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Abstract

We modify the Laubach-Williams and Holston-Laubach-Williams models of the nat-

ural rate of interest to account for the extraordinary effects of the COVID-19 pandemic

on the economy. We incorporate time-varying variances of shocks to control for outliers

and introduce a COVID supply shock to the model. Estimation of the modified models

yields three key findings. First, estimates of the natural rate of interest are similar to

those from the original models during the pre-pandemic period. That is, these modifi-

cations effectively address the issues caused by COVID-19 while maintaining the basic

structure and features of the models. Second, estimates of the natural rate of interest

at the end of 2022 are close to the levels estimated directly before the pandemic. In

particular, we do not find evidence that the era of historically low estimated natural

rates of interest has ended. Third, the main longer-term consequence from the pandemic

period is a reduction in the estimated natural level of output.
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1 Introduction

The COVID-19 pandemic and public health responses caused dramatic swings in economic

activity around the world. The Laubach and Williams (LW, 2003) and Holston, Laubach,

and Williams (HLW, 2017) models of the natural rate of interest are quite flexible and

incorporate transitory and permanent shocks to supply and demand. However, the models’

specifications are restrictive in two ways that are at odds with the effects of the COVID-19

experience.

First, in keeping with the standard Kalman filter method, stochastic innovations are

assumed to follow a Gaussian distribution. Relative to historical experience, the pandemic

is an extreme tail event. This represents a stark violation of the Gaussian assumption

that would significantly distort the estimation results. Second, the models incorporate

transitory shocks to supply as innovations in the equation for the inflation rate. These

shocks are assumed to be serially uncorrelated, which is inconsistent with implications of a

sequence of shutdowns and re-openings associated with COVID.

The goal of this paper is to design and implement an approach to modifying these

models to take into account the highly unusual behavior during the COVID-19 period,

while maintaining to the greatest extent the basic structure and flexibility of the original

models. In that way, these models can continue to provide useful empirical tools in the

future to parse the between transitory and highly persistent or permanent factors that

affect the economy and provide useful benchmarks for measuring r∗ in the future.

Specifically, we make two modifications to the LW and HLW models that reflect the

unique characteristics of the pandemic period. First, we incorporate a persistent, but tem-

porary, supply shock in order to capture the direct effects of restrictions related to the

pandemic. This COVID shock is in addition to the transitory and permanent shocks al-

ready present in the models. Second, we allow for time-varying volatility of the shocks to

output and inflation during the pandemic period consistent with the appearance of extreme

outliers in the data.

We show that these modifications effectively address the two econometric issues caused

by the pandemic. We find that the pattern of historically low estimates of trend GDP

growth and the natural rate of interest before the pandemic persist after the COVID-19

pandemic.
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2 HLW (2017) Model

We extend the HLW (2017) model of the natural rate of interest, which builds on the

Laubach and Williams (2003) model. In our models, the natural rate of interest is the

real interest rate consistent with output equaling its natural rate (y∗t ) and stable inflation.

As in the DSGE literature (e.g. Woodford, 2003), we model the output gap and inflation

dynamics as a function of the real interest rate gap, rt − r∗t , using an intertemporal IS

equation and Phillips curve relationship, in line with the New Keynesian framework.

ỹt = ay,1ỹt−1 + ay,2ỹt−2 +
ar
2

2∑
j=1

(rt−j − r∗t−j) + ϵỹ,t (1)

πt = bππt−1 + (1− bπ)πt−2,4 + byỹt−1 + ϵπ,t (2)

Equations 1 and 2 make up the measurement equations in our state-space model. The

output gap is defined as ỹt = 100 · (yt − y∗t ), where yt and y∗t are logarithms of real GDP

and unobserved potential output, respectively, rt is the real short-term interest rate, πt

denotes consumer price inflation, and πt−2,4 is the average of its second to fourth lags.1 The

stochastic disturbances ϵỹ,t and ϵπ,t capture transitory shocks to the output gap and infla-

tion equations, respectively. We assume that they are normally distributed with standard

deviations σỹ and σπ, respectively, and are mutually uncorrelated. These transitory shocks

do not affect the natural rate of interest; rather, movements in r∗t reflect persistent shifts

in the relationship between the real short-term interest rate and the output gap (Williams,

2003).

The law of motion for the natural rate of interest is given by

r∗t = c · gt + zt

where gt is the trend growth rate of the natural rate of output, y∗t , and zt captures other

determinants of r∗t .
2 We specify the three latent variables in our state-space model as

1See HLW (2017) section 2 and Appendix A for details of the model specification. We take as a start-
ing point the open-economy New Keynesian model specification as in Gaĺı (2008) and relax two standard
restrictions to work with reduced-form IS and Phillips curve equations.

2Note that unlike in HLW (2017), we do not assume a one-for-one relationship between the trend growth
rate of potential output and the natural rate of interest. Instead, we follow Laubach and Williams (2003)
and estimate this relationship. We continue to find a coefficient close to unity. See Appendix A1 for details
on changes to the HLW (2017) model.
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follows. The logarithm of potential output follows a random walk with a stochastic drift g

that itself follows a random walk,

y∗t = y∗t−1 + gt−1 + ϵy∗,t (3)

gt = gt−1 + ϵg,t (4)

and the component zt capturing other determinants of r∗t is assumed to follow a random

walk as well,

zt = zt−1 + ϵz,t (5)

Equations 3, 4, and 5 make up the state equations in our state-space model. We assume

that the disturbances ϵy∗,t, ϵg,t, and ϵz,t are normally distributed with standard deviations

σy∗ , σg, and σz, respectively, and are serially and contemporaneously uncorrelated.

