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This paper presents a model where teacher effects on long-run outcomes reflect effects on both cognitive skills 
(measured by test-scores) and non-cognitive skills (measured by non-test-score outcomes). Teachers have causal 
effects on certain non-cognitive skills not measured by testing, but reflected in absences, suspensions, grades, and on-
time grade progression. Measuring teacher effects on a weighted average of these non-test score outcomes (a proxy 
for non-cognitive skills) predicts effects on dropout, SAT-taking, and college plans—above and beyond their effects 
on test scores. Accordingly, test scores alone fail to identify many excellent teachers and may understate the long-run 
importance of teachers. (JEL I21, J00) 

 

"The preoccupation with cognition and academic “smarts” as measured by test scores to the 
exclusion of social adaptability and motivation causes a serious bias in the evaluation of many 
human capital interventions" (Heckman, 1999) 

 
There is a general consensus that non-cognitive skills not captured by standardized tests, such 

as adaptability, self-restraint, and motivation, are important determinants of adult outcomes 

(Lindqvist & Vestman, 2011; Heckman & Rubinstein, 2001; Borghans, Weel, & Weinberg, 2008; 

Waddell, 2006). Also, interventions that have no effect on test scores have meaningful effects on 

long-term outcomes, such as educational attainment, earnings, and crime (Booker et al. 2011; 

Deming, 2009; Deming, 2011).2 This suggests that schooling produces both cognitive skills 

(measured by standardized tests) and non-cognitive skills (reflected in socio-behavioral 

development), both of which determine adult outcomes. Accordingly, evaluating interventions 

based on test scores may capture only one dimension of the skills required for adult success; “a 

more comprehensive evaluation of interventions would account for their effects on producing the 

noncognitive traits that are also valued in the market” (Heckman & Rubinstein, 2001).  

Policy makers, educators, parents, and researchers also agree that teachers are an important 

component of the schooling environment. Studies show that having a teacher who ranks in the 85th 

percentile of the quality distribution (as measured by student test scores) versus the 15th percentile 

is associated with between 8 and 20 percentile points higher scores in math and reading (Kane & 

                                                            
1 I thank David Figlio, Jon Guryan, Simone Ispa-Landa, Clement Jackson, Mike Lovenheim, James Pustejovsky, and 
Steven Rivkin for insightful and helpful comments. I also thank Kara Bonneau from the NCERDC and Shayna 
Silverstein. This research was supported by funding from the Smith Richardson Foundation. 
2 Heckman, Pinto, & Savelyev (forthcoming) also find that changes in personality traits explain the positive effect of 
the Perry Preschool Program on adult outcomes. 
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Staiger, 2008; Rivkin, Hanushek, & Kain, 2005). The focus on test scores is largely because they 

are typically the best available measure. However, the research on non-cognitive skills provides 

reason to suspect that effects on test scores may in fact fail to capture teachers’ overall effects. 

Several districts publicly release estimates of teachers' average effects on student test scores 

(value-added) and use them in hiring and firing decisions. Accordingly, it is important that these 

measures reflect teachers’ effects on long-run outcomes, not only their effect on cognitive ability.  

To speak to this issue, this research tests whether teachers have causal effects on both test 

scores and a proxy for non-cognitive ability (a weighted average of absences, suspensions, course 

grades, and on-time grade progression). It also investigates whether teachers who improve test 

scores also improve non-test score outcomes. Finally, it tests whether 9th grade teacher effects on 

a proxy for non-cognitive ability predict effects on longer-run outcomes (e.g. high school 

completion and college exam-taking) conditional on test score effects. The resulting estimates and 

data are used to gauge the extent to which test score measures understate the overall importance 

of teachers. This paper presents the first analysis of teacher effects on both cognitive and non-

cognitive outcomes, and the first to document that teacher effects on non-cognitive outcomes 

(unrelated to value-added) predict important long-run effects.3 

 Opponents of using test scores to infer teacher quality have raised two concerns. The first 

is that improvements in test scores do not necessarily indicate better long-run outcomes; teachers 

might engage in grade-inflating practices and those skills measured by test-scores may not be 

associated with improved long-term outcomes. Chetty, Friedman, & Rockoff (2011) assuage this 

concern by demonstrating that teachers who improve test scores also improve students’ outcomes 

into adulthood. The second concern is that student ability is multidimensional, while test-scores 

measure only one dimension of ability. If teachers improve skills not captured by test-scores, then 

(a) many excellent teachers who improve long-run outcomes may not raise test scores, (b) the 

ability to raise test scores may not be the best predictor of effects on long-run outcomes, and (c) a 

regime that emphasizes test scores might induce teachers to divert effort away from skills not 

                                                            
3 In existing work, Alexander, Entwisle, & Thompson (1987), Ehrenberg, Goldhaber, & Brewer (1995) and  Downey 
& Shana (2004) find that students receive better teacher evaluations of behavior when students and teachers are more 
demographically similar, and Jennings & DiPrete (2010) finds that certain kindergarten classrooms are associated 
with meaningful differences in teacher evaluations of student behavioral skills. However, these studies may reflect 
differences in teacher perception rather than actual student behavior. In related work, Koedel (2008) estimates high 
school teacher effects on graduation. However, he does not measure effects on non-cognitive skills and does not 
differentiate between effects that are due to improved cognitive skills versus non-cognitive skills. 



3 
 

captured by test scores to increase test score outcomes ─ potentially decreasing teacher quality 

overall (Holmstrom & Milgrom, 1991). This paper speaks to the second critique by assessing 

whether teachers affect skills not captured by test scores, and whether teacher effects on a proxy 

for non-cognitive skills predict long-run outcomes (conditional on their effects on test scores). 

This paper is organized into four sections. The first section presents a latent factor model 

following Heckman, Stixrud, & Urzua (2006) in which both student and teacher ability have 

cognitive and non-cognitive dimensions. It shows that teacher effects on multiple short-run 

outcomes can predict effects on the same long-run outcome—even if the effects on the short-run 

outcomes are not correlated with each other. It also illustrates that the ability to predict variability 

in teacher effects on long-run outcomes will be greater with a combination of cognitive and non-

cognitive outcomes than with any single outcome. The second section tests whether absences, 

suspensions, course grades, and on-time grade progression (all in 9th grade) predict high school 

dropout, graduation, and SAT taking, conditional on test scores. The third section estimates 9th 

grade algebra and English teacher effects on test scores and non-test score outcomes. The fourth 

section tests the predictions of the model and investigates the extent to which teacher effects on 

non-cognitive outcomes predict effects on high school dropout, high school completion, SAT 

taking, and college aspirations above and beyond that predicted by their test score effects alone.   

The results show that much of the variability in absences, suspensions, grades, and grade 

progression is uncorrelated with test scores. Consistent with this, an underlying non-cognitive 

factor that explains covariance across these non-test score outcomes (i.e. a weighted average of 

these non-test score outcomes) has a moderate correlation with test scores. This non-cognitive 

factor is associated with less high school dropout, increased high school graduation, and more SAT 

test-taking (a good proxy for college attendance), conditional on test scores. In survey data this 

non-cognitive factor also predicts fewer arrests, greater employment, and higher earnings, 

conditional on test scores  ‐‐  suggesting that the estimated non-cognitive factor is a proxy for 

dimensions of non-cognitive ability not well measured by test scores.  

Based on administrative data, 9th grade algebra and English teachers have meaningful 

effects on test-scores, non-test score outcomes, and the estimated non-cognitive factor. To address 

problems associated with student tracking in secondary school, this paper follows Jackson 

(forthcoming) and estimates models that condition on a student’s school-track (the unique 

combination of school and specific courses taken) so that comparisons are made among students 
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at the same school and in the same academic track, thus precluding bias due to student selection to 

tracks or treatments that vary across tracks. To show the validity of these models, the quasi-

experimental tests proposed in Chetty et al. (2011) are employed, and they indicate little to no 

selection bias. Results indicate that teacher effects on test scores and the non-cognitive factor have 

a weak positive correlation, so that many teachers that increase the non-cognitive factor do not 

raise test scores and vice versa. Teacher effects on test scores predict effects on school dropout, 

high school completion, SAT taking, and college plans at graduation. However, teacher effects on 

the non-cognitive factor also predict effects on longer run outcomes conditional on their test score 

effects. Including teacher effects on the non-cognitive factor increases the estimated variability of 

teacher effects on these longer run outcomes by between 30 and 700 percent.  

These findings are the first to demonstrate that non-cognitive outcomes can identify 

teachers who improve longer-run outcomes but are no more effective than average at raising test 

scores. While test score value-added is an important tool in identifying quality teachers, these 

results support a broader and more holistic view of student well-being and teacher quality. Also, 

evidence that teachers have effects on abilities not measured by test scores offers a potential 

explanation for interventions with test score effects that “fade out” over time that have lasting 

effects on adult outcomes (Chetty et. al. 2011; Cascio & Staiger, 2012).   

 This paper is organized as follows: Section II presents the theoretical framework. Section 

III presents the data and relationships between long- and short-run outcomes. Section IV presents 

the empirical framework. Section V analyzes short run teacher effects. Section VI analyzes how 

short run teacher effects predict longer-run teacher effects, and Section VII concludes. 

 

II Theoretical Framework 

This section presents a latent factor model following Heckman, Stixrud, & Urzua (2006) 

that justifies the use of both cognitive and non-cognitive outcomes to measure overall teacher 

quality. While students possess many types of cognitive and non-cognitive skills, the key insights 

from the model come from moving from a single to a multidimensional model of student ability.  

As such, for the sake of clarity, the model assumes only two broad ability types.  

Student ability: Student ability is two-dimensional. One dimension is cognitive skill, and the other 

is non-cognitive skill. Each student i has ability vector , ,( , )i c i n i   , where the subscript c 

denotes the cognitive dimension and the subscript n denotes the non-cognitive dimension.  
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Teacher ability: Each teacher j has a two-dimensional ability vector  , ,( , )j c j n j   where

[ ] (0,0)E   , that describes how much teacher j affects each dimension (cognitive or non-

cognitive) of student ability. The total ability of student i with teacher j is thus ij i j    . 

Outcomes: There are multiple outcomes yz for each student i. Each outcome z is a linear function 

of the ability vector so that ( ) 'zij i j zy      where , ,( , )z c z n z    is a vector of weights 

capturing the fact that some outcomes depend on cognitive ability (such as test scores) while others 

may depend on non-cognitive skills (such as attendance). There is an unobserved long run outcome 

* * *'ij ij ijy     , where *ij is random error and ,* ,* 0c n   . No two outcomes have the same 

relative weights on cognitive and non-cognitive ability. In the factor model representation, the two 

factors are the total ability of student i with teacher j in cognitive and non-cognitive ability, and 

vector z  is the factor loadings for student outcome z. Figure 1 presents the path diagram. 

