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to explain two-year to ten-year yields. The models differ because mean
reversion is much faster for yields near the short end of the curve than
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Two Factors Along the Yield Curve

FRANK F. GONG and ELI M. REMOLONA
Federal Reserve Bank of New York

EQUILIBRIUM MODELS of the term structure of interest rates face two
empirical tasks. The first task is to reconcile the time-series dynamics of inter-
est rates with the cross-sectional shapes of the term structure. The second is
to explain movements in the yield curve in terms of observable economic fun-
damentals. While the literature in economics and finance has made progress
on both fronts, thus far advances at one task have hardly been used to fur-
ther the other task. This paper is an effort to estimate and evaluate models
that are consistent with both time-series and cross-section data and to use
the estimated models to understand the nature of the fundamentals driving

movements in the yield curve.

Theoretical work with equilibrium models, notably by Vasicek (1977) and
Cox, Ingersoll, and Ross (1985, hereafter CIR), exploited a no-arbitrage con-
dition to show how the term structure at a moment in time would reflect
movements of interest rates over time. In particular, long-maturity yields
would depend on market expectations about future interest rates and on risks
associated with the volatility of those rates. In the simplest such models, the
short-term interest rate is the single factor driving movements in the term
structure, and the key parameters are typically the rate by which that short
rate returned to a long-run mean and the sensitivity of the rate’s volatility to

its level.

In reconciling time series data with cross section data on interest rates,

the number of factors required for an adequate model is an important issue.




The challenge is to estimate a consistent model with as few factors as possible
by relying on discernible regularities in the data. In this regard, one-factor
models have not fared well, as Backus and Zin (1994) and Campbell, Lo, and
MacKinlay (1994, hereafter CLM) have emphasized.? When the parameters
are estimated from the time series, the constructed yield curves fail to match
the shapes of actual curves, particularly at long maturities.> The time-series
approach also has difficulty fitting the term structure of volatility, which is
critical for pricing fixed-income derivatives. When the parameters are derived
from the cross-sectional term structure at a point in time, the estimates suf-
fer from the problem that they inevitably vary over time with shifts in the
term structure.* Two-factor models hold more promise in fitting the data.’®
Longstaff and Schwartz (1992), for example, propose a model with the shoft
rate and its volatility as the two factors, and the model appears to fit the yield

curve up to the five-year maturity.

A separate body of research has demonstrated empirical links between

2Campbell, Lo, and Mackinlay state “But in simple term structure models, there also
appear to be systematic differences between the parameter values needed to fit cross-section
term structure data and the parameter values implied by the time-series behavior of interest

rates.

3Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1995), Eom (1995), and

Stanton (1996) provide alternative estimates of the time-series parameters.
4Brown and Dybvig (1986), Ho and Lee (1986), Black, Derman, and Toy (1990), Hull

and White (1990), Brown and Schaefer (1991), and Heath, Jarrow, and Morton (1992) show
alternative ways of extracting the time-series behavior of rates, particularly volatilities, from

the term structure at a moment in time,
5The proposed factors differ-from model to model: for Brennan and Schwartz (1979) the

factors are the short and long rates, for Schaefer and Schwartz (1984) the long rate and
the spread between long and short rates, and for Longstaff and Schwartz (1992) the short
rate and its volatility. In the present paper, the two-factor models we specify have linear

transformations that produce the above models as reduced forms.




the yield curve and observed macroeconomic fundamentals. This research
has shown that the yield curve helps predict inflation (Fama 1990, Mishkin
1990, and Engsted 1995), business cycles (Estrella and Hardouvelis 1991 and
Estrella and Mishkin 1995), and monectary stance (Rudebusch 1995 and Re-
molona, Dziwura, and Pedraza 1996). The estimated relationships, however,
are based on reduced forms that lack the benefit of structural restrictions im-
posed by equilibrium models. Some of the studies test the pure expectations
hypothesis, which implies a term structure model with constant term premia,

but invariably find that the data reject the model.

In this paper, we focus on equilibrium models with only two factors to see
how much we can explain with just this number of factors. Instead of trying
to fit one model to the whole term structure, however, we find it instructive to
try to fit three alternative models, each one to five different parts of the yield
curve, using only two maturities at a time. If a two-factor model explained
the whole term structure, then we should be able to estimate the model with
any two maturities, and the same model should fit different parts of the curve
“well.? The three models we consider include one in which the two factors
are additive in the expécted log stochastic discount factor as in CLM (1994)
and two in which one factor reverts to the other over time but with different
shock specifications. We use quarterly data on U.S. zero-coupon yields from
1984 Q1 to 1995 Q1, using five different cross sections of the yield curve, with

three-month yields at the short end and ten-year yields at the long end.

We find that the data tend to favor models in-which one factor reverts

This exercise is analogous to one conducted by Brown and Weinstein (1983) to test the
number of factors in the arbitrage pricing model for the stock market. They divide their
sample into several subsets of stocks to see whether they get similar estimates of the risk-free

rate and market price of risk.




over time to a factor serving as a time-varying mean. Our results also suggest
that explaining the entire term structure would require more than two factors.
However, two factors seem adequate to explain wide stretches of the curve.
Specifically, one two-factor time-varying-mean model best fits yields of between
three-month and two-year maturities, and another such model best fits two-
year to ten-year yields. The key difference between the two models is that for
yields near the short end of the curve, one factor reverts to the time-varying

mean rather quickly, while for yields near the long end, the factor reverts

rather slowly.

In our models, the factors are latent variables that serve to forecast stochas-
tic discount factors but which are not directly observable. However, we can
estimate the models .by Kalman filter and ma,xi.mum likelihood techniques and
then use the estimated models to back out the factors from observed bond
yields. To identify the underlying fundamentals, we relate the implied fac-
tors to such macroeconomic variables as consumer price inflation, real GDP
growth, and the Federal Reserve’s federal funds target rate. Using implied
factors instead of observed yields allows us to control for time-varying term
premia. We find that the factors correlate with fundamentals in ways that are
consistent with our two-model division of the term structure. Most strikingly,
- the factors implied by the shorter-term yields seem to predict future inflation
rates and federal funds target rates by capturing mean reverting processes in

these fundamentals.

In what follows; we begin by specifying three alternative models of the term
structure and deriving the theoretical restrictions necessary for consistency.
To keep the restrictions tractable, we take advantage of the recent technology

of affine yield models. Then we estimate the relevant model parameters by




using the time series of bond yields of two maturities at a time for different
parts of the term structure. The latent-variable structure and well-defined
distributional assumptions of the models lead us to employ Kalman filter and
maximum likelihood techniques while imposing the restrictions implied by the
models. Finally, we back out the implied factors from the estimated models

and relate the behavior of these factors to movements in fundamentals.

1. Theory: Affine yield two-factor models

In this paper, we will focus on two-factor equilibrium models. Stambaugh
(1988) provides formal support for a two-factor model. He uses a matrix-rank
test with Generalized Method of Moments (GMM) applied to monthly data
on U.S. Treasury bills of two-month to six-month maturities over the period
March 1959 to November 1985 and finds strong evidence against models with
a single latent variable. Heston (1992), however, investigates the period from
February 1970 to May 1988 and finds little evidence against one-factor models.
In our view, the need for at least two factors arises from the apparent failure
of one-factor models to reconcile the time series dynamics of interest rates
with the cross-sectional shapes of the term structure. As Backus and Zin
(1994) have emphasized, the basic difficulty seems to be that the yield curve’s
steepness at the short end implies rapid mean-reversion by the short rate,

while the flatness of the volatility curve requires slow mean reversion.” In

" Another argument is that one-factor models imply perfect correlation among yields of
different maturities, while actual correlations are less than perfect. We do not find this
argument to be compelling, because the correlations are after all quite high—in our sample

the correlation between the three-month yield and ten-year yield is 0.83.