3 COVID-adjusted Model

The objective of this paper is to estimate the natural rate of interest (r∗) following the

COVID-19 pandemic in a way that is consistent with the Holston, Laubach, and Williams

(HLW, 2017) model, outlined in Section 2. This requires confronting two problems. The

first is a statistical problem that is not unique to our model or to estimation of the natural

rate of interest: COVID-19 represents an extreme tail event, with movements in GDP that

are very large with respect to historical data and outliers in any standard macroeconomic

model, as shown in Figure 4. In keeping with the standard Kalman filter method, stochastic

innovations to the measurement equations in HLW – the IS and Phillips curve equations –

are assumed to follow a Gaussian distribution. GDP and inflation realizations during the

pandemic violate this Gaussian assumption, which would significantly distort the estimation

results.

The second is that movements in output and inflation during the pandemic period

display serial correlation. The HLW model incorporates transitory shocks to supply as

innovations in equation for the inflation rate (the Phillips curve equation). Stochastic

innovations to the IS and Phillips curve equations are assumed to be mutually uncorrelated.

Movements in output and inflation during the pandemic period, caused in part by the
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sequence of shutdowns and re-openings and the broader government response associated

with COVID-19, are inconsistent with a series of mutually uncorrelated shocks.

An advantage of the HLW approach is that the natural rate of interest is explicitly

modeled to be affected by low-frequency non-stationary processes, and not by transitory

shocks. We allow for two types of shocks in the original model: transitory shocks to the

output gap and inflation equations, and permanent shocks to the latent variables. The

model specification of the transitory shocks is restrictive in two ways that are at odds with

the COVID-19 shock: as stated, these shocks are modeled as stochastic innovations to the

measurement equations that are assumed to be Gaussian and mutually uncorrelated, while

movements in GDP and inflation during the pandemic exhibit neither of these properties.

These transitory shocks do not affect the unobserved state variables, y∗, g and z, and

therefore do not affect r∗.

We distinguish these transitory disturbances from low-frequency movements in the data,

which are ascribed to r∗ and y∗. By parsing permanent effects from transitory ones, we

are able to estimate a medium-run concept of the natural rate of interest. In updating the

model to account for the COVID-19 pandemic, we do not change the specification of the

latent variables permanent shocks, and our conception of r∗ as a medium-run object does

not change.

We modify the HLW model in two ways in order to overcome these challenges, while

preserving the original model structure. The first is to introduce time-varying volatil-

ity during the pandemic period to solve the statistical problems associated with extreme

outliers. Following Lenza and Primiceri (2022), we allow the variances of the stochastic

innovations to the output gap and inflation equations to be higher during the COVID-19

pandemic. Importantly, we maintain the standard assumption that the stochastic innova-

tions to the equations for potential output, its trend growth rate, and the unobserved other

determinants of the natural rate of interest are normally distributed. This has the effect

of down-weighting the outlier observations in our estimation procedure, while leaving the

model equations and specification of the latent variables, including r∗, unchanged. While

we apply this solution to the HLW model to estimate the natural rate of interest, it is a

general solution that can be applied to any state-space model with unobserved components.

The choice to allow for increased volatility in the output gap and inflation innovations

during the pandemic, but not increased volatility in the innovations to the latent variables, is
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consistent with the original HLW approach. We maintain the ability of the model to distin-

guish transitory shocks that do not affect the latent variables from low-frequency movements

that do. The outsized movements in GDP and inflation during the early pandemic period,

while extraordinarily large, were ultimately short-lived. Rather than explicitly modeling an

increase in volatility of the unobserved latent variables, we let the data speak by model-

ing an explicit increase in the transitory shocks only. In the event that pandemic-induced

movements in GDP and inflation are long-lasting, the Kalman filter will infer accordingly

and will ascribe permanent changes to r∗ and y∗.

While increasing the volatility of the transitory shocks resolves the statistical problems

associated with extreme observations, there is still the problem of serial correlation. In

particular, because the effects on supply of the sequence of shutdowns and re-openings

associated with COVID-19 are highly serially correlated during the pandemic, they are

not adequately captured by a transitory supply shock, modeled through innovations to the

inflation equation, even when we account for increased innovation variances. We modify

the model to incorporate a persistent, but ultimately temporary, supply shock, in addition

to the transitory and permanent demand and supply shocks already present in the models,

in order to capture the direct effects of economic shutdowns and restrictions related to the

pandemic. This additional shock acts as an adjustment to the level of potential output in

the output gap specification.

4 Outliers

Before making any adjustments to the model, we begin by estimating the standard HLW

model through 2019:Q4, prior to the onset of the COVID-19 pandemic. We fix the model

parameters and re-estimate the latent variables through 2022:Q4 using the parameter values

from the 2019:Q4 estimated model. We also fix the initial vector of unobserved states

and its covariance matrix at the 2019:Q4 values.3 This exercise is equivalent to dropping

observations beginning in 2020:Q1 through the end of the sample during the maximum

likelihood estimation of model parameters, while allowing the Kalman updating procedure

3We store the estimated parameter vector θ from the final (stage 3) model as well as the signal-to-noise
ratios λg and λz from the median unbiased estimation procedures following stages 1 and 2, respectively. See
HLW (2017) for a description of the estimation procedure and footnote 6 for the initialization process of the
vector of unobserved states, its conditional expectation ξ1|0 in the first period, and the covariance matrix
P1|0.
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to continue without modification through the end of the sample. In other words, we make

no modifications to the state-space model, except that the model coefficient matrices and

covariance matrices in the Kalman filtering procedure are fixed at their 2019:Q4 values.