Teacher Effects: The difference in student outcomes between teacher j with , ,( , )j c j n j   and 

an average teacher with (0,0)   is a measure of j’s effect, relative to an average teacher. Teacher 

j’s effect for outcome z is therefore 'zj j z   , so that teachers affect outcomes only through their 

effects on students’ total ability. The long-run outcome is not observed, and policy-makers wish 

to predict teacher effects for long-run outcome  * *'j   .  

 

Proposition 1: Teacher effects on long-run outcomes may be correlated with effects on multiple 

short-run outcomes, even if effects on these short-run outcomes are not correlated with each other. 

Consider a case with two outcomes: y1
 and y2. Suppose each outcome reflects only one 

dimension of ability so that 1 ,1 ,j c c j    and 2 ,2 ,j n n j    where ,1 ,2 0c n   . The two 

dimensions of teacher ability are uncorrelated, so , ,cov( , ) 0c j n j   . In this scenario, the 

covariance between teacher effects across all three outcomes are given by [1] through [3] below.   

1 2 ,1 , ,2 , ,1 ,2 , ,cov( , ) cov( , ) cov( , ) 0c c j n n j c n c j n j                [1] 

1 * ,1 , ,* , ,1 , ,* , ,1 ,* ,cov( , ) cov( , ) cov( , ) var( ) 0c c j c c j c c j n n j c c c j                   [2] 

2 * ,2 , ,* , ,2 , ,* , ,2 ,* ,cov( , ) cov( , ) cov( , ) var( ) 0n n j c c j n n j n n j n n n j                 [3] 

This illustrates that where student ability is multidimensional, both those teachers who improve 

cognitive ability (reflected in test scores) and those teachers who improve social skills (reflected 
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in other outcomes) may improve long run outcomes (such as college attendance), even if these are 

different teachers. As such, teachers who improve outcomes not associated with test score gains 

may have important effects on longer-run outcomes. Section VI presents evidence of this.  

 

Proposition 2: One can predict a greater fraction of the variability in teacher effects on long-run 

outcomes using two short-run outcomes that reflect a different mix of both ability types than using 

any single short-run outcome. 

The best linear unbiased prediction of the teacher effect on the long-run outcome based on 

the effect on a single short run outcome 1y  is the linear projection of effects on 1y  on the teacher’s 

effect on the long-run outcome. Formally, * 1 1[ | ]j j jE    , where * 1 1cov( , ) / var( )    .4 The 

effect on the long run outcome unexplained by 1 j  is * ,* ,1 , ,* ,1 ,( ) ( )j c c c j n n n j          .  

Consider another short-run outcome, 2y . The portion of 2 j unexplained by 1 j  is 

2 ,2 ,1 , ,2 ,1 ,( ) ( )j c c c j n n n j           where 2 1 1cov( , ) / var( )    . Teacher effects on 

additional outcome 2y  will increase the explained variability in teacher effects on the long-run 

outcome if * 2( , ) 0j jcor     . Because both residual effects * j  and 2 j  are linear functions of the 

same teacher ability, vector ( , )c n   , and linear functions of the same vector are generally 

correlated, it follows that in the vast majority of cases * 2( , ) 0j jcor     . 

The model illustrates that where ability is multidimensional, there may be improvements 

in our ability to predict teacher effects on long-run outcomes by evaluating teacher effects on 

multiple outcomes that reflect a variety of skills (over a single outcome).5 Intuitively, with uni-

dimensional ability, a second outcome does not improve our ability to predict effects on the long-

run outcome, because residual variability is random noise. However, with teacher effects through 

both cognitive and non-cognitive ability, residual variability in the effect on the long run outcome 

reflects dimensions of ability not captured by the first outcome. If the second outcome reflects 

                                                            
4 Note that * 1 ,* ,1 , ,* ,1 ,( ) ( )j j c c c j n n n j            . 
5 Note that this could also be true if short run outcomes were measured with error in a unidimensional model. That is, 
if outcomes 1 and 2 both measure the same dimension of ability with random noise, then the coefficient on the effect 
of outcome 1 in predicting the effect on the long run outcome will be attenuated toward zero such that there may be 
some residual ability in the error term that could be picked up by the teacher effect on outcome 2. In section V, I 
demonstrate that this is unlikely to be the case for the outcomes used in this paper.    
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different abilities from the first, with multidimensional ability, the second outcome may explain 

residual variation in the effect on the long-run outcome. Section VI presents evidence of this. 

 

III Data and Relationships between Variables 

 To estimate the effect of teachers on student outcomes, this paper uses data on all public 

school students in 9th grade in North Carolina from 2005 to 2010 from the North Carolina 

Education Research Data Center (NCERDC). The data include demographics, transcript data on 

all courses taken, middle-school test scores, end of course scores for Algebra I and English I, and 

codes allowing one to link students' end of course test-score data to individual teachers who 

administered the test.6 I limit the analysis to students who took either the Algebra I or English I 

course (the two courses for which standardized tests have been consistently administered over 

time). Over 90 percent of all 9th graders take at least one of these courses, so the resulting sample 

is representative of 9th grade students as a whole. To avoid the endogeneity bias that would result 

from teachers having an effect on students repeating 9th grade, the master data is based on the first 

observation for when a student is in 9th grade. Summary statistics are presented in Table 1. 

 These data cover 348,547 students in 619 secondary schools, 4296 English I teachers, and 

3527 Algebra I teachers. The gender split is roughly even. About 58 percent of the 9th graders are 

white, 29 percent are black, 7.5 percent are Hispanic, 2 percent are Asian, and the remaining one 

percent are Native American, mixed race, or other. Regarding the parental highest education level 

(i.e. the highest level of education obtained by either of the student's two parents), about 7.5 percent 

were below high-school, 40 percent had a high school degree, about 15 percent had a junior college 

or trade school degree, 20 percent had a four-year college degree or greater, and 6.4 percent had 

an advanced degree (about 10 percent of students are missing data on parental education.) The test 

score variables have been standardized to be mean zero with unit variance for each cohort and test. 

Incoming 7th and 8th grade test scores of students in the sample are about 8 percent of a standard 

deviation higher than that of the average in 7th or 8th grade. This is because the sample of first 

time 9th grade students is less likely to have repeated a grade or to have dropped out of the 

schooling system. Data on high school dropout, high school graduation, SAT taking, and self-

reported intentions to attend college upon graduation (available for years 2008 through 2012), are 

                                                            
6 Because the teacher identifier listed is not always the student’s teacher, I use an algorithm to ensure high quality 
matching of students to teachers. I detail this in Appendix note 1. 
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linked to the 9th grade cohorts for years 2005 through 2009. In the sample, roughly 8.3 percent of 

9th graders dropped out of school, while 79.3 percent graduated from high school. The remaining 

11 percent either transferred out of the North Carolina school system or could not be tracked. 

Among 9th graders, roughly 39.3 took the SAT by 12th grade and 38.7 report having intentions to 

attend college after graduation.     

Correlations among the short run outcomes 

The correlations between the 9th grade outcomes reveal some interesting patterns. The first 

pattern is that test scores are relatively strongly correlated both with each other (math scores and 

reading scores have correlation≈0.6) and with grade point average (correlation≈0.55), but are 

weakly correlated with other non-test-score outcomes. Specifically, the correlations between the 

natural log of absences is -0.098 for algebra test scores and -0.082 for English test scores, and the 

correlations between being suspended is -0.13 for both algebra and English test scores. While 

slightly higher, the correlation between on-time progression to 10th grade and test scores is only 

0.31. This reveals that while students who tend to have better test score performance also tend to 

have better non-test-score outcomes, the ability to predict non-test-score outcomes based on test 

scores is relatively limited. Indeed, Table 2 indicates that test scores predict less than 2 percent of 

the variability in absences and suspensions, under 10 percent of the variability in on-time grade 

progression, and only about one third of the variability in GPA. Insofar as these are outcomes of 

interest in their own right, test scores may not measure overall educational or academic well-being. 

The second notable pattern is that most behavioral outcomes are more highly correlated 

with each other than with test scores. Specifically, the correlation between suspensions and test 

scores is half that between suspensions and absences. Also the correlation between absences and 

test scores is about half that of the correlations between on time grade progression, GPA, or being 

suspended. The third notable pattern is that GPA is relatively well correlated with both the test 

score and the more behavioral outcomes. The fact that GPA is correlated with both test scores and 

non-test score outcomes is consistent with research (e.g., Howley, Kusimo, & Parrott, 2000; 

Brookhart, 1993) finding that most teachers base their grading on some combination of student 

product (exam scores, final reports, etc.), student process (effort, class behavior, punctuality, etc.) 

and student progress — so grades reflect a combination of cognitive and non-cognitive skills. In 

sum, in the context of the model, the patterns indicate that there are three groups of variables: those 

that are mostly cognitive (English and algebra test scores), those that are mostly non-cognitive 
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(absences and suspensions) and those that reflect a combination of cognitive and non-cognitive 

ability (on-time grade progression and GPA). If teachers improve student outcomes through 

improving both cognitive and non-cognitive skills, their effect on a combination of these abilities 

should better predict their effect on longer-run outcomes than test scores alone.  

The relationship between short-run and longer-run outcomes 

Much of the justification for the use of test scores to measure the effectiveness of 

educational interventions is that higher test scores predict improved adult outcomes. To make a 

similar case for also using non-cognitive outcomes, evidence is presented that (a) there is an 

underlying non-cognitive factor that explains much of the covariance between non-test score 

outcomes and is only moderately correlated with test scores; and (b) both higher test scores and 

this estimated non-cognitive factor are independently associated with better adult outcomes.  

  Table 3 shows that both test scores and non-test score outcomes independently predict 

long-run outcomes. I regress long-run outcomes (in 11th and 12th grade) on GPA, absences, being 

suspended, on time grade progression, and test scores (all measured in 9th grade). To remove the 

influence of differences in socioeconomic status or demographics, all models include controls for 

parental education, gender, and ethnicity, and include indicator variables for each secondary 

school. Columns 1 through 3 show that while higher test scores in 9th grade do predict less dropout, 

more high school graduation, and increased SAT taking, the non-test-score outcomes in 9th grade 

also predict variability in these important longer-run outcomes conditional on test scores. As one 

might expect, higher GPAs and on-time grade progression are associated with lower dropout rates, 

more high school graduates, and more SAT taking. Similarly, increased suspensions and absences 

are associated with increased dropouts, lower high school graduation, and less SAT taking. For all 

three outcomes, one can reject the null hypotheses that the 9th grade non-test score outcomes have 

no predictive power for longer-run outcomes conditional on test scores at the 1 percent level.  

