A THREE-FACTOR ECONOMETRIC MODEL
OF THE U.S. TERM STRUCTURE

by
- Frank F. Gong and Eli M. Remolona

Federal Reserve Bank of New York
Research Paper No. 9619

July 1996

This paper is being circulated for purposes of discussion and comment only.
The contents should be regarded as preliminary and not for citation or quotation without
permission of the author. The views expressed are those of the author and do not necessarily
reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

Single copies are available on request to:
Public Information Department

Federal Reserve Bank of New York
New York, NY 10045



This draft, July 1996
Not for quotation

A Three-Factor Econometric Model
of the U.S. Term Structure

FRANK F. GONG and ELI M. REMOLONA!

Capital Markets Function
Federal Reserve Bank of New York
New York, NY 10045
Tel: (212)720-6943(Gong)
(212)720-6328(Remolona)
E-mail: frank.gong@frbny.sprint.com
eli.remolona@frbny.sprint.com

Abstract

We estimate and test a model of the U.S. term structure that fits
both the time series of interest rates and the cross-sectional shapes of the
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factors. We use monthly zero-coupon yield data from January 1986 to
March 1996 and estimate the model by applying a Kalman filter that
takes into account the model’s no-arbitrage restrictions and using only
three maturities at a time. The parameter estimates describe a first
factor that reverts slowly to a fixed mean and a second factor that
reverts relatively quickly to a time-varying mean serving as the third
factor. The estimates are robust to the choice of maturities, suggesting
that these factors give us an adequate model.
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A Three-Factor Econometric Model
of the U.S. Term Structure
FRANK F. GONG and ELI M. REMOLONA
Federal Reserve Bank of New York

1. Introduction

A challenge of equilibrium models of the term structure of interest rates is
to reconcile the time-series dynamics of interest rates with the cross-sectional
shapes of the yield and volatility curves. Backus and Zin (1992) and Campbell,
Lo, and MécKinla,y (1994, hereafter CLM) have pointed out that such models
have been estimated to be consistent with- either the time series or the cross -
section of bond yields but not both.?2 When the models are based on time-
series data, the constructed term structures fail to match the shapes of actual.
curves.> When the models are based on cross-section data, parameter values

-must vary over time.-with: shifts in the term structure.* In this paper, we .
specify and estimate an equilibrium model of the U.S. term structure that is -

consistent with both time-series and cross-section data. The model we propose

2Campbell. Lo, and Mackinlay state, “But in simple term structure models, there also
appear to be systematic differences between the parameter values needed to fit cross-section
term structure data and the parameter values implied by the time-series behavior of interest

rates.”

3Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1995), Eom (1995), and

Stanton (1996) provide alternative estimates of the time-series parameters.
4To market participants, it is more critical that their model be consistent with the cross

section than with the time series, particularly for pricing contingent claims. However, as
Black and Karasinski (1991} point out, relying solely on cross section data means having a
different model from one moment to the next. The most popular cross-section models are
Ho and Lee (1986), Black, Derman, and Toy (1990), Hull and White (1990), and Heath,
Jarrow, and Morton (1992).



~ is one that requires three factors to price bonds consistently across the term -

structure and produce the actual shapes of yield and volatility curves.

The number of factors required for an adequate term structure model js
an important issue. The point is to build a consistent model with as few
factors as possible. Litterman and Scheinkman (1991) show that three factors
can explain nearly all the variation in bond returns. . They interpret their
factors as representing the level of interest rates, the slope of the yield curve,
and the curvature of the yield curve. However, they do not ensure that their
factor loadings are consistent with no arbitrage. Gong and Remolona (1996)
are careful to impose no arbitrage when they fit three alternative two-factor
‘models to U.S. quarterly yield data. However, they fail to find a model that is
adequate for explaining the whole term structure, and they conclude that at
least three factors would be required for that purpose. Chen (1996) proposes

but does not estimate a three-factor model in which the future short-term

 interest rate is determined by its current value, its time-varying mean, and its .. . N

stochastic volatility.

We follow Backus and Zin (1992) and CLM (1994) by specifying a term
structure model in terms of a stochastic discount process. We use this process,
known as a pricing kernel, to consistently price bonds of different maturities so
that we avoid arbitrage opportunities. To maintain tractability, we write the
model to satisfy Duffie and Kan’s (1993) conditions for affine yields. In this
model, three unobserved factors drive the pricing kernel: one factor reverts
over time to a fixed mean while a second factor reverts to a time-varying mean
that serves as the third factor. Such a model will produce reduced forms that

nest most factor models in the literature.® To capture the hump in the yield

Examples of these models are the one-factor models of Vasicek (1977) and Cox, Ingersoll,



curve; we follow Gong and Remolona (1996) by pricing a risk associated with

the volatility of the time-varying mean.

To estimate and test the model, we use monthly U.S. Treasury zero-coupon
yield data from January 1986 to March 1996. The model lends itself to esti-
mation by a Kalman filter, and . we apply the technique in a way that takes
account of the model’s arbitrage conditions. The yields-as functions of the fac-
tors serve as the measurement equations and the factors’ stochastic processes
as the transition equations. The arbitrage conditions impose restrictions be-
tween the measurement and transition equations. To test the adequacy of
three factors; we estimate the model using only three yields at a time - a
short-term rate, a medium-term rate, and a long-term rate. The estimates
turn out to be robust to the choice of maturities, suggesting that three factors

are adequate.

