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Abstract

For decades, colleges and universities have struggled to increase participation of mi-

nority and disadvantaged students. Urban school districts confront a parallel chal-

lenge; minority and disadvantaged students are underrepresented in selective pro-

grams that use merit-based admission. We analyze optimal school district policy and

develop an econometric framework providing a unified treatment of affirmative action

and profiling. Implementing the model for a central-city district, we find profiling by

race and income, affirmative action for low-income students, and no affirmative ac-

tion with respect race. Counterfactual analysis reveals that these policies achieve

80% of African American enrollment that would be could be attained by race-based

affirmative action.

KEYWORDS: Gifted and talented education, profiling, affirmative action, merit-

based admission, equilibrium analysis, estimation.



1 Introduction

For decades, colleges and universities have grappled with the challenge of increasing

participation of minority and disadvantaged students. Differential admissions criteria

designed to increase participation of minority and disadvantaged students inevitably

collide with concerns for fairness toward those who are displaced. Courts, legislatures,

and electorates have weighed in to define the acceptable limits of affirmative action in

higher education.The Supreme Court has also provided some hints about the extent

to which profiling might be used in lieu of affirmative action. The Supreme Court is

revisiting these issues during its current term, raising the possibility of major change

in permissible use of race-conscious admission policies. While the spotlight has largely

focused on higher education, school districts in large metropolitan areas confront

the same challenge; minority and disadvantaged students are underrepresented in

selective programs for gifted and talented students.1 Efforts to increase participation

of minority and disadvantaged students in these programs are no less controversial

than their higher-education counterparts.2

School districts nationwide make a large investment in providing programs to serve

gifted and talented students. The National Association of Gifted Children estimates

that there are approximately 3 million academically gifted children in grades K-12 in

1To cite a recent example, on September 27, 2012, a complaint was filed with the U.S. Department
of education claiming that the admissions policies of eight elite public high schools in New York
City violate the 1964 Civil Rights Act, causing extreme under-representation of black and Hispanic
students. (Baker, 2012).

2The New York Times dubbed the director of the city’s gifted and talented program a ”lightning
rod for fury” when she announced changes to the admissions policies for the city’s gifted programs
(NYT, March 22, 2006).Approximately, two years later, the times reported: ”When New York City
set a uniform threshold for admission to public school gifted programs last fall, it was a crucial step
in a prolonged effort to equalize access to programs that critics complained were dominated by white
middle-class children whose parents knew how to navigate the system.” The new policy has also met
with intense criticism, and the director of the city’s gifted and talented program has concluded: “We
implemented the eligibility criteria, it didn’t shake out that way and now we have to take another
look at it.” (NYT, June 19, 2008)
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the U.S - almost 7 percent of the student population. As a proportion of the student

population, this is comparable to the percentage of high school students admitted to

selective colleges and universities.3

In this paper we investigate these issues in the context of a gifted and talented

program of a mid-sized urban school district. We document the divergence between

the demographics of the district’s student body relative to the demographics of those

participating in the district’s gifted program. We delineate the constraints under

which the district operates and the policy tools available to the district. We then

study properties of optimal district policy. We formulate and estimate a model to

characterize the district’s use of profiling and affirmative action policies to enhance

participation of minority and disadvantaged students while respecting the merit-based

guidelines promulgated by the state government. We believe this to be the first

econometric model providing a unified treatment of affirmative action4 and profiling

5 in an equilibrium framework that permits counterfactual analysis of policy.

Most large public school districts in the U.S. operate selective programs to serve

3Reardon, et. al. (2012) identify the 171 most selective colleges and universities and report that
approximately 7% of high school students attend one of these selective institutions.

4Becker (1957) introduced the analysis of taste based discrimination into economics. Phelps
(1972) and Arrow (1973) developed a theory of statistical discrimination. The effects of affirmative
action in employment have been studied by Lundberg (1991), Coate & Loury (1993), and Moro &
Norman (2003, 2004). Chung (2000) considers the relationship between role models and affirmative
action. Affirmative action in higher education is considered by Chan & Eyster (2003) , Loury,
Fryer, & Yuret (2008), and Epple, Romano, & Sieg (2006, 2008). Arcidiacono (2005) estimates a
structural model to determine how affirmative action in admission and aid policies affects future
earnings. Hickman (2010a, 2010b) develops and estimates a structural model of college admissions
and compares the effects of alternative admissions policies on incentives for academic achievement,
the racial achievement gap, and the racial college enrollment gap. Long (2007) provides a valuable
summary of the legal status of affirmative action and a review of the evidence regarding the effects
of affirmative action.

5Knowles, Persico, & Todd (2001) stimulated a large body of work on profiling in law enforcement.
In higher education, research on profiling includes Loury et al. (2008), Epple et al. (2008), and Epple,
Romano, Sarpca, and Sieg (2012). State policies mandating admission of a specified fraction of each
high school to state universities, motivated in part to achieve racial balance through profiling, are
studied by Long (2004a, 2004b) and Cullen, Long, & Reback (2012).
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gifted and talented students.6 Admission to these programs is competitive and merit-

based. School districts must promulgate admission policies that establish eligibility

criteria. A district must also set up referral or testing policies that determine which

students are evaluated as potential candidates for the program. Finally, the dis-

trict must determine whether criteria will include consideration of disadvantaged or

minority status.

The goal of gifted and talented programs is to provide education to help highly able

students reach their potential.7 Districts typically utilize achievement or intelligence

tests in their admissions decisions; our district uses an IQ test. Ability is difficult to

observe and, more importantly, non-verifiable, while IQ can be observed and verified

by parents and teachers. Testing is costly. For the district we study, an IQ test is

administered orally on a one-to-one basis between a district psychologist and each

student considered for gifted admission. Testing is also stressful for parents and

students, and can be viewed as an unwelcome burden in cases where students have

a low probability of gaining admission to the selective program. Hence, a referral

procedure is needed to determine which students take the IQ test.

In designing a referral procedure, the district must make a judgment of the extent

to which the benefits of the program vary with observed student characteristics such

as income, race or gender. This judgment may reflect an assessment of potential

gains that students experience from participating in the program. Since ability is

not fully observed, there is uncertainty about these gains. The referral procedure

is then designed to determine which students are referred for testing, balancing the

potential benefits against the costs of testing. We characterize the optimal referral

6International Baccalaureate programs also use stringent admission procedures. The most highly
ranked public high schools in New York, Boston, and Philadelphia all use merit-based admission
procedures.

7Neal & Johnson (1996) show that black-white differences in premarket skill do account for a
significant portion of the black- white earnings gap in the early 1990’s.
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and admission policy for the district. We characterize the way in which referral and

admission policies depend on the weights that the district assigns to the potential

gains to different students.

One key property of our model is that optimal policies are cut-off strategies. As

a consequence, optimal testing and admission policies give rise to a sharp regression

discontinuity design.8 This design is a popular, quasi-experimental method to eval-

uate the effectiveness of interventions in education. Our model implies an optimal

admission rule for which the marginal treatment effect for a student at the cut-off

is determined by the shadow value of the capacity constraint. Hence, a finding of a

small or even zero marginal treatment effect using an RD design would not necessarily

be evidence that the gifted program is ineffective. Broadly speaking, an RD design

is primarily informative for outcomes that are of limited decision relevance for the

district.

While use of an IQ test facilitates transparency, use of such tests is controversial

because evidence suggests that, ceteris paribus, minority students tend to perform

worse on the IQ tests than majority students. A student who has experienced “hard-

ship” may also underperform on achievement tests relative to his or her capability.

These observations motivate policymakers to consider affirmative action and profil-

ing.9 Hence, we study referral policies when districts are permitted to give preferential

treatment to disadvantaged groups, i.e., when affirmative action policies can be de-

signed to increase program participation of underrepresented minorities. We also

study profiling policies that may be employed, either as an alternative or a supple-

ment to affirmative action. Such policies may incorporate adjustments for differential

8Regression discontinuity design was used by Thistlethwaite & D.Cambell (1960). For a rigorous
treatment econometric treatment see Hahn, Todd, & van der Klaauw (2001).

9The state guidelines require that districts consider ”intervening factors” such as ”gender or race
bias, or socio/cultural deprivation” that may ”mask gifted abilities.”
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performance on achievement tests that correlate with observed characteristics such

race or free and reduced lunch status.