Appendix C, for example, we try to fit a one-factor model with disappointing
results. The estimated persistence of the factor is 0.96 for monthly data. This

persistence is not high enough to match long-end volatilities.

To see how far we can push two-factor mddels, we will specify three alter-
native models that we believe represent most of the plausible explanations of
term-structure movements. If a two-factor model is adequate for the entire
term structure, then it should not matter which two maturities we use to es-
timate the relevant parameters. If the estimates turn out to be different for
different parts of the yield curve, then we may need a three-factor model. In
this paper, the factors will represent unobservable state variables. Unlike the
two factor models in CLM (1994), we allow for correlated factor shocks in two
of the three proposed models. Allowing for correlation between the shocks
is important because we want to relate them to observable macroeconomic
fundamentals. Orthogonalized factors would represent linear combinations of
fundamentals.® In our first model, the two factors enter additively. In the two

other models one factor reverts to the other factor over time.
A. The Pricing Kernel

We rely on a no-arbitrage condition common to intertemporal asset pricing

models.® In the case of zero-coupon bonds, the price of an n-period bond is
Fy = Et[Mt+1P -1,t+1] (1)

where M, is the stochastic discount factor. The condition expresses the price

of the bond as the expected discounted value of the bond’s next-period price.

8Guch factors would be useful if the purpose is simply the hedging of bond portfolios.

Litterman and Scheinkman (1991), for example, propose three such factors.
9Singleton (1990) provides a critical survey of these models, particularly their empirical

performance.




It rules out arbitrage opportunities by applying the same discount factor to
all bonds. We will model P,; by modelling the stochastic process for My,
a process called the pricing kernel.'® Indeed we can solve (1) forward to get
Pri = Ey[Mi41...My,], which specifies bond prices to be simply functions of
the future discount factors. By convention we normalize Py, = 1 to ensure the

equality of a bond’s price at maturity to its par value.
B. Two Factor Affine Yields

We will focus on a class of models known as affine yield models. In these
models, M;;; is conditionally lognormal, bond prices are jointly lognormal
with M1, and bond yields are linear in the factors that forecast M,;. Term
structure models that impose the no-arbitrage condition can get very compli-
cated, but affine yield models help maintain tractability. This class of models
is fairly general, encompassing those by Vasicek (1977), CIR (1985), Longstaff
and Schwartz (1992), CLM (1994), and most equilibrium models of the yield

curve. Duffie (1992) provides a detailed discussion of this class of models.

The assumption of joint lognormality allows us to take logs of (1) and write

it as
1
Pnt = Et(mt+1 + pn—l,t+1) + "2'Vart(mt+1 + pn-—l,t+1): (2)

where lower-casec letters denote logarithms of upper-case letters. Furthermore,
if we have two factors, x4, &2;, that forecast m.y.1, an affine yield model can

be written as

—Pnt = An + Bin®1t + Bonas. (3)

10The term “pricing kernel” is due to Sargent (1977). In consumption-based equilibrium
models, M;41 would represent the marginal rate of substitution between present and next-

period consumption (Lucas 1978, for example).




Since the n-period bond yield is y,; = —p,,/n, yields will also be linear in the
factors. The coeficients A, By,, By, will depend on the stochastic processes
of x4, 29, implying restrictions across coefficients for bond prices of different
maturities. In practice, specifying Ay, Bin, By, involves solving (2) based on

the stochastic processes of z;;, 2, and verifying that (3) holds.

In the following, we introduce three alternative affine yield two-factor mod-
els. The models share a number of characteristics. Factors in each of the
models are AR(1) processes. Bond yields then follow an ARM A(2,1) process,
because of the yields’ affine structure.!' The conditional variances of bond
yields are linear in one of the factors and thus are ARC'H processes. Finally,
various linear transformations of any of the models will produce the two fac-
tor models of Brennan and Schwartz (1979), Schaefer and Schwartz (1992), or
Longstaft and Schwartz (1992) as reduced forms, with the short rate and the
long rate, the long rate and the spread, or the short rate and its volatility as
alternate pairs of reduced-form factors. These reduced forms will not distin-
guish between the three structural models we specify, but we will show that

the data will distinguish sharply between them.
D. Model I: Additive Factors

In the first model, two factors directly affect expectations of the stochastic
discount factor for the period right ahead. Specifically, the conditional ex-
pectation of the negative of the log stochastic discount factor depends on two

factors that enter additively:

=M1 = L1t + o + Wit (4)

1Engel’s (1984) analysis implies that the sum of two AR(1) processes would be

ARMA(2,1), unless there are common roots.




where w;y; represents the unexpected change in the log stochastic discount
factor and will be related to risk. The shock w;,; has mean zero and a variance
that will be specified to depend on the stochastic processes of the two factors
z1:+ and z9;. FEach of these factors follows a univariate AR(1) process with

heteroscedastic shocks described by a square-root process

Tiepr = (1= d)p+ dizye + adiug i

Toar1 = (1= $2)0 4 ooy + 257Uz (5)

where 1 — ¢y and 1 — ¢, are the rates of mean reversion,  and 8 are the long-
run means to which the factors revert, and u;441 and ug441 are shocks with
mean zero, volatilities of and ¢ and covariance ay;. It is important to allow
correlation between factor shocks, because we intend to relate the factors to

fundamentals, which may not be orthogonal.

Moreover, we specify the shock to m;4; to be proportional to the shock to

Z1,4+1, which in turn depends on the level of z4;:
W1 = $g;f/\u1,t+1 (6)

where A represents the market price of risk. When A is negative, bond returns
are inversely correlated with the stochastic discount factor and risk premia are

positive.

The model is similar to CLM (1994) except that we allow the factors to
be correlated and both factors to influence the shock to m;y;. A possible
interpretation of the factors is that z; represents the real component of the
stochastic discount rate while z;; represents the expected inflation component.
The shock to the stochastic discount factor then depends on the level of the

inflation component and on the volatility of the real component. This inter-




pretation would be supported by a negative estimate of oy, to correspond to

the negative correlation between real interest rates and inflation rates.

The normalization pg; = 0 gives us affine-yield coefficients of Ay = By =

By = 0. We can then derive the one-period yield or short rate as

1
he = —Pig = —Et(mt+1) - "2“VGTt(mt+1)
1.
= Zi;+ Zap— 5/\2012372,% (7)

which is also linear in the factors, with the coefficients Ay =0, By =1, and

Bgl =1- %/\20'%.

We can also verify that the price of an n-period bond is linear in the factors

with the coefficients restricted by (see Appendix A)

An = Anoi+(1—¢1)pBip-1+ (1 — ¢2)0B; .,y
By, = 1+¢B (8)
By = 14+ ¢3By, g — %[(A + Bin)’0} + B2, ,07
+ 2(A 4+ Byn1)Bapn-1012],

The coefficients By, and Bj, are bond price sensitivities to the factors, in
much the same way that duration measures bond price sensitivity to the short

rate. The coefficient A, represents the pull of the factors to their means y and

8.