The fit between the estimated model and actual yield and volatility curves
strikes-us :as impressive.. In particular, the unconditional vield and volatility.. .
curves we construct from our parameter estimates capture the hump in the
average yield curve and the flatness of the average volatility curve for the
sample period. The shapes of these curves are most sensitive to the rates
of mean reversion in the factors, the price of risk, and the volatility of the
time-varying mean. Our estimates describe a first factor that reverts rather
slowly to a fixed mean and a second factor that reverts relatively quickly to
a time-varying mean. The first factor’s slow mean reversion decides the yield
curve’s slope near the long end and the volatility curve’s slope across most of its

length. The second factor’s fast mean reversion determines the yield curve’s

and Ross (1985) and the two-factor models of Brennan and Schwartz (1979), Schaefer and
Schwartz (1984), Longstaff and Schwartz (1992), and Campbell, Lo, and Mackinlay (1994).



slope near the short end: The price of risk and the third factor’s volatility
impart curvature to the yield curve. We estimate a relatively high price of risk
(in absolute value) and a relatively low volatility, and these estimates produce

just enough curvature to capture the hump in the actual yield curve.

In what follows, we begin with . a brief discussion of pricing-kernel affine- .
yield models of the term structure. In Section III, we then illustrate with
monthly data the inadequacy of two-factor affine yield models, as Gong and
Remolona have demonstrated with quarterly data. We specify our three-factor
model in Section IV, estimate i-t in Section V, and evaluate the robustness of
the estimates in Section VI. We discuss the role of the various parameters in
shaping the yield and volatility curves in Section VII. We propose further work

in section VIIL

II. Theory: Affine Yield Pricing Kernel Models
A. Background Literature

Theoretical work with equilibrium models, notably by Vasicek (1977) and
Cox, Ingersoll, and Ross (1985, hereafter CIR), show how the term structure
at a moment in time would reflect regularities in interest rate movements over
time. In the simplest such models, the short-term interest rate is the single
factor driving movements in the term structure. Vasicek assumes that the
short-rate’s volatility is constant, while CIR assume that it is proportional to
the square root of the short rate itself. The absence of arbitrage requires that
the ratio of expected excess return to return volatility be the same for different

bonds. This arbitrage condition, the assumption of lognormal bond prices, and



either Vasicek’s or CIR’s short-rate volatility produce an affine yield solution -
in which all bond yields (or log bond prices) are linear functions of the short-
term rate. ‘Such linearity simplifies the pricing of fixed-income securities and
contingent claims. In the two-factor models of Brennan and Schwartz (1979),
Schaefer and Schwartz (1984), Longstaff and Schwartz (1992), and CLM (1994)
- and in Chen’s-(1996) three-factor model, similar assumptions generate bond -
yields that are also linear in the factors. Duffie and Kan (1993) establish the

conditions that produce such affine yields in general.

Rather than model the short-term interest rate directly, Backus and Zin
{(1992) and CLM (1994) focus on the stochastic discount process or the pricing
kernel used to price assets in general. Arbitrage opportunities are avoided
by applying the same pricing kernel to different assets. In this approach,
the factors are unobservable state variables that serve to forecast discount
- rates. In. principle, the factors can be related to observable macroeconomic
fundamentals, as Gong and Remolona: (1996) try to do. Pricing kernel models
can also ‘be specified so that bond yields are affine in the factors and, with a
linear transformation, affine in the short rate as well. We describe below such

a pricing-kernel affine-yield model with K factors.
B. The Pricing Kernel

- “The pricing kernel approach relies on a no-arbitrage condition common to
intertemporal asset pricing models.® In the case of zero-coupon bonds, the

price of an n-period bond is

Prt = Ef[My 11 Py 044 (1)

6Singleton (1990) provides a critical survey of these models, particularly their empiri-
cal performance. Duffie {1992) relates arbitrage conditions to concepts of optimality and

equilibrium.



where M,,, is the stochastic discount factor. The condition expresses the price .
of the bond as the expected discounted value of the bond’s next-period price.
- It rules out arbitrage opportunities by applying the same discount factor to-
all bonds. We will model P,; by modelling the stochastic process for M.,

a process called the pricing kernel.” Indeed we can solve (1) forward to get

Pry = E[My4y...M,4,], which specifies bond prices to be simply functions of . . .. -

* the future discount factors. By convention we normalize Py =1 to ensure the

equality of a bond’s price at maturity to its par value.

C. K-Factor Affine Yields

For our affine yield models, we assume that M, is conditionally lognormal,
bond prices are jointly lognormal with M;,,, and bond yields are linear in the

factors that forecast My,.

The assumption of joint lognormality allows us to take logs of (1) and write

it as

1
Pnt = Et(mt+1 + pn—l,t-i-l) + Evart(mt+l + pn—-l,t+1)a (2)

where lower-case letters denote logarithms of upper-case letters. Furthermore,
if we have K factors, 214, %at, . . ., 2Ky, that forecast myy;, an affine yield model

can be written as

—Pnt = An + BinZy + BonZo: + ... + BraTis- : (3)

Since the n-period bond yield is y,; = —pan:/n, yields will also be linear in the

factors. The coeficients A,, Bin, Ban, ..., Bxr will depend on the stochastic

"The term “pricing kernel” is due to Sargent (1977). In consumption-based equilibrium
models, M, 1 would represent the marginal rate of substitution between present and next-

period consumption (Lucas 1978, for example).



processes of Zi¢, Togy. . ., Ty Since the number of factors is usually smaller
than the number of maturities on the curve, the factor structure would im-
ply restrictions across coefficients for bond prices of different maturities. In
practice, specifying An, Bin, Ban, - .., Bk, involves solving (2) based on the

stochastic processes of zy, T3, ... , £k and verifying that (3) holds.

IT1. Failure of Two-Factor Affine Models

A. Previous results

In the effort to reconcile time-series data with cross-section data on interest
rates, models with fewer than three factors have not fared well. Backus and Zin
(1992) and CLM (1994) argue that the basic problem with one-factor models
is that the yield curve’s steep slope near the short end requires swift mean
reversion by the factor while the curve’s flat:slope near the long end requires . .
slow ‘mean reversion. The flat slope of the volatility curve also requires slow
mean reversion. Gong and Remolona (1996) demonstrate that the problem is
not solved with two factors either. They find that the data favor models in
which one of the factors is a time-varying mean, which serves to produce the
characteristic hump in the U.S. yield curve around the one-year to two-year
maturities. The other factor must then revert rapidly to this mean to create
a steep yield curve near the short end but revert slowly to create both a flat

yield curve near the long end and a flat volatility curve.