To gain additional insights into the quantitative properties of our model and

demonstrate its practical relevance, we parametrize our model and estimate its pa-

rameters. We develop a Maximum Likelihood Estimator that exploits the fact that

important variables are either latent (ability), partially latent (IQ scores), or mea-

sured with error (income and achievement). We conduct a Monte Carlo study that

establishes that our identification strategy is valid and that we can recover the pa-

rameters of the model with reasonable sample sizes.

Our empirical analysis is based on a sample of elementary school students that

entered first grade in the academic year 2004-05. We find that our model fits the data

well and that estimated referral and admission thresholds are broadly consistent with

policies articulated by the district. We find that the district adopts profiling with

respect to both race and subsidized lunch status. The district also uses affirmative

action in admission with respect to subsidized lunch status. We do not find any

evidence that the district engages in affirmative action based on race.

A large proportion of African American students are eligible for free or reduced

lunch. As a consequence, our estimated model implies that applying the FRL admis-

sion policies to all African American students, regardless of FRL status, would have

a modest effect on increasing African American enrollment in the gifted program.

Hence, in contrast to higher education10, we find that profiling that exploits FRL

status can have a quite substantial effect in increasing minority student participa-

tion. Our model also implies that eliminating preferential policies for FRL students

and standardizing referral and admission decisions at the level of non-FRL students

10In his review of affirmative action in colleges and universities, Long (2007) concludes that ”...cor-
relates of race are unlikely to substitute successfully for the consideration of race itself.”
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would reduce the size of the gifted program by up to 50 percent. We thus conclude

that adopting strict merit based referral and admission policies, would significantly

alter the size and composition of the program.

The rest of the paper is organized as follows. Section 2 develops the theoretical

model of optimal referral and admission for a merit-based selective program. Sec-

tion 3 discusses the implications of affirmative action and profiling within our model.

Section 4 introduces a parameterization of the model and develops a Maximum Like-

lihood Estimator. It also reports some evidence from a Monte Carlo study. Section 5

discusses our data set. Section 6 reports the empirical results of this study. Section

7 discusses the policy implications that can be drawn from this analysis.

2 A Model of Merit-Based Admission

We consider the decision problem of a public school district that operates a selective

educational program. Admission is competitive and merit-based. Ability is inherently

difficult to observe and cannot be verified. Admission criteria are, therefore, based

on a standardized achievement or aptitude test. Testing is costly. Hence, not all

students are referred for testing. We model the choice of policy for referral of students

for testing and the choice of policy for admission to the selective program.

2.1 Preferences and Heterogeneity

There is a continuum of students that differ by ability, b. Let q denote the student’s

score on an IQ test and a performance on a prior achievement test. Observed socio-

economic status is denoted y, which, for simplicity of exposition, we term household
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income.11 Let f(a, b, q, y) be the joint density of achievement, academic ability, IQ

score, and income in the population. Students may also differ by discrete character-

istics such as race. We first present the analysis for a single discrete type and then

extend to consideration of more than one such type.

Assumption 1 The density f(a, b, q, y) is continuous and positive on its support

(0, ā)× (0, b̄)× (0, q̄)× (0, ȳ).12

Students benefit from attending a program that is targeted at high-ability stu-

dents. The value that the district attaches to having a student of type (b, y) partici-

pate in the selective program is denoted by v(b, y).

Assumption 2 The value function v(b, y) is continuous and differentiable in both

arguments. Moreover, it is monotonically increasing in b, i.e. vb(b, y) ≥ 0.

This assumption presumes that the district places weight on student ability and

household income. The mission of the program is to serve more able students. Hence,

the sign of vb(b, y) is straightforward. The sign of vy(b, y) may be either positive or

negative, depending on whether a district places greater weight on program partici-

pation of low or high income students.

Let c be the cost of testing a student.13 The district initially observes (a, y) and

chooses a referral policy denoted by α(a, y). The testing procedure provides the

student IQ score.

11Unlike colleges and universities, school districts do not generally obtain financial information
for individual families. Hence, y in our model denotes SES as inferred by district administrators
from student eligibility for free or reduced lunch and, possibility, information such as a household’s
neighborhood of residence.

12For notational simplicity, we assume in the following that the upper bounds are infinity.
13An IQ test is an interactive test administered by a psychologist to an individual student. State

law mandates that gifted status be determined by a certified district psychologist. Cost is typically
cited as the reason for limiting the number of students who are tested. (See NYT, June 19, 2008)
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Finally, there may exist an exogenously given capacity constraint that limits the

size of the program.

Assumption 3 The district faces an exogenous capacity constraint for the program

given by k.

2.2 Optimal Admission and Referral

We start by studying the case in which the district can adopt referral and admission

rules that are not constrained by state rules. In the absence of state guidelines,

referral policies can potentially depend on observables, such as household income and

prior achievement.

Assumption 4 The decision rule that determines who is referred for testing is a

function of prior achievement and income:

0 ≤ α(a, y) ≤ 1 (1)

While it is possible for admission to be conditioned on a number of observed

characteristics, we consider a district that bases admission decisions on IQ. 14

Assumption 5 The decision rule that determines admission to the selective program

is restricted to be a monotonic function of the IQ score, i.e.

0 ≤ β(q) ≤ 1 (2)

with βq ≥ 0.

14We relax this assumption in our application and allow the district to use a comprehensive
“portfolio review” of borderline cases.
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This assumption specifies that the admission rule is based on the score on an IQ

test, q, which is observed by both district administrators and parents. In contrast b

cannot be verified. As a consequence parents and teachers may disagree about b.15

Hence, the key part of Assumption 3 is that admission is based on an observable, the

IQ test score, and not on ability.

The district chooses optimal referral and admission policies. The optimization

problem of the district can be written as:

max
α(a,y),β(q)

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

α(a, y)
(
v(b, y) β(q) − c

)
f(a, b, q, y) da db dq dy (3)

subject to the capacity constraint:

k =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

α(a, y) β(q) f(a, b, q, y) da db dq dy (4)

and the feasibility constraints for α(a, y) and β(q). Proposition 1 characterizes the

optimal admission and referral policies.

Proposition 1 Optimal admission and referral policies satisfy the following first or-

der conditions:

α(a, y)


= 1

∈ [0, 1]

= 0

 as

∫ ∞
0

∫ ∞
0

(
β(q) [v(b, y)− λ] − c

)
f(b, q| a, y) db dq


> 0

= 0

< 0

 (5)

15If q is only a noisy measure of b, it may be useful to allow for retesting and multiple referrals.
We do not consider this extension of our model in this paper.
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and

β(q)


= 1

∈ [0, 1]

= 0

 as

∫ ∞
0

∫ ∞
0

∫ ∞
0

[v(b, y)− λ] α(a, y)f(a, y, b|q) da dy db


> 0

= 0

< 0

 (6)

where λ is the Lagrange multiplier associated with the capacity constraint.

The expected value of referring a student type (a, y) for testing is given by:

V (a, y) =

∫ ∞
0

∫ ∞
0

β(q) [v(b, y)− λ] f(b, q|a, y) db dq (7)

The cost of testing is c. The first condition in equation (5) states that a student of

type (a, y) is referred for testing if the expected value from testing that student type

exceeds the cost of testing.

The second condition in equation (6) characterizes the optional admission policy.

To get some additional insight define

W (q) =

∫∞
0

∫∞
0

∫∞
0

v(b, y) α(a, y)f(a, y, b|q) da dy db∫∞
0

∫∞
0

∫∞
0

α(a, y)f(a, y, b|q) da dy db
(8)

as the expected value to the district of a student of type q.16 A student with IQ

score q is admitted to the program if and only if W (q) exceeds the shadow price λ

associated with the capacity constraint.

16If the district also conditions the admission policy on achievement and income, then the FOC
for optimal admission is given by:

β(a, y, q)

 = 1
∈ [0, 1]

= 0

 as

∫ ∞

0

[v(b, y)− λ] α(a, y)f(b|a, y, q) db

 > 0
= 0
< 0

 (9)

In particular, we have β(a, q, y) = 0 if α(a, y) = 0.
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Proposition 2 There exists a threshold level q̄ such that students above the threshold

are admitted to the program while students below the threshold are not admitted to

the program. The marginal expected treatment effect is determined by the capacity

constraint and satisfies W (q̄) = λ.