Because it is difficult to interpret multiple non-test-score outcomes in the same model, I 

created a weighted average of the non-test score outcomes as a single proxy for non-cognitive 

ability. To do this, I estimated a factor model on the four non-test-score outcomes (GPA, absences, 

suspensions, and on-time grade progression) and computed the unbiased prediction of the first 

underlying factor as my proxy for non-cognitive ability.7 This average was then standardized to be 

mean zero unit variance. This weighted average is an estimate of the underlying ability that 

                                                            
7 This predicted factor is, Factor = -0.35*suspended – 0.4*absenses+0.5*on time in 10th grade + 0.6*GPA. 
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explains the covariance in these non-test score outcomes. Table 2 presents the fraction of the 

variability in outcomes explained by this factor.  This factor explains 28 percent of the variability 

in absences, 36 percent of the variability in being suspended, 67 percent of the variability in GPA, 

and 56 percent of the variability in on-time grade progression. Because students with higher test 

scores tend to have better outcomes in general, this factor explains a modest 23 and 27 percent of 

the variability in algebra and English test scores, respectively. In sum, this factor captures the 

common variability in the non-test score outcomes and is moderately correlated with test scores.  

Columns 4, 5, and 6 show that for all three longer-run outcomes, a standard deviation 

increase in the non-cognitive factor is associated with larger improvements than a standard 

deviation (σ) increase in test scores (results are similar and slightly smaller using English test 

scores.) Specifically, while a 1σ increase in test scores is associated with a 0.7 percentage point 

decrease in dropout, a 1σ increase in the non-cognitive factor is associated with a 4.85 percentage 

point decrease in dropout. Also, while a 1σ increase in test scores is associated with a 1.8 

percentage point increase in high school graduation, a 1σ increase in the non-cognitive factor is 

associated with an 18.2 percentage point increase. The predictive ability for test scores and the 

non-cognitive factor in terms of SAT taking is more similar; a 1σ increase in the non-cognitive 

factor is associated with a 15.2 percentage point increase in SAT taking, while a 1σ increase in test 

scores is associated with a somewhat smaller 8.89 percentage point increase in SAT taking. These 

numbers suggest that non-cognitive ability (as proxied by the factor) is a better predictor of dropout 

and high school graduation than test scores, and an equally good predictor for SAT taking. 

To validate the use of the factor, I replicate the results in Table 3 using data from the 

National Educational Longitudinal Survey of 1988 (NELS-88) (see appendix note A3). As in the 

NCERDC data, for both dropout and high school graduation, a 1σ increase in the non-cognitive 

factor is associated with much larger effects than a 1σ increase in math scores in 8th grade. Looking 

to other adult outcomes, the non-cognitive factor predicts much variability in being arrested, 

working, and earnings (all at age 25), conditional on test scores (Table A3). Specifically, a 1σ 

increase in the non-cognitive factor is associated with being 4.54 percent less likely to be arrested 

(a 22 percent reduction relative to the sample mean), 15.3 percentage points more likely to be 

employed, and earning 20 percent more, conditional on their test scores. As found in other studies, 

the non-cognitive factor explains more variability in adult outcomes than test scores. Psychometric 

measures of non-cognitive skills have been found to be particularly important at the lower end of 
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the earnings distribution (Lindqvist & Vestman 2011; Heckman, Stixrud, & Urzua 2006). To see 

if this is also true for the non-cognitive factor, I estimate the marginal effect of the factor on log 

earnings at different points in the earnings distribution using the NELS-88. Similar to 

psychometric measures of non-cognitive skills, the non-cognitive factor has much larger effects at 

the lower end of the earnings distribution — thereby suggesting that this factor is a reasonable 

proxy for non-cognitive ability. 

While I am agnostic about the exact skills captured by this factor, low levels of 

agreeableness and high neuroticism are associated with higher school absences, externalizing 

behaviors, juvenile delinquency, and lower educational attainment (Lounsbury, Steel, Loveland, 

& Gibson, 2004; Barbaranelli, Caprara, Rabasca, & Pastorelli, 2003; John, Caspi, Robins, Moffit, 

& Stouthamer-Loeber, 1994; Carneiro, Crawford, & Goodman, 2007). Also, high 

conscientiousness, persistence, grit, and self-regulation are all associated with fewer absences, 

fewer externalizing behaviors, higher grades, a higher likelihood of on-time grade progression, 

and higher educational attainment (Duckworth, Peterson, Matthews, & Kelly, 2007). This suggests 

that the factor reflects a skill-set associated with high conscientiousness, high agreeableness, and 

low neuroticism, and is correlated with self-regulatory skills, persistence, and grit. Irrespective of 

what we call it, the key point is that this non-cognitive factor captures abilities that explain certain 

observable outcomes not explained by test scores, and may predict long-run success.  

The results show that the non-cognitive factor is a reasonable proxy for a dimension of 

non-cognitive skills and explains variability in adult outcomes above and beyond that explained 

by test scores. In the context of the model, the patterns imply that (a) teachers who improve the 

non-cognitive factor may have important effects on important long-run outcomes that may go 

undetected by their effects on test scores, and (b) evaluating a teacher’s effects on both test scores 

and the non-cognitive factor might improve our ability to identify excellent teachers who improve 

student well-being overall by improving both cognitive and non-cognitive student ability. These 

predictions are tested directly in section VI.  

 

IV Empirical Strategy    

This section outlines the strategy used to estimate teacher effects on student outcomes. The 

empirical approach taken is to model student outcomes as a function of lagged student achievement 

and other student covariates, with the additional inclusion of controls for student selection to tracks 
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and any treatments specific to tracks that might affect student outcomes directly. I do this by 

including indicators for a student’s academic track.8 Following Jackson (forthcoming), I define a 

school track as the unique combination of the 10 largest academic courses, the level of Algebra I 

taken, and the level of English I taken in a particular school.9 As such, only students at the same 

school who take the same academic courses, level of English I, and level of Algebra I are in the 

same school track.10 Defining tracks flexibly at the school/course-group/course level allows for 

different schools that have different selection models and treatments for each track.  

The key identifying assumption is that students are randomly assigned to teachers within 

tracks. Including indicators for each school track in a value-added model compares outcomes 

across teachers within groups of students in the same track at the same school. This removes the 

influence of both track-level treatments and selection to tracks on estimated teacher effects. To 

accomplish this, I model the outcomes Yicjgys of student i in class c with teacher j in school track 

sg, at school s, in year y with [4] below (note: most teachers are observed in multiple classes). 

  Yicjgys = Aiy-1δ+ Xiβ + Iji∙θj + Isgi θsg+Isy θsy + ϕc +εicjgys   [4] 

Aiy-1 is a matrix of incoming achievement of student i (7th and 8th grade math and reading scores); 

Xi is a matrix of student-level covariates (parental education, ethnicity, and gender); Iij is an 

indicator variable equal to 1 if student i has teacher j and equal to 0 otherwise so that  θj is a time-

invariant fixed effect for teacher j; Isgi is an indicator variable equal to 1 if student i is in school 

track sg and 0 otherwise so that  θsg is a time-invariant fixed effect for school track sg; Isy is an 

indicator variable denoting whether the student is in school s in year y so that θsy is a school-by-

year fixed effect; ϕc  is a random classroom-level shock; and εijgy is a mean zero random error term.  

By conditioning on school-tracks, one can obtain consistent estimates of the teacher effects 

θj as long as there is no selection to teachers within a school track. In these models, the teacher 

effects are teacher-level means of the outcome after adjusting for incoming student characteristics, 

                                                            
8 Even though schools may not have explicit labels for tracks, most practice de-facto tracking by placing students of 
differing levels of perceived ability into distinct groups of courses (Sadker & Zittleman, 2006; Lucas & Berends, 
2002). As highlighted in Jackson (forthcoming) and Harris & Anderson (2012), it is not only the course that matters, 
but also the levels at which students take a course. 
9 While there are many courses that 9th grade students can take (including special topics and reading groups), there are 
10 academic courses that constitute two-thirds of all courses taken. They are listed in Appendix Table A1.  
10 Students taking the same courses at different schools are in different school-tracks. Students at the same school in 
at least one different academic course are in different school tracks. Similarly, students at the same school taking the 
same courses but taking Algebra or English at different levels are in different school tracks. Because many students 
pursue the same course of study, only 3.7 percent of all students in this study are in singleton tracks; most students are 
in school tracks with more than 50 students, and the average student is in a school track with 117 other students. 
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school-by-year level shocks, and school-by-track effects. For test score outcomes, this model is a 

standard value-added model with covariate adjustments.  

 Because the models include school-by-track effects, all inference is made within school-

tracks so that identification of teacher effects comes from two sources of variation: (1) comparisons 

of teachers at the same school teaching students in the same track at different points in time, and 

(2) comparisons of teachers at the same school teaching students in the same track at the same 

time. To illustrate these sources of variation, consider the simple case illustrated in Table 4. There 

are two tracks, A and B, in a single school. There are two math teachers employed at the school at 

all times, but the identities of the teachers change from year to year due to staffing changes. The 

first source of variation is due to changes in staffing over time within schools. For example, 

between 2000 and 2005, Teacher 2 is replaced by Teacher 3. Because, teachers 2 and 3 both teach 

in track B (in different years), one can estimate the effect of Teacher 2 relative to Teacher 3 by 

comparing the outcomes of students with Teacher 2 in 2000 with those of students with Teacher 3 

in 2005. To account for differences in outcomes between 2000 and 2005 that might confound 

comparisons within tracks over time (such as school-wide changes that may coincide with the 

hiring of new teachers), one can use the change in outcomes between 2000 and 2005 for Teacher 

1 (who is in the school in both years) as a basis for comparison. In a regression setting this is 

accomplished with the inclusion of school-by-year fixed effects (Jackson & Bruegmann, 2009). 

This source of variation is valid as long as students do not select across cohorts (e.g., skip a grade) 

or schools in response to changes in Algebra I and English I teachers. Tests in section V provide 

little evidence of such selection. The second source of variation comes from having multiple 

teachers for the same course in the same track at the same time. In the example, because both 

teachers 1 and 2 taught students in track B in 2000, one can estimate the effect of Teacher 1 relative 

to Teacher 2 by comparing the outcomes of teachers 1 and 2 among students in track B in 2000. 

This source of variation is robust to student selection to school-tracks and is valid as long as 

students do not select to teachers within school-track-year cells. Tests in section V.2 show that the 

findings are not driven by student selection within school-track-years.11  

                                                            
11 To compare variation within school-tracks during the same year to variation within school-tracks across years 
(cohorts), I computed the number of teachers in each non singleton school-track-year-cell for both Algebra I and 
English I (Appendix Table A2). About 63 and 51 percent of all school-track-year cells include one teacher in English 
and Algebra, respectively. As such, much variation is likely based on comparing single teachers across cohorts within 
the same school-track. Section V.2 shows that results using variation within school-track-cohort cells are similar to 
those obtained using only variation within school-tracks but across cohorts. 
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IV.1 Estimating the Variance of Teacher Effects 

 The variance of the estimated teacher effects ˆ
j  from [4] will overstate the true variance of 

teacher quality because of sampling variation and classroom shocks. As such, I follow Kane and 

Staiger (2008) and use the covariance between mean classroom-level residuals for the same teacher 

as my measure of the variance of teacher effects. This is done in two steps: 

Step 1:  Estimate equation [5] below.  