In this section, we replicate Gong and Remolona’s results with a somewhat
different data set. We use monthly data on U.S. zero-coupon Treasury yields

from January 1986 to March 1996. Gong and Remolona used quarterly data



on those yields from 1984-Q1 to 1995 Q4. ‘As they did, we try to-fit a two- . -

factor additive model and a two-factor time-varying mean model using two
yield maturities at a time and using a Kalman filter that takes into account
the models’ no-arbitrage restrictions. If two factors are adequate, then we

should be able to estimate the same model with any two maturities. We

discuss the estimation procedure in more detail in Section V, where we turn .. ... .

- to the estimation of a three-factor model.
B. A two-factor additive model

In the additive model, the conditional expectation of the negative of the

log stochastic discount factor depends on two factors that enter additively:

=M1 = Tt + Top + Wiy (4)

where w;y; represents the unexpected change in the log stochastic discount

factor and wil] be related to risk. The shock w;41 has mean zero and a variance

~ that' will be specified: to-depend-on the stochastic-processes. of the twe.factors .- . .

z1; and zy. Each of these factors follows a univariate AR(1) process with

heteroscedastic shocks described by a square-root process

Tigrnr = (L=@)p+ d12y + 29 3u1 041

Ta01 = (1~ 62)0 + dazay + 5 Pun 41 (5)

where 1 — ¢, and 1 — ¢; are the rates of mean reversion, x and 8 are the long- .
run means to which the factors revert, and u; 41 and ug sy are shocks with
mean zero, volatilities o and o2 and covariance o5, We specify the shock to
myy1 to be proportional to the shock to z; 441, which in turn depends on the

level of z4:

Wi1 = Z5 My 41 (6)

8



where A represents the market price of risk.- When )\ is negative, hond returns ... ..

are inversely correlated with the stochastic discount factor and risk premia are

positive. The model can be solved to produce affine yields

Yy =

3|

(Ap + Bin1s + Banvar) (7)

where A, Bin, and By, depend on ¢1, ¢2, &,6, A, 02,02, and oy,.
C. A time-varying mean model

In the time-varying mean two-factor model, one factor directly affects ex-

- - pectations of the stochastic discount factor for the immediate period, while

the second factor affects expectations of the ultimate destination of the dis-
count factor. Specifically, the model specifies the conditional expectation of
the negative of the log stochastic discount factor to depend directly on one

factor, but this factor reverts over time to a second factor:

—Mip; = T+ Wi
Teyr = (1 — 1)pe + bz + u?'5u1,t+1
porr = (1 — 02)0 + dapse + pg uz e, (8)

0.5
Wep1 = )\Mt U2,t4+1

where 1 — ¢y and 1 — ¢, are rates of mean reversion, but we have a single
parameter for the mean, f. The factor shocks w41 and u;;4; have mean
zero, volatilities o and o2 and covariance o12. The conditional expectation of
the stochastic discount factor depends only on the first factor, while its shock

depends on the second factor. The solution to the model produces affine yields
|
Y. = ;(An. + Binzy + B2'n.,u't) (9)

where A,, By, and B,, depend on ¢, ¢5,8,),0%,02, and o5.

9



- D. The poor fit of two-factor models

- With only two factors, the constructed yield and volatility curves tend
to match the actual curves only at the maturities used in estimation. More
over, the estimates are not robust to the choice of maturities. Figs. 1 to 6

- compare the curves implied by the estimated models to the actual averaage. .

- curves for the sample period. ‘In Figs. 1 and 2, the-yield and volatility curves ... ...

mmplied by the models are based on estimates using only three-month and
two-year yields. The models produce yields that fall below the actual yields
for maturities longer than two yea.rs., with the additive model even producing
negative ‘yields for maturities longer than eight years. At the long end, the
volatilities implied by the additive model are too high and those implied by
the time-varying mean model too low. In Fig. 3, the models are estimated
on two-year and ten-year yields, and the implied yields are too low near the
short end and too high in the maturities between two and ten years. In Fig. 5,
the models are estimated on three-month and ten-year yields, and the implied- -
yields are to0 high'in the intermediate maturities. The.evidence suggests.that -

two factors will not give us an adequate model.

IV. A Three-factor Model

We now propose a three-factor model to fit both the time-series dynamics
of interest rates and the cross-sectional shapes of the term structure. We
follow Backus and Zin (1992), CLM (1994), and Gong and Remolona (1996)
by specifying the model in terms of a pricing kernel. To maintain tractability,
we write the model to satisfy Duffie and Kan’s (1993) conditions for affine

yields. In this model, three unobserved factors drive the pricing kernel: one

10



- factor reverts over time to a fixed mean while a second factor. reverts to a .. ..

‘time-varying mean that serves as the third factor. The model is a combination
of CLM’s two-factor additive model and Gong and Remolona’s time-varying -
mean model. From the outset, we specify the model in discrete time to avoid

possible problems in estimating a continuous-time model with discrete-time

data.
A. Model specification

Three unobservable factors drive the pricing kernel. Two of the factors
directly affect expectations of the stochastic discount factor for the next period,
while the third factor affects the ultimate destination of the stochastic discount
factor. Specifically, the conditional expectation of the negative of the log

stochastic discount factor depends on the sum of two factors:

—Mep1 = L1z + Lot + Wi, (10)

-where w1 represents the unexpected change in the log stochastic discount .
factor and will be related to risk. The shock w;,; has mean zero and a variance
that will be specified to depend on the time-varing mean of the second factor.
Each of these factors follows a univariate AR(1) process with heteroscedastic

shocks described by a square-root process:

Traer = (1= 61)0+ $121e + 17 urem
Toger = (1= éo)pe + bomns + pf Pz (11)
prer = (1= da)p + dape + 4 us a1,
where 1 — ¢, 1 —¢@,, and 1 — ¢; are the rates of mean reversion, § and p are the

long-run means to which the factors revert, and w41, 2441, and usgyr arve

shocks with mean zero, volatilities o1, oy and o3 and covariances 12, 013, 023.