These recursive equations impose cross-sectional restrictions to be satisfied
by eight parameters: ¢q,ds,u,0,01,02,012, and A. If the two-factor model
adequately describes the true pricing kernel process, we should be able to
estimate all the parameters using the time series of bond yields of any two

maturities.

10




A model i1s useful in the pricing of fixed-income options because it can
provide a consistent volatility term structure. In the case of our model, the
conditional variance of the n-period yield is given by

1
n?

Va'rt(yn,t+1) = (B-fna'f + Bgnag + 2B1nB2n012)$2t (9)

We would have a downward-sloping volatility curve given that ¢; and ¢, are
both less than unity. Mean reversion by the factors serves to dampen yield

volatilities as maturity is lengthened.

The model also allows us to measure term premia. We can derive term

premia in the form of the expected excess bond return:

Etpn—l.t+1 —Pnt — Yu= "')\(JBl,n-lf712 + Bz,n-10’12)$2z

1
- §(Bf,n—1"f + B?,n_laﬁ + 231.n—1Bz,n-1012)332t (10)

The first term represents a risk premium that depends on the covariance be-
tween the stochastic discount factor and bond returns, while the second term
represents Jensen’s inequality arising from the use of logarithms. Positive term
premya require that A be so negative that |

_1_(B1z,n-1af + B, _10% + 2By 1By n_1012)
2 (Byn-10% + By n-1012)

—A>

Note also that if o3 = 0, we will have homoscedastic shocks, term premia will

be constant, and the pure expectations hypothesis will hold.
E. Model II: a time-varying mean model with both factors heteroskedastic

In our first time-varying mean two-factor model, one factor directly affects
expectations of the stochastic discount factor for the immediate period, while
the second factor affects expectations of the ultimate destination of the dis-

count factor. Specifically, the model specifies the conditional expectation of

11




the negative of the log stochastic discount factor to depend directly on one

factor, but this factor reverts over time to a second factor:

—Mip1 = T+ Wit
g1 = (1= @)pe + iz + pfug 4
pagr = (1 — @2} + Popus + N?'5u2,t+1, (11)

_ 0.5
Wy = /\ﬂ; U2,t4+1

where 1 — ¢ and 1 — ¢, are rates of mean reversion, but we have a single
parameter for the mean, 6. The factor shocks ;.41 and ug.y; have mean
zero, volatilities o7 and o2 and covariance ;5. The conditional expectation of
the stochastic discount factor depends only on the first factor, while its shock

depends on the second factor.

The time-varying-mean model focuses on distinguishing market develop-
ments that affect the current discount rate from those that affect future dis-
count rates, although the model also allows expectations about the distant
future to affect risk in the present. The model is similar to that of Balduzzi,
Das, and Foresi (1994), who specify a model in which the short rate reverts to

a central tendency which itself changes stochastically.

Again we guess that we have an affine yield model, so that the log bond
price would have the form —p,, = A,, + By,z; + Banpts. The normalization
po: = 0 satisfies our guess, because it would give us coeflicients of Ag = Bjo =
By = 0. We can further derive the one-period yield or the short rate as

i = —p1e= A1+ Bz + Baap

1
= & — 5)\20';?% (12)

which is also linear in the factors, with the coefficients Ay = 0, By = 1, and

B2’1 = —,\20'%/2.

12




As before, it can be shown that the price of a n-period bond is linear in

the factors with the coefficients restricted by (see Appendix A)

Ay = Anoi+ (1= ¢2)0By .,y
By, = 14 ¢1B, (13)
Byn = ¢2Bynoy+ (1 —¢1)Bypy — %[()\ + Bypn)’od
+ B{, 10} +2(A+ Byn1)Bin-1012],

The coeflicients By, and B;, have the same interpretations as in Model I; they
measure bond price sensitivities to the factors in much the same way that
duration measures bond price sensitivity to the short rate. The coefficient A,

represents the pull of the second factor to its mean 6.

The time-varying mean model is more restrictive than the additive model.
We have fewer free parameter here and the recursive equations impose cross-

sectional restrictions to be satisfied by seven parameters: ¢, ¢3,8, 01,02, 012,

and .

The volatility curve in terms of the conditional variance of the n-period

yields in this model is given by
1
Vary(ynie1) = ;(Bfnaf + B},03 + 2B1n Ban o) i, (14)

and again, we would have a downward-sloping volatility curve given that ¢,
and ¢, are both less than unity. Mean reversion by the factors serves to

dampen yield volatilities as maturity is lengthened.

We derive term premia from expected excess bond returns (Appendix B)

Etpn—l,t+l —Pnt — Yt T —A(Bz,n—ﬂg + B1,n—10‘12).uf,

1
- §(Blz,n—10-f + Bg,n—lag + ZBl.n—lBZ,n—lo'12)}U't (15)

13




The first term represents a risk premium that depends on the covariance be-
tween the pricing kernel and bond returns, while the second term represents

Jensen’s inequality arising from the use of logarithms.

Note also that if o3 = 0, we will have homoscedastic shocks, term premia

will be constant, and the pure expectations hypothesis will hold.

We derive the expected change in the short rate over n periods as follows

(Appendix B),

Ey(y1,64n) — Yit = O+ Bolpte — ) + Ynpis (16)
where
L 1 ¢ 3 K 1 n
1= 87 = =581 - g5) — 231 - g
ﬂn = 1~ ‘)5?
1-¢ +1 +1 1 22
n = — I — S g — MY — (1 — ™
¥ ¢1_¢2( 1 2 )+2 02(1 ¢2) ( qsl)
Note that a, = —7,8, so expected changes in the short rates consist of two

mean-reversion components: one is the mean reversion of the first factor z, to
its time-varying mean y, the second is the time-varying mean g, reverting to

its long-run mean 4.
F. Model III. g time-varying mean model with one homoskedastic factor

In Model II, the first factor is closely related to the second factor and
both are heteroskedastic with the conditional volatility linked to the time-
varying mean. Here we specify a slightly different model in which the two
factors are not so linked, with one factor having homoskedastic shocks and
the other factor having heteroskedastic shocks. This specification allows more

flexibility in modeling term premia. We assume the shocks to the factors are

14




uncorrelated.

—Mip1 = Ty + Wiy
Terr = (1 — d)pe + drze + urppa
peyr = (1 — d2)0 + dopiy + #?'suz,t+1a (17)

0.5
Wiy = /\#,a, Uz 141

As before, 1 — ¢y and 1 — ¢ are rates of mean reversion, and we have a single
parameter for the mean, 8. The factor shocks 4y 441 and w441 have mean zero,

volatilities o2 and &3 and zero covariance.

The short rate is the same as in Model IT

1
Yie = Tt — 5)\205#1 (18)

where A; = 0, By =1, and Byy = —=\?03/2.

The price of a n-period bond is similarly linear in the two factors with

coefficients given by

1
An = Any+(1—2)0Byps — 5B, 0]
Bl,n = 1 + ¢'lBl,n—1 (19)
1
Byn = $2Bau-1+ (1= ¢1)Bune1 — 5(A+ Baar)o}

The term 3 B?,_y0} which was in By, as specified in (13), is now in Ay,
since the first factor is no longer heteroskedastic. The terms containing the

covariance oyg di"sa,ppea,r.
The conditional variance of the n-period yield is
1
Vardynas1) = E(Bfnaf + B3,031t1) (20)

15




which now contains a constant term and a time-varying term.