Proposition 2 implies that the optimal design of the admission policy gives rise to

a sharp regression discontinuity design. While a researcher may not know a district’s

objective function, increasing the achievement of students assigned to its program

will be a prominent concern of any the district. Hence, it is natural to consider using

regression discontinuity to investigate the impact of a gifted program on student

achievement.17

It is well known that the RD estimator identifies the expected treatment effect of

a marginal student, i.e. a student at the threshold q̄. As Proposition 2 demonstrates,

the expected treatment depends on the capacity constraint. The shadow value of the

capacity constraint may be near zero in some districts, especially in urban districts

that are experiencing declining enrollment and have excess capacity. Hence, an RD

analysis may be useful to a district in assessing whether to undertake a marginal

increase or decrease in enrollment, but it will be of limited usefulness in assessing the

overall value of a district’s gifted program.

Assumptions 1-3 imply that V (a, y) is continuous and differentiable. To get ad-

ditional insights, consider the joint density of (b, q) conditional on achievement and

income, f(b, q|a, y).

Assumption 6 f(b, q|a, y) is increasing in both a and y for each value of (b, q).

17Recall that a is achievement prior to admission to a gifted program. In an RD analysis, the
value added of the gifted program, v(b, y), may be approximated by the gain in achievement due to
the gifted program.
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The former is a natural consequence of the positive association of IQ and achieve-

ment; the latter reflects the well-known tendency of students from higher income

households to exhibit higher IQ. It then follows that

Va(a, y) > 0 (10)

The effect of y on V is less obvious. While f(b, q|a, y) is increasing in y, the district

valuation of participation in the program may be decreasing in y. We assume that

the former dominates the latter, implying

Vy(a, y) > 0, (11)

Summarizing the discussion above, we have:

Assumption 7 The function V (a, y) is continuous and differentiable with Va(a, y) >

0 and Vy(a, y) > 0 everywhere.

Given Assumptions 6 and 7, the next proposition follows directly from the Implicit

Function Theorem.

Proposition 3 The equation V (a, y) = c defines a downward sloping locus a = a(y)

in the (a, y) plane. Students on or above this locus are referred for testing. Those

below the locus are not referred for testing.

A downward sloping referral locus implies that students with higher incomes need

lower achievement scores to be referred for testing since they are expected to perform

better on the IQ test. Figure 1 illustrates the shape of this indifference locus for a

numerical example.
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Figure 1:
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We should point out that our model is sufficiently general to generate an upward

sloping referral locus. A necessary condition for that is that vy(b, y) < 0. i.e that the

district assigns a negative value to higher income households. But this condition is

clearly not sufficient if income is positively correlated with performance on IQ tests.

As a consequence, the district has an incentive to adopt profiling techniques. We

discuss these issues in more detail in the next section.

Finally, the district that we study chooses admission thresholds for gifted admis-

sion following guidelines set by the state. Policy for referral of students for testing is

set at the district level. Hence, in our econometric model, we take admission thresh-

olds as being set exogenously and we take referral policy as set by the district.18

3 Profiling

Students from disadvantaged backgrounds tend to be underrepresented in selective

programs. A potential strategy to reduce this imbalance is via profiling to take ac-

count of factors, such as ”hardship,” that may cause underperformance relative to

ability on achievement tests. Being a minority student or a student with FRL status

are observable indicators that may be correlated with having experienced hardship.

Different criteria for such students can potentially be adopted in either admission or

referral policies. In this section, we undertake analysis to provide an economic foun-

dation for understanding profiling in referral when affirmative action is not permitted.

To study the implications of profiling, we extend our model to consider two discrete

types. Let m denote a student of a disadvantaged or minority type and M denote

18While the state defines gifted to be an IQ of 130, the state gives the district considerable latitude
in setting lower thresholds for some groups of students, and latitude as well in conducting portfolio
review for students near the thresholds. Our treatment of these additional thresholds is detailed in
extensions of the model discussed below.
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the advantaged or majority type.19 Let βj(q) now denote the admission probability

for type j. Affirmative action in admission arises if βM(q) < βm(q).

To provide some insight into the nature of profiling, we develop analytic results

using the following three simplifying assumptions:

Assumption 8

a) The admission rules cannot depend on j and must satisfy βM(q) = βm(q) ∀q.

b) Values are constant for each type and equal across types: vj(b, y) = v for j = m,M

c) There is no capacity constraint, i.e. λ = 0.

Assumption a) rules out that differences in referrals are driven by affirmative

action in admission rules. Assumption b) implies that differences in referrals can-

not be driven by differences in valuations across types. Assumption c) is made for

expositional convenience and can be easily relaxed.

Definition 1 The district employs profiling if referral for testing conditional on

(a, y), depends on type, i.e. if αm(a, y) 6= αM(a, y) for some (a, y).

With type-blind admission standards (Assumption 8a), the district may set dif-

ferent referral criteria for different groups. Assumption 7 implies that type (j, a, y) is

referred for testing if:

pj(a, y) =

∫ ∞
0

∫ ∞
0

β(q) fj(b, q|a, y) db dq ≥ c

v
(12)

where pj(a, y) is the probability that type (j, a, y) passes the test and is granted access

to the program. The achievement of the marginal student of type j who is referred

19In our empirical application we focus on African Americans and students that are eligible for
free or reduced lunch.
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for testing is then obtained by solving for the value of a at which the preceding holds

as an equality. The referral margin for type j is then given by the function aj(y).

Hardship may cause an individual to underachieve relative to potential. In partic-

ular, consider two students with the same observed a and y, one who has experienced

hardship and the other who has not.20 The one who has experienced hardship is more

likely to have higher ability that the student who has not experienced hardship, i.e.,

the one who has experienced hardship has a higher probability of gaining admission

to the gifted program. To formalize the notion of hardship, we use the following

definition:

Definition 2 Hardship of m relative to M is defined if for every (a, y), pM(a, y) <

pm(a, y).

Conditional on measured (a, y) the disadvantaged group has a higher a probabil-

ity of success on the admission test. The next assumption imposes some plausible

monotonicity restrictions on the admission probabilities.

Assumption 9 The probability of test success conditional on referral for a given

demographic type, pj(a, y), is increasing in both of its arguments for j ∈ {M,m}

Let am(y) and aM(y) denote the referral loci for types m and M when profiling

is permitted, and let, and aC(y) denote the common referral locus when profiling is

prohibited. We then have the following result:

Proposition 4

a) If there is no type-contingent preference, i.e., if v is the same for both types, and

20This implies that income is not a sufficient statistic for hardship, e.g., for individuals of different
races. For individuals of the same race, income may be a more accurate indicator of hardship.
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admission criteria are the same for both types, there is profiling in referral for testing,

with the referral locus for m lying below the referral locus for M .

b) If profiling is prohibited and admission criteria are the same for both types, then,

for all y, am(y) < aC(y) < aM(y).

Proof:

a) Let (a′, y′) be a point on the referral threshold for type M : pM(a′, y′) = c
v

.

Then pM(a, y) < pm(a, y), Assumption 9, and the continuity of the distributions of

(a, y) for each type imply that there exists (a′′, y′′), a′′ < a′ and y′ < y′′, such that

pm(a′′, y′′) = c
v
.

b) Let ρ be the proportion of type m in the student population. Let â(y) be the

referral locus when the proportion m is ρ̂. For each y, the latter referral locus satisfies

ρ̂ pm(â(y), y))+(1− ρ̂)pM(â(y), y)) = c
v
. When ρ̂ = 0, â(y) = αM(y), and when ρ̂ = 1,

â(y) = am(y). When ρ̂ = ρ , â(y) = aC(y). Then the result follows from continuity

and am(y) < aM(y). Q.E.D.

Figure 2 illustrates this result using a numerical example. Type 1 refers to minority

students that have experienced hardship while type 2 refers to students that did not

experience hardship.

Proposition 4a implies that there are (a, y) individuals from the group experiencing

hardship, m, who are referred for testing when their advantaged counterparts, M ,

with the same (a, y) are not referred for testing. Between the two referral loci, a

minority student is referred for testing when a majority student is not because the

minority student is expected to perform better on the IQ test than a majority student

with the same characteristics.

Proposition 4b demonstrates that prohibition of profiling results in a referral locus

lies between the referral loci for types M and m. Relative to the case when profiling

17



Figure 2:
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is permitted, prohibition of profiling decreases the proportion of type m referred for

testing and increases the admission success rate of type m. Similarly prohibition of

profiling increases the proportion of type M referred and decreases the success rate

of type M . If profiling is not permitted, the proportion referred for testing will be

higher for type M than type m. The success rate conditional on referral will be higher

for m than for M .