11



It is important to allow correlation between factor shocks, if we hope to relate -

the factors to fundamentals, which may not be orthogonal.

As in Gong and Remolona (1996), we specify the shock to mey to be
proportional to the shock to g,4;, which in turn depends on the level of i
W1 = Mg g pqg (12)

where A represents the market price of risk. When A is negative, bond returns

are inversely correlated with the stochastic discount factor and risk premia are

positive,

We now verify that yields are affine in the factors so that we can write

1
¥ = ~(An+ Bind1: + Bantiae + Bonps). (13)

The normalization po; = 0 gives us coefficients of Ag = Big = By = Bap = 0.

We can then derive the one-period yield or short rate as

1
e = P = ‘"-Ei(mt+1') - §Vart(mt+1)
1
= $1‘t + wg,g - 5/\20'3[“ (14)

which is also linear in the factors, with the coefficients A, = 0, By; = By; = 1,

and By = —1)%0%,

We can also verify that the yield of an n-period bond is linear in the factors

with the coefficients restricted by (see Appendix A)

Apn = Apa+ (1= ¢1)0By 1+ (1 — d3)peBsn
B, 14 1By pn1
B;n 14+ @281 (15)
B3n = ¢aBsn_1+ (1 —¢2)Ban-1

il

Ii

12



1
— '2;[@\ + Bgp-1)’03 + BL,,_10;+ BE,_ 0%

+ 2(A+ B3 p-1)Br1 1013 + 2(A + B3 n1)By 1093 +2B) 1By paois), .-

The coeflicients Bin, Baa, and Bs, are factor loadings for 15, 2, and ;.
The coeflicient A, represents the pull of the factors to their means p and 8.
These recursive equations impose cross-sectional restrictions to be satisfied by -

twelve parameters: ¢, ¢a, ¢3,9, 4, 01,09, 03, 012,013,023, and A

To price fixed-income options, we need a consistent volatility curve. In the
case of our model, such a curve is derived from the conditional variance of the

n-period yield:
1
Vart(y’n,t+1) = E(B‘lznaf + B%nag + Bgnag
+ 2B1nBin0o12 + 2By, B3y, 015 + 285, B3n02s) i (16)

We would have a downward-sloping volatility curve given that ¢y, ¢2, and ¢3
are less than unity. Mean reversion by the factors serves to dampen yield .

volatilities as-maturity is lengthened.

A linear transformation of this model will give us a reduced form which
which expresses the yield for a given maturity as a linear function of some other
yield, the conditional variance of some yield, and the conditional expectation
of some yield. This follows from the fact that yields, conditional variances,
and conditional expectations are different linear functions of the factors. Such
a reduced form will nest the one-factor models of Vasicek (1977) and CIR
(1985) and the two-factor models of Brennan and Schwartz (1979), Brennan
and Schaefer (1984), and Longstaff and Schwartz (1994). One such reduced
form will also look like Chen’s (1996) three-factor model.

The model also allows us to measure term premia. We can derive term

13



- premia in the form of the expected excess bond return:

EtPn-1,t+1 Pt — Y11= "'/\(Bl,n--lo'lii + Bz,n—1'<723 + B3,n-1'0'§)#'t

1
- 5['812,11,—10-% + Bg,n-—lag + Bg,ﬂ,—lag (17)
+ 2B1,4-18y51012 + 2B1n-1 B 1003 + 2B5,5-1B3 n_1023) 114
= —(AI+T)p
where
II = (Bin-1013 4 Bopo1093 + B3 _y02) (18)

1
2
+ 2Bi1p-1Bon-1012 + 2B 1 Bapy093 + 2Bin-1B3n-1023)p: (19)

ll

2 2 2 2 2 2
(Bin-101 + B;, 105 + B3 103

The first term II represents a risk premium that depends on the covariance
between the stochastic discount factor and bond returns, while the second term
I' represents Jensen’s inequality arising from the use of logarithms. Positive

term premia require that A be so negative that

r
—-A > ﬁ (20) |

Note also that if o3 = 0, we will have homoscedastic shocks, term premia will

be constant, and the pure expectations hypothesis will hold.

V. Estimating the Model

A. Econometric Approach

Our econometric approach allows us to estimate the parameters of a pricing
kernel without directly observing it or the three factors that are supposed to

drive it. Moreover, to confront the issue of model adequacy, we estimate the

14



model using yields of only three maturities at a time. If a three-factor model is - - .

to explain the movements of the whole term structure; then we should be able
to estimate it with only three maturities, and the model should be robust to
the choice of maturities. Qur approach is a special application of the Kalman
filter. In applying this technique, we make use of observed yields, which would
reflect the dynamics of the-factors, and we use only three yields at a time -,
a short-term yield, a medium-term yield, and a long-term yield. The yields
as affine functions of the factors serve as the measurement equations of the
Kalman filter and the factors’ stochastic processes as the transition equations.
The model’s arbitrage conditions, however, imply strong restrictions between
the measurement and transition equations, and we take careful account of

these restrictions.

Recent efforts to reconcile time series data with cross section data on inter-
est rate have tended to rely on the GM M approach. In practice this approach .
places cross-section restrictions on only some of the unconditional moments.
- BackusandZin (19944 place--eross-section restrictions. on yields up to the |
10-year maturity, but the restrictions are placed on only the first moments.
Gibbons and Ramaswamy (1993) have cross section restrictions on both the
first and the second moments when they fit and test the CIR model. Longstaff
and Schwartz (1992) estimate a model with the short rate and its volatility
as the two factors. In testing their overidentifying restrictions, however, they
fit a reduced form that takes account of only four out of the six parameters

implied by their structural model.