  Yicjgys = Aiy-1δ+ Xiβ + Isgi θsg+ Isy θsy + ϕc + θj +εicjgys    [5] 

There are no teacher (or classroom) indicator variables, so the total error term is ε*=ϕc + θj +εigjy 

(i.e., a teacher effect, a classroom effect, and the error term). I then compute mean residuals from 

[5] for each classroom *
 

ˆ
c j c ce       where ĉ is the classroom-level mean error term.  

Step 2:  Link every classroom-level mean residual and pair it with another random classroom-level 

mean residual for the same teacher and compute the covariance of these mean residuals. That is, 

compute *
'( , * | )c ccov e e J j . If the classroom errors ϕc are uncorrelated with each other (recall 

that the model includes school-by-year fixed effects) and uncorrelated with teacher quality θj, the 

covariance of mean residuals within teachers but across classrooms is a consistent measure of the 

true variance of persistent teacher quality (Kane & Staiger, 2008). This is represented by 

* 2
'( , * | ) cov( , ) var( )

jc c j j jcov e e J j        .12 To ensure that the estimate is not driven by 

any particular random pairing of classrooms for the same teacher, I replicate this calculation 50 

times and take the median of the estimated covariance as the parameter estimate. Following 

Jackson (forthcoming), I also compute bootstrap standard errors for the estimated covariance and 

use them for normal-distribution-based hypothesis testing and forming confidence intervals.13 

 

V Main Results 

V.1 True Variance of Teacher Effect on test score and non-test score outcomes 

Table 5 presents the square root of the estimated covariance across classrooms for the same 

teachers. Because standard deviations are positive, when the sample covariance is negative (none 

                                                            
12Note that: ' ' ' ' ' 'cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) 0j c j jgyc c j c c c jgyc jgyc j jgyc c jgyc jgyce e e e e e                  
13I use the standard deviation of 50 randomly computed “placebo” covariances (i.e., sample covariances across 
classrooms for different teachers) to form an estimate of the standard deviation of the sampling distribution of the 
covariance across classrooms for the same teacher.  
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of the negative covariance estimates is statistically significantly different from zero at the 5 percent 

level), I report the standard deviation to be zero. I present models that account for tracking with 

school-track fixed effects (top panel), and the preferred models that include both school-track fixed 

effects and school-by-year effects to account for both bias due to tracking and any school-wide 

shocks that might be confounded with teacher effects (lower panel). In models that include track-

by-school fixed effects but not school-by-year effects (top panel), both algebra and English 

teachers had meaningful effects on test scores and non-test-score outcomes. Adding additional 

controls for school-by-year effects reduces the variability of the effects by about 30 percent.  

In the preferred model (lower panel), the standard deviation of the algebra teacher effects 

on algebra test scores is 0.066σ (p-value of 0.000). The standard deviation of teacher effects is 

statistically significantly different from zero for some non-cognitive outcomes; the standard 

deviation of teacher effects on GPA is 0.045 grade points, and the effect on enrolling in 10th grade 

is 2.5 percentage points. The standard deviation of the effects on the non-cognitive factor is thus 

0.083σ (p-value of 0.000). Looking to English I teachers, in the preferred model (right lower 

panel), the standard deviation of English teacher effects on English test scores is 0.034σ (p-value 

of 0.000). The estimated teacher effects are also statistically different from zero for all of the non-

test score outcomes: the standard deviation of teacher effects on the likelihood of being suspended 

is 1.4 percentage points, the effect on absences is 3.7 percent, that on GPA is 0.027 grade points, 

and that on enrolling in 10th grade is 2.4 percentage points. Summarizing these effects, the standard 

deviation of English teacher effects on the non-cognitive factor is 0.071σ (p-value of 0.000).  

To put the non-test score estimates into perspective, having an algebra or English teacher 

at the 85th percentile of effects on GPA versus the 15th percentile would be associated with 0.09 

and 0.054 grade points higher GPA, respectively. For both subjects, having a teacher at the 85th 

percentile of effects on on-time grade progression (versus the 15th percentile) would be associated 

with being 5 percentage points (0.14σ) more likely to enroll in 10th grade on time. Students of an 

English teacher at the 85th percentile at reducing absences and suspensions versus the 15th 

percentile would be 2.8 percentage points (0.12σ) less likely to be suspended and have 7.4 percent 

fewer days absent. Teachers in both subjects had larger effects on the standardized non-cognitive 

factor than on standardized test scores. Overall, having an algebra teacher at the 85th percentile of 

improving non-cognitive ability versus the 15th percentile would be associated with 0.166σ higher 

non-cognitive ability, while the same calculation for English teachers is 0.142σ. Having 
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established that teachers have real effects on both test scores and non-test score outcomes, Section 

V.3 investigates whether test score effects are correlated with effects on non-test-score outcomes. 

Section VI then investigates whether effects on non-test score outcomes predict effects on longer 

run outcomes above and beyond test score effects.  

V.2 Tests for Bias due to Selection 

 While many studies rely on the assumption that teachers are randomly assigned to students 

conditional on incoming test scores (Koedel & Betts, 2011; Kinsler, 2012; Kane & Staiger, 2008), 

the key identifying assumption in this paper is that teachers are randomly assigned to students 

within school-tracks.14 I show that this condition is likely satisfied for algebra teachers at all 

schools, and for English teachers at most schools. Accordingly, in the following section I focus on 

algebra teachers at all schools and English teachers at this subsample of schools. Using tests for 

student selection to teachers on observable dimensions and also unobservable dimensions within 

school-tracks, I show that there is little evidence of selection bias. 

 To test for selection on observables within school tracks, I follow Chetty, Friedman, and 

Rockoff (2011). I predict each outcome (based on 7th and 8th grade math and reading scores, 

parental education, gender, and ethnicity) and regress predicted outcomes on school-track 

indicators, year indicators, and the estimated effect of the student’s teacher (estimated out of 

sample).15 If students with characteristics associated with better outcomes selected to classrooms 

based on teacher effectiveness, then there would be a systematic relationship between estimated 

teacher quality and predicted outcomes. The results (lower panel of Table 6) indicate that where 

there are multiple algebra teachers in the same school track, algebra teachers with higher estimated 

effects do not receive students with better or worse predicted outcomes on average—suggesting 

no selection of algebra teachers within tracks.  

 The same test for English teachers suggests no selection to teachers based on the effects on 

the non-cognitive factor (column 4), but possibly some positive selection based on test score value-

added (column 3). If this positive selection for English teachers exists to some degree at all schools, 

                                                            
14 The tests presented indicate that, within the schools in the preferred sample, conditioning on tracks is sufficient to 
remove selection bias (without having to condition on lagged test scores).  
15 To remove any endogeneity, for each observation year I estimate teacher effects using all other years of data. For 
example, for observations in 2005, the estimated teacher effects are based on teacher performance in 2006, 2007, 
2008, 2009, and 2010. For estimates in 2008, estimates are based on 2005, 2006, 2007, 2009, and 2010. I follow Kane 
and Staiger (2008) and compute a teacher’s fixed effects using an efficiently weighted average of all the teacher’s 
mean classroom level residuals (See Appendix Note 2 for details).   
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then it would invalidate inferences regarding English teachers. However, if these average effects 

are driven by a few outlier schools (i.e., there is positive selection within tracks only at a minority 

of schools), because all inferences are based on within-school comparisons one can obtain valid 

inference by removing those schools that exhibit positive selection. To test for this possibility, I 

conducted the selection test for each school and found that while most schools do not exhibit 

significant selection to English teachers within tracks, a small number of schools do. Accordingly, 

I removed those schools that exhibit evidence of positive selection to teachers within tracks to 

create a “clean” English teacher sample.16 Note that because all estimates are obtained within 

schools, removing entire schools that may exhibit selection within tracks does not introduce 

sample selection bias or endogeneity. While this reduces the sample size for English teachers by 

roughly 9 percent, within this clean sample, there is no evidence of student selection within tracks 

(columns 5 and 6). I use this clean sample for analysis of English teachers from this point forward. 

 To test for selection on unobservables within school-track-years, I follow Chetty, 

Friedman, and Rockoff (2011) and exploit the statistical fact that the effects of any selection among 

students within the same school track and cohort will be eliminated by aggregating the treatment 

to the school-track-year level and relying only on cohort-level variation across years within school 

tracks. That is, if the estimated teacher effects merely capture student selection to teachers, then 

the arrival of a teacher with a high positive estimated effect (who increases the average estimated 

teacher effect for a cohort) should have no effect on average student outcomes for that cohort. 

Conversely, if the estimated effects are real, differences in average estimated teacher quality across 

cohorts (driven by changes in teaching personnel within schools over time) should be associated 

with similar differences across cohorts in average cohort-level outcomes as the same difference in 

estimated teacher quality across individual students (due to there being multiple teachers in the 

same school-track at the same time) within the same cohort.  

To test this, I estimate equations [6] and [7], where ˆ
j  is the estimated (out of sample) 

effect of teacher j, ˆ
j sgy  is the mean estimated teacher effect in school-track sg in year y, sg  is a 

school-track effect, sy  is a school-year effect, and sgy is a school-track-year effect. 

1 1 sgy
ˆ   +     isgjcy iy j iy isgjcyY A X        

     
[6] 

                                                            
16 I regress predicted English scores on the teacher’s estimated value-added, school-track fixed effects, and year 
effects for each school. Any school that yields a t-statistic greater than 2.5 on teacher value-added is dropped from 
the analytic sample.  
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  1 2  sg sy
ˆ   +     iisgjcy iy j sgy iy sgi iisgjcyY A X I                [7] 

Equations [6] and [7] both calculate estimated teacher effects on student outcomes, but each use a 

distinct source of variation. In [6], teacher quality is defined at the student level. The model 

includes a track-school-year fixed effect, so that it only makes comparisons among students with 

different teachers in the same school track and year (removing all variation due to personnel 

changes over time). In contrast, by defining teacher quality at the school-track-cohort level in [7], 

one no longer compares students within the same school-track-year (where selection is likely), and 

only compares entire cohorts of students in the same school-track over time (where selection is 

unlikely, because variation in this aggregate measure is due only to changes in the identities of 

teachers in the school-track over time). To control for school-level changes that could affect the 

cohort-level results, all models include school-by-year fixed effects.  

Relating the predictions to the equations directly, if there is no sorting ψ1 should be similar 

to ψ2, and if the effects are due to sorting then ψ2 will be equal to 0. Note that because the teacher 

effects are estimated with noise, the coefficients ψ1 and ψ2 will be less than 1. The results are 

presented in the top panel of Table 6. Despite there being no relationship between estimated teacher 

quality and predicted outcomes, there are economically and statistically significant effects of 

estimated teacher quality on actual outcomes for both subjects. Marginal effects obtained using 

variation within school-track-cohorts are similar to those obtained using variation across cohorts 

within school-tracks. Also, mean school-track cohort-level teacher quality has a statistically 

significant effect on all outcomes, so the null hypothesis that estimated teacher effects are driven 

by selection within school-track-cohorts can be rejected at the 5 percent level. 