In Proposition 4, we assume that the value added that the district attaches to

admission is the same for both student types, i.e., vm = vM . Note that this equality

and Assumption 8a are conditions sufficient for there to be no affirmative action. In

particular, if we retain Assumption 8a but replace Assumption 8b with vm > vM , then

differential referral criteria would be chosen even if type m experienced no hardship

relative to type M .

4 Estimation

4.1 Observed Outcomes

Let R denote a discrete random variable that is equal to one if the student is referred

for testing and zero otherwise. Let A denote a discrete random variable that is equal

to one if the student is accepted into the selective program and zero otherwise. We

characterize the information set of the econometrician.

Assumption 10 In a random sample of student, we observe the following outcomes.

1. We observe R and A for all students in the sample.

2. For students who are referred for testing R = 1, and we observe q.
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3. We observe income and achievement with error, denoted by ỹ and ã.

4. We do not observe b for any student.

5. We observe race and subsidized lunch status.

The assumption that income and achievement are measured with error is realistic

and helps us generate a non-degenerate likelihood function for our model as described

in detail below.

4.2 A Parametrization

In our application the district adheres to a predetermined admission policy that can

be characterized by the following two equations:

βm(b, q) = 1(Qm ≤ q) + 1(qm ≤ q < Qm) 1(bm ≤ b) (13)

βM(b, q) = 1(QM ≤ q) + 1(qM ≤ q < QM) 1(bM ≤ b)

This specification relax our assumption in Section 2 and allow the district to use

ability in admission as part of a comprehensive “portfolio review” of borderline cases.

We assume the portfolio review reveals b. For each type, there are three thresholds in

the admission function. Students whose IQ score, q, is above the upper IQ threshold,

Qj, gain admission, and students with IQ score below the lower IQ threshold, qj, do

not gain admission. Students between these IQ thresholds gain admission if ability,

b, exceeds the ability threshold, bj. We can estimate qj to be the smallest value of

q such that there exists at least one student in the sample who is admitted to the

program with that level of IQ. Qj can be estimated by the minimum of the IQ score

such that the admission probability is one. The parameters bm and bM are estimated

as part of the maximization of the likelihood function as detailed in Section 4.3.
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The monetary cost of testing, c, is, for simplicity, treated as known to the econo-

metrician and is set equal to $100.

We assume that (a, b, ln y) are jointly normally distributed. Measured IQ equals

ability plus a normally distributed error that is independent of (a, b, ln y):21

q = b + εq

Errors for observed income and achievement are classical measurement errors with

variances the same across types.

The district’s value function for type j is given by:

vj(b, y) = eζb,j b + ζy,j ln(y). (14)

This functional form for vj(b, y) simplifies the computational burden by permitting the

terms multiplying βj(b, q) in the integrand for Vj(a, y) to written as a multivariate

normal multiplied by a constant that is a function of the parameters of the joint

distribution of (a, b, ln y).

The admission rules define two loci, ym(a) and yM(a), for minority and majority

students respectively:

yj(a) : Vj(a, y) =

∫ ∞
0

∫ ∞
0

βj(b, q) v(b, y) fj(b, q|a, y) db dq = c

21Heckman (1995) presents evidence that the predictive power of IQ as a measure of academic
ability differs very little by race or gender.
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4.3 The Likelihood Function

In our application, we consider four types using race and free or reduced lunch status

to defined each type. We begin by specifying an element of the likelihood for a given

type, j. With measurement error in income and achievement, the probability of

observing R = 0 conditional on (j, ã, ỹ) is given by:

Pr{R = 0 |j, ã, ỹ} =

∫
(1− αj(a, y)) fj(a, y|ã, ỹ) dy da (15)

=

∫ ∫ yj(a)

0

fj(a, y|ã, ỹ) dy da

Similarly, the probability of observing R = 1 and A = 1:

Pr{R = 1, A = 1| j, q, ã, ỹ} (16)

=

∫ ∫ ∫
αj(a, y) βj(b, q) fj(a, y, b|q, ã, ỹ) dy da db

=



∫ ∫
yj(a)

fj(a, y|q, ã, ỹ) dy da if q ≥ Qj∫ ∫
yj(a)

∫
bj
fj(a, y, b|q, ã, ỹ) db dy da if Qj > q ≥ qj

0 if qj > q

Finally, the probability of observing R = 1 and A = 0 is given by:

Pr{R = 1, A = 0| j, q, a, ỹ} (17)

=

∫ ∫ ∫
αj(a, y) (1− βj(q, b)) fj(a, y, b|ã, ỹ, q) db dy da

=


0 if q ≥ Qj∫ ∫

yj(a)

∫ bj
0

fj(a, y, b|q, ã, ỹ) db dy da if Qj > q ≥ qj∫ ∫
yj(a)

fj(a, y|q, ã, ỹ) dy da if qj > q
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The likelihood for a single observation is then given by:

L = [Pr{R = 0| j, ã, ỹ} fj(ã, ỹ)](1−R) (18)

[Pr{R = 1, A = 1| j, q, ã, ỹ} fj(ã, ỹ, q)]R A

[Pr{R = 1, A = 0| j, q, ã, ỹ} fj(ã, ỹ, q)]R (1−A)

The likelihood for a sample of N students is then a straightforward product of the

above for the N observations.

Summarizing, we have introduced a parameterization of the model and shown how

to consistently estimate the parameters of the model using a Maximum Likelihood

estimator. We rely on measurement error in income and prior achievement, both

quite natural in this application, to generate a well-defined likelihood function.22

4.4 A Monte Carlo Study

We conducted a Monte Carlo study to get some additional insights into the small

sample properties of our ML estimator. We generated 50 samples with sizes equal to

5000 observations. Table 1 summarizes the findings of the Monte Carlo exercise. It

reports the true parameter values under which the data were generated, the mean of

the estimates, the standard deviation of the estimates and the sample mean of the

estimated asymptotic standard errors.

We find that the small sample bias of most parameters is negligible. The only

22An alternative approach for estimating the model is to treat ability as observed by the district
and unobserved by the econometrician. One could then model then treat the observed achievement
scores as different measurements of ability and derive a likelihood function of the model using the
techniques in Carneiro, Hansen, & Heckman (2003) and Cunha & Heckman (2008). As in our
model, identification can be achieved without imposing strong linearity or normality assumption as
discussed in Schenach (2004) and Cunha, Heckman, & Schenach (2010).
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Table 1: Monte Carlo Results

True Value Mean Std Dev. Asymp. Errors
Ability: mean 100 100 0.75 0.65
Ability: std. dev. 13 13 0.54 0.51
IQ error: std.dev. 7 6.9 0.52 0.51
Achievement error: std. dev. 0.3 0.3 0.01 0.01
Income error: Std. dev. 0.05 0.07 0.05 0.08
Ability income: correlation 0.5 0.5 0.03 0.03
Achievement income: correlation 0.3 0.3 0.03 0.03
Ability: utility parameter 0.055 0.055 0.01 0.01
Income: utility parameter -0.25 -0.26 0.09 0.08
Ability threshold FRL 115 115 0.40 0.40
Ability threshold no FRL 120 120 0.53 0.56
Simulations: 50

parameters that are slightly more difficult to estimate in small samples are the pa-

rameters of the value function.

5 Data

Our application focuses on a selective gifted program that is operated by a mid-

sized urban district that prefers to stay anonymous. The district operates a pull-out

program that is administered by a Gifted Center that serves students in elementary

and middle school. Gifted students in grades 1 through 8 participate in a one-day-per-

week program at a designated location away from the student’s home school. Students

participate in programs designed to enhance creative problem solving and leadership

skills and are offered specially designed instruction in math, science, literature, and

a variety of other fields.
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The district adheres to state regulations concerning gifted students and services.

The state regulations outline a multifaceted approach used to identify whether a

student is gifted and whether gifted education is needed. The state requires gifted

status to be determined by a certified district psychologist. A mentally gifted student

who is not on free and reduced lunch is defined as someone with an IQ score of at least

130. The regulation specifies that a student with IQ score below 130 may be admitted

”... when other educational criteria in the profile of the person strongly indicates

gifted ability (emphasis added).” The state guidelines provide for consideration of

factors that may ”mask” giftedness including “. . . gender or race bias, or socio/cultural

deprivation. . . ” We treat these admission guidelines as exogenous to the district and

focus on modeling and analysis of the district’s implementation as reflected in referral

and admissions data.