For our purposes, the Kalman filter is the appropriate estimation pro-
cedure. The technique is effective in exploiting conditional moments, which

constitute essential information when one is trying to estimate the dynamics of

15



three unobserved factors on the basis of observed yields for only three maturi- .. -

ties. The technique is especially suitable for estimating term structure models; - - ..

because it allows the imposition of the arbitrage restrictions. Jegadeesh and
Pennacchi (1996) use the Kalman filter in estimating a two-factor term struc- -
ture model using data on Eurodollar futures, although they use more than
two yields at a time. Gong and Remolona (1996) use the technique in their

exploration of the U.S. term structure with two-factor models, and they use

only two yields at a time.

The work builds on Gong and Remolona, and in spirit, it is close to Backus
“and Zin (1994):in that we use the observed yields to determine the dynamics
of the underlying stochastic discount factor, Our work differs from Backus and
Zin in an important respect: they estimate a reduced form in the sense that

they study various ARMA processes for the stochastic discounting factor. We

estimate a structural model by specifying the underlying factors that drive the, ... .

movements of the stochastic discounting factor. An ARM A(3,2) yield process -
is generated by our three AR(1) factors.®

B. Data and Summary Statistics

We obtained end-of-month U.S: zero-coupon Treasury yield data for matu-
rities of one-year and longer from J.P. Morgan and Company and for maturities
. ‘of three months and six months from the Federal Reserve Bank of New York.
The sample period is 1986:1 to 1996:3.° In the case of the Federal Reserve
data, each zero curve is generated by fitting a cubic spline to prices and matu-

rities of about 160 outstanding coupon-bearing U.S. Treasury securities. The

SEngel (1984) derives the sums, products, and time aggregations of ARMA processes.

®The data are available on request.
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© securities are limited to offthe-run Treasuries to eliminate the most liquid se---. ... .

curities and reduce the possible effect of liquidity premia. Fisher, Nychka, and.
Zervos (1995) explain the procedure in detail.

Summary statistics for the yields with maturities of 3 months, 6 months, 1
year, 2, 5, and 10 years for the sample period 86:1-96:3 are reported in Table 1.
The average term structure is upward sloping, with mean yields ranging from
5.54% to 7.80%. Its slope is steep near the short end and flat near the long
end. This term structure is some what hump-shaped, with the hump located
near the two year maturity. Overall, the volatility curve slopes downward very
gradually. The yields across the curve are all very persistent, with first-order

monthly auto-correlations of 0.94-0.99.

To evaluate robustness, we use four different combinations of yield maturi-
ties to estimate the parameters. The four different combinations are: 3-month, .
2-year, and 10-year yields; 3-month, 1-year, and 10-year yields; 6-month, 2-
“yearyand -10-year yields; and 3-month, 2-year, and 5-year yields. If the three- -
factor model is adequate for explaining the whole term-structure, we should
get similar parameter estimates and implied yield and volatility curves from

the different combinations of maturities.
C. Kalman Filtering and Mazimum Likelihood Estimation

We now show how to fit the three-factor model to U.S. zero-coupon rates

data, using three-yields at a time.

We write the model in the linear state-space form, with the measurement

17



equation

Yie a by boy by Tyy OF
ym,t = A + bl m b2,m bS,m Tat + Vo (21)
Yn,t Oy, by W b2,n b3,n He Vst

where Y14, Ym, and Y are zero-coupon yields at time ¢ with maturities I, m,

and n and v, is a measurement-error assumed to be i.i:d. as

0 e? 0 0
v~N({[o], |0 €& 0| (22)
0 0 0 €

and adp = Ak/k,blpk = Bl,k/k, bz,k = Bg,k/k, k = l,m,n.

The transition equation is

T1t41 (1 - ¢1)0 ¢é 0 0 A U3,i4+2
T t41 = 0 T 0 ¢ 1—-¢ Zoy | T #$°5 Ug 141
P+t (1—¢3)p 0 0 43 fe U3,t41
with shocks to the state variable X, distributed as
U1, t+1 0 o2 o1, o1
Ugptr | ™ N(] o [, 012 03 O3 ) (23)
Uz 1 0 o153 0 0%

In standard linear state-space models, no restrictions link the measurement.
equation and the transition equation. This time, however, the measurement

equation comes from the transition equation and the no-arbitrage conditions,

and the restrictions are given by equation (15).

After putting the restrictions into the measurement equations, the preced-

ing models can be estimated by maximum likelihood using the Kalman filter.
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‘The- algorithm is discussed in Appendix C. For more detailed discussions.of.. . . ...

the Kalman filtering procedure, see, for example, Hamilton (1994).

V1. Estimates of the Model and Robustness

Our estimates allow us to test the adequacy of our model and to differ-
entiate among the three factors that are supposed to be driving the model.
We informally test the model’s adequacy by comparing alternative parameter
estimates based on different combinations of yield maturities and by exam-
ining how well the unconditional yield and volatility curves produced by the
estimates fit the actual average curves for the sample period. We differenti-
ate among the factors primarily by comparing their estimated. rates of mean
* reversion. Table 3 reports our parameter estimates based on the four alter- ...
‘native combinations of yield maturities. It is- immediately apparent that the -
different combinations of maturities provide very similar parameter estimates.
These estimates characterize a-first factor that reverts slowly to fixed mean, a .
second factor that reverts rapidly to the third factor, which itself reverts more
rapidly to 1ts own mean than does the first factor and more slowly than does

fhe second factor.