We derive term premia from expected excess bond returns (Appendix B)

Etpn-l,t+1 — Pt =Y = —5312‘“_1012 - /\Bz,n_lagm

1
- §B22,n—10-glu’f’ (21)

The term premia now contain three components: a constant risk premium

term, a time-varying risk premium term, and a Jensen’s inequality term.

In this model the expected change in the short rate will be the same as in
Model II, given. by (16), since the drift of short rate process depends on the

factors in the same way as in Model II.

II. Evidence: Estimating the Parameters

In each of the proposed models, we cannot observe the stochastic discount
factor and the underlying two factors directly. All we can observe are the zero-
coupon rates on the yield curve. These latent-factor affine models can be cast
in the state space form and be estimated by the maximum likelihood method
combined with the Kalman filter. We depart from the standard application of

the Kalman filter by imposing restrictions from our equilibrium models.

The application-of the Kalman filter in the estimation of term structure
models has been utilized by Jegadeesh and Pennacchi (1996), where they
estimate a homoskedastic two-factor term structure model using Eurodollar

futures. We use the observed zero-coupon yields to estimate our restricted

16




latent-variable models, in which the underlying factors are specified to be con-
ditionally heteroskedastic. Heteroskedasticity is important in our model since
it leads to time-varying risk premia and, empirically it is well known that in-
terest rates are heteroskedastic. The Kalman filter is the optimal estimation

procedure because it is designed to exploit conditional information.

We estimate model parameters using the time series of a pair of yields at
a time, imposing on the yield dyné,mics cfoss section restrictions implied by
the model. If a two-factor model is adequate to characterize the movements
of the yield curve, then two yields are enough to back out the factors and it
should not matter which two yields are used, as long as the theoretical cross-
section restrictions are imposed. By using just two maturities at a time, we
will tend to get the models to fit either very tightly or not at all. This helps
to sharply differentiate each part of the yield curve from other parts. This
approach is analogous to that of Brown and Weinstein (1983), who estimate
an arbitrage pricing model using different groups of securities. They argue that
if the model is adequate, the factor prices and implied risk-free rate should be

the same across the groups.

’

Recent efforts to reconcile the time series with the cross section have tended
to rely on the GMM approach, including Longstaff and Schwartz (1992),
Gibbons and Ramaswamy (1993), and Backus and Zin (1994). The GMM
approach places cross-section restrictions on only some of the unconditional
moments while the Kalman filter makes use of a richer set of conditional mo-
ments. Backus and Zin (1994) place cross-section restrictions on yields up to
the 10-year maturity, but the restrictions are placed on only the first moments.

Gibbons and Ramaswamy (1993) have cross section restrictions on both the

first and the second moments, but use only the yields with maturities up to
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one year and avoid using long maturities to fit and test the CIR model. The
argument is that the volatility at the long end is mainly due to inflation, and
they are only interested in investigating restrictions placed on real returns by
the CIR model. In one of the most impressive efforts to date, Longstaff and
Schwartz (1992) estimate a model with the short rate and its volatility as the
two factors. In testing their overidentifying restrictions, however, they fit a
reduced form that takes account of only four out of the ten parameters implied

by their structural model.

The use of only some unconditional moment restrictions would present no
problem if the purpose is to be able to match the average shape of the term
structure. However, since our focus here is to back out the unobserved factors
that are consistent with the equilibrium model and relate them to observed
economic fundamentals, it is then crucial for the backed-out factor to be both
dynamically and cross-sectionally consistent. Cross;section restrictions on only
unconditional first moments would not be sufficient. In the maximum likeli-
hood framework, we are able to place cross-section restrictions on the entire
distribution (in this case, the first and the second moments) of the yields used

in the estimation.

In spirit, our work is close to Backus and Zin (1994) in that we use the
observed yields to determine the dynamics of the underlying stochastic dis-
count factor. Our work differs from Backus and Zin (1994) in an important
respect: they estimate a reduced form in the sense that they study various
ARMA processes for the stochastic discounting factor. We estimate a struc-
tural model by specifying the underlying factors that drive the movements of
the stochastic discounting factor. An ARM A(2,1) yield process is generated
by our two AR(1) factors.
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A. Data and Summary Statistics

We obtain end-of-quarter zero-coupon yield data from McCulloch and
Kwon (1993) for 1984 Q1 to 1990 Q4 and from the Federal Reserve Bank
of New York for 1991 Q1 to 1995 Q1.12 In the case of the Federal Reserve
data, each zero curve is generated by fitting a cubic spline to prices and matu-
rities of about 160 outstanding coupon-bearing U.S. Treasury securities. The
securities are limited to off-the-run Treasuries to eliminate the most liquid
securities and reduce the possible effect of liquidity premia. Fisher, Nychka,
and Zervos (1995) explain the procedure in detail. Summary statistics for the
yields with maturities of 1, 2, 4, 8, 20, and 40 quarters for the sample period
84:Q1-95:Q3 are reported in Table 1. The average term-structure is upward
sloping, with mean yields ranging from 5.94% to 8.43%. The average term
structure of volatility is hump-shaped, with the highest volatility at the 1-2
year maturities. Overall, the volatility curve is very flat. It is interesting that
the monthly and quarterly yields across the curve are all very persistent, with
first-order monthly auto-correlations at 0.96-0.98, and quarterly first-order
autocorrelation at 0.87-0.90. We also conducted the Durbin-Watson test and
Ljung-Box @ test to the residual of the AR(2) regression, and the test does
not reject the hypothesis that there is no higher order autocorrelation beyond

the second order.

We fit each of our models to five different cross sections of the yield curve,
using two maturities at a time. These maturity pairs are: (1) the three-
month and -six-month yields, {2) the six-month and one-year yields, (3) the
one-year and two-year yields, (4) the two-year and five-year yields, and (5)

12We also examined monthly data, but the estimation would not converge in longer ma-

turity yields. When convergence was achieved, the results were similar to quarterly data.
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the five-year and ten-year yiel.ds. Table 2 shows the correlations between the
yields of different maturities. We see that the zero-coupon yields are all highly
correlated, especially between neighboring yields. The correlation between
three-month and six-month yields is 0.996, while that correlation between five-
year and ten-yields is 0.987. Even the correlation between the two extreme
maturities, the three-month and the ten-year yields is 0.828. These correlations
will tend to make it difficult to fit the models. Indeed, as we shall see, the
models will tend to either fit well or not at all. Nonetheless, we believe that we

gain important insights by concentrating on specific parts of the yield curve.
B. Kalman Filtering and Mazimum Likelihood Estimation

We now show how to fit each of the two-factor models to U.S. zero-coupon

rates data, using a pair of yields at a time.
B1. Model I: The Additive Model

We write the model in the linear state-space form, with the measurement

equation

Yn t Ok, bl,n b2,n L1 U1,

¥ (22)

Ym,e A, bl,m b2,m Ta,t Va2,

1
4+

where yn,+ and yn,: are zero-coupon yields at time ¢ with maturities n and m

and v, is a measurement error assumed to be i.i.d. as

0 82 0
v ~ N{ , | )s (23)
0 0 &

and ap = Ak/k, bl,k = Bl,k/ka bz,k - Bz,k/k, k =n,m.
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The transition equation is

]l [
_xz,t+1 (1 — 452)9 0 ¢ Lot U2,t+1

with shocks to the state variable X,,, distributed as
U 41 0 o oy,

~N(| * ) (25)
U2,t41 0 o1 O

In standard linear state-space models, no restrictions link the measurement

equation and the transition equation. This time, however, the measurement
equation comes from the transition equation and the no-arbitrage conditions,

and the restrictions are given by equation (8).
B2. Models II and III: The Time- Varying Mean Models
For the time-varying mean models, we have the measurement equation
" a b b x v
Ynt _ ky 1,n 2,n t n 1, (26)
Ym,t Q. bl,m b2,m e U2t
where v; is the measurement error assumed to be i.i.d. as

w~N{0),(ﬁ 0}, @7)
0 0 &

and ap = Ak/k, bl,k = Bl'k/k, bg,k = Bz,k/k, k =n,m.