Most referrals and admissions for the gifted program occur during elementary

school in grades 1-4. We focus on this population in this paper. The sample consists

of the cohort of students that were in 1st grade in 2004/05. We follow these students

until the end of 4th grade. Pre-referral achievement scores are constructed based on

the Oral Reading Fluency (ORF) test. We standardize ORF scores for every period

in every grade and compute the average score for each student. In addition we have

access to Pennsylvania System of School Assessment (PSSA) scores that measure

reading and math skills in 3rd grade. We construct our prior achievement measures

by averaging over both types of scores. The ORF measures have the advantage that

they are available for young students. However, they tend to be more noisy measures

of achievement than PSSA scores.23

Income is measured by median neighborhood (Census tract) income and taken

23We experimented with different measures of achievement scores in the empirical analysis reported
below. Overall, the main findings are quite robust. Results are available upon request from the
authors.
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from the U.S. Census. Recall that district policymakers do not have measures of

income of individual households. Hence, neighborhood income is likely to be a key

part of the information set used by policymakers to infer household income. FRL

refers to free or reduced lunch status. To assign an income level to the FRL cut-off

we use the average threshold for the years 2006, 2007 and 2008, for 3.5 household

members.

We start with a sample of 3,306 students. We keep those students who were at

the school district during the first four grades of school. This reduces our sample by

roughly one half, to 1,592 students. We drop 55 observations without lunch status

data, and 185 that changed their lunch status over the four school grades. We elim-

inate 9 observations without income data, and 13 other observations without prior

achievement data. Finally, we eliminate duplicate observations that correspond to

students who were referred more than once. The final sample size is 1,326 observa-

tions.

Table 2 reports descriptive statistics for the full sample as well as the subsamples

by FRL status and race. We find that the sample is predominantly poor and the

Table 2: Sample Statistics by FRL status and Race

Lunch status Race
All types Non-FRL FRL Non Black Black

Sample size 1326 345 981 585 741
Free or Reduced lunch 0.74 0.51 0.92
Black in sample 0.56 0.17 0.70
Achievement avg. -0.02 0.74 -0.29 0.37 -0.33
N. Income avg. 28,363 36,786 25,401 33,962 23,944
Fraction Referred 0.20 0.50 0.09 0.31 0.11
Fraction Gifted 0.10 0.30 0.03 0.19 0.03
Ratio Gifted/Referred 0.51 0.60 0.36 0.61 0.32
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majority of students are black which is typical for many urban districts. Achievement

and income are negatively correlated with FRL status and race. Table 2 also shows

that 92 percent of all African American students in our sample are eligible for free

or reduced lunch. Only 51 percent of non-black students in our sample qualify for

subsidized lunch.

Table 3 reports additional descriptive statistics by referral and admission status.

We find that gifted students have higher achievement scores, income and IQ than

non-gifted students. Similarly, referred students have higher achievement scores and

income than non-referred students.

Recall that income is measured as mean neighborhood income. For non-black

students, neighborhood income is $38,296 and $30,028 depending on whether they

are on FRL or not. For black students, the neighborhood income levels are $29,932

and $23,439, respectively.

As noted above, the state guidelines encourage consideration of measures of hard-

ship in determining gifted eligibility. To comply with these guidelines, the district

adopts different admission policies for different groups of students. We test for af-

firmative action in admission for students that come from low-income households,

indicated by FRL status, and for affirmative action with respect to race.

Table 4 divides the sample of tested students into six IQ scores intervals. It reports

the percentage of students admitted in each interval for each type of student. The

upper panel of Table 4 breaks down the sample by free or reduced lunch status, the

lower panel by race. We find that the the admission probabilities are increasing in

IQ score. For students who are not on FRL, the probability of acceptance is, for all

practical purposes, equal to one if the IQ score is larger than 125. It drops to 12

percent if the IQ is below 115. For students on FRL, the admission probability is
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Table 3: Statistics for Non Referred, Referred and Gifted Students

All Students
Referred students only

Non referred Referred Non Gifted Gifted
Free or Reduced lunch 0.84 0.34 0.45 0.23
Black in sample 0.62 0.31 0.43 0.19
Achievement avg. -0.32 1.21 0.94 1.46
N. Income avg. 26,620 35,545 31,181 39,616
IQ avg. 109.6 125.3

Non-FRL Lunch lunch Students
Referred students only

Non referred Referred Non Gifted Gifted
Black in sample 0.21 0.13 0.22 0.07
Achievement avg. 0.07 1.41 1.18 1.56
N. Income avg. 32,995 40,600 36,138 43,589
IQ avg. 111.9 127.0

Free or Reduced lunch Students
Referred students only

Non referred Referred Non Gifted Gifted
Black in sample 0.70 0.66 0.70 0.58
Achievement avg. -0.40 0.83 0.66 1.14
N. Income avg. 25,387 25,552 25,073 26,417
IQ avg. 106.7 119.7

Non Black Students
Referred students only

Non referred Referred Non Gifted Gifted
Free or Reduced lunch 0.66 0.17 0.24 0.12
Achievement avg. -0.08 1.38 1.09 1.56
N. Income avg. 31,444 39,626 35,847 42,087
IQ avg. 111.3 126.4

Black Students
Referred students only

Non referred Referred Non Gifted Gifted
Free or Reduced lunch 0.95 0.72 0.72 0.72
Achievement avg. -0.47 0.84 0.75 1.02
N. Income avg. 23,669 26,246 25,045 28,841
IQ avg. 107.3 120.7
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Table 4: Ratios of Gifted Students by IQ bins, by FRL status

Non-FRL Lunch FRL
IQ score total % Admitted total % Admitted
<110 30 0.13 40 0.08
110≤ <115 17 0.12 12 0.17
115≤ <120 28 0.50 19 0.53
120≤ <125 28 0.50 8 1.00
125≤ <130 30 1.00 5 1.00
130≤ 39 1.00 3 1.00

Non Black Black
IQ score total % Admitted total % Admitted
<110 33 0.12 37 0.08
110≤ <115 20 0.15 9 0.11
115≤ <120 30 0.57 17 0.41
120≤ <125 27 0.56 9 0.78
125≤ <130 33 1.00 2 1.00
130≤ 37 1.00 5 1.00
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one for all students with score larger than 120. It drops to 17 percent for students

with IQ between 110 and 115. We see evidence suggesting that students on FRL face

lower admission standards.

Next we consider admission standards by race shown in the lower panel of Table 4.

There are two jumps in admission probabilities: the first jump is at 115 and the second

at 125. Black students have lower admittance ratios at the range between 110 and

115, but higher admission probabilities in the range between 120 and 125. Overall,

in the 115 to 125 interval, the admission rate for black students is slightly lower than

for non-black students. Hence, there is little evidence that suggests affirmative action

based on race.

Recall from the discussion following equation (12) that the upper thresholds, Qj,

are estimated by observing the threshold above which all students are admitted. From

Table 4, we see that all students on FRL with IQ score above 120 obtain admission

while students not on on FRL face a higher cut-off level of 125 for guaranteed admis-

sion. Hence, QM and Qm are 120 for FRL and 125 for non-FRL. The IQ threshold

for portfolio review is the level below which admission to the gifted program is zero.

From We also find that, regardless of FRL status, this lower cutoff is 103. Hence,

qM = qm = 103. Students of type j scoring between qj and Qj obtain portfolio review.

We use these admission bounds when we estimate the structural parameters of the

model.

Table 5 reports income and prior achievement by gifted status. We find that gifted

students typically have higher income levels, higher prior achievement scores, and, by

construction, higher IQ scores than students that are not gifted. The only notable

exception is that we find little differences in neighborhood incomes and prior test

scores for black students on free and reduced lunch. These students only differ by

their performance on the IQ test.
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Table 5: Gifted Status by FRL and Race

Non Gifted Gifted
Non-FRL FRL Non-FRL FRL

Achievement avg.

N
on

B
la

ck

1.19 0.79

N
on

B
la

ck

1.57 1.45
N. Income avg. 37,665 30,072 43,968 28,204
IQ avg 113 108 127 121

Achievement avg.

