched unemployed:

$$u^M_t = \frac{1}{2} \sum_{i=1}^{I} |u_{it} - u^*_{it}| = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \frac{1}{\theta_t} \cdot \frac{v_{it}}{u_t} \right| u_t = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \frac{v_{it}}{v_t} \right| u_t$$

- Mismatch unemployment as a share of total is:

$$M^u_t = \frac{u^M_t}{u_t} = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \frac{v_{it}}{v_t} \right|$$

which can be computed from observed distribution $\{u_{it}, v_{it}\}$
Mismatch index $M_{\phi t}^{u}$ (contd.)

- With heterogeneity in ϕ_i and $m(u_{it}, v_{it}) = \Phi_t \phi_i v_{it}^{\alpha} u_{it}^{1-\alpha}$:

$$M_{\phi t}^{u} = \frac{1}{2} \sum_{i=1}^{I} \left| \frac{u_{it}}{u_t} - \left(\frac{\phi_i}{\Phi_t} \right)^{\frac{1}{\alpha}} \cdot \frac{v_{it}}{v_t} \right|$$

where

$$\bar{\phi}_t = \left[\sum_{i=1}^{I} \phi_i^{\frac{1}{\alpha}} \left(\frac{v_{it}}{v_t} \right) \right]^\alpha$$

- Similarly for the model with heterogeneous productivities $\rightarrow M_{zt}^{u}$
Mismatch index \mathcal{M}_t^u (contd.)

- With heterogeneity in ϕ_i and $m(u_{it}, v_{it}) = \Phi_t \phi_i v_{it}^{\alpha} u_{it}^{1-\alpha}$:

$$\mathcal{M}_\phi^u = \frac{1}{2} \sum_{i=1}^{I} \left| u_{it} - \left(\frac{\phi_i}{\bar{\phi}_t} \right)^{\frac{1}{\alpha}} \cdot \frac{v_{it}}{v_t} \right|$$

where

$$\bar{\phi}_t = \left[\sum_{i=1}^{I} \phi_i^{\frac{1}{\alpha}} \left(\frac{v_{it}}{v_t} \right) \right]^{\alpha}$$

- Similarly for the model with heterogeneous productivities $\rightarrow \mathcal{M}_{zt}^u$

- \mathcal{M}_t^u: fraction of unemployed searching in the “wrong sector”

- Hence, index of misallocation of unemployed workers
Mismatch index \mathcal{M}_t^h

- Assume **Cobb-Douglas** matching function: $h_{it} = \Phi_t v_{it}^\alpha u_{it}^{1-\alpha}$

- Summing across sectors, aggregate hires equal:

\[h_t = \Phi_t v_t^\alpha u_t^{1-\alpha} \cdot \left[\sum_{i=1}^{I} \left(\frac{v_{it}}{v_t} \right)^\alpha \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \right] \]

and optimal aggregate hires are $h_t^* = \Phi_t v_t^\alpha u_t^{1-\alpha}$
Mismatch index \mathcal{M}_t^h

- Assume **Cobb-Douglas** matching function: $h_{it} = \Phi_t v_{it}^\alpha u_{it}^{1-\alpha}$

- Summing across sectors, aggregate hires equal:

$$h_t = \Phi_t v_t^\alpha u_t^{1-\alpha} \cdot \left[\sum_{i=1}^{I} \left(\frac{v_{it}}{v_t} \right)^\alpha \left(\frac{u_{it}}{u_t} \right)^{1-\alpha} \right]$$

and optimal aggregate hires are $h_t^* = \Phi_t v_t^\alpha u_t^{1-\alpha}$

- Alternative mismatch index:

$$\mathcal{M}_t^h = \frac{h_t^* - h_t}{h_t^*} = 1 - \sum_{i=1}^{I} \left(\frac{v_{it}}{v_t} \right)^\alpha \left(\frac{u_{it}}{u_t} \right)^{1-\alpha}$$

measures the fraction of hires lost because of misallocation
3. COUNTERFACTUALS
Explaining the shift in the Beveridge curve

- Aggregate matching function:

\[h_t = (1 - M^h_t) \cdot \Phi_t \cdot v_t^\alpha u_t^{1-\alpha} \]