The discussion thus far has focused on selection within school-tracks. However, readers 

might wonder if the results are biased due to student selection across tracks. To test for this, I 

regress student outcomes on the school-year level mean estimated teacher effects. If the results are 

driven by student selection across tracks, then the school-year average effects (aggregated across 

school-tracks) should have no effect on outcomes. Also, if the estimated effects are not driven by 

selection across tracks, the estimates based on the school-level mean effects should be similar to 

those for the individual teacher effects. The result in Table 6 show that mean school cohort level 

teacher quality has a statistically significant effect on all outcomes and is similar to those from 

teacher level variation – indicating that selection across tracks does not bias the results.  
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V.3 Relationship between Teacher Effects across Outcomes  

 Having established that teachers have real causal effects on test scores, non-test-score 

outcomes, and a proxy for non-cognitive ability, this section documents the relationships between 

these estimated effects. To gain a sense of whether teachers who improve test scores also improve 

other outcomes, I regress the estimated teacher effects for all the outcomes on the effects on algebra 

test scores, English test scores, and the non-cognitive factor. The reported R2s in Table 7 measures 

the fraction of the teacher effect on each outcome that can be explained by (or is associated with) 

teacher effects on test scores or the non-cognitive factor.  

The top panel presents effects for algebra teachers. Algebra teachers with higher test score 

value-added are associated with better non-test-score outcomes, but the relationships are weak. 

Effects on algebra test scores explain 1.15 percent of the variance in estimated teacher effects on 

suspensions, 2.09 percent for absences, 9.84 percent for GPA, and 4.97 percent of the effect on 

on-time 10th grade enrollment (top panel top row). This indicates that while teachers who raise 

test scores may also be associated with better non-test-score outcomes, most of the effects on non-

test-score outcomes are unrelated to effects on test scores. In contrast, effects on the non-cognitive 

factor explain much of the estimated effects on the non-test score outcomes. Specifically, algebra 

teacher effects on the non-cognitive factor explain 31.6 percent of the estimated teacher effect on 

suspensions, 37.8 percent for absences, 62.6 percent for GPA, and 62.07 percent of the effect on 

on-time 10th grade enrollment (top panel second row). However, teacher effects on the non-

cognitive factor explain less than 10 percent of the variance in estimated teacher effects on algebra 

scores. Results for English teachers (lower panel) are similar to those for Algebra teachers. English 

teacher effects on English test scores explain little of the estimated effects on non-test score 

outcomes. Specifically, teacher effects on English test scores explain less than 10 percent of the 

variance of teacher effects on suspensions, absences, GPA, on-time 10th grade enrollment, and the 

non-cognitive factor (lower panel top row). However, English teacher effects on the non-cognitive 

factor explain 30.18 percent of the variance in teacher effect on suspensions, 39.8 percent for 

absences, 61.86 percent for GPA, and 68.09 percent of the effect on on-time 10th grade enrollment.  

 In sum, for both subjects, teacher test-score effects measure certain skills, and teacher 

effects on the non-cognitive factor measure a largely different but also important set of skills. For 

both subjects, a teacher’s effect on test scores is a weak predictor of her effect on the non-cognitive 

factor. To show this visually, Figure 2 presents a scatterplot of teachers’ estimated effects on the 
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non-cognitive factor against their effect on test scores. It is clear that teacher effects on test scores 

in both subjects may leave much variability in effects on non-cognitive skills unexplained. This 

indicates that many teachers who improve test scores may have average effects on non-test-score 

outcomes. Similarly, many teachers who have large and important effects on non-test-score 

outcomes may have average effects on test scores. As indicated in the model, variability in 

outcomes associated with individual teachers that is unexplained by test scores likely reflects 

unmeasured non-cognitive skills. If this is so, teacher effects on the non-cognitive factor might 

explain teachers’ ability to improve long-run outcomes that are not measured by test scores. How 

this affects our ability to identify excellent teachers depends on whether teacher effects on the non-

cognitive factor provide more information on their effectiveness at improving longer-run outcomes 

than that conveyed by their effects on test scores. Section VI investigates this.  

 

VI  Predicting Long Run Effects with Short Run Effects 

While the relationships in Table 3 suggest that teachers who improve non-cognitive skills 

may also improve long-run outcomes, it is important to show that teachers who increase the non-

cognitive factor actually cause students to have improved long-run outcomes (conditional on their 

test score effects). To test this, I link estimated teacher effects (estimated out of sample) to 

variables denoting whether the student subsequently dropped out of secondary school, graduated 

from high school, took the SAT, or expressed plans to attend college. I then test if students who 

have teachers that improve either test scores or the non-cognitive factor have better long-run 

outcomes. I estimate the equations below, where ,
ˆ

j test  and ,
ˆ

j noncog are the estimated (out of 

sample) effects of teacher j on test scores and the non-cognitive factor, respectively. As before, 

sg  is a school-track effect, and sy  is a school-year effect. 

1 1, ,  sg sy
ˆ      ijcy iy test j test iy sgi ijcyY A X I           

   
[8] 

1 2, , 2, ,  sg sy
ˆ ˆ      ijcy iy test j test noncog j noncog iy sgi ijcyY A X I              

 
[9] 

To quantify the extent to which including both ,
ˆ

j noncog and  ,
ˆ

j test  in [9] increases our ability to 

predict variability in teacher effects over only including ,
ˆ

j test  in [8],  I computed the percentage 

increase in the predicted variability of the teacher effects on the long-run outcome from [8] to [9]. 

I computed  2, , 2, , 1, ,
ˆ ˆ ˆˆ ˆ ˆ100 (  ) / ( ) 1test j test noncog j noncog test j testsd sd        .  
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Column 1 of Table 8 shows that students with algebra teachers who raise test scores by 1σ 

are 0.327 percentage points less likely to drop out of high school. While this effect has the expected 

positive sign, the magnitude is small and the point estimate is not statistically significantly different 

from zero. Column 2 shows that while a teacher’s effect on test scores has little association with 

dropout, teacher effects on the non-cognitive factor have a statistically significant negative 

relationship with dropout. Students with an algebra teacher who raises the non-cognitive factor by 

1σ are 1.05 percentage points less likely to drop out of high school. Including the teacher effect on 

the non-cognitive factor increases the explained variability in teacher effects on dropout by 430 

percent. Because the standard deviation of teacher effects on the non-cognitive factor is roughly 

0.08, going from a teacher at the 15th to one at the 85th percentile of the non-cognitive effect 

distribution is associated with 0.168 percentage points less chance of dropping out. While this 

effect may seem small, small effects for a single student aggregated across all students in a class 

over their entire lifetime can result in important economic effects (Chetty et al., 2011). Though 

they do not affect dropout, teacher effects on algebra scores do predict greater high school 

graduation. Students with teachers that raise test scores by 1σ are 2.16 percentage points more 

likely to graduate high school. Adding teacher effects on the non-cognitive factor reduces the 

coefficient on teacher test score effects (reflecting that they are positively correlated) and increases 

the standard deviation of the predicted effect by about one-third. Having a teacher at the 85th as 

opposed to the 15th percentile of both the non-cognitive effect distribution and the test score effect 

distribution is associated with being 0.36 percentage points more likely to graduate from high-

school. Results in columns 5 through 8 suggest that algebra teachers have little effect on whether 

students take the SAT, but do effect whether students plan to attend college (reported at high school 

graduation). Students with teachers that raise test scores by 1σ are 3.5 percentage points more 

likely to have plans to attend college. This is statistically indistinguishable from the Chetty et al. 

(2011) estimate of teacher test score effects on the likelihood of college going of 4.9 (se=0.65). 

Adding teacher effects on the non-cognitive factor increases the predicted standard deviation by 

22.5 percent. In sum, the results suggest that algebra teacher effects on test scores do predict their 

effects on longer run outcomes, but that adding teacher effects on the non-cognitive factor 

increases the predicted variability by about one-third for high school graduation and indicators of 

college going, and increases the explained variability of effects on dropout by about 430 percent.  

The results for English teachers (Table 9) suggest even greater impact of teacher effects on 
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non-cognitive skills. Column 1 shows that students who have teachers that raise English test scores 

by 1σ are 1.14 percentage points less likely to drop out of high school. Similar to algebra, Column 

2 shows that a teacher’s effect on the non-cognitive factor has a statistically significant negative 

relationship with dropout (conditional on test score effects), and increases the variability in the 

explained teacher effects on dropout by 115 percent. Furthermore, students with English teachers 

that raise test scores by 1σ are just 1.9 percentage points less likely to drop out of high school. 

However, teacher effects on the non-cognitive factor have a positive and statistically significant 

relationship with graduating high school (conditional on test score effects), and increase the 

predicted variability by 204 percent. Overall, going from a teacher at the 15th percentile to one at 

the 85th of both the non-cognitive factor and the test score distribution is associated with being 

0.35 percentage points more likely to graduate from high-school. Results in columns 5 and 6 

suggest that English teachers have important effects on whether a student takes the SAT and plans 

to attend college. Students with teachers that raise English scores by 1σ are 6.86 percentage points 

more likely to take the SAT. The non-cognitive factor also has a positive and statistically 

significant relationship with SAT taking (conditional on test score effects), and increases the 

variability in the explained teacher effect by 51 percent. Going from a teacher at the 15th to one at 

the 85th percentile of both the non-cognitive effect distributions is associated with being 0.77 

percentage points more likely to take the SAT. Finally, column 7 shows that students with teachers 

that raise English scores by 1σ are 0.7 percentage points more likely to plan to attend college. 

Adding effects on the non-cognitive factor increases the predicted standard deviation by 697 

percent, so that going from a teacher at the 15th to one at the 85th percentile of both the non-

cognitive and the test-score effect distributions is associated with being 0.4 percentage points more 

likely to plan to attend college.17  

Overall, the results suggest that both algebra and English teachers’ effects on test scores 

predict their effects on students’ long-run outcomes. However, the results also show that teacher 

effects on the non-cognitive factor affect long-run outcomes in a statistically significant way, 

conditional on teacher effects on test scores. As teacher effects on the non-cognitive factor may 

capture their effects on important skills unmeasured by test scores, it follows that adding teacher 

                                                            
17 The fact that teacher effects on the non-cognitive factor are greater in English than Algebra is consistent with 
Chetty et al.’s (2011) finding that marginal increases in English teacher quality have larger effects on longer-run 
outcomes, even though effects on English tests are smaller than those for math. 
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effects on the non-cognitive factor increases the predicted variability on longer-run outcomes by 

between 30 and 700 percent (depending on the outcome and the subject teacher). To ensure that 

these estimated effects are not due to student selection, the lower panels of Table 8 and 9 show the 

estimated effect on predicted longer run outcomes (based on all observable covariates) with only 

school-track fixed effects and school-year fixed effects. There is no relationship between teacher 

effects and students’ predicted outcomes—indicating that these results can reasonably be 

interpreted causally. Note that if teachers have effects on dimensions of ability not captured by 

either their effects on test scores or the non-cognitive factor, these estimates may not capture a 

teacher’s full effect on longer-run outcomes. However, it is clear that using both cognitive 

outcomes (e.g., test scores) and non-cognitive outcomes (e.g., the non-cognitive factor) increases 

our ability to identify excellent teachers who may improve longer run outcomes (rather than only 

increasing test scores).  