The final step of the Kalman filtering procedure to estimate the vector of unobserved

states at time t (ξ̂t|t, given the information set at time t) is given by the updating equation.

This equation adds the initial estimate (ξ̂t|t−1, given information at time t−1) to the vector

of one-step-ahead prediction errors for the IS and Phillips curve equations, pre-multiplied

by the Kalman gain matrix, Kt.

ξ̂t|t = ξ̂t|t−1 +Kt (yt −H′ξ̂t|t−1 −A′xt)︸ ︷︷ ︸
one-step-ahead prediction error

(6)

In this initial exercise, the coefficient matrices H′ and A′ on the state vector ξ̂t|t−1 and

data xt, respectively, are fixed at their 2019:Q4 values and the resulting one-step-ahead

prediction errors (also known as forecast errors) are large. Note that the one-step-ahead

prediction errors are the residuals to the IS and Phillips curve equations, using the forecast

of yt (the vector of the output gap and inflation) based on the data at time t and information

at time t− 1, corresponding to the state vector ξ̂t|t−1:

yt − E[yt|xt, ζt−1] = yt − (H′xt +A′ξ̂t|t−1) (7)

During the pandemic period, the large forecast errors translate directly to the estimated

vector of unobserved variables (y∗, g, z), so that the data during this period has a sizable

effect on the estimated natural rate of interest r∗. As expected, even when outliers are

excluded during parameter estimation, using the Kalman filter with extreme outliers present

significantly distorts the estimation results, resulting in large swings in the estimates of the

latent variables. This is in conflict with the specification of these latent variables as reflecting

lower-frequency movements.

Following Harvey and Koopman (1992), we make use of the auxiliary residuals to the

measurement and state equations in order to detect outliers. Because ours is an unobserved-

components model, we are able to look at auxiliary residuals as an alternative to the one-

step-ahead prediction errors that are commonly used for diagnostic testing of time-series
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models.4

Auxiliary residuals are smoothed estimators of the disturbances to the measurement and

state equations (ϵt and ηt, respectively). They have the advantage of a direct interpretation

and test for outliers: under the assumption that the stochastic innovations are from a

Gaussian distribution, standardized auxiliary residuals greater than 2 (in absolute value)

indicate either the presence of outliers or a structural change, and subsequent testing can

distinguish between the two cases. We use the algorithm in Koopman and Durbin (2000)

to obtain the standardized auxiliary residuals to the IS and Phillips curve equations

ϵ̃t = E[ϵt|yT ,xT , ζT ] (8)

as well as to the equations for the unobserved state variables

η̃t = E[ηt|yT ,xT , ζT ] (9)

Figures 6 and 7 show the standardized auxiliary residuals to the measurement equations,

ϵ̃t/σ̂ϵ, while figure 8 displays the standardized auxiliary residuals to the y∗ equation, from

η̃t/σ̂η. For the estimated model with parameters fixed at pre-pandemic values, there are

extreme outliers in the output gap equation and in the equation for potential output across

all economies in our sample.

5 Implementation of COVID-Adjusted Model

5.1 Increased Shock Volatility during COVID-19

In the HLW framework, transitory shocks to demand and supply are modeled as stochastic

innovations to the output gap and inflation equations; that is, the IS and Phillips curve

equations. Following the standard Kalman filter approach, these stochastic innovations are

assumed to be Gaussian and mutually uncorrelated. The innovation variances, σỹ and σπ,

are assumed to be constant over the sample and are estimated by maximum likelihood,

together with the remaining model parameters.

The COVID-19 shock violates the Gaussian assumption. As shown in Figure 4, it is an

extreme outlier that would significantly distort the estimation results. In order to proceed

4See also Harvey et al. (1999).
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with estimating the natural rate of interest after the COVID-19 pandemic, we need a way

to account for the substantially higher volatility associated with disturbances to the output

gap and inflation equations during the pandemic period.

We build on an insight from Lenza and Primiceri (2022): if the timing of increased

volatility is known – as is the case for the COVID-19 pandemic – we can introduce time-

varying volatility in the model directly by applying a scale factor to the innovation variances

during the period of increased volatility. We apply this insight to our unobserved compo-

nents model in order to estimate the natural rate of interest, but our approach can generalize

to any state-space model with latent variables that can be estimated using the Kalman filter.

In particular, we introduce three new model parameters, κ2020, κ2021, and κ2022. These

are the variance scale parameters for 2020, 2021, and 2022, respectively, which multiply the

variances of the innovations to the output gap and inflation equations. We define the vector

κt of variance scale parameters at time t, that takes the values

κt =



κ2020 2020:Q2 ≤ t ≤ 2020:Q4

κ2021 2021:Q1 ≤ t ≤ 2021:Q4

κ2022 2022:Q1 ≤ t ≤ 2022:Q4

1 otherwise

(10)

We estimate the three variance scale parameters by maximum likelihood together with the

other model parameters, with the constraints κ2020 ≥ 1, κ2021 ≥ 1, and κ2022 ≥ 15. κt takes

the value of 1 before the pandemic period and in 2023 and beyond.

The covariance matrix of the stochastic innovations to the output gap and inflation

equations is now time-varying and is given by

Rt = κ2t ·R =

(κtσỹ)2 0

0 (κtσπ)
2

 (11)

with time-varying innovation variances to the IS curve and Phillips curve equations of

(κtσỹ)
2 and (κtσπ)

2, respectively.