Since we estimate the model with the observed yields for only three matu-
rities at a time. we may evaluate the model by comparing estimates based on
other maturities. If a three-factor model held, then the estimates should be
robust to the choice of maturities. Table 3 compares estimates based on the
following maturity combinations: (1) the three-month, two-year, and ten-year
yields; (2) the three-month, one-year, and ten-year yields; (3) the six-month,

two-year, and ten-year yields; and (4) the three-month, two-year, and five-
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year yields. The differences among the alternative parameter estimates are
statistically insignificant. The similarity among the alternative estimates is .
- particularly impressive for the parameters that are tightly estimated, such as
the persistence parameters ¢y, 2, and ¢s. The parameter estimates are never .
more then two standard errors apart even based on the smallest standard error

of 0.006 for the estimate of ¢; using the three-month, two-year, and ten-year

yields.

Table 4 reports estimates based on two subsamples, one for January 1986 to

December 1980 and one for January 1991 to March 1996. Again the parameter

' estimates-are remarkably similar across subsamples.

We may also evaluate the model by seeing how well it reproduces the

rest of the termi structure.. Our Kalman.filter procedure would tend to cause .. ..

the term structure to match at the maturities used to estimate the model.
However, the procedure will not assure a fit with the rest of the term structure
unless the yields for other maturities reflect the dynamics of the same three
factors. Fig. 7 compares the unconditional yield curves we construct from our
alternative model estimates with the actual average yield curve for the sample
period. Similarly, Fig. 8 compares the unconditional volatility curves from the
alternative estimates with the actual average volatility curve. On the whole,
the fit between the estimated model and actual yield and volatility curves is
remarkable, especially compared to the results of the two factor models. In -
particular, the implied yield and volatility curves capture the hump in the
average yield curve and the flatness of the average volatility curve for the

sample period.

How do the factors differ? Recall that the rate of mean reversion is given

by 1 — ¢, for the first factor, 1 — ¢, for the second factor, and 1 — ¢3 for the
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third factor. As Table 3 reports, the first factor reverts to its fixed mean at the -

rather slow rate of one percent a month. This rate of mean reversion implies

a near unit root process.'® Thesecond factor reverts to its time-varying mean . -

at the rate of about 12 percent a month or a rate 12 times faster than that
of the first factor. The third factor, which is the time-varying mean, reverts
to its own mean at the rate of five percent, which is five times faster than
the first factor but less than half as fast as the second factor. Such mean
reversion rates are critical determinants of the shape of the term structure.
The volatility estimates suggest that the first factor has the smallest shocks
while the second factor has the largest ones. Shocks to the first factor are
not significantly correlated with shocks to the second or third factor. The
second and third factors, however, have shocks that are significantly positively

correlated.

VII. How the Factors Shape the Term Structure

How do the three factors succeed in reproducing the actual shapes of the
term structure? The average U.S. yield curve can be characterized as having
~-a steep 3lope near the short end, a flat slope near the long end, and something .
like 2 hump around the one-year to two-year maturities. The average U.S.
- volatility curve can be characterized as downward sloping but with a rather
flat slope. Our estimates of the three-factor model suggest that the first factor
accounts for yield curve’s flat slope near the long end and the volatility curve’s

flat slope for most of its length. The second factor accounts for the yield curve’s

10We can rule out a unit root process, however, because such & process implies negative
yields at long maturities. If ¢; = 1, we will have By, = n, and the term premium in

(17)-(19) must eventually turn negative.
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steep slope near the short end. The third factor combined with the price of

risk impart just enough curvature to account for the yield curve’s hump.

‘The slopes of the yield curve near either end are the easiest characteristics
of the term structure to explain. The first factor determines the slope near
the long end, because it is the factor with the slowest mean reversion. It
would have the most influence on the long end because a shock to the factor.
would persist the longest and would be the shock most likely to be reflected in
long-term yields. The second factor determines the slope near the short end,
because it is the factor with the most rapid mean reversion, and it would have
its greatest effect on the shorter term yields. These explanations are consistent
with the factor loadings shown in Fig. 9. The picture portrays the first factor
as having an effect on yields that decays very slowly as maturity is lengthened
and the second factor as having an effect that dies down so swiftly that its

effect at the ten-year maturity is. only a fifth of that of the first factor.

The hump in the yield curve is apparently a feature associated with the
time-varying mean and the effect it has on the risk premium. Such an as-
sociation is evident in time-varying mean models with two factors as well as
those with three factors. In these models, the time-varying mean factor in-
duces hetorescedasticity in volatility, and this source of risk is priced. In the
present three-factor model, the loading for this factor, as shown in Fig. 9, is
initially negative then becomes positive around the 16-month maturity, which
is roughly the location of yield curve’s hump. To produce the right curvature,
however, requires the right mean reversion rate as well as the right volatility
and price of risk. Fig. 10, for example, shows the implied yield curve pro-
duced with the factor having a mean reversion rate of one percent instead of

five percent. The curve overshoots the average one-year yield and undershoots
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the yields between the two-year and ten-year maturities.

In general, a downward sloping volatility curve requires mean reversion and

a flat curve slow mean reversion. To produce the right shape for this curve,
however, requires slow meén reversion for the first factor only. Fig. 11, for
example, shows that a slow rate of mean reversion for the time-varying mean
“induces a volatility curve that overshoots volatilities for maturities between -

two years and ten years.
VIII. Conclusion

We believe we have an adequate econometric model of the U.S. term struc-

ture. It is a model of a pricing kernel that serves to consistently price bonds ... .

of different maturities so that arbitrage opportunities do. not arise. Three.fac-. ..

tors drive this pricing kernel: one factor reverts over time to a fixed mean,
a second factor reverts to a time-varying mean, and the time-varying mean -

itself is a mean-reverting factor that induces time-varying term premia. With

-alternative estimates of the model using a special Kalman filter and only three - -

maturities at a time, we find that different combinations of maturities produce
the same three factors, particularly as characterized by their rates of mean re-
-version: The estimates also reproduce the actual average yield and volatility .
curves for the sample period, suggesting that the yields not used in estimation

also reflect the time-series dynamics of the same three factors.