VI.1 Are teacher effects on the non-cognitive factor and test scores simply different measures 

of the same single dimension of ability? 

Given that teacher effects on test scores and teacher effects on the non-cognitive factor are 

positively correlated (albeit weakly), one may wonder if these are both measures of the same single 

dimension of ability. Specifically, if the value-added estimates reflect effects on students’ 

unidimensional ability with error, then additional measures of the teacher effect on this same 

unidimensional ability will be correlated with the test score effect and may explain variability in 

the long run effect unexplained by value-added.18 Accordingly, it is important to know if the non-

cognitive factor truly measures a different set of skills than test scores do, or if test scores and the 

non-cognitive factor are noisy measures of the same set of skills. I present a test to tell these two 

scenarios apart. If the ability to predict effects on the long-run outcome were due to measurement 

error in the effect on test scores, then teacher effects on the non-cognitive factor should also 

increase our ability to predict effects on test scores conditional on a teacher’s estimated test score 

effect (estimated out of sample). Intuitively, measurement error will lead one to understate both 

the relationship between test score effects and the effect on long-run outcomes and to understate 

the relationship between a teacher’s test score effect (estimated out of sample) and her effect on 

                                                            
18 From a policy perspective, what matters is that we can obtain a better prediction using the non-test score outcomes 
in conjunction with test scores. As such, it is irrelevant whether the additional predictive power of the effect on the 
non-cognitive factor is due to measurement error in the test score effects or due to test scores missing non-cognitive 
dimensions of ability. However, the distinction is economically meaningful. 
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test scores. As such, if measurement error is the explanation, then assuming that test scores and 

the non-cognitive factor measure the same dimensions of ability, we would expect teachers who 

improve the non-cognitive factor to improve students’ test scores conditional on their out of sample 

test score effects. To test this, I regress test scores on both out of sample estimated effects on the 

non-cognitive factor and out of sample estimated effects on test scores (with school-track fixed 

effects and school-by-year fixed effects). Conditional on test score effects, teacher effects on the 

non-cognitive factor yield a p-values of 0.291 for algebra test scores and a p-value 0.73 for English 

test scores. That is, teacher effects on the non-cognitive factor provide no additional predictive 

power for test scores. This is inconsistent with measurement error in value-added causing effects 

on the non-cognitive factor to explain effects on long run outcomes. Accordingly, the results 

suggest that long-run effects reflect multiple dimensions of skills and that the non-cognitive factor 

captures dimensions of ability not measured by test scores.  

VI.2 Correlations of Effects on the Non-Cognitive Factor and Possible Uses in Policy 

 While the focus of this paper is the importance of accounting for effects on non-cognitive 

skills, in this section I briefly discuss practical uses for the non-cognitive factor in education policy. 

One policy use would be to identity those observable teacher characteristics associated with effects 

on the non-cognitive factor and select teachers with these characteristics. To determine the scope 

of this type of policy, I regress the non-cognitive factor on observable teacher characteristics (while 

controlling for school tracks, year effects, and student covariates). For algebra teachers, observable 

teacher characteristics do not predict a large share of a teacher’s effect on the non-cognitive factor. 

In fact, none of the primary characteristics—being fully certified, scoring well on teaching exams, 

having a regular license, and selectivity of a teacher’s college— have a statistically significant 

relationship with the non-cognitive factor. Looking to experience, I include indicator variables for 

each year of teacher experience (from 0 to 29 years) and plot the experience profile for both the 

non-cognitive factor and algebra test scores in the top panel of Figure 3. With more years of 

experience, test scores tend to improve, on average. The F-test of joint significance of all the 

teacher experience indicators yields a p-value of less than 0.001. However, for the non-cognitive 

factor the experience profile is much flatter. The F-test of joint significance of all teacher 

experience indicators yields a p-value of 0.62—suggesting no relationship between teacher 

experience and effects on the non-cognitive factor for algebra teachers. Results for English 

teachers tell a similar story. The only observable teacher characteristic associated with 
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improvements in the non-cognitive factor is scores on certification exams. Increasing a teacher’s 

certification score by a standard deviation increases the non-cognitive factor by 0.0097σ. The 

experience profile in the lower panel of Figure 3 shows no statistically significant relationship 

between experience and effects on the non-cognitive factor. All in all, the observable teacher 

characteristics used in this research are not good predictors of teacher effects on non-cognitive 

skills measured by the factor. Accordingly, using observable teacher characteristics to identify 

excellent teachers may provide limited benefits. 

Another policy application is to incentivize teachers to improve the non-cognitive factor. 

Because some of the outcomes that form the non-cognitive factor (such as grades and suspensions) 

can be “improved” by changes in teacher behavior that do not improve student skills (such as 

inflating course grades, misreporting attendance, and leaving disciplinary infractions unreported) 

attaching external stakes to the non-cognitive factor may not improve students skills (even if the 

measured outcomes do improve). One possibility is to find measures of non-cognitive skills that 

are difficult to adjust unethically. For example, classroom observations and student and parent 

surveys may provide valuable information about student skills not measured by test scores and are 

less easily manipulated by teachers. As such, one could attach external incentives to both these 

measures of non-cognitive skills and test scores to promote better longer run outcomes.19 

A final policy is to identify those teaching practices that cause improvements in the non-

cognitive factor and encourage teachers to use these practices (through evaluation, training, or 

incentive pay). This avoids problems associated with “gaming” or rigging the outcomes by 

incentivizing observable, difficult-to-fake behaviors (such as asking questions or having group 

discussions) that may have causal effects on the non-cognitive factor. Such approaches have been 

used successfully in recent research to increase test scores (Taylor and Tyler 2012). However, one 

could expand the model to identify best teacher practices based not only on test score gains but 

also gains in the non-cognitive factor. Indeed, the teacher evaluations systems designed by Allen 

et al. (2011) to promote teacher behaviors that lead to both improved test scores and better student-

teacher interactions suggest that this may be a fruitful path.  

 

                                                            
19 A somewhat similar policy was suggested in the Gates Foundation report, Measures of Effective Teaching (MET). 
This multiple measure approach was proposed in Mihaly, McCaffrey, Staiger and Lockwood (2013). 
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VII Conclusions 

This paper presents a two-factor model that assumes that all student outcomes are a 

function of both cognitive and non-cognitive ability. The model shows that one can use a variety 

of short-run outcomes to estimate a teacher’s predicted effect on long-run outcomes, and that such 

outcomes would ideally reflect a combination of both cognitive and non-cognitive skills. In 

administrative data, a non-cognitive factor (a weighted average of non-test-score student outcomes 

in 9th grade) is associated with sizable improvements in longer-run outcomes. Ninth grade English 

and algebra teachers have meaningful effects on test scores, absences, suspensions, on-time 10th 

grade enrollment, and grades. Teacher effects on test scores and these non-test score outcomes 

(and the non-cognitive factor) are weakly correlated; many teachers who are among the best at 

improving test scores may be among the worst at improving non-cognitive skills. Teacher effects 

on both test scores and the non-cognitive factor predict their effects on high school dropout rates, 

high school completion, SAT taking, and intentions to attend college. Indeed, teacher effects on 

the non-cognitive factor explain significant variability in their effects on these longer-run 

outcomes that are not captured by their test score effects. The results indicate that adding teacher 

effects on the non-cognitive factor increases the predicted variability on longer-run outcomes by 

between 30 and 700 percent.  

The findings suggest that test-score measures understate the effect of teachers on adult 

outcome in general, and may greatly understate their importance in affecting outcomes that are 

heavily determined by non-cognitive skills (such as dropping out and criminality). While the 

results are not entirely surprising, they do provide the first evidence that measuring teacher effects 

on test scores captures only a fraction of their effect on longer-run outcomes. They also suggest 

that evaluating teacher effects on non-test-score outcomes may greatly improve our ability to 

predict teachers’ overall effects on longer-run outcomes. This study highlights that a failure to 

account for the effect of educational interventions on non-cognitive skills can lead to biased 

estimates of the effect of such interventions. Finally, the analytic framework put forth in this paper 

can be used in other settings to estimate the effects of educational interventions through 

improvements in both cognitive and non-cognitive skills. Results from such analyses can then be 

used to identify practices that both increase test scores and improve non-cognitive skills.  
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Tables and Figures 
 
 
 
Table 1: Summary Statistics of Student Data 
Variable Mean SD SD within school-tracks   SD within 

schools 
Math z-score 8th grade 0.091 (0.944) (0.600)  (0.878)
Reading z-score 8th grade 0.073 (0.941) (0.678)  (0.891)
Male 0.510 (0.50) (0.482)  (0.498)
Black 0.288 (0.453) (0.375)  (0.399)
Hispanic 0.075 (0.263) (0.245)  (0.256)
White 0.579 (0.494) (0.404)  (0.432)
Asian 0.020 (0.141) (0.133)  (0.138)
Parental education: Some High-school 0.075 (0.263) (0.25)  (0.259)
Parental education: High-school Grad 0.400 (0.49) (0.454)  (0.474)
Parental education: Trade School Grad 0.018 (0.132) (0.129)  (0.132)
Parental education: Community College Grad 0.133 (0.339) (0.327)  (0.335)
Parental education: Four-year College Grad 0.205 (0.404) (0.376)  (0.394)
Parental education: Graduate School Grad 0.064 (0.245) (0.225)  (0.237)
Number of Honors classes 0.880 (1.323) (0.575)  (1.163)
Algebra I z-Score (9th grade) 0.063 (0.976) (0.775)  (0.889)
English I z-Score (9th grade) 0.033 (0.957) (0.670)  (0.906)
Ln Absences 0.586 (1.149) (0.927)  (0.984)
Suspended 0.056 (0.23) (0.214)  (0.225)
GPA 2.763 (0.87) (0.604)  (0.801)
In 10th grade 0.856 (0.351) (0.305)  (0.339)
Dropout (2005-2010 cohorts) 0.083 (0.276) (0.205)  (0.213)
Graduate (2005-2009 cohorts) 0.793 (0.405) (0.380)  (0.405)
Take SAT (2005-2009 cohorts) 0.393 (0.489) (0.386)  (0.439)
Intend to attend college (2005-2009 cohorts) 0.387 (0.487) (0.432)  (0.463)
Observations 348547 
Notes: These summary statistics are based on students who took the English I exam. Incoming math scores 
and reading scores are standardized to be mean zero unit variance. About 10 percent of students do not have 
parental education data—the missing category is “missing parental education”. 
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Table 2:  Correlations between the short run outcomes 

 Raw correlations between outcomes  
Percentage of Variance 
Explained by Factors 

 

Log of # 
Days 

Absent 
Suspended 

Grade 
Point 

Average

In 10th 
grade 

on 
time 

Algebra 
Score in 

9th 
Grade 

English 
Score 
in 9th 
Grade 

 

Math 
Scores 

English 
Scores 

Non-
cognitive 

Factor 

Ln of # Days Absent 1       0.010 0.007 0.281 
Suspended 0.252 1      0.017 0.017 0.365 
Grade Point Average -0.232 -0.192 1     0.350 0.291 0.677 
In 10th grade on time -0.167 -0.16 0.482 1    0.096 0.095 0.563 
Algebra Score in 9th Grade -0.098 -0.13 0.592 0.310 1   1.000 0.379 0.234 
English Score in 9th Grade -0.082 -0.13 0.539 0.308 0.616 1   0.379 1.000 0.271 
Note: The cognitive and non-cognitive factors were uncovered using factor analysis and are linear combinations of all the short-
run outcomes. The results were then standardized. Note that the factors in the NCERDC use the weights derived from the NELS-
88 data. However, the factors using weights derived from the NCERDC have correlations greater than 0.95 with those derived 
using weights from the NELS-88. 