It is straightforward to see that outside the pandemic period, the innovation variances

5The restriction that κt ≥ 1 is necessary to ensure that the likelihood estimation cannot down-weight the
variance of certain observations, which would in effect allow it to place more weight on favorable observations.
Instead, the estimated κs can only increase the innovation variances during the pandemic period.
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are specified exactly as in HLW (2017), so that the innovation variances to the output gap

equation, σ2
ỹ , and inflation equation, σ2

π, are constant over the sample prior to 2020 and

after 2022. During the year 2021, for example, the innovation variances take the values

(κ2021 ·σỹ)2 and (κ2021 ·σπ)2, respectively. Therefore κt is a ratio of the standard deviations

of the disturbances to the measurement equations (the output gap and inflation equations)

at time t relative to the standard deviations in the non-pandemic sample. If κt > 1, as we

find for all economies in our sample, this implies that the innovation variances are greater

at time t than in the non-pandemic sample.

Introducing the innovation variance scaling factors has the effect of down-weighting ex-

treme outlier observations in parameter estimation as well as in estimation of the unobserved

state variables via the Kalman filter. When κt > 1, the diagonal matrix Rt of the distur-

bances to the output gap and inflation equations is larger relative to the case where κt = 1,

and the resulting Kalman gain is smaller. The Kalman gain dictates the weight placed on

the one-step-ahead prediction error – the difference between realized values of the output

gap and inflation in a period and the model’s predicted values given information in the

prior period – in updating the filtered estimates of the latent variables. As the innovation

variances in a given period become large, the Kalman gain is small, so that the Kalman

filter places little weight on these new observations and the state vector estimates (that is,

y∗t , gt, zt and therefore r∗t ) remain close to the estimates from the prior period. In the limit

as the innovation variances tend toward infinity, the Kalman gain approaches zero, so that

no weight is placed on the time-t observations in estimating the state vector. In effect, the

model does not make use of time-t information, so that the forecast of the state vector at

time t given the time-t information set is unchanged from the forecast given the information

set at time t − 1. The same holds for parameter estimation: when κt is large, the model

forecast error in this period is down-weighted when computing the log likelihood function,

such that the data in this period have relatively little impact on the set of parameters that

maximize the log likelihood function.

We see this approach as preferable to outright discarding the COVID-19 outliers by

treating them as missing data for several reasons. It is not our goal to provide reliable

estimates of r∗ during the COVID-19 pandemic, and we treat these estimates with extreme

caution. Rather, our objective is to deliver a framework for estimating of the natural rate of

interest that is consistent with our approach in HLW, so that we are able to parse permanent
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changes to r∗ from transitory shocks once the pandemic has abated. While the timing of

the onset of the pandemic is clear, selecting an end date for the set of observations to

discard would not be straightforward, and estimation of r∗ may be sensitive to this choice.

Additionally, a binary decision to drop or keep pandemic-related observations necessitates

treating the entire period universally. Our approach is flexible in that we allow for increased

variance during the three years following the onset of the pandemic, but we do not impose

higher variances. We also do not impose any relationship between κ2020, κ2021, and κ2022.

By estimating these parameters together with the remaining model parameters, including

the innovation variances during the non-pandemic period, our approach instead allows the

data to inform the choice of variance scaling factors, so that more extreme outliers are more

heavily down-weighted. Indeed, when we allow the model to treat the later quarters of the

pandemic differently from the earlier quarters, we find that it chooses to do so. Finally, it

is well-known that estimates of the natural rate of interest are highly uncertain. Excluding

data associated with the COVID-19 pandemic would understate the true uncertainty about

future r∗ estimates (Lenza and Primiceri, 2022). Our approach preserves estimation of the

model standard errors over the full sample.

5.2 COVID-adjusted Potential Output

The direct effects of COVID-19 on the economy are incorporated in the model as an ad-

justment to the natural rate of output in the output gap specification. We introduce one

new variable, denoted dt, as a proxy for the direct effects of the government restrictions

and shutdowns implemented in response to the pandemic. We set this COVID indicator

variable equal to the quarterly average of the COVID-19 Stringency Index from the Oxford

COVID-19 Government Response Tracker (OxCGRT) for each country or region, as shown

in Figure 5.6 The stringency index, which ranges between 0 and 100 with larger numbers

indicating stricter restrictions, aggregates measures of government containment and closure

policies such as school and workplace closures, travel restrictions, bans or limits on public

gatherings, and shutdowns of public transportation.

We choose this indicator because it is comprehensive and publicly available for all of the

economies in our sample. We recognize that such an index of government responses cannot

6See Hale et al. (2021). We use the national weighted average of the stringency indices for vaccinated
and unvaccinated populations, and our results are robust to using the index for vaccinated individuals only.
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capture the full set of behavioral responses or compliance; nonetheless, it should provide

a reasonable first-order approximation to the time-series properties of the direct effects of

the pandemic and associated public health actions on economies. For the Euro Area, we

use a GDP-weighted stringency index with 2019 GDP weights. As the OxCGRT project

suspended data collection at the end of 2022, we assume a constant decay in the indicator

variable beginning in 2023:Q1, reaching zero in 2024:Q4. The COVID indicator is set equal

to zero through 2019:Q4 in all economies. It is assumed to be an exogenous variable in the

model.

We incorporate the COVID variable as an adjustment to the natural rate of output,

within the output gap specification. In particular, the COVID-adjusted natural rate of

output is given by

y∗t,COV ID−adj. = y∗t +
ϕ

100
dt

where y∗t is the standard natural rate of output, dt is the COVID-19 indicator, and ϕ is

an estimated parameter that translates the COVID variable dt into effects on output. The

output gap is correspondingly modified, with COVID-adjusted potential output replacing

the standard natural rate of output:

ỹt,COV ID−adj. = 100(yt − y∗t,COV ID−adj.) = 100(yt − y∗t )− ϕdt

where yt is the log of real GDP. We estimate the parameter ϕ together with the remain-

ing model parameters by maximum likelihood, including the variance-scaling parameters

κ2020, κ2021, κ2022.