The estimates describe three factors with very different rates of mean re-
version. The first factor reverts to its fixed mean at the rate of about one
percent a month, the second factor reverts to its time-varying mean about 12
times faster; and the third factor reverts to its own mean five times faster than

the first factor but less than half as fast as the second factor. Something seems
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key about these parameter values, because small deviations from our range of
- estimates produce very bad yield and volatility curves. Each factor has a role

- in the shapes of the term structure. The first factor explains the yield curve’s ..

flat slope near the long end and the volatility curve’s flat slope for most of its . .

length. The second factor explains the yield curve's steep slope near the short

end. The time-varying mean produces the yield curve’s hump.

There is more work to be done. Having decided that three factors are
adequate, we would like to estimate the model using all the maturities available
at once. Such an estimate will be more efficient than the ones reported in
“~this papér and will be appropriate for testing the significance of the arbitrage
restrictions. ' We would also liketo use such a model to forecast changes in
short-term rates and long-term rates over different time horizons to see whether
controlling for time-varying term premia by means of the model would support

the expectations hypothesis.

24



Appendix A
Al. Model I: Recursive Restrictions

We start with the general pricing equation:

1
Pt = Ey(Myys + Pro1,441) + é‘vart(mt—{—l + Pr-1,41) (24)

The short rate is derived by setting po,s = 0:
1
vie = —pu = —E(myq) -~ §V‘H‘t(mt+1)
1
= T1:+ Ty — 5)\20'3#41

showing the short rate to be linear in the factors.

Now we guess that the price of an n-period bond is affine:

—Pnt = A+ BipZ1t + Ban®as + Baajit (25)

We verify that there exist A,, By, Ban, and Bs, that satisfy the general

pricing equation:

Eymypr + po1pr1) = —Anei — (1 —$1)0B1ne1 — (1 — ¢3)peBan
— (14 ¢1B1a-1)trs — (1 + ¢2Bon-1)Tay
— [(1 = ¢2)Bapn-1 + $3Bspn1]its (26)

Varime + poorge1) = [(A+ Bsaoi)’03 + BY o101 + B3, 103

ot

2(A + Bsne1)B1n—1013 + 2B1 41 B2 51012

+

2(A + Bayno1)Bon—1023) it (27)

Now substitute (26) (27) into (24) and match coefficients of equations (24)
and (25), we have

A, = Ap1+(1~¢1)0Byney + (1 — ¢s)pBan-1
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Bin = 1+ ¢:1Bipn
Byp = 14 ¢2Bs,
Bsn = ¢3Bsn1+ (1 — ¢2)Byns
- '12“[(/\ + BS,n—l)zo‘g + Bf,n-l"f + Bg,n-l“%

+ 2(A+ B3p-1)Bi 1013+ 2(A + B3 1) By 1093 + 2By 41 By 1 012),
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Appendix B
B1. The Term Premia

Term premia can be derived from the expected excess bond return over the

short rate:

Et Ppn-1441 = Pt — Y1t

= —Ap1— BipaFig 41— Bopa Bia2,t+ 1 — By 1B
+  An+ Bia%1t + Ban®at + By

— Ty:—Tort %,\zagm

(Ai ~ An—1 ~ Bip—1(1 — $1)0 — Bapn_1p(1 — ¢3)p)

(Bip —1— $1Bipn1)21: + (Bop — 1 = $2Bo 1)z

(Bsn + 11\20’% ~ $3B3 n1 — (1 — ¢2) By 1)t

2
—A(B1n-1013 + B2 n-1023 + B3,n—10§)#t

+ +

i

1
§[Bf,n—lof + Bg,n—lag + Bg,n—lo-g (28)

+ 2B1p_1Ban-1012+ 2By n1 B3 n 1013+ 2By —1B35-103) it

B2. Expected Change in the Short Rate

The conditional expectation of the short rate n periods in the future is

Eir0an = Eypqn + BeZogyn ~ %AZU;%E:#H%
L1411 — 0 ¢ O 0 L1, ™ 6
Bl zop—p | = 0 ¢ 1—¢o Lot —
Mg — P 0 0 é3 e — H
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T1t4n — 6
Et $21t+'ﬂ» - lu

Hign —

We can then write

- ¢ 0 0 ” zy;— 0
0 ¢ 1—¢o Tap — 4
1 0 0© 3 R
[ ¢ 0 0 215 — 6
0 4% i;:%(¢§+l =45 | | 22— n
| 00 5 pr— p

Ey1t4n — Y10 = o + B1n(0 — z1¢) + Bon(ps — Tat) + Vit

where

o = [1-gf-
b = 1_#{,
16271 = 1—¢3

T =

1—¢o
$2 — ¢3

1— ¢, 1., , "
S - 8 - 330 - )l

(85— 43¥1) + 031 — 63) — (1 - 45)
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Appendix C: The Kalman Filter Algorithm

For the state-space models in section II, the measurement and transition

equations can be written in the following matrix form:
Measurement Equation:
Yy =A+ BX; + v
where v, ~ N{0, R).
Transition Equation:
Xip1=C + FX; + ugpq (29)
where ugq1p ~ N(0,Qy).
The Kalman filter algorithm of this state-space model is the following:
1. Initialize the state-vector S;:
The recursion begins with a guess Syjq, usually given by
Siio = E(51). (30)
The associated M SE is

Pio = E[(S1 — S10)(S1 = S1p)')
= Var($).