 

 

Table 3: Relationship Between Short-run Outcome and Long-run Outcomes 

 1 2 3 4 5 6 

 Dataset: NCERDC Micro Data 

 Drop out Graduate Take SAT Drop out Graduate Take SAT 

       
Grade Point Average -0.0360** 0.116** 0.187**    

 [0.00118] [0.00217] [0.00214]    
Log of # Absences 0.00814** -0.0284** -0.0449**    

 [0.000522] [0.00104] [0.00122]    
Suspended 0.0128** -0.0505** -0.0160**    

 [0.00311] [0.00572] [0.00474]    
On time in 10th grade -0.0755** 0.290** 0.0374**    

 [0.00260] [0.00454] [0.00329]    
English z-score -0.00501** 0.00461* 0.0185**    

 [0.00111] [0.00203] [0.00215]    
Math z-score -0.00880** 0.0192** 0.0256** -0.00710** 0.0183** 0.0889** 

 [0.000904] [0.00170] [0.00180] [0.000572] [0.00117] [0.00120] 
Non-cog factor z-score    -0.0485** 0.182** 0.152** 

    [0.000846] [0.00137] [0.00115] 
       

School Fixed Effects Y Y Y Y Y Y 
Covariates Y Y Y Y Y Y 
Observations 208,330 171,226 171,226 208,330 171,226 171,226 
Robust standard errors in brackets. ** p<0.01, * p<0.05, + p<0.1
All models include controls for student gender, ethnicity, are parental education. 
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Table 4: Illustration of the Variation at a Hypothetical School 

    Track A Track B 
  Alg I (regular) Alg I (regular) 
  Eng I (regular) Eng I (regular) 
  Natural Sciences Biology  
  US History World History 
     Geometry 
 Year     
Math Teacher 1 2000 X X 
Math Teacher 2 2000  X 
    
Math Teacher 1 2005 X X 
Math Teacher 2* 2005 - - 
Math Teacher 3 2005   X 

 

 
Table 5: Estimated Covariance across Classrooms for the Same Teacher  

    Algebra Teachers   English Teachers 

    SD 
Prob 

Cov≤0 

95% 
CI 

Upper 
bound 

95% 
CI 

Lower 
bound 

  SD 
Prob 

Cov≤0 

95% CI 
Upper 
bound 

95% CI 
Lower 
bound 

T
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y-
S
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Y
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r 

E
ff
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Algebra Score 9th 0.096 0.000 0.107 0.093  0.042 0.005 0.051 0.019 
English Score 9th 0.013 0.842 0.034 0.000  0.043 0.000 0.050 0.035 
Suspended 0.009 0.645 0.022 0.000  0.021 0.000 0.025 0.017 
Log of # Absences 0.093 0.000 0.109 0.073  0.095 0.000 0.108 0.08 
GPA 0.065 0.000 0.075 0.053  0.049 0.000 0.059 0.037 
On time enrollment 0.035 0.000 0.042 0.027  0.031 0.000 0.037 0.025 
Non-cognitive factor  0.113 0.000 0.127 0.097   0.092 0.000 0.103 0.08 
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Algebra Score 9th 0.066 0.000 0.074 0.056   0.000 0.968 0.008 0.000 
English Score 9th 0.000 0.917 0.009 0.000  0.034 0.000 0.041 0.025 
Suspended 0.000 0.887 0.008 0.000  0.014 0.003 0.019 0.007 
Log of # Absences 0.000 0.798 0.03 0.000  0.037 0.024 0.054 0.009 
GPA 0.045 0.000 0.057 0.028  0.027 0.007 0.039 0.008 
On time enrollment 0.025 0.002 0.033 0.012  0.024 0.000 0.031 0.015 
Non-cognitive factor 0.083 0.000 0.06 0.100 0.071 0.000 0.082 0.056 

Notes: The estimated covariances are computed by taking the classroom level residuals from equation 7 and computing the 
covariance of mean residuals across classrooms for the same teacher. Specifically, I pair each classroom with a randomly 
chosen different classroom for the same teacher and estimate the covariance. I replicate this 50 times and report the median 
estimated covariance as my sample covariance. To construct the standard deviation of this estimated covariance, I pair each 
classroom with a randomly chosen classroom under a different teacher and estimate the covariance. The standard deviation 
of 50 replications of these “placebo” covariances is my bootstrap estimate of the standard deviation of the estimated 
covariance. These two estimates can then be used to form confidence intervals for the covariance that can be used to compute 
estimates and confidence intervals for the standard deviation of the teacher effects (by taking the square root of the sample 
covariance and the estimated upper and lower bounds). When the estimated covariance is negative, I report a value of zero 
for the standard deviation. Note that none of the negative covariances are statistically significant at the five percent level.  
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Table 6: Effect of Out-of-Sample Estimated Teacher Effects and School-Track-Year-Level 
Mean Teacher Effects on Outcomes and Predicted Outcomes 

  1 2  3 4  5 6 

 
Algebra Teachers  English Teachers 

 

English Teachers    
(clean sample) b 

 
Algebra 

Non-
cognitive 

 English 
Non-

cognitive  
English 

Non-
cognitive 

Estimated Effect (within cohorts) 0.275** 0.0599**  0.197** 0.0732**  0.196** 0.0733** 
 [0.0350] [0.0198]  [0.0235] [0.0191]  [0.0255] [0.0203] 

Mean Estimated Effect (across cohorts) 0.263** 0.103*  0.272** 0.168**  0.267** 0.178** 
  [0.0612] [0.0495]  [0.0444] [0.0341]  [0.0460] [0.0357] 
School-year Mean Effect (across tracks) 0.405** 0.0641*  - -  0.130** 0.112** 
 [0.0754] [0.0317]  - -  [0.0453] [0.0365] 

         

 

Predicted 
Algebra 

Predicted 
Non-

cognitive 
 

Predicted 
English 

Predicted 
Non-

cognitive  

Predicted 
English 

Predicted 
Non-

cognitive 

Estimated Effect (all variation) a 0.019 -0.00376  0.0842** -0.00718  0.0224 -0.0114 
 [0.0223] [0.00355]  [0.0247] [0.00622]  [0.0262] [0.00695] 

Observations 137,600 139,173  284,363 284,363  256,308 256,308 
Standard errors in brackets. ** p<0.01, * p<0.05, + p<0.1 
All models include school-year effects and school-track fixed effects. The independent variable in-within cohort models is the 
estimated effect of a student’s teacher (from all other years of data) on that outcome. The independent variable in the across-
cohort models is the mean estimated effect (from all other years of data) of all students in the same school-track and the same 
cohort as the students for that outcome. The independent variable in the across-track models is the mean estimated effect (from 
all other years of data) of all students in the same school and the same cohort as the students for that outcome. 

a. Note: the predicted outcome reflects the effects of 7th and 8th grade test scores, parental education, gender, and ethnicity.  

b. The clean English sample removes those schools that presented strong statistical evidence of non-random sorting of students 
to teachers within tracks. To do this, I regressed predicted English scores on out-of-sample teacher value-added for each school. 
Any school for which the t-statistic on teacher value added was larger than 2.5 were removed from the sample.   

 
 
 
Table 7: Proportion of the Variability in Estimated Effects Explained by Estimated Effects 

on Test Scores and Effects on the Non-cognitive Factor* 

  

Algebra 
Test 
score 
effect 

English 
Test 
score 
effect 

Suspended 
Effect 

Log of # 
Absences 

Effect 

GPA 
Effect 

On time 
enrollment 

in 10th 
grade 
Effect 

Non-
cognitive 

factor 
Effect 

Algebra Test score effect 1 - 0.0115 0.0209 0.0984 0.0497 0.091 
Non-cognitive factor effect 0.1 - 0.3165 0.3781 0.6267 0.6207 1 

               
English Test score effect - 1 0.0116 0.0247 0.0534 0.0585 0.0483 
Non-cognitive factor effect -  0.0730  0.3018 0.3980  0.6186  0.6809 1 

*This presents the estimated R-squared from separate regressions of a teacher’s effect on each outcome on her 
effect on test scores and her effect on the non-cognitive factor. Estimates greater than 10 percent are in bold. 
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Table 8:  Effect of Short-run Algebra Teacher effects on Long-run Outcomes 
  1 2 3 4 5 6 7 8

 
Dropout Dropout Graduate Graduate

Take 
SAT 

Take 
SAT 

Intend 
college 

intend 
college 

Effect on test score -0.00327 0.0062 0.0216* 0.0127 0.0117 0.0117 0.0350* 0.0266+
 [0.00633] [0.0058] [0.0104] [0.0112] [0.0130] [0.0141] [0.0145] [0.0138] 

Effect on non-cog factor  -0.0105*  0.0106  4.96E-05  0.00976 
  [0.0042]  [0.0083]  [0.0082]  [0.0087] 

                  
% increase sd(θ*) 430.86 32.93 6.4 22.5
Observations 139203 113939 113939 99640

    
 Predicted Dropout Predicted Graduate Predicted SAT Predicted Intend

Effect on test score -0.00099 0.0034 0.00847+ 0.00431
 [0.000768] [0.00249] [0.00450] [0.00264] 

Effect on noncog factor 0.000261 -0.00076 -0.00182 -0.00116 
  [0.000425] [0.00141] [0.00272] [0.00206] 
Standard errors in brackets. ** p<0.01, * p<0.05, + p<0.1 
Note: % increase sd(θ*) is the percentage increase in the standard deviation of the fitted values associated with 
estimated teacher-added.  