The COVID-adjusted output gap replaces the standard output gap in the measurement

equations, which are the IS and Phillips curve equations. The state equations, which are

the model equations for the unobserved latent variables, are unchanged. This includes the

equation for the underlying natural rate of output,

y∗t = y∗t−1 + gt−1 + ϵy∗,t

so that the laws of motion for the natural rate of output, y∗t , and its trend growth rate,

gt, are identical to the standard HLW specification. Accordingly, the law of motion for the

natural rate of interest is unchanged.
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6 Estimation Results

In this section, we report the estimation results using data through the end of our sample

and compare those to estimates from the pre-pandemic period.

6.1 Parameter estimates

Table 1 reports the estimates of model parameters for the three economies. For comparison,

the corresponding estimates from the model estimated through 2019:Q4 are reported in the

appendix table A1. The parameter estimates are broadly similar to estimates from the

pre-pandemic period. Note that in all cases the estimated values of λg and λz are strictly

positive.

The estimated values of the parameter on the COVID shock variable, ϕ, is statistically

significant and, as discussed below, has an economically large effect. Consistent with the

observations of enormous outliers early in the pandemic, the estimated values of the param-

eter κ are sizable for 2020Q2-Q4. The parameter estimates for κ in 2021 and 2022 range

between one and two, and are generally statistically significant.

6.2 Model Residuals

Figures 6 and 7 show the standardized auxiliary residuals, described in Section 4, to the IS

and Phillips curve equations, with the horizontal lines indicating two standard deviations.

The yellow lines show residuals from the version of the model with parameters held fixed

at 2019:Q4 values. In all economies, IS equation residuals in 2020 indicate extreme outliers

to the model. The magnitude of the estimated κ2020 parameters is consistent with these

extreme outliers. The blue lines show auxiliary residuals from the modified HLW model.

With the inclusion of the variance scale parameters and the adjustment to potential output,

these residuals are of similar magnitude to the pre-pandemic period, and no longer indicate

the presence of outliers. Figure 8 displays the standardized auxiliary residuals for the

potential output equation. Again, the massive outliers in the standard version of the model

are no longer present in the COVID-adjusted model, despite the fact that the specification

of potential output and its stochastic innovation are unchanged.
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6.3 Estimates of r∗, g, and y∗

Estimation of the modified HLW model reveals three key findings. First, the modified

estimation procedure yields results that are overall quite similar to those from the original

model during the pre-pandemic period. Second, the current estimates of the natural rate of

interest are similar to those estimated directly before the pandemic. Third, the estimates

of the natural rate of output at the end of 2022 are much lower than predicted before the

pandemic.

The current HLW estimates of the natural rate of interest in the United States are shown

in Figure 1. For comparison, the figure also shows estimates using a version of the model

that holds the model parameter values fixed at estimates using data through the end of

2019, and does not include the COVID modifications (i.e. ϕ = 0, κt = 1 for all periods).

The two sets of estimates are very similar through 2019, but differ sharply during the acute

period of the pandemic, when the estimates from the unmodified model exhibit large swings

due to the presence of outliers. Interestingly, the two estimates are very close to each other

at the end of the sample.

Based on the estimates of r∗ for Canada, the Euro Area, and the United States, there are

no clear signs of a significant reversal of the decline in the natural rate of interest estimates

that is evident in prior decades. Figures 2 and 3 show the corresponding estimates of the

natural rate of interest for Canada and the Euro Area.

In fact, in all three economies, the estimates of the natural rate of interest in 2022 are

within a few tenths of a percentage point of the corresponding estimates in 2019.

The estimates of trend growth in potential output are slightly lower in 2022 than in 2019.

Table 2 reports the estimates of the trend growth rate, g, in specified years. It also reports

forecasts of trend growth rates from various sources. Interestingly, for each economy, the

HLW estimates and the corresponding forecasts are tightly clustered.

The largest differences between model estimates pre- and post-pandemic relate to the

level of each economy’s natural rate of output. Figure 9 compares the model projections

of the natural rate of output based on estimates using data through the fourth quarter

of 2019 to current estimates. For example, at the end of 2022, the COVID-adjusted level

of the natural rate of output in the United States is 4.2 percent below the pre-pandemic

projection, with nearly half of that shortfall explained by the COVID shock measure and

the remainder a permanent change in the natural level of output.
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In summary, according to the model estimates, the main longer-term consequence from

the pandemic period is a reduction in the natural rate of output, but the imprint on the

natural rate of interest appears to be relatively modest. We do not find evidence from the

HLW estimates that the era of historically low estimated natural rates of interest has come

to an end.
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Table 1: Parameter Estimates

Parameter United States Canada Euro Area

Sample 1961-2022 1961-2022 1972-2022

λg 0.073 0.061 0.039
λz 0.021 0.011 0.023∑

ay 0.936 0.946 0.945
ar −0.079 −0.077 −0.037

(4.215) (2.947) (1.757)
by 0.073 0.049 0.088

(3.003) (1.821) (2.310)
c 1.128 1.109 0.953

(3.574) (2.794) (1.155)

ϕ −0.085 −0.062 −0.135
(2.199) (3.442) (6.557)

κ2020Q2−Q4 9.033 9.377 18.609
(2.351) (2.134) (2.384)

κ2021 1.791 1.087 1.960
(2.941) (1.835) (2.150)

κ2022 1.676 1.613 1.557
(2.060) (1.293) (1.231)