+

The difference between Model IT and Model III is in the transition equa-
tion and the cross-section restrictions. In the case of Model II, the transition

equation is

i I L PN K 1—‘&1} [“ } + 2 [””“ ](28)
i1 (1 - ¢2)9 0 b2 e U2 t41
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with shocks to the state variable X, distributed as
u1‘t+1 0 0"2 a
~N( Lo T ] (29)
Ug,t41 0 012 03

The restrictions are given by (13).

In the case of Model III, the transition equation is

[-THI:I _ E 0 ]_I_I:GbI 1_‘151] |:-73a n Uy, t41 (30)
i1 (1~ ¢2)0 0 ¢ ph 1S 41

with shocks to the state variable X, distributed as

SEOED
Uz 41 0 0 ol

The restrictions are given by (19).

B3. Filtering and Estimation

After putting the restrictions into the measurement equations, the preced-
ing models can be estimated by maximum likelihood using the Kalman filter.
The althorithm is discussed in Appendix D. For more detailed discussions of

the Kalman filtering procedure, see, for example, Hamilton (1994).

C. Estimation Efforts

We attempted to fit each of the three models to five different sections of
the yield curve. Table 3 shows the cases where we failed to get convergence
and reports the mean log likelihoods for the cases in which convergence was
achieved. Surprisingly Model I - which is the additive model and the seemingly

least restrictive one — would not fit the quarterly data. Convergence is not
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achieved even after 2,000 iterations. Model I fit the shorter-term yields well,
with mean log-likelihood statistics ranging from 0.52, 0.33 and 0.22. However,
Model I failed to fit the longer maturities. We could not get the program to
converge in 2,000 iterations. However, one version of the time-varying mean
model, Model I1l, in which the correlation between the shocks to two factors is
restricted to zero, did fit the data from the short-end to the long-end. Near the
short-end, however, the goodness of fit measured by the mean log-likelihood
function shows Model IIT to fit significantly poorer than Model IT in this part
of the curve. All the estimated standard deviations of the measurement error
are estimated to be zero except in two occasions. These standard deviations

indicate that when a model fits, it tends to fit extremely well.

The data apparently favor two model specifications, one for yields near
the short end — from three-month to two-year maturities — and one for yields
near the long-end - from two-year to ten-year maturities. Both models specify
the second factor to be a time-varying mean to which the first factor reverts.
The two models differ, however, in the specification of the risk premium and
in the correlation between the shocks to the two factors. In the model that
fits shorter-term yields best, both factors have heteroscedastic shocks that are
related to the square-root of the second factor. The shocks between factors
are correlated. In the model that fits longer-term yields best, one factor has
homoscedastic shocks and the shocks between factors are uncorrelated. This

induces term premia with constant as well as time-varying components..

Qur efforts to fit-the models to monthly-data were not nearly as successful,
especially for the longer maturities. The reason, as we shall see, is that for
longer-term yields the first factor follows a near-unit root process. This rather

high degree of persistence is apparently is hard to estimate at the monthly
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frequency.

I11. Parameter Estimates and Interpretation

Fitting two-factor models to different parts of the yield curve sheds light
on the issue of the number of factors required for an adequate term structure
model. It is significant that a single two-factor model does not fit the entire
yield curve well, because this suggests a minimum requirement of three factors.
However, it is also important to know whether two separate two-factor models
accomplish the task, because this narrows down the requirements, giving us
greater hope that we may someday fit to the whole curve a single appropriately

specified model with no more than three or four factors.3
A. Parameter Estimates

The pattern of parameter estimates suggests that one model would explain
the three different sections of the yield curve near the short end and another
model would explain the two sections near the long end. We report in Table 4
the estimated parameters for the two time-varying mean models that fit each
section of the yield curve best. The parameter estimates across the yield curve
from three-month yields to two-year yields are remarkably similar. This result
is remarkable because it is based on estimates that rely on two neighboring
maturities at a time, which would tend to produce very tight but very different
estimates. The similarity between parameter estimates across the curve from

the two-year to ten-year maturities is also impressive.

130ur own efforts to fit such a model have so far been unsuccessful. We consider all our

efforts to be an exercise in data compression in the sense of Sims (1996).
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Recall that I — ¢; and 1 — ¢, are the rates of mean-reversion of the first
and the second factor respectively. We see that the time-varying mean implied
at different part of the yield curve is always relatively persistent. For the
short yields, however, the first factor reverts to the time-varying mean rather
quickly, with the persistence parameter ranging from 0.50 to 0.80.!* Note
that the yields themselves are much more persistent than the first factor.
By specifying a time-varying mean process, the factor that tracks the short
rate closely turns out to actually revert to the varying mean quickly. For
the longer yields, the first factor is extremely persistent. This makes perfect
sense, because the factor should represent short rate movements that are so

long lasting that they are reflected in long-term yields.

Note that correlations between the shocks of the two factors are signifi-
cantly positive in the 3-month to two-year range. From Table 4, we see that
the model with correlated factors has a better fit in the 3-month to 2-year
part of the yield curve. This highlights the importance of allowing correlated
factors near the short. end. However, near the long-end, only Model H1 fits the
data , and the model succeeds by assuming the correlation between the shocks

to be zero.

As expected, the price of risk A is estimated to be negative. At the short
end, it ranges from -1.42 to -2.78. At the long-end, it is —1.04 for 2-5 year
range and —5.84 for 5-10 year range. Since the shock to the discount factor is
attached to the shock of the second factor, a measure of the size of the risk is
Aoy, We see that-at-the two long-end intervals, the numbers are of the same

order.

140ne may compare this with the monthly persistence parameter of 0.35 for the short

rate as reported by Gibbons and Ramaswamy (1993).
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The estimates show that a single two-factor model does not explain the
entire yield curve. The estimates also suggest that we can divide the yield
curve into two parts, so that one two-factor model fits one part and another

two-factor model fits the other part.
B. Adequacy of a Two-Model Ezplanation

To assess the adequacy of a two-model explanation of the term structure,
the similarity of individual parameter estimates is less important than the
combined effects of a given set of estimates, particularly because the parame-
ters are related in a highly nonlinear way. We look at these combined effects
by heuristically comparing the yield curves and volatility curves implied by
the parameters and by analyzing the comovements of the factors derived from

the estimated models.