 
 
 
 

Table 9:  Effect of Short-run English Teacher effects on Long-run Outcomes (clean sample) 
  1 2 3 4 5 6 7 8 

 
Dropout Dropout Graduate Graduate 

Take 
SAT 

Take 
SAT 

Intend 
college 

Intend 
college 

Effect on test score -0.0114 -0.0018 0.019 -0.00235 0.0686** 0.0394* 0.00738 -0.0163
 [0.0091] [0.0102] [0.0164] [0.0169] [0.0147] [0.0162] [0.0179] [0.0188] 

Effect on non-cog factor  -0.0110*  0.0261**  0.0358**  0.0286** 
  [0.0045]  [0.0073]  [0.0078]  [0.0091] 

                  
% increase sd(θ*) 115.25 204.24 51.29 697.86 
Observations 258,706 220,706 220,706 181,762

         
 Predicted Dropout Predicted Graduate Predicted SAT Predicted Intend

Effect on test score 1.95E-05 -2.10E-04 8.60E-03 2.05E-03
 [0.00182] [0.00504] [0.00656] [0.00751] 

Effect on noncog factor 0.00183 -0.00376* -0.00183 -0.00324 
  [0.001201] [0.00178] [0.00257] [0.00243] 
Standard errors adjusted for clustering at the teacher level in brackets. ** p<0.01, * p<0.05, + p<0.1 
Note: % increase sd(θ*) is the percentage increase in the standard deviation of the fitted values associated with 
estimated teacher-added. 
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Figures 

Figure 1: Path Diagram of the Two-Factor Model  

 
Note: An arrow from a to b indicates that variable b is a linear function of variable a. Square boxes denote observed 
variables; while ovals denote unobserved or latent variables. 
 

Figure 2: Relationship between Teacher Effects on Test Scores and Non-cognitive Factor 
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Figure 3: Effect of Experience on Test Scores and Non-cognitive Factor 

 

 
 
 
 
 
 

Non-cognitive Factor: Pr(all indicators are the same)=0.62

Algebra Test Scores: Pr(all indicators are the same)=0.001
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Appendix 
 

Appendix Note 1:  Matching Teachers to Students 

The teacher ID in the testing file corresponds to the teacher who administered the exam, 
who is not always the teacher that taught the class (although in many cases it will be). To obtain 
high quality student-teacher links, I link classrooms in the End of Course (EOC) testing data with 
classrooms in the Student Activity Report (SAR) files (in which teacher links are correct). The 
NCERDC data contains End of Course (EOC) files with test-score-level observations for a certain 
subject in a certain year. Each observation contains various student characteristics, including 
ethnicity, gender, and grade level. It also contains the class period, course type, subject code, test 
date, school code, and a teacher ID code. Following Mansfield (2012), I group students into 
classrooms based on the unique combination of class period, course type, subject code, test date, 
school code, and the teacher ID code. I then compute classroom-level totals for student 
characteristics (class size, grade level totals, and race-by-gender cell totals). The Student Activity 
Report (SAR) files contain classroom-level observations for each year. Each observation contains 
a teacher ID code (the actual teacher in the course), school code, subject code, academic level, and 
section number. It also contains the class size, the number of students in each grade level in the 
classroom, and the number of students in each race-gender cell.  

To match students to the teacher who taught them, unique classrooms of students in the 
EOC data are matched to the appropriate classroom in the SAR data. To ensure the highest quality 
matches, I use the following algorithm: 
 

(1) Students in schools with only one Algebra I or English I teacher are automatically linked 
to the teacher ID from the SAR files. These are perfectly matched. Matched classes are set 
aside. 

(2) Classes that match exactly on all classroom characteristics and the teacher ID are deemed 
matches. These are deemed perfectly matched. Matched classes are set aside.  

(3) Compute a score for each potential match (the sum of the squared difference between each 
observed classroom characteristics for classrooms in the same school in the same year in 
the same subject, and infinity otherwise) in the SAR file and the EOC data. Find the best 
match in the SAR file for each EOC classroom. If the best match also matches in the teacher 
ID, a match is made. These are deemed imperfectly matched. Matched classes are set aside.  

(4) Find the best match (based on the score) in the SAR file for each EOC classroom. If the 
SAR classroom is also the best match in the EOC classroom for the SAR class, a match is 
made. These are deemed imperfectly matched. Matched classes are set aside.  

(5) Repeat step 4 until no more high quality matches can be made.  
 
 
This procedure leads to a matching of approximately 60 percent of classrooms. All results are 
similar when using cases when the matching is exact, so error due to the fuzzy matching algorithm 
does not generate any of the empirical findings.  
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Appendix Note 2:   Estimating Efficient Teacher Fixed Effects 

I follow the procedure outlined in Kane and Staiger (2008) to compute efficient teacher 
fixed effects. This approach accounts for two issues: (1) teachers with larger classes will tend to 
have more precise estimates and (2) there are classroom level disturbances so that teachers with 
multiple classrooms will have more precise estimates. As before, I compute mean residuals from 
[7] for each classroom *

 j ˆc j c ce      . Since the classroom error is randomly distributed, I use 

the covariance between the mean residuals of classrooms for the same teacher * * 2
' ˆcov( , )

jcj c je e 

as an estimate of the variance of true teacher quality. I use the variance of the classroom demeaned 
residuals as an estimate of 2ˆ . Because the variance of the residuals is equal to the sum of the 

variances of the true teacher effects, the classroom effects, and the student errors, I compute the 
variance of the classroom errors 2

c by subtracting 2
 and 2ˆ

j from the total variance of the 

residuals. For each teacher I compute [A1], a weighted average of their mean classroom residuals, 
where classrooms with more students are more heavily weighted in proportion to their reliability.  

2 2

2 2
1

1

(1/ ( ( / ))ˆ
(1/ ( ( / ))
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j jt T
t c ct
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N




 
 




 





     [A1] 

Where cN  is the number of students in classroom c, and jT is the total number of classrooms for 

teacher j. This is a more efficient estimate of the teacher fixed effect that the simple teacher 
average. 
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Appendix Note 3: Analysis of the NELS-88 data 

To ensure that the patterns are not specific to North Carolina, I also employ data from the 
National Educational Longitudinal Survey of 1988 (NELS-88). The NELS-88 is a nationally 
representative sample of respondents who were eighth-graders in 1988. Table A3 presents the 
same models using the NELS-88 data. The results are largely consistent with those from the 
NCERDC data. For both dropout and high school graduation, the marginal effect of a 1σ increase 
in the non-cognitive factor is associated with marginal effects that are more than 10 times larger 
than that associated with a 1σ increase in math scores. Also similar to the NCERDC data, the 
results for college-going show much more similar predictive ability for test scores and the non-
cognitive factor. A 1σ increase in test scores is associated with a 4.5 percentage point increase in 
college going while a 1σ increase in the non-cognitive factor is associated with a 9 percentage 
point increase (an effect twice that of test scores).  

The NELS-88 data also include longer-run outcomes from when the respondent was 25 
years old. These allow one to see how this non-cognitive factor (based on 8th grade outcomes) 
predicts being arrested (or having a close friend who was arrested), employment, and labor market 
earnings, conditional on 8th grade test scores. The results show that test scores do not predict being 
arrested, but a 1σ increase in the non-cognitive factor is associated with a 4.5 percentage point 
decrease in being arrested (or having a close friend who was arrested). In contrast, both test scores 
and the non-cognitive factor predict employment in the labor market and earnings. Specifically, a 
1σ increase in test scores is associated with a 1.18 percentage point increase in working, while a 
1σ increase in the non-cognitive factor is associated with a similar 1.53 percentage point increase. 
Finally, conditional on having any earnings, a 1σ increase in test scores is associated with 13.8 
percent higher earnings while a 1σ increase in the non-cognitive factor is associated with 20 
percent higher earnings.  

In recent findings, both Lindqvist & Vestman (2011) and Heckman, Stixrud, & Urzua 
(2006) find that non-cognitive ability is particularly important at the lower end of the earnings 
distribution. Insofar as the non-cognitive factor truly captures non-cognitive skills, one would 
expect this to be the case for this factor also. To test for this, I estimate quantile regressions to 
obtain the marginal effect on log wages at different points in the earnings distribution. The results 
(appendix table A4) show that at the 90th percentile through the 75th percentile of the earnings 
distribution, a 1σ increase in test scores and the non-cognitive factor is associated with a very 
similar increase of about 6 percent high earnings. However, at the median level the non-cognitive 
factor is more important; the marginal effect of a 1σ increase in test scores and the non-cognitive 
factor is 3.8 percent and 9 percent higher earnings, respectively. At the 25th percentile, this 
difference is even more pronounced. A 1σ increase in test scores is associated with 2.6 percent 
higher earnings while a 1σ increase in the non-cognitive factor is associated with 17 percent higher 
earnings. These findings are similar to those by Lindqvist & Vestman (2011), thereby suggesting 
that this factor is a reasonable measure of non-cognitive ability. 
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Table A1: Most common academic courses 

Academic course rank Course Name % of 9th graders taking % of all courses taken

1 English I* 90 0.11 
2 World History 84 0.11 
3 Earth Science 63 0.09 
4 Algebra I* 51 0.06 
5 Geometry 20 0.03 
6 Art I 16 0.03 
7 Biology I 15 0.02 
8 Intro to Algebra 14 0.02 
9 Basic Earth Science 13 0.01 

10 Spanish I 13 0.02 
 
 

Table A2: Distribution of Number of Teachers in Each School-Track-Year Cell 
 Percent

Number of Teachers in School-Track-Year Cell English  Algebra
1 63.37 51.07
2 18.89 26.53
3 9.12 11.00
4 5.60 6.38
5 3.03 3.25
6 0 1.77

Note:  This is after removing singleton tracks. 
    

 

 
Table A3: Relationship Between Short-run Outcome and Longer-run Outcomes 

 1 2 3 4 5 6 

 Dataset: National Educational Longitudinal Survey 1988 

 Dropout Graduate College Arrests Working 
Log 

Income 
Math z-score 0.00326 0.00334 0.0454** 0.0112+ 0.0118* 0.138**

 [0.00242] [0.00399] [0.00536] [0.00582] [0.00484] [0.0486] 
Non-cog factor z-score -0.0222** 0.0776** 0.0905** -0.0454** 0.0153** 0.200** 

 [0.00238] [0.00397] [0.00479] [0.00515] [0.00434] [0.0433] 
       

School Fixed Effects Y Y Y Y Y Y 
Covariates Y Y Y Y Y Y 
Observations 10,792 10,792 10,792 10,792 10,792 10,792 
Robust standard errors in brackets 
** p<0.01, * p<0.05, + p<0.1 
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Table A4: Effect of test scores and the non-cognitive factor in 8th grade on adult earnings at 
different percentiles (NELS-88 sample) 

 Natural log of Income 
Percentile 25th  50th 75th 90th 
Math z-score 0.0264 0.0382*** 0.0512*** 0.0562*** 

 [0.0481] [0.00906] [0.00667] [0.00877] 
Non-cog factor 0.174*** 0.0906*** 0.0705*** 0.0619*** 

 [0.0462] [0.00870] [0.00641] [0.00843] 
     

Observations 10,792 10,792 10,792 10,792 
Standard errors in brackets 

*** p<0.01, ** p<0.05, * p<0.1 
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