σỹ 0.452 0.579 0.318
σπ 0.787 1.343 0.965
σy∗ 0.500 0.448 0.382
σg 0.145 0.109 0.060
σz 0.118 0.085 0.201

σr∗ =
√

c2σ2
g + σ2

z 0.202 0.148 0.209

S.E. (sample ave.)
r∗ 1.140 1.603 2.739
g 0.428 0.413 0.264
y∗ 1.612 2.474 1.662

S.E. (final obs.)
r∗ 1.565 1.858 3.805
g 0.689 0.639 0.405
y∗ 2.914 3.679 2.878

Notes: t statistics are in parentheses; σg is expressed at an annual rate.
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Table 2: Trend Growth Estimates

Change

1990- 2007- 2019-
1990 2007 2019 2022 2007 2019 2022

United States
HLW g estimates 3.3 2.8 2.1 1.8 −0.5 −0.7 −0.2
Consensus Forecasts 2.4 2.8 2.0 1.9 0.4 −0.8 −0.1
IMF World Economic Outlook 2.6 3.0 1.6 1.8 0.4 −1.5 0.2
Blue Chip Financial Forecasts 2.5 2.8 2.0 1.9 0.4 −0.8 −0.1

Canada
HLW g estimates 3.4 2.5 1.8 1.5 −0.9 −0.7 −0.3
Consensus Forecasts 2.8 2.4 1.8 1.8 −0.4 −0.7 0.0
IMF World Economic Outlook 3.2 2.7 1.7 1.7 −0.5 −1.0 0.0

Euro Area
HLW g estimates 2.7 2.0 1.2 1.0 −0.7 −0.9 −0.1
Consensus Forecasts n/a 1.9 1.3 1.2 n/a −0.6 −0.1
IMF World Economic Outlook n/a 2.0 1.3 1.4 n/a −0.7 0.1

Notes: Consensus Forecasts data are the mean of panellists’ trend estimates of expected GDP growth in the

6 to 10 years following. IMF estimates are the 5-year ahead forecast for real GDP growth. Blue Chip

estimates are the mean long-years ahead forecast for real GDP. For each of these three forecasts, numbers

are the average of the Spring and Fall publications for each year. HLW estimates are yearly averages.

Numbers may not sum due to rounding.

Sources: Consensus Economics Inc, London; IMFWorld Economic Outlook; Blue Chip Financial Forecasts.
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Figure 1: Estimates: United States
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Figure 2: Estimates: Canada

-5

0

5

1960 1980 2000 2020

COVID-adjusted Output Gap

0

2

4

6

1960 1980 2000 2020

g

0.0

2.5

5.0

1960 1980 2000 2020

r*

Covid-adjusted Model Model with parameters fixed at 2019:Q4 values, ϕ = 0, and κ = 1

20



Figure 3: Estimates: Euro Area
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Figure 4: Comparison of Data Across Economies
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Figure 5: COVID Stringency Index, Oxford COVID-19 Government Response Tracker
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Figure 6: Standardized Auxiliary Residuals, IS Curve
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Figure 7: Standardized Auxiliary Residuals, Phillips Curve
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Figure 8: Standardized Auxiliary Residuals, Potential Output
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Figure 9: Potential Output
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Appendix A1: State-Space Models

This section presents the COVID-adjusted and original HLW models in state-space form.7

Our estimation procedure has three stages.8 The first and second stage models represent

versions of the final stage model, and each of the models can be cast in state-space form:

yt = A′ · xt +H′ · ξt + ϵt (12)

ξt = F · ξt−1 + ηt (13)

Here, yt is a vector of contemporaneous endogenous variables, while xt is a vector of ex-

ogenous and lagged exogenous variables. ξt the vector of unobserved state variables. In the

HLW (2017) and Laubach and Williams (2003) models, the vectors of stochastic distur-

bances ϵt and ηt are assumed to be Gaussian and mutually uncorrelated, with mean zero

and covariance matrices R and Q, respectively. The covariance matrix R is assumed to

be diagonal. In the COVID-adjusted model, we modify the covariance matrix Rt to be

time-varying.

Each model has a corresponding vector of parameters to be estimated by maximum

likelihood. Because maximum likelihood estimates of sigmag and sigmaz, which are the

standard deviations of the innovations to the gt and zt equations, are likely to be biased

towards zero due to the pile-up problem (see Section 2.2 of HLW), we use Stock andWatson’s

(1998) median unbiased estimator to obtain estimates of two ratios, λg ≡ σg

σy∗
and λz ≡ arσz

σỹ
.

We estimate λg following the first stage model and λz following the second stage model, and

impose these ratios in subsequent stages of the estimation, including when estimating the

remaining model parameters by maximum likelihood. The COVID-adjusted model includes

five additional parameters: the coefficient ϕ that translates the COVID indicator variable

dt into effects on output; the three variance scale parameters κ2020, κ2021, and κ2022; and

the coefficient c on trend growth gt in the r∗t equation, which appears only in the stage 3

model and is estimated in LW (2003) but fixed at unity in HLW (2017).

In addition to estimating the relationship between the trend growth rate of potential

output and r∗, we make two minor technical changes to the model that are not related to

the COVID-19 pandemic.9 First, we include a second lag of trend growth, gt−2, in the stage

7Notation follows Hamilton (1994) and is consistent with the corresponding R programs.
8See HLW (2017) for a full description of our estimation procedure.
9We also explicitly include gt and zt in the vector of unobserved state variables in addition to two lags
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2 IS equation, consistent with the IS equation specification in the stage 3 model. Second,

we correct the stage 2 state-space model so that the y∗t equation is y∗t = y∗t−1+gt−1+ϵy∗,t as

expressed in the paper; previously, the stage 2 y∗t equation included the second lag of trend

growth, gt−2, rather than the first lag in error (Buncic, 2021, 2022). These modifications to

the model are highlighted in blue text in the following sections, while changes in response

to the COVID-19 pandemic are highlighted in red. These changes have minor effects on our

estimates of the unobserved state variables, including r∗.