The initial state S; is assumed to be N (guo, Piyp)-

2. Forecast y;:
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Let I, denote the information set at time . Then

ﬁt1t—1 = A+ BE[S:IIt—-l]
A+ B§t|t-—1'

The forcasting MSFE is

El(y = Gupe—1) (Wt — Gappr1)’] = BPw,B'+ R

3. Update the inference about S, given I,:

(32)

" - 'Note'that, since.S; and y; are related by specification, knowing y; can help

to update Sy, by the following:

Write

f

St S‘ﬂt—l + (S — S'tlt—l)

B = A+ BS’zltq + B(S, — S‘tlt—l) + v

We have the following joint distribution:

S Sys- Py Py B’

t Ta| ~ N ¢ ,.1 tlt—1 tt-1

Ye A+ BSy BPy1 BPy 1B+ R
Thus,

Iy

Sy = E[Si|ys, Li-1]

= Syp-1+ Pyo1B'(BPys_1B'+ R)(y; — BSy1 ~ A)
Py = E[(S: - S'eu)(St - S'tlt)']

= Pyy-1 — Pyp—1 B (BPyy—1 B' + R) ' BPy,_4
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4. Forecast S,y; given I:

§t+1|t = E[St+1lIt] = Fgﬂ: (37)
P = E[(St+1 - §t+1|t)(»5't+1 - §t+llt)’]
= FPuF +Q (38)

5. Maximum Likelihood Estimation of Parameters

The likelihood function can be built up recursively

log L(Y7) = ZT: log fy:|1i-1), | (39)

t==]

where

Flyelier) = 2n) V2| H' PyrH + B2

»*

1 & 1ot - X
61’?{"‘5(3}: -A- BStlt——l) (B Ptlt——lB + R) l(yt —A- BSt[t—l)}
for t = 1,2....,T (40)

Parameter estimates can then be based on the numerical maximization of

the likelihood function.
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Table 1 ‘
Zero-Coupon Yields: Summary Statistics

Monthly Observations ( 86:1-96:3 )
Maturity Mean Std Dev 1st-Auto. Corr
3 Months 5.54 1.63 0.99
6 Months 5.65 1.59 , 0.99
1 Year 6.26 1.69 0.98
2 Year 6.63 1.53 | 0.97
5 Year 7.29 1.23 0.96
10 Year 7.80 1.01 0.94-
Table 2
Correlations Between Zero-Coupon Yields
Maturity 3-month 6-month 1-year 2-year S-year 10-year
3-month 1.000
6-month 0.995 1.000
1-year 0.960 0.980 1.000
2-year 0.938 0.962 0.995 1.000
5-year 0.856 0.888 0.946 0.973 1.000
10-year 0.739 0.774 0.849 0.854 0.969 1.000




Parameter Estimates for the Three-factor Model Using Different Maturities

Table 3

0.291 0.700 1.668 0.347
(2.482) (2.442) (5.165) (7.10)
n 10.875 10.521 10.148 6.900
(8.920) (9.048) (16.070) (16.600)
d, 0.987 0.989 0.990 0.992
(0.006) (0.007) . (0.010) (0.008)
b, 0.849 0.893 0.876 0.890
(0.055) (0.103) (0.157) (0.193)
&, 0.958 0.950 0.939 0.942
ll (0.052) (0.057) (0.140) (0.348)
i -12.143 -12.078 -15.384 -13.122
(1.496) (4.186) (2.149) (1.512)
o, 0.008 0.010 0.011 0.005
(0.044) (0.008) (0.003) (0.012)
o, 0.116 0.093 0.132 0.133
(0.076) (0.065) (0.175) (0.256)
o, 0.093 0.095 0.083 0.100
(0.014) (0.026) (0.043) (0.087)
Pu 0.045 0.145 0.022 -0.020
2.227 (3.857) (0.334) (18.040)
P 0.061 -0.008 -0.036 -0.120
(1.165) (1.520) (1.294) (21.140)
B 0.492 0.727 0.583 0.715
(0.144) (0.105) (0.569) (0.194)
e, 0.0000 0.060 0.004 0.003
(0.0001) (0.030) (0.005) (0.003)
e, l 0.377 0.440 0.443 0371
(0.109) (0.145) (1.179) (1.189)
e, 0.509 0.506 0.522 0.412
(0.08%) (0.090) (0.514) (1.408)
44 13 61




Table 4
Parameters Estimates of the Three-factor Model for Different Sample Periods Using
3-Month, 2-Year, and 10-Year Maturities

| 86:196:3 1 86:1-90:12 | 91:1-96:3 |
0 | 0291 0.426 0314
| (2.482) (34.31) (12.16)
M | 10.875 8.045 15.041
(8.920) (29.85) (85.74)
¢, 0.987 0.999 0.994
(0.006) (0.004) (0.013)
&, 0.849 0.895 0.883
(0.055) (0.258) (0.487)
d, 0.958 0.950 0.973
; (0.052) (0.065) 0.212)
A : -12.143 -13.970 -10.417
| (1.496) (7.325) (1.879)
1
g | 0.008 0.009 0.011
} (0.044) (0.003) (0.016)
g, 0.116 0.140 0.138
! (0.076) (0.207) (0.143)
!
o, 0.093 0.087 0.124
(0.014) (0.009) (0.047)
Pra 0.045 0.018 0.026
(2.227) (1.192) (6.758)
Pr3 -0.061 0.197 -0.024
(1.165) (2.276) (2.895)
Dny 0.492 0.540 0.763
i (0.144) (0.143) (0.226)
e, 0.000 0.000
(0.0001) (0.0001) (0.0002)
e, 0377 0.418 0.644
(0.109) (0.722) (2.514)
e, i 0.509 0.492 0.691
(0.089) (0.325) (2.515)
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Time-varying Mean Models Using 3-month and 10-year Maturities
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FiG. 10. Simulated Yield Curves Using Phi3=0.99 and All Other Parameters as In the Three-
factor Madel Estimated at 3-month, 2-year, and 10-year Maturities
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FIG. 11. Simulated Volatility Curve Using phil =0.97, phi2=0.99 and Other Parameters in
the Three-factor Model Estimated at 3-month, 2-year, and 10-year Maturities





