Decreased demand expectations pushed down oil prices.

- While perceived supply conditions increased only slightly over the past two weeks, global demand expectations fell sharply along with the residual, leading to a decline in oil prices in this period. For 2016:Q3, oil prices were somewhat lower as a result of weakening albeit volatile global demand expectations as well as looser supply conditions.

- These developments follow the rebound in oil prices in Q2. Upward price pressure from both tighter supply conditions and more upbeat global demand expectations drove this bounce-back.

- Overall, since the end of 2014:Q2, both lower global demand expectations and looser supply have held oil prices down—a trend that appeared to have reversed in 2016:Q2, but reemerged in 2016:Q3.
Cumulative Weekly Decomposition, Jul 01–Nov 04, 2016

Recent Decomposition Data

- The chart at left depicts the cumulative oil price decomposition from July 1, 2016.
- The table below presents the most recent cumulative values.

Cumulative Percentage Changes since July 1, 2016

<table>
<thead>
<tr>
<th>Period</th>
<th>Demand</th>
<th>Supply</th>
<th>Rest</th>
<th>Brent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 21, 2016</td>
<td>-0.4</td>
<td>3.3</td>
<td>-0.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Oct 28, 2016</td>
<td>-2.5</td>
<td>3.9</td>
<td>-2.7</td>
<td>-1.3</td>
</tr>
<tr>
<td>Nov 04, 2016</td>
<td>-7.3</td>
<td>3.8</td>
<td>-6.4</td>
<td>-10.0</td>
</tr>
</tbody>
</table>

Longer-Term View of Oil Price Movements

- This final chart provides a somewhat longer-term perspective by means of a cumulative decomposition from 2010 onward.
- The analysis shows that excess supply became a significant driver of oil prices in mid-2012 and generally dominated price dynamics after mid-2014.
Oil Price Decomposition Q&A

1) **What is the goal of the oil price decomposition?**

 Our aim is to determine how much of the observed oil price change has been driven by demand and supply factors.

2) **What is the modeling strategy?**

 Using a statistical model and a large number of financial variables, we decompose weekly oil price changes into demand effects, supply effects, and an unexplained residual.

 Sparse partial least squares regression allows us to construct linear combinations from the variables in our financial market data set—called factors—which have maximum explanatory content for oil price changes. We first use this procedure to generate factors that best capture the patterns in the data, and then examine the estimated factors to determine how they reflect demand or supply dynamics.

 The model is re-estimated every week using weekly data from January 1986 through the close of business on Friday of the most recent week. Over this sample, the model can explain about two-thirds of the weekly oil price dynamics.

3) **How to interpret the results?**

 The output of the model is used to decompose weekly changes in an accounting sense. More specifically, the weekly Brent crude price change always equals the change explained by demand factors plus the change explained by supply factors plus a residual (the weekly change unexplained by the sum of the estimated demand and supply factors).

 Given the noise in weekly price changes, we choose to show the results as a cumulation from a certain starting point (usually the start of the previous quarter).

References

Authors

Brandyn Bok and Jan Groen