7.1 The COVID-Adjusted State-Space Models

7.1.1 The COVID-adjusted Stage 1 Model

The first-stage model, which corresponds to the rstar.stage1.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (14)

xt = [yt−1, yt−2, πt−1, πt−2,4, dt, dt−1, dt−2]
′ (15)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2

]′
(16)

H′ =

1 −ay,1 −ay,2

0 −by 0

 , A′ =

ay,1 ay,2 0 0 ϕ −ϕay,1 −ϕay,2

by 0 bπ 1− bπ 0 −ϕby 0



F =


1 0 0

1 0 0

0 1 0

 , Q =


σ2
y∗ 0 0

0 0 0

0 0 0

 , Rt =

(κtσỹ)2 0

0 (κtσπ)
2



The vector of parameters to be estimated by maximum likelihood is as follows:

θ1 =
[
ay,1, ay,2, bπ, by, g, σỹ, σπ, σy∗, ϕ, κ2020Q2−Q4, κ2021, κ2022

]
of each variable as in HLW. This is purely an accounting change and has no effect on the estimates.
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7.1.2 The COVID-adjusted Stage 2 Model

The second-stage model, which corresponds to the rstar.stage2.R program, can be repre-

sented by the following matrices:

yt = [yt, πt]
′ (17)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, 1, dt, dt−1, dt−2]
′ (18)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt, gt−1, gt−2

]′
(19)

H′ =

1 −ay,1 −ay,2 0
ag
2

ag
2

0 −by 0 0 0 0



A′ =

ay,1 ay,2
ar
2

ar
2 0 0 a0 ϕ −ϕay,1 −ϕay,2

by 0 0 0 bπ 1− bπ 0 0 −ϕby 0



F =



1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, Q =



σ2
y∗ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 (λgσy∗)
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Rt =

(κtσỹ)2 0

0 (κtσπ)
2



The vector of parameters to be estimated by maximum likelihood is as follows:

θ2 =
[
ay,1, ay,2, ar, a0, ag, bπ, by, σỹ, σπ, σy∗, ϕ, κ2020Q2−Q4, κ2021, κ2022

]
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7.1.3 The COVID-adjusted Stage 3 Model

The third-stage model, which corresponds to the rstar.stage3.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (20)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, dt, dt−1, dt−2]
′ (21)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt, gt−1, gt−2, zt, zt−1, zt−2

]′
(22)

H′ =

1 −ay,1 −ay,2 0 −4c · ar
2 −4c · ar

2 0 −ar
2

−ar
2

0 −by 0 0 0 0 0 0 0



A′ =

ay,1 ay,2
ar
2

ar
2 0 0 ϕ −ϕay,1 −ϕay,2

by 0 0 0 bπ 1− bπ 0 −ϕby 0



F =



1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0



, Q =



σ2
y∗ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 (λgσy∗)
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
(
λzσỹ

ar

)2
0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

Rt =

(κtσỹ)2 0

0 (κtσπ)
2


The vector of parameters to be estimated by maximum likelihood is as follows:

θ3 =
[
ay,1, ay,2, ar, bπ, by, σỹ, σπ, σy∗, ϕ, c, κ2020Q2−Q4, κ2021, κ2022

]
The law of motion for the natural rate of interest is r∗t = c · gt + zt.
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7.2 The HLW (2017) State-Space Models

7.2.1 The Stage 1 Model

The first-stage model, which corresponds to the rstar.stage1.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (23)

xt = [yt−1, yt−2, πt−1, πt−2,4]
′ (24)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2

]′
(25)

H′ =

1 −ay,1 −ay,2

0 −by 0

 , A′ =

ay,1 ay,2 0 0

by 0 bπ 1− bπ



F =


1 0 0

1 0 0

0 1 0

 , Q =


σ2
y∗ 0 0

0 0 0

0 0 0

 , R =

σ2
ỹ 0

0 σ2
π



The vector of parameters to be estimated by maximum likelihood is as follows:

θ1 =
[
ay,1, ay,2, bπ, by, g, σỹ, σπ, σy∗

]
7.2.2 The Stage 2 Model

The second-stage model, which corresponds to the rstar.stage2.R program, can be repre-

sented by the following matrices:

yt = [yt, πt]
′ (26)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, 1]
′ (27)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt−1

]′
(28)
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H′ =

1 −ay,1 −ay,2 ag

0 −by 0 0

 , A′ =

ay,1 ay,2
ar
2

ar
2 0 0 a0

by 0 0 0 bπ 1− bπ 0



F =


1 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

 , Q =


σ2
y∗ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 (λgσy∗)
2

 , R =

σ2
ỹ 0

0 σ2
π



The vector of parameters to be estimated by maximum likelihood is as follows:

θ2 =
[
ay,1, ay,2, ar, a0, ag, bπ, by, σỹ, σπ, σy∗

]
7.2.3 The Stage 3 Model

The third-stage model, which corresponds to the rstar.stage3.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (29)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4]
′ (30)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt−1, gt−2, zt−1, zt−2

]′
(31)

H′ =

1 −ay,1 −ay,2
−ar
2

−ar
2

−ar
2

−ar
2

0 −by 0 0 0 0 0

 , A′ =

ay,1 ay,2
ar
2

ar
2 0 0

by 0 0 0 bπ 1− bπ



F =



1 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0


, Q =



(
1 + λ2

g

)
σ2
y∗ 0 0 (λgσy∗)

2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(λgσy∗)
2 0 0 (λgσy∗)

2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
(
λzσỹ

ar

)2
0

0 0 0 0 0 0 0


,

R =

σ2
ỹ 0

0 σ2
π


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The vector of parameters to be estimated by maximum likelihood is as follows:

θ3 =
[
ay,1, ay,2, ar, bπ, by, σỹ, σπ, σy∗

]
The law of motion for the natural rate of interest is r∗t = gt + zt.
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Appendix A2: Data

For each economy, we require data for real GDP, inflation, and the short-term nominal

interest rate, as well as a procedure to compute inflation expectations to calculate the ex

ante real short-term interest rate rt.
10 The variable yt refers to the logarithm of real GDP.