B
la

ck

1.15 0.60

B
la

ck

1.33 0.91
N. Income avg. 30,638 22,894 38,391 25,127
IQ avg. 110 106 125 119

Finally, we provide some evidence of differential treatment in referral. Table 6

reports income and prior achievement by referral status. We find that there are large

differences in prior achievement among students who are referred for testing and those

who are not. Differences in income are only notable for students who are not on FRL.

Table 6: Referral Status by FRL and Race

Non Referred Referred
Non-FRL FRL Non-FRL FRL

Achievement

N
on

B
la

ck

0.11 -0.18

N
on

B
la

ck

1.44 1.07
N. Income 34,256 30,007 41,699 29,262

Achievement

B
la

ck

-0.07 -0.49

B
la

ck

1.20 0.70
N. Income 28,199 23,408 33,105 23,599
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6 Empirical Results

6.1 Overview of Main Results

We estimate and compare six different model specifications to explore the extent

to which the district engages in profiling and/or affirmative action in referral and

admission decisions. It is useful to begin by summarizing the set of parameters to be

estimated. As detailed below, we find no role for estimated income after allowing for

four race-by-FRL types. Anticipating this, we simplify the exposition by providing a

summary of number of parameters in the model when income does not appear.

In principle, the district might engage in affirmative action in admission based

on race or FRL status. Admission thresholds qj and Qj vary by type as does the

portfolio review threshold bj. With four types, there are then 12 parameters in the

admission function.

The district may also have differential preferences with respect to participation

by race or FRL. This is captured by four utility function parameters. The remaining

parameters are those appearing in the distributions of types. For each type, we have

means and covariances for ability and achievement. This yields five parameters per

type for a total of 20 parameters. In addition, there are two measurement error

variances–for achievement and IQ. Hence, the most general specification of the model

has 38 parameters.

With the potential for profiling by type, affirmative action by type with respect

to thresholds, and affirmative by type with respect to district preferences, there are

a large number of potential policy combinations. Fortunately, we are able to isolate

the policies used in practice by estimating six different models. Table 7 summarizes

how the six different models estimated in this paper differ and reports the likelihood
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function values (LnL) associated with the models.

It proves to be quite instructive to begin by permitting no variation in policy

by race. This is done in Models I through III. These models permit variation in

treatment only with respect to FRL status. Model II permits profiling with respect

to FRL and affirmative action with FRL thresholds but not preferences. It is the

clear choice by LnL among these three. A more restrictive policy (Model I) that does

not permit profiling substantially reduces LnL. On the other hand, extending Model

II to permit preference variation by FRL status yields a negligible gain in fit as shown

by LnL for Model III. Hence, among models that allow no racial preference, the best

fitting alternative, Model II, permits profiling with respect to FRL and affirmative

action with respect to the FRL admission threshold.

Next, consider Models IV through VI. All three permit profiling with respect to

race while exploring variation in profiling and affirmative action thresholds. Among

these, Model V is the most general, permitting differential treatment by both race and

FRL on all policies except affirmative action with respect to preferences in FRL. Rel-

ative to Model V, Model IV eliminates both forms of affirmative action with respect

to FRL. This yields a very significant reduction in fit, establishing the dominance of

V over IV. Model VI restricts Model V by eliminating affirmative with respect to the

race threshold, resulting in a negligible reduction in fit. Hence, model VI is preferred

among this group.

Finally, we compare the dominant models from the two groups, II and VI. We see

that II yields a significant reduction in fit relative to Model VI. Hence, we conclude

that Model VI is the preferred alternative among this group of six. In short, no

generalization of VI improves fit, and every restriction of VI significantly reduces the

fit. We conclude that the district engages in profiling based on FRL status and race.

It also engages in affirmative action in admission based on FRL status. There is no
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Table 7: Model Summary

Model Profiling Affirmative Action Affirmative Action Likelihood
Admission Threshold Preferences

FRL Race FRL Race FRL Race

I No No Yes No No No -3290

II Yes No Yes No No No -3101

III Yes No Yes No Yes No -3100

IV No Yes No Yes No Yes -3179

V Yes Yes Yes Yes No Yes -3072

VI Yes Yes Yes No No No -3073

evidence that the district engages in affirmative action based on race. There is also

no evidence suggesting preference based affirmative action with respect either to race

or FRL.

Finally, we have explored specifications of our model in which referral decisions

depend on income in addition to FRL status. In one model the school district observes

income and achievement and makes referral decisions based on both variables while we

observe individual achievement with error as well as the mean and standard deviation

of income for the school district. Overall, we find that, conditioning on FRL status,

adding a continuous income measure to our model does not improve the model fit. The

finding that income plays no distinct role is potentially attributable to the following

considerations. The district does not directly observe household income and would

need to infer income informally from neighborhood of residence, interactions with

household members, and similar observables. The lack of transparency associated
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with such inferences is clearly problematic and introduces potential for allegations of

favoritism. By contrast FRL status is determined by criteria set externally to the

district and therefore provides a transparent indicator for application of differential

admission standards.

6.2 Parameter Estimates and Model Fit

Next we discuss the estimation results in further detail. We have seen from Table

7 that Model III provides no gain over II, and Model V provides no gain over VI.

Hence, in Tables 8 and 9, we focus in on goodness of fit statistics by FRL and race

respectively for the remaining four models. We see from Table 8 that the Model I fits

the characteristics of FRL students well, but fails to explain the admission and referral

outcomes for non-FRL students. Model II fits both subsamples well. A likelihood

ratio of test of Model II against Model I shows the restrictions of the latter to be

rejected with p = .08. These observations reinforce our conclusion above that that

Model II is strictly preferred to Model I.

Table 9 reports goodness of fit statistics conditional on race. Recall that race does

not play a role in any of the first three models that we have estimated. While Model

II fits the conditional distributions by FRL status well, it does less well explaining

the sorting by race. In particular, Table 9 suggests that Model II over-predicts the

fraction of non-black students who are referred for testing and under-predicts the

fraction of non-black students that are admitted to the program. Similarly, Model

II under-predicts the faction of black students that are referred for testing and over-

predicts the fraction of blacks students that are admitted to the program.

Recall that Model IV is similar to Model II but controls for race, instead of FRL

status. Table 8 shows that Model IV is inconsistent with the observed sorting by
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FRL status. Overall, Model IV fits the data much worse than Model II, supporting

the judgment that FRL status is more important in explaining referral and admission

policies than race.

Turning to Model VI, we see that the goodness of fit statistics reported in Tables

8 and 9 for Model VI accord well with the observed sorting by both FRL status and

race. Hence, these goodness-of-fit comparisons support the conclusion that Model VI

is the preferred alternative.

Our finding that Model VI fits the data well carries the implication that the district

does not apply different criteria in admission decisions for African American students–

either with respect to admission thresholds or preferences. Profiling with respect to

race enhances prediction of performance by race, but does not imply preferential

treatment by race. Hence, we conclude that the district provides no preferential

treatment by race. By contrast, the district does give preferential treatment with

respect to FRL status in setting admission thresholds.

We now turn to the parameter estimates. We report our preferred specification,

Model VI, in Table 10. We also report the estimates for Model II to illustrate the

importance of allowing for profiling based on race. Beginning with mean achievement

estimates in the top panel, we see that students on FRL have lower achievement than

their non-FRL, same-race counterparts. We see as well that non-black students have

higher achievement than black students. The standard deviations of achievement

exhibit some variation across race and FRL, with variance of non-white, non-FRL

students being moderately higher than for the other three student types.