The yield curves implied by the different estimates appear to sort them-
selves in a way that corresponds to the division of the yield curve by the
two successful model specifications. Figure 1 plots the actual average yield
curve for the sample period and the yield curves derived from the uncondi-
tional means of yields in the estimated models. Not surprisingly, the estimated
curves fit best the parts of the actual curve where they were estimated. Models
with strong mean reversion tend to fit the short end, while models with weak
mean reversion tend to fit the long end. None of the estimated curves fits
well at both the short and long ends, indicating the difficulty of explaining the
whole curve with a single two-factor model.’® At the same time, two models —

one for yields near the short end and one for yields near the long end — might

18 itterman and Scheinkman (1991) extract three orthogonal latent factors but do not
seem to impose the no-arbitrage conditions in their extraction. Their factors seem to rep-

resent the level, slope and curvature of the yield curve,
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suffice.

The implied volatility curves lead to similar conclusions. Figure 2 plots the
actual average volatility curve and the estimated curves based on unconditional
yield volatilities. As before, the estimated curves tend to fit most closely the
parts of the curve where they were estimated. It is remarkable that the three
curves estimated from the shorter-term yields bunch together and the two
curves from the longer-term yields bunch together, suggesting a two-model

explanation of the volatility curve.

The pattern of correlations among the factors backed out from the different
model estimates also suggests a two-model explanation of the term structure.
Table 5 reports the correlations among these factors. In Panel (a), the cor-
relations among the various estimates of the first factor — which represents
the market’s expectation of the next-quarter’s stochastic discount factor — are
uniformly strong, thus not helping to distinguish between models. In Panel
(b), however, the correlations among the various estimates of the time-varying-
mean factor are much stronger when the factors belong to a particular group
than when the factors belong to different groups. The correlations between the
implied time-varying means drawn from three-month to two-year yields range
from 0.93 to 0.99, while the correlation between the two estimates drawn from
the longer-term yields is 0.87. Outside these groups the correlations are con-

siderably weaker, ranging from 0.14 to 0.65.
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IV. Relationship to Fundamentals

A. Pundamentals and Hypotheses

To understand the nature of the economic fundamentals that drive move-
ments in the term structure, we now relate the factors implied by our models
to consumer price inflation, real GDP growth, and the Federal Reserve’s fed-
eral funds target rate. A large literature has demonstrated the yield curve’s
power to predict such macroeconomic variables. Fama (1990), Mishkin (1990),
and Engsted (1995) show that spreads between long and short rates contain
information about future inflation rates. Similarly, Estrella and Hardouvelis
(1991) and Estrella and Mishkin (1995) show that yield spreads can predict
real activity growth and recessions. Rudebusch (1995) suggests that the ability
“of yield spreads to predict short rates at near horizons is due to the predictabil-
ity of the Iederal Reserve’s actions to raise or lower its federal funds target
rate. Remolona, Dziwura, and Pedraza (1996) show that forward rates reflect
the anticipation of such monetary stance. In this paper, we control for time-
varying term premia by using implied factors instead of observed bond yields

to predict fundamentals.!®

An important point of our analysis is to distinguish between two compet-
ing hypotheses about the yield curve’s predictive power. Yields may predict
fundamentals because market participants have horizon-specific information
about the future. In this case, yields with maturities that match the forecast-
ing horizon would perform better than other yields. Alternatively, yields may

predict fundamentals because the factors reflect regularities in the time-series

1The federal funds rate is an overnight rate. Bernanke and Blinder (1992) consider the
rate to be a good measure of monetary stance and a good prediction of real activity. In this

paper, we use the Federal Reserve’s target rate instead of actual market rate.

28




dynamics of fundamentals. Backus and Zin (1993), for example, suggest that
interest rates follow a long-memory process to reflect such a process in infla-
tion rates. In this case, factors derived from yields that match the forecasting
horizon would have little advantage over other factors. Moreover, if mean
reversion is an important feature of a fundamental’s dynamics, the factors’

predictive power would tend to improve with longer forecasting horizons.!”
B. Contemporaneous correlations

Before turning to the predictive power of the derived factors, we exam-
ine contemporaneous correlations between the factors and observed macroe-
conomic fundamentals. Table 6 report the quarterly correlations between the
factors and core CPI inflation rates, real GDP growth rates, and the end-of-
quarter federal funds target rate. By themselves, the correlations do not tell us
what fund.amentals the factors represent. The correlations are useful because
they suggest which macroeconomic variables provide current information that
influences factor movements. A factor representing expected inflation, for
example, may actually be correlated with real GDP growth, which may be
perceived as a leading indicator of inflation. Such informational effects may
serve to differentiate among factors estimated from different parts of the yield

curve.

The correlations involving the first factor, which represents the market’s
expectation of the next-quarter’s stochastic discount factor, suggest similar
informational effects of macroeconomic variables across estimates derived from
different parts of the yield curve. The strongest correlations reported in Table 8

are those between the factor and the federal funds target, and these correlations

17We owe to Fama and Bliss (1987) the idea that mean reversion would make longer

horizons more predictable.
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are uniformly strong whether the factor is derived from yields near the short
end or from yields near the long end. The factor is less strongly correlated with
core CPI inflation but the correlations are nonetheless consistently significant
across estimates from different parts of the yield curve. None of these implied

factors shows significant correlation with real GDP growth.

The correlations involving the other factor, which represents the market’s
expectation of the stochastic discount factor’s future destination, point to a
notable difference in the way current macroeconomic variables influence differ-
ent parts of the yield curve. In Table 64, when this time-varying-mean factor
" “is"derived from shorter-term yields, the factor is strongly correlated with the
federal funds target rate, less strongly correlated with inflation, and uncor-
related with real GDP growth. In contrast, when the factor is derived from
longer-term yields, the factor is weakly correlated with real GDP growth but
uncorrelated with either the federal funds target or inflation. This pattern
of correlations is consistent with the idea that movements in the term struc-
ture can be explained by two models, one for shorter-term yields and one for

longer-term yields, with the two-year yield as the rough dividing line.
C. Predictive Power of Mean Reversion

To measure the power of the implied factors to predict fundamentals, we
rely on the equation we derived for the conditional expectation of the change in
the short rate over n periods. Recall from (26) that the equation is Eyyq t4r —
Y1t = On + Ba(pte — #1) + Ynpte- The term involving u; — 2, represents the effect
of the reversion of the first factor to the time-varying mean, while the term
involving u, represents the effect of the reversion of the time-varying mean to
its own long-run mean. As shown in (26), the coefficients wy,, 8,, and v, are

determined by the parameters ¢, ¢3, 8, o2 and A. We can tell that the equation
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excludes term premia by noting that A enters only in squared form as a result
of Jensen’s inequality. We analyze regressions in which the change in the
short rate is replaced by the change in the macroeconomic fundamental and in
which y; — 24 and p, are the explanatory variables. We would not expect the
regression coefficients to precisely match the theoretical coefficients o, 3,, and
¥» because of the replacement of the left-hand-side variable. Nonetheless, if the
factors reflect mean reversion in macroeconomic fundamentals, the regressions
would allow us to predict the fundamentals without the confounding effects of

time-varying term premia.