- Take logs:

\[\log h_t = \log \left[(1 - M^h_t) \cdot \Phi_t \right] + \alpha \log v_t + (1 - \alpha) \log u_t \]

- Estimate \(\{A_t\} \) residually

- Given our estimate of \(\{1 - M^h_t\} \), we can measure how much of the observed shift in aggr. efficiency is due to increased mismatch
Counterfactual unemployment dynamics

- Observed unemployment dynamics

\[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]
Counterfactual unemployment dynamics

- Observed unemployment dynamics

\[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]

- Aggregate job finding rate:

 1. observed: \(f_t = (1 - M_t^h) \cdot \Phi_t \cdot \left(\frac{v_t}{u_t} \right)^\alpha \)

 2. no mismatch: \(f_t^* = \Phi_t \cdot \left(\frac{v_t}{u_t^*} \right)^\alpha = \frac{f_t}{(1 - M_t^h)} \cdot \left(\frac{u_t}{u_t^*} \right)^\alpha \)
Counterfactual unemployment dynamics

- Observed unemployment dynamics

\[u_{t+1} = u_t + s_t \cdot (1 - u_t) - f_t \cdot u_t \]

- Aggregate job finding rate:

1. observed:

\[f_t = (1 - M_t^h) \cdot \Phi_t \cdot \left(\frac{v_t}{u_t} \right)^\alpha \]

2. no mismatch:

\[f_t^* = \Phi_t \cdot \left(\frac{v_t}{u_t^*} \right)^\alpha = \frac{f_t}{(1 - M_t^h)} \cdot \left(\frac{u_t^*}{u_t} \right)^\alpha \]

- Counterfactual unemployment dynamics in absence of mismatch:

\[u_{t+1}^* = u_t^* + s_t \cdot (1 - u_t^*) - f_t^* \cdot u_t^* \]

\[\Delta u - \Delta u^*: \text{ how much of the observed rise in unemployment is due to increased mismatch} \]
4. Analysis Based on JOLTS
Sources of data

- **Vacancies**: JOLTS 2000:12 - 2011:2
 - Disaggregation: 16 industries in the private sector + government, and 4 Census regions

- **Unemployment**: Monthly CPS
 - Information on industry and occup. of last employment only

- **Productivity**: Average hourly earnings by industry (CES)
Matching function specification

• For 2-digit industries, we estimate CES matching function:

\[
\ln \left(\frac{h_{it}}{u_{it}} \right) = \log \Phi_t + \log \phi_i + \frac{1}{\sigma} \log \left[\alpha \left(\frac{v_{it}}{u_{it}} \right)^\sigma + (1 - \alpha) \right]
\]

\[
\hat{\sigma} = -0.074
\]

95% Conf. Int. \([-0.267, 0.081]\)

• Recall: \(\sigma \in (-\infty, 1)\), with \(\sigma = 0\) for Cobb-Douglas
Matching function specification

• For 2-digit industries, we estimate CES matching function:

$$\ln \left(\frac{h_{it}}{u_{it}} \right) = \log \Phi_t + \log \phi_i + \frac{1}{\sigma} \log \left[\alpha \left(\frac{v_{it}}{u_{it}} \right)^\sigma + (1 - \alpha) \right]$$

<table>
<thead>
<tr>
<th>\hat{\sigma}</th>
<th>-0.074</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% Conf. Int.</td>
<td>[-0.267, 0.081]</td>
</tr>
</tbody>
</table>

• Recall: $\sigma \in (-\infty, 1)$, with $\sigma = 0$ for Cobb-Douglas

• When restricting to Cobb-Douglas:

 ▶ we estimate $\hat{\alpha} = 0.60$ and $\hat{\phi}_i$ for each industry
Labor demand shifts across industries

\[\text{Vacancy Share} = \begin{cases}
\text{Construction} & \text{on Date}\n\text{Manufacturing-Durables} & \text{on Date}\n\text{Finance} & \text{on Date}\n\text{Health} & \text{on Date}\n\end{cases}\]
Correlation between \((u,v)\) shares across industries
Mismatch index M^u_t (JOLTS)