Our estimates of the parameters of ability are shown in the second panel. The

means of ability exhibit a striking contrast to the means of achievement. Mean ability

estimates for those on FRL are virtually the same for black and non-black students.
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Table 8: Goodness of Fit by FRL Status

Non-FRL lunch Students
Data Model I Model II Model IV Model VI

Non Referred 50.1 80.5 50.9 72.5 51.2
IQ ≥ Qsup 20 4.6 16.8 8.5 17.0
Qsup > IQ ≥ Qinf , b ≥ BM 9.9 5.6 11.1 6.8 11.1
Qsup > IQ ≥ Qinf , b < BM 18 7.4 18.8 10.5 18.3
IQ < Qinf 2 2 2.3 1.7 2.4
Avg. Achieve. non Referred 0.1 -0.3 0.1 -0.2 0.1
Avg. IQ non Referred 93.1 101.6 97.4 102.9
Avg. Achieve. Referred 1.4 1.2 1.4 1.3 1.4
Avg. IQ Referred 121 117.1 120.9 119.8 121.0
Avg. Achieve. Referred non Gifted 1.2 1.0 1.1 1.0 1.1
Avg. IQ Referred non Gifted 111.9 109.5 112.4 111.6 112.3
Avg. Achieve. Referred Gifted 1.6 1.4 1.6 1.6 1.7
Avg. IQ Referred Gifted 127 124.2 127.4 126.3 127.4

FRL Students
Non Referred 91.1 80.3 90.9 83.2 90.9
IQ ≥ Qsup 1.6 7.7 1.7 3.7 1.8
Qsup > IQ ≥ Qinf , b ≥ BM 1.5 2.4 1.6 3.8 1.6
Qsup > IQ ≥ Qinf , b < BM 4.1 7.6 4.0 7.3 4.0
IQ < Qinf 1.6 1.9 1.7 2.0 1.8
Avg. Achieve. non Referred -0.4 -0.3 -0.4 -0.4 -0.4
Avg. IQ non Referred 93.1 90.5 91.1 89.1
Avg. Achieve. Referred 0.8 1.2 0.9 1.1 0.9
Avg. IQ Referred 111.3 117.2 111.6 116.4 111.6
Avg. Achieve. Referred non Gifted 0.7 1.0 0.8 0.9 0.7
Avg. IQ Referred non Gifted 106.7 108.8 106.7 109.5 106.6
Avg. Achieve. Referred Gifted 1.1 1.3 1.0 1.4 1.1
Avg. IQ Referred Gifted 119.7 125.2 119.8 124.9 120.1
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Table 9: Goodness of Fit by Race

Non Black Students Students
Data Model I Model II Model IV Model VI

Non Referred 69.2 80.4 71.3 69.2 69.6
IQ ≥ Qsup 12.3 6.2 9.1 10.0 10.8
Qsup > IQ ≥ Qinf , b ≥ BM 6.3 4.0 6.3 7.7 7.2
Qsup > IQ ≥ Qinf , b < BM 10.9 7.5 11.3 11.5 10.9
IQ < Qinf 1.2 2.0 2.0 1.6 1.6
Avg. Achieve. non Referred -0.1 -0.3 -0.2 -0.1 -0.1
Avg. IQ non Referred 93.1 94.4 99.8 97.2
Avg. Achieve. Referred 1.4 1.2 1.3 1.4 1.4
Avg. IQ Referred 120.5 117.2 119.4 120.4 120.5
Avg. Achieve. Referred non Gifted 1.1 1.0 1.0 1.1 1.1
Avg. IQ Referred non Gifted 111.3 109.1 111.2 112.0 111.8
Avg. Achieve. Referred Gifted 1.6 1.4 1.5 1.6 1.6
Avg. IQ Referred Gifted 126.4 124.7 126.6 126.5 126.6

Black Students
Non Referred 89.3 80.3 87.8 89.3 89.3
IQ ≥ Qsup 1.8 7.5 2.9 1.0 1.7
Qsup > IQ ≥ Qinf , b ≥ BM 1.6 2.7 2.3 2.1 1.6
Qsup > IQ ≥ Qinf , b < BM 5.7 7.6 5.2 5.4 5.2
IQ < Qinf 1.6 1.9 1.7 2.1 2.2
Avg. Achieve. non Referred -0.5 -0.3 -0.4 -0.5 -0.5
Avg. IQ non Referred 93.1 91.0 88.2 87.8
Avg. Achieve. Referred 0.8 1.2 1.1 0.8 0.8
Avg. IQ Referred 111.5 117.2 114.5 111.5 111.5
Avg. Achieve. Referred non Gifted 0.8 1.0 0.9 0.7 0.7
Avg. IQ Referred non Gifted 107.3 108.8 108.1 107.6 107.1
Avg. Achieve. Referred Gifted 1.0 1.4 1.3 1.1 1.1
Avg. IQ Referred Gifted 120.7 125.1 123.0 121.1 121.1
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Table 10: Parameter Estimates

MODEL II MODEL VI
Mean Achievement 0.74 0.80

(0.05) (0.06)
Mean Achievement FRL -0.29 -0.05

(0.03) (0.05)
Mean Achievement Black 0.74 0.41

(0.05) (0.12)
Mean Achievement FRL Black -0.29 -0.39

(0.03) (0.03)
Std Dev Achievement 0.99 0.99

(0.04) (0.04)
Std Dev Achievement FRL 0.85 0.87

(0.05) (0.04)
Std Dev Achievement Black 0.99 0.88

(0.04) (0.08)
Std Dev Achievement FRL Black 0.85 0.83

(0.05) (0.02)
Mean Ability 111.0 112.8

(1.5) (1.5)
Mean Ability FRL 92.3 93.7

(5.0) (6.0)
Mean Ability Black 111.0 106.3

(1.5) (4.1)
Mean Ability FRL Black 92.3 94.9

(5.0) (6.2)
Std Dev Ability 13.0 12.5

(1.5) (1.5)
Std Dev Ability FRL 11.8 12.2

(2.5) (3.5)
Std Dev Ability Black 13.0 10.7

(1.5) (3.6)
Std Dev Ability FRL Black 11.8 10.2

(2.5) (2.9)
Std Dev Ability Error 7.3 7.2

(0.6) (0.6)
Std Dev Achievement Error 0.57 0.55

(0.02) (0.02)
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Table 10: Parameter Estimates (cont.)
MODEL II MODEL VI

Correlation Ability Achievement 0.94 0.94
(0.03) (0.03)

Correlation Ability Achievement FRL 0.91 0.93
(0.06) (0.05)

Correlation Ability Achievement Black 0.94 0.78
(0.03) (0.15)

Correlation Ability Achievement FRL Black 0.91 0.84
(0.06) (0.12)

Utility Ability 0.060 0.058
(0.006) (0.005)

Utility Ability Black 0.060 0.058
(0.006) (0.005)

Ability Threshold Non-FRL 119.3 119.5
(0.9) (0.9)

Ability Threshold FRL 114.1 114.2
(1.2) (1.1)

Ability Threshold Non-FRL Black 119.3 119.5
(0.9) (0.9)

Ability Threshold FRL Black 114.1 114.2
(1.2) (1.1)

Achieve. Threshold Non-FRL 0.76 0.78
Achieve. Threshold FRL 0.57 0.80
Achieve. Threshold Non-FRL Black 0.76 0.64
Achieve. Threshold FRL Black 0.57 0.45
Log likelihood -3101.2 -3072.6
Sample size: 1326
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For students not on FRL, non-black students have a higher mean than black students,

but the relative difference is substantially smaller than for achievement. The contrast

between the variation in means of achievement by race and FRL to the variation

in means of ability by race and FRL provides insight into our finding (Table 7) of

significant scope for profiling by race and FRL. The standard deviations of ability are

modestly higher for non-FRL than for FRL students.

Panel four provides further evidence of the basis for profiling. The correlation

between achievement and ability is substantially higher for non-black than for black

students. Differences in correlation across FRL status within race are much smaller,

especially for non-black students. The fourth panel reveals, not surprisingly, that

there is substantial error in measurement of both ability and achievement.

From the fifth panel, we see that the coefficient of utility for ability is .058. From

panel two of Table 10, we see that the standard deviation of ability is on the order

of 10. Hence, given two students differing in ability by one standard deviation, the

district planner attaches approximately 75% higher monetary value to to having the

higher-ability student participate in the gifted program.

From the sixth panel, we see the magnitude of affirmative action with respect

to FRL students; the ability threshold for FRL students is approximately one half

standard deviation below the ability threshold for non-FRL students.

The seventh panel in Table 10 presents profiling thresholds. While our estimated

model is more general than the model underlying Proposition 4, that proposition

gives insight into our findings with respect to profiling. As discussed above, our

findings in Table 10 reveal that mean estimated ability is virtually the same for

black and non-black students on FRL, but achievement of black students on FRL

is substantially lower than achievement of non-Black students on FRL. Hence, in

41



accordance with Proposition 4, the referral threshold for black students on FRL (.45)

is lower than for non-black students on FRL (.80). For students not on FRL, black

students have a lower referral threshold (.64) than non-black students (.78). This

too is consistent with lower achievement relative to ability for black than non-black

students. Interestingly, the referral threshold for non-black students is virtually the

same for FRL and non-FRL students. This suggests that achievement relative to

ability is roughly comparable for non-black students regardless of FRL status.