The regression results provide striking evidence that the implied factors
from shorter-term yields capture a mean reversion process in core CPI inflation.
Table 7a reports the results of regressions of changes in the inflation rate over
varying time horizons on y; — x; and p; as variously estimated from different
parts of the yield curve. The R-squared statistics show that the factors drawn
from the shorter-term yields have significant predictive power with regard to
changes in inflation rates over eight to 12 quarters, while the factors drawn
from longer-term yields have little predictive power over these horizons. There
appears to be no a.dva.ﬁtage in the predictive power of factors drawn from
yields with maturities matching the forecasting horizon. The factors drawn
from one-year and two-year yields, for example, fail to outperform the factors
drawn from three-month and six-month yields or from six-month and one—yéar
yields at predicting the change in the inflation rate over eight quarters. Hence,
the predictive power of yields does not arise from horizon-specific information
about the future. Moreover, the predictive power of the factors drawn from
yields with up to two-years in maturity improves as the forecasting horizon
is lengthened up to at least 10 quarters. These factors seem to derive their

predictive power by reflecting a process in which the inflation rate reverts to
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a future mean rate over 10 to 12 quarters.

The regression results show some predictive power with regard to real GDP
growth but apparently not because of mean reversion. Table 75 reports these
results. The factors drawn from two-year and five-year yields show significant
predictive power for real activity over six and eight quarters. The predictive

power, however, does not improve with the forecasting horizon.

The predictive power with regard to the federal funds target is impressive
for factors derived from any part of the yield curve and for almost any fore-
casting horizon. The pattern suggests that mean reversion may also be an
important feature of this fundamental. Unlike the case of inflation, however,
the pattern is not entirely consistent with our two-model explanation. Table
7c reports R-squared statistics that improve with the time horizon up to eight
quarters for the factors derived from the first two pairs of shorter-term yields.
However, the predictive performance continues to rise beyond this horizon for
the factors derived from one-year and two-year yields as it does for the factors
derived from two-year and five-year yields. The pattern might be consistent
with three models instead of two, with a model for the medium-term range of

one-year to five-year yields as well as for the short end and long end.
D. Interpretation

The implied factors tell an interesting story about these fundamentals.
The factors depict a market that behaves largely to anticipate the Federal
Reserve’s actions as reflected in the federal funds target rate. In this market,
the federal funds target rate is the primary determinant of short rates. At the .
same time, market participants view the Federal Reserve as having a near-

term target associated with inflation and a long-term target associated with
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unidentified fundamentals about which real activity growth seems to provide
information. When the Fed’s actions are related to its near-term target, the
market believes the actions are likely to be reversed in about two years, and
the effects on interest rates are not reflected in yields on bonds with more than
two years in maturity. When the actions are related to the long-term target,
the market believes the actions are likely to be sustained, and the effects are so

long-lasting that they affect yields on bonds with up to ten years in maturity.
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V. Conclusion

This paper is largely an effort to explore the term structure of interest
rates using two-factor affine yield models as our diagnostic tool. We try to
fit not one model but three, and we try to fit each model not once but five
times by dividing the yield curve into five separate cross sections. The idea is
that if a two-factor model explained the whole term structure, then the same
model should fit different parts of the curve well. In estimating the models,
we use only two yield maturities at a time, the minimum number of maturities
needed, to make it hard to get the same model to fit different parts of the

yield curve.

The results of the exercise suggest that a single two-factor model would
have difficulty explaining the whole term structure. Remarkably, however, the
results also suggest that we can divide the yield curve into two parts, so that
one two-factor model fits the shorter yield maturities and another two-factor
model the longer maturities, with the two-year yield as a rough dividing line.
For either part of the curve, the model that fits best is a time-varying mean
specification where one factor reverts to the other over time. The key difference
between the two models is that one factor reverts to the time-varying mean
rather quickly in the model for shorter-term yields while the factor reverts
rather slowly in the model for longer-term yields. The two models also differ
in the behavior of term premia and the correlation between shocks of the two

factors.

As specified, the models represent the pricing kernels used to price bonds
of different maturities. That we seem to get two pricing kernels does not

mean the presence of arbitrage opportunities, say between short-maturity and
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long-maturity bonds. Rather the results suggest that the true pricing kernel
is probably more complicated than the ones we specified, and it probably is
driven by at least three factors. Nonetheless if the purpose is to price a bond
relative to other bonds, a two-factor pricing kernel may be adequate if the
bonds are limited either to three-month to two-year maturities or to two-year

to ten-year maturities.

While the factors are specified to be unobserved latent variables, we are
able to extract them from the estimated models and relate them to observed
macroeconomic fundamentals. In general, the factors seem to relate to funda-

“mentals in ways that are consistent with our two-pricing-kernel explanation of
the term structure. Most strikingly, we find that the factors implied by the
shorter term yields successfully predict future inflation rates and future Fed-
eral Reserve targets for the federal funds rate, and the factors succeed largely
by capturing mean reverting processes in these fundamentals. The factors im-
plied by the longer term yields also seem to reflect a mean reverting process

in the federal funds target but not in inflation or in real activity growth.
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Appendix A
Al. Model I: Recursive Restrictions

We start with the general pricing equation:

1
Pt = Et(mt+1 + pﬂ.-l,t+1) + EVGTt(th + pn_1,t+1)

The short rate is derived by setting po; = 0:
1
Ynu=—pu = ""Et(mt+1) - “2“Va?‘t(mt+1)
1
= ZTypt+Tap— 5»’\2012$2,t,

showing the short rate to be linear in the factors.

Now we guess that the price of an n-period bond is affine:

—Pnt = An + B1,21 ¢ + B pa .

We verify that there exist A,, By, and B;, that satisfy the general pricing

equation:

Et(mt+1 + pn-—-l,t-l—l) = —A,_1— (1 - ¢1)#‘-B1,n-—1 - (1 - ¢2)932,n~1
= (141 Brn1)rre — (L4 ¢aByni)zay
Vardmeer + p-1441) = [(A+ Bin-1)?of + Bs,,_107

+ 2{A+ Bypn-1)Ban-1012)T2

Thus

—Pnt = An+ Biazis+ Bynay
= Ap-1+ (1 —¢1)pBra-1+ (1 — $2)0Bsn
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+ (1 + ¢1Bl,n—1)$1,t

1
+ {1 + 9’5232.11*1 - 5[()\ + Bl,n—l)gﬂ2 + Bzz,n_10'§ + 2(A + B1,n—1)Bz,n—1Cf12]}$2z

Matching coefficient on both sides, we have

An = A+ (1= ¢)pBina+ (1= 65)0By 0
Bin = 14 ¢1B1n
By = 14 ¢2Bypr — %[(/\ + Bip-1)?0? + B}, .05
+ 2(A + Byp-1)Ban-1012).

A2. The Time-Varying Mean Model II: Recursive Restrictions

The short rate is now

1
Te = —Pure = _Et(mt+1) - §Va'rt(mt+1)
1
= T — 5)‘20‘%#’51

and it is linear in the factors as before.

If the price of a n-period bond is affine, we have:

Efmyp1 + Pa-ren1) = —Anot — (1= 62)8By01
— (1+¢1Bip-1)z:
— [(1 = ¢1)Bin-t1 + $2Bzn1]pi
Vars(mip1 + pa-1e+1) = [(A + Bapo1)?0l + Blz,n—laf

+ 2(A 4+ Bap_1)B1a-1012)

where

—Pnt = An + Bl,nxt + B2,mult
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Apy 4+ (1 — ¢2)0B; .4
(1 + $1B1p—1)zs

{(1 = ¢1)Bin—1 + 28001
1
2

+ o+

[Blz,n-lo.f +(A+ BZ,n—i)zo'g +2(X + Bz,n—l)Bl,n—lo'lz]}#t

Matching coefficient on both sides, we have

Ay = Anaa+(1—¢9)0By
Bin = 14+ ¢1B1,y
Bon = $2Bypn1+ (1 —¢1)Bipy — %[()\ + By ne1)?0]
+ Bf,n_laf + 2(A+ Byu-1)Byn-1012].