The inflation measure is the annualized quarterly growth rate of the specified consumer

price series. With the exception of the United States, for which core personal consumption

expenditure (PCE) price data are available over the entire sample, the inflation series is

constructed by splicing the core price index with an all-items price index. We use a four-

quarter moving average of past inflation as a proxy for inflation expectations in constructing

the ex ante real interest rate. Short-term interest rates are expressed on a 365-day annualized

basis.

For the United States, we use real GDP and core PCE data published by the Bureau of

Economic Analysis. Inflation is constructed using the price index for PCE excluding food

and energy, referred to as core PCE inflation. The short-term interest rate is the annualized

nominal federal funds rate, available from the Board of Governors. Because the federal funds

rate frequently fell below the discount rate prior to 1965, we use the Federal Reserve Bank

of New York’s discount rate, part of the IMF’s International Financial Statistics Yearbooks

(IFS), prior to 1965. All U.S. data can be downloaded from the St. Louis Fed’s Federal

Reserve Economic Data (FRED) website.11

Canadian real GDP data is taken from the IMF’s IFS. The short-term nominal interest

rate is the Bank of Canada’s target for the overnight rate, taken as the end-of-period value

for each month and aggregated to quarterly frequency. Since the Bank of Canada began

treating the target rate as its key interest rate in May 2001, we use the bank rate as the

short-term interest rate prior to that date. We use the Bank of Canada’s core Consumer

Price Index to construct our inflation series. Prior to 1984, we use CPI containing all items.

With the exception of real GDP, all data is from Statistics Canada.12

Euro Area data is from the Area Wide Model (AWM), available from the Euro Area

10A detailed description of our data and programs, as well as replication materials for the standard HLW
model, is available on the Federal Reserve Bank of New York’s website.

11Mnemonics are as follows. Real GDP: GDPC1; Core PCE: PCEPILFE; Federal Funds Rate: FED-
FUNDS; FRBNY Discount Rate: INTDSRUSM193N.

12Mnemonics from Statistics Canada are as follows. Core CPI: v41690926 (Table 326-0022); CPI:
v41690914 (Table 326-0022); v41690973 (Table 326-0020); Bank Rate: v122530 (Table 176-0043); Target
Rate: v39079 (Table 176-0048). Real GDP is IFS series “Gross Domestic Product, Real, Seasonally ad-
justed, Index”.
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Business Cycle Network (Fagan et al., 2001). The inflation measure is based on the core

price index, HICP excluding energy (series HEX) beginning in 1988; prior to 1988 we use

the overall price index HICP. The nominal short-term interest rate is the three-month rate

(series STN) and the real GDP mnemonic is YER. At the time of publication, the final

update to the Area Wide Model was in 2017; we update the three series from the ECB’s

Statistical Data Warehouse.13

13Mnemonics for the SDW are as follows. Real GDP: MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N;
Core HICP: ICP.M.U2.N.XE0000.4.INX; Nominal Short-term Rate: FM.Q.U2.EUR.RT.MM.EURIBOR3MD .HSTA.
Because data availability is longer for the non-seasonally adjusted price series, we use those and seasonally
adjust them.
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Appendix A3: Pre-COVID Estimates from Modified and Stan-

dard Models

Table A1 reports parameter estimates from the model estimated through 2019:Q4. Figures

10-12 compare estimates from the original HLW (2017) model and the modified model

through 2019:Q4. Both use the current data vintage at the time of publication.

Table A1: Parameter Estimates, Sample Ending 2019Q4

Parameter United States Canada Euro Area

Sample 1961-2019 1961-2019 1972-2019

λg 0.053 0.052 0.036
λz 0.031 0.016 0.032∑

ay 0.941 0.951 0.950
ar −0.067 −0.065 −0.037

(3.973) (2.969) (1.798)
by 0.076 0.047 0.062

(3.077) (1.697) (1.713)
c 1.198 1.130 0.816

(3.484) (2.716) (0.888)

σỹ 0.344 0.395 0.289
σπ 0.794 1.359 0.972
σy∗ 0.568 0.581 0.397
σg 0.121 0.121 0.058
σz 0.157 0.096 0.246

σr∗ =
√

c2σ2
g + σ2

z 0.213 0.167 0.251

S.E. (sample ave.)
r∗ 1.236 1.625 3.480
g 0.395 0.422 0.260
y∗ 1.559 2.470 1.875

S.E. (final obs.)
r∗ 1.656 1.844 4.822
g 0.546 0.574 0.357
y∗ 1.971 2.761 2.429

Notes: t statistics are in parentheses; σg is expressed at an annual rate. Sample through 2019Q4,

using current data vintage at time of publication.
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Figure 10: Modified Model vs. HLW (2017) Model: US
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Figure 11: Modified Model vs. HLW (2017) Model: Canada
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Figure 12: Modified Model vs. HLW (2017) Model: Euro Area
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