7 Policy Analysis

In 2003, the US Supreme Court considered two affirmative action cases against the

University of Michigan, naming then-president Lee Bollinger, as defendant. One,

Grutter v. Bollinger (2003), challenged the admission policy of the law school. The

other, Gratz v. Bollinger (2003), challenged the undergraduate admission policy. The

court upheld the former, seeing it as narrowly construed and employing race only as

a possible favorable factor, while striking down the latter as being too closely akin

to a quota system. The court decision with respect to Michigan’s undergraduate

admission policy prompted many colleges and universities to change their admission

policies to reduce or eliminate race as a distinct admission criterion.

The Gratz v. Bollinger decision prompted research investigating the extent to

which race-blind policies, coupled with selection employing correlates of race, might

preserve racial diversity in higher education.24 Here we use race-blind to mean that

criteria for student admission do not vary by race. These analyses suggest that, at the

college level, banning affirmative action while permitting of use of correlates of race

results in a very significant reduction in minority attendance, especially at top-tier

24See, for example, Chan & Eyster (2003), Epple et al. (2008) and Loury et al. (2008).
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institutions.

It is likely that the Gratz v. Bollinger decision also induced many school districts,

possibly including the one that we study, to adopt race-blind referral and admission

policies. Subsequent Supreme Court decisions directly focused on K-12 education

reinforce the need for school districts develop race-blind policies. In 2007, the Court

decided two cases involving K-12 education, one in Seattle (Parents Involved in Com-

munity Schools v. Seattle School District No. 1) and the other in Louisville (Meredith

v. Jefferson County Board of Education). In those cases, the Court invalidated the

districts’ racial desegregation plans, ruling that students could not be assigned to

schools solely to achieve racial balance. Not surprisingly, the Court was closely di-

vided. Casting the pivotal vote, Justice Kennedy sided with the conservative wing of

the Court to form a majority to ban use of race in determining school assignments. In

his opinion, however, Justice Kennedy pointedly left the door open to use of correlates

of race to achieve race-conscious objectives.

The following important policy question then arises: How closely can race-

conscious but race-blind policies achieve the objectives of racial integration of gifted

K-12 academic programs? Our model permits us to provide an analysis of the effect

on racial diversity of affirmative action based on race. We can compare this approach

to the effect of affirmative action based on a correlate of race—FRL status. We,

therefore, consider two policy alternatives. Policy 1 employs affirmative action with

respect to both FRL and race. This is accomplished by extending the admission

threshold for FRL students to all African American Students. Policy 2 eliminates

affirmative action entirely.

Our model predicts that adoption of Policy 1 would increase gifted enrollment of

African American students in this cohort from 18.7 to 22.3 percent. Under Policy 2,

enrollment of African American students would drop to 12.9 percent. Thus, elimi-
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Table 11: Policy Analysis

Data Model VI Policy 1 Policy 2
Non Black Students

Not Referred 69.2 69.6 69.6 72.4
Admitted IQ 12.3 10.8 10.8 9.9
Admitted Portfolio 6.3 7.2 7.2 6.5
Avg. IQ Referred 120.5 120.5 120.5 121.5
Avg. IQ Gifted 126.4 126.6 126.4 127.4

Black Students
Not Referred 89.3 89.3 88.2 93.1
Admitted IQ 1.8 1.7 2.2 1.0
Admitted Portfolio 1.6 1.6 1.9 1.0
Avg. IQ Referred 111.5 111.5 110.9 114.0
Avg. IQ Gifted 120.7 121.1 120.3 124.2

Non-FRL Lunch Students
Not Referred 50.1 51.2 48.7 51.2
Admitted IQ 20 17.0 17.9 17.0
Admitted Portfolio 9.9 11.1 11.7 11.1
Avg. IQ Referred 121 121.0 120.2 121.0
Avg. IQ Referred Gifted 127 127.4 126.8 127.4

FRL Students
Not Referred 91.1 90.9 90.9 95.5
Admitted IQ 1.6 1.8 1.8 0.7
Admitted Portfolio 1.5 1.6 1.6 0.7
Avg. IQ Referred 111.3 111.6 111.6 115.0
Avg. IQ Gifted 119.7 120.1 120.1 124.3

All Students
Referred 80.5 80.6 79.9 84.0
Admitted IQ 6.4 5.7 6.0 4.9
Admitted Portfolio 3.7 4.1 4.2 3.4
Total No Admitted 134 130 135 110
Avg. IQ Referred 117.7 117.7 117.3 119.7
Avg. IQ Gifted 125.3 125.5 125.2 127.0
Black gifted 18.7 19.1 22.3 12.9
FRL gifted 23.1 25.4 24.4 11.9
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nating affirmative action entirely would reduce African American student enrollment

by approximately 50% relative to a policy of affirmative action for African American

students. Eliminating affirmative action for African American students but retain-

ing affirmative action for FRL students reduces African American student enrollment

by 20%. Thus, affirmative action with respect to FRL is extremely important in

preserving enrollment of African American students in the district’s gifted program.

8 Conclusions

U.S. educational institutions at all levels invest extensive resources in providing ad-

vanced programs to help high-ability students reach their potential. The challenge

that arises in deciding admission to these programs is that ability is unobserved. Ob-

taining measures of ability that are not affected by family resources and vagaries of

circumstance has proven to be extraordinarily challenging. Despite extensive research

and design efforts, measures of ability such as IQ exhibit systematic variation across

demographic groups. Educational institutions confront the challenge of using avail-

able evidence to assess suitability of students for admission to selective programs,

distinguishing ability from influences attributable to family resources and circum-

stance. While not uncontroversial, differential treatment based on income has gained

a considerable measure of acceptance. Race-based criteria have proven to be much

more controversial.

The Supreme Court has endorsed a holistic approach, one that considers a broad

set of factors in decisions about the admission of a student to selective programs

and institutions, i.e., the Court encourages profiling. Going somewhat farther in his

decision for the majority in Gratz v Bollinger, Justice Kennedy explicitly declined

to reject use of non-race factors to achieve race-conscious ends, a view he reaffirmed
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in a concurring opinion in the Seattle and Louisville cases. It is natural to wonder

whether it is possible to formalize the distinctions being made by the court, and, if so,

whether it is possible to test empirically whether a policy does or does not conform to

court guidelines. In this light, we have pursued a four objectives in this paper. One

objective is to develop a framework sufficiently broad not only to encompasses merit,

profiling, and affirmative action, but also to permit statistical testing of the roles that

these factors play in practice. A second is to demonstrate, via econometric analysis,

the practical relevance of this framework in application. A third is to extend the

analysis of these policy issues to an important domain that has been understudied,

selective programs for high-ability students in primary and secondary education. A

fourth objective is to make a substantive contribution to policy by statistical testing

of the extent of use of profiling and affirmative action in an operational setting, and

by counterfactuals that investigate the consequences, either of curtailing or extending,

the use of profiling or affirmative action.

We believe our application succeeds in these objectives. Of particular interest

are the findings of our counterfactual analysis of race-based affirmative action. Long

(2007), in his review of the evidence with respect to race-based affirmative action in

colleges and universities, concludes, and we agree, that: ”The pressures—and in some

cases, legal requirements—to replace affirmative action are very real. All the same,

the stark evidence of the inefficacy of replacement programs remains.” By contrast,

for the central school district we study, we find that profiling by race and income,

coupled with affirmative action by income, can achieve 80 percent of the level of

African American enrollment that could be achieved by race-based affirmative action.

Two questions naturally arise: Why the sharp contrast to findings with respect to

elimination of race-based affirmative action in our setting as compared to findings for

colleges and universities? To what extent is it likely to generalize to other central city
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school districts? The answer to the first question is that middle- and upper-income

households with children tend to locate in suburban school districts, leaving relatively

low-income households in the central city districts. African American households are

disproportionately represented among low-income households. Hence, in central city

districts, policies that courts have thus far found admissible (profiling by race and

income and affirmative action by income) can go a long way toward achieving out-

comes that would be achieved by adding race-based affirmative action to the district’s

decision criteria. The answer to the second question is that our findings are indeed

likely to generalize to other central city school districts; the propensity of middle- and

high-income households with children to locate in suburban districts is a phenomenon

observed in every large metropolitan area in the United States.
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