38




Appendix B
Bl1. Model II: The Term Premia

Term premia can be derived from the expected excess bond return over the

short rate:

Etpn—l,t+1 — Prng — Y1t —Ap_1 — Bl,n—lEt'«’?tH - B2,n—1 Et#t-f-l

1
+ Ap+ Binzi+ By — 34+ 5)\203#1
= (Ay— Ap-1)+ (Bipn — 1 — ¢1 By i)y
1
+ (Ba + 5)\203 — ¢2Byn-1 — (1 — ¢1)Brpn_1) e

_/\(B2,n—lo-% + By 1012 e

1
- E(Bf,n—laf + B}, 105 + 2By 1By u_1012) 44

B2. Model II: Ezpected Change in the Short Rate

The conditional expectation of the short rate n periods in the future is

1
Etyl,t+n = Etwt+n - §A203Etﬂt+n

e b 1—¢1 || 2—0
Et =
_Ht+1—9_ i 0 b2 Mt—a
Et_$t+n—9- _ ﬁbl 1—¢1 37-;—0
hﬂt+n_9_ | 0 ¢z py — 0
IR = s W A
i 0 ﬁf’? fie — 0

We can then write
Eanpgn =10 = on + ﬁn(#t - xt) + Ynpit
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where

1

an = [= 67 = S E (G~ 3) - Daa(1 - g0

/Bn = 1_‘?5“

o= TR - ) 4 e - ) — (- )

(,15_

B2. Model III: The Term Premia

Ezpn—l,t+1 —Put— Y1t = —Au_q— Bl,n-1Ez$t+1 - B2,n—1 Eipriq
+ An+ Bipzi+ Bonts — 4 + %Azaim
= (An—An1)+ (Bin—1—¢1By,1)z;
+ (Ban+ 5303~ $aBacs — (1= 1) Bunos )i

1
“Bg,n—lo-grui

= —ADB, n—lag.ut - 5

— —B2

1n—1
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Appendix C
A Homoskedastic Single-factor Model: An example

To illustrate how the time-series dynamics and cross section restrictions .
of the yields are related, we use the statistics in Table 1 to calibrate a simple
term-structure model: In our two-factor model (4)-(7), if we set oy = 0, ¢ = 0,
the model reduces to a homoskedastic single-factor model as in CLM (1994).
That is

=M1 = Ty + Wiy

Trer = (L—@)p 4 dae + ueqq

W1 = )\Ut+1

Parameters of the model, ¢, %, 1, and A, can be estimated by

CO”’[?hta yl,t-l] = ¢ (32)
2
o
Va'r{ylg] = m (33)
Elrnie1 —%1:) = E(Pu—itt1 — Png + P14)

= E[nyn,t - (” - 1)9n~—1,t+1 — ylt]
_ 1 — (,ﬁ'"'_l 20'2 21 _ (}5"_1
R T T

2
g
Elyy] = #“_)\2?

(34)
(35)

Thus, the first auto-correlation of short rates (the one-month yields) deter-
mines the persistence parameter ¢ = 0.96; with the volatility of the short

rates and (33), we have o2 = (1 — 0.96%) % 1.93% = 0.29.

Note that in this single-factor model, the term structure of volatility de-

pends on parameters ¢ and o? only, since
1
Ynt = ‘T'l“(An. + Bnict)
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1
n?

1— ¢n—1 5 02

1— ¢ )1*¢2'

That is, the dynamics of the short rates (its first-order autocorrelation and

1
Var(yn) = ;Bﬁvar(wt)——-

(

volatility) determines the whole term structure of volatility.

The implied and actual volatility term structure (84:1-95:3) are shown in
Figure Al. We see that, the model estimated from the short rate dynamics fit

poorly the actual term structure of volatility.

To estimate the parameters A and g, in addition to the short rates, we have
to use the average yield of another maturity. Using the average 10-year and
1-month yields, we find A = —12.75 and p = 29.51; using the average yields
of 3-month and 1-month, we find A = —1.53 and 4 = 6.28. The implied term
structure of zero-coupon yields using ¢ = 0.96,0% = 0.29, A = —1.53, 1 = 6.28
is shown in Figure A2. We see that it fits the term structure at the short end

(up to 3 months), but has a poor fit for longer maturities.

This example highlights the need for a model with more than one factor
to reconcile time-series dynamics with cross-section restrictions of the term
structure. Also, cross-section restrictions beyond the first moment are needed

to fit the term structure of volatility.
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Appendix D: The Kalman Filter Algorithm

For the state-space models in section II, the measurement and transition

equations can be written in the following matrix form:
Measurement Equation:
Y =A+ BX; 4+ v
where v, ~ N(0, R).
Transition Equation:

Xip1 = C+ FXi +wpy (36)

where ut-|—1|t ~ N(O,Qt)
The Kalman filter algorithm of this state-space model is the following:
1. Initialize the state-vector S

The recursion begins with a guess Syjo, usually given by
The associated MSE is

P1|0 = E[(Sl - L§1|0)(Sl — £'1|0)’]
= Var(S).

The initial state 5 is assumed to be N (5’”(,, Pyjp).

2. Forecast y;:
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Let I; denote the information set at time ¢. Then

ﬁﬂt—l = A+BE[S-¢|I¢_1]

= A+ Béfﬂt....l. (38)

The forcasting MSE is

El(y, — ﬁtlt—I)(yz - @’t|t—_1)'] = BPt|t-1B' + R ) (39)

3. Update the inference about S; given I,:

Note that, since S; and y, are related by specification, knowing y; can help

to update Sy,_; by the following:
Write
S = gﬂt—l + (S — S'tft—l)

v = A+ Bgﬂt—-l + B(S, - gt|t—1) + v (40)

We have the following joint distribution:

S, Syi- Py Py B
t |It—1 - N( it A1 tit—1 t[t—1 , (41)
Yt A+ BSyi-y BPy.1 BPy B’ +R

Thus,

A

Sy = E[St|yt_,1t__1]

= Sy-1+ Pyt B'(BPyy1B' 4+ R)(y, — BSj.1— A)  (42)
Py = E[(Si = Su)(St — Sur)]

= Pj1— B,t_lB’(BPm_lB’ + B,)“IBPtht_1 (43)
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4. Forecast S;.; given I

§z+1|t = E[St+li-[t] - Fgﬂt (44)
Pt+1|t = E[(St+1 - §t+1]t)(st+1 - §t+l|t)’]
= FPﬂtFl + Q: (45)

5. Maximum Likelihood Estimation of Parameters

The likelihood function can be built up recursively

T
log L(Yr) = Z log f(y:lZ:-1), (46)

i=1

where

f@iller) = (2r)"V?|H'Pys_yH + RI7/?

*

1 . N
ea:P{_‘z'(yt —A- BStlt—l)'(B’Pﬂt-lB + R)'i(yt - A— BSt|t——-1)}
for t = 1,2,...,T (47)

Parameter estimates can then be based on the numerical maximization of

the likelihood function.
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