After the recession: additional 5% of unemployed misallocated
Mismatch index \mathcal{M}^h_t (JOLTS)

After the recession: additional 2% of monthly hires lost bc of mismatch
Accounting for shift in aggregate matching function

\[\log h_t = \log [(1 - M_t^h) \cdot \phi_{xt} \cdot \Phi_t] + \alpha \log v_t + (1 - \alpha) \log u_t \]
Accounting for shift in aggregate matching function

\[
\log h_t = \log \left[(1 - \mathcal{M}_{ht}^h) \cdot \tilde{\phi}_{xt} \cdot \Phi_t \right] + \alpha \log v_t + (1 - \alpha) \log u_t
\]

Industry mismatch explains a tiny fraction of the observed shift

\[\text{Şahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market" p. 31 /44}\]
Accounting for the rise in US unemployment

At most 0.7 \textit{pct points} of rise in ν explained by industry mismatch
Geographical mismatch (4 Census regions)

Geographical mismatch shows no significant trend
5. **Analysis Based on HWOL**
The HWOL data: July 2005-

• “HWOL program is targeted to cover the full universe of all online advertised vacancies which are posted directly on internet job boards or through newspaper online ads”

• Four million ads per month (four thousand in JOLTS)

• Unduplication algorithm to identify ads posted on multiple boards
The HWOL data: July 2005-

- “HWOL program is targeted to cover the full universe of all online advertised vacancies which are posted directly on internet job boards or through newspaper online ads”

- Four million ads per month (four thousand in JOLTS)

- Unduplication algorithm to identify ads posted on multiple boards

- Info by ad: Job board, Full/Part time, Location (county), SOC (6-digit), Education level, NAICS (6-digit), Salary (where available)
The HWOL data: July 2005-

- “HWOL program is targeted to cover the full universe of all online advertised vacancies which are posted directly on internet job boards or through newspaper online ads”

- Four million ads per month (four thousand in JOLTS)

- Unduplication algorithm to identify ads posted on multiple boards

- Info by ad: Job board, Full/Part time, Location (county), SOC (6-digit), Education level, NAICS (6-digit), Salary (where available)

- Two major measurement issues:
 1. Upward trend in the use of online advertisement
 2. Number of vacancies in each ad
JOLTS-HWOL comparison by Census region

<table>
<thead>
<tr>
<th>Year</th>
<th>Vacancies (in Thousands)</th>
<th>JOLTS</th>
<th>HWOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation between aggregate time series is 0.91
Labor demand shifts across occupations

Sahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market" p. 37 /44
Correlation between (u, v) shares across occupations

Sahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market" p. 38 /44
Mismatch index \mathcal{M}_t^h (HWOL 2 digit occ.)

After the recession: additional 3% of monthly hires lost bc of mismatch
Accounting for the rise in US unemployment

At most 1.3 pct points of rise in u explained by occupational mismatch

Şahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market"
Vacancy and unemployment shares by state

Significant shifts for some big states, but small or no shifts for all others

Şahin-Song-Topa-Violante, "Measuring Mismatch in the U.S. Labor Market"
Geographical mismatch across states shows a slight decline.
Accounting for the rise in US unemployment

Role of geographical mismatch appears irrelevant

Şahin-Song-Topa-Violante, “Measuring Mismatch in the U.S. Labor Market”
Conclusions

Building on Jackman-Roper (1987), we develop an approach to measure mismatch unemployment in the labor market.
Conclusions

Building on Jackman-Roper (1987), we develop an approach to \textit{measure mismatch unemployment} in the labor market

- **Main findings:**
 - 1/4 to 1/7 of observed rise in unemployment due to mismatch
 - Misallocation by industry/occupation, but not by geography
Conclusions

Building on Jackman-Roper (1987), we develop an approach to measure mismatch unemployment in the labor market

- **Main findings:**
 - 1/4 to 1/7 of observed rise in unemployment due to mismatch
 - Misallocation by industry/occupation, but not by geography

- **Future work:**
 - Correction for industries/occupation of unemployed
 - Mismatch indexes by education level
 - Access to UI records for selected states