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methods for evaluating the accuracy of VaR models: the binomial method, the interval forecast
method and the distribution forecast method. These methods test whether the VaR forecasts in
question exhibit properties characteristic of accurate VaR forecasts. However, the statistical tests
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is clearly capable of differentiating among accurate and alternative VaR models.
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My discussion of risk measurement issues suggests that disclosure of quantitative
measures of market risk, such as value-at-risk, is enlightening only when
accompanied by a thorough discussion of how the risk measures were calculated
and how they related to actual performance. {Greenspan, 1996a)

I. Introduction

The econometric modeling of financial time series is of obvious interest to financial
institutions, whose profits are directly or indirectly tied to their behavior. This exposure is
commonly referred to as “market risk”. Over the past decade, financial institutions have
significantly increased their use of such time series models in response to their increased trading
activities, their increased. emphasis on risk-adjusted returns on capital and advances in both the
theoretical and:empirical finance literature. Given.such activity, financial regulators have also
‘begun to focus-their attention-on.the use of such.models by regulated institutions.

The main example of such regulatory concern is the 1996 “market risk” amendment to
the 1988 Basle Capital Accord, which proposes U.S. commercial banks with significant trading
activities be assessed a capital charge for their “market risk” exposure.! .Under this amendment
to U.S. banking regulations, such regulatory capital charges can now be based on the value-at-
risk (VaR) estimates generated by banks’ internal VaR models. VaR estimates are forecasts of
the maximum portfolio value that could be lost over a given holding period with a specified
confidence level; i.e., a specified lower quantile of the distribution of portfolio returns.

Given the importance of VaR forecasts to banks and especially to their regulators,
evaluating the accuracy of the models underlying them is a necessary exercise. Three statistical
evaluation methods based on hypothesis testing have been proposed in the literature. In each of
these statistical tests; the null hypothesis is-that the VaR forecasts in queétion exhibit a specified

property characteristic of accurate VaR forecasts. Specifically, the evaluation method based on

! Fora thorough discussion of the 1988 Basle Capital Accord, see Wagster (1996). For a discussion of the
regulatory capital requirements for securities firms, see Dimsom and Marsh (1995),



the binomial distribution, currently the quantitative standard embodied in the 1996 amendment
and extensively discussed by Kupiec (1995), examines whether VaR estimates exhibit correct
unconditional coverage; the interval forecast method proposed by Christoffersen (1997)
examines whether they exhibit correct conditional coverage; and the distribution forecast method
proposed by Crnkovic and Drachman (1996) examines whether observed empirical quantiles
derived from the VaR model’s distribution forecast are independent and uniformly distributed.
In these tests, if the null hypothesis is rejected, the VaR forecasts do not display the desired
property, and the underlying VaR model is said to be “inaccurate”. If the null hypothesis is not
rejected, then the model can be said to be “acceptably accurate”.

: However, for these evaluation methods, as with any statistical test, a key issue is their
- power; i.e., their ability to reject.the null hypothesis when it is incorrect. If a statistical test
+ ‘exhibits poor:pewer properties; then the:probability of misclassifying an inaccurate:model as
--accurate will bethigh. This paper examines this issue within the context of a Monte Carlo
simulation exercise using several data generating processes.

In addition, this paper also proposes.an alternative evaluation method based on the
probability forecasting framework presented by Lopez (1997). In contrast to those listed above,
this method is not based on a statistical testing framework, but instead attempts to gauge the
accuracy of VaR models using standard forecast evaluation techniques for probability forecasts.
That is, the accuracy of a particular VaR model is gauged by how well forecasts from this model
minimize a loss function that represents the regulator’s interests. The VaR forecasts used in this
evaluation method are probability forecasts of a specified reguiatory event, and the loss function
used is the quadratic probability score, a proper scoring rule. Although statistical power is not
relevant within this framework, the issues of misclassification and comparative accuracy of VaR
models under the specified loss function are cxamin_ed within the context of a Monte Carlo

simulation exercise.



The simulation results presented indicate that the three statistical methods can have
relatively low power against several alternative hypotheses based on inaccurate VaR models, thus
implying that the chances of misclassifying inaccurate models as “acceptably accurate” can be
quite high. With respect to the fourth method, the simulation results indicate that the chosen
forecast evaluation techniques are capable of distinguishing between accurate and alternative
models. This ability, as well as its flexibility with respect to the specification of the regulatory
loss function, make a reasonable case for the use of probability forecast evaluation techniques in
the regulatory evaluation of VaR models.

The paper is organized as follows. Section II describes both the current regulatory
framework for evaluating VaR estimates as well as the four evaluation methods examined.
Sections I and IV outline the-simulation-experiment and present the resuits, respectively.

- Section V summarizes.and discusses directions for future research.

II. Evaluating VaR Models

Currently, the most commonly used type of VaR forecasts is VaR estimates. As
mentioned above, VaR estimates correspond to a specified quantile of a portfolio’s potential loss
distribution-over a given holding period. To fix notation, let y, represent portfolio value, which is
modeled as the sum of a deterministic component d, and an innovation &, that has a distribution f;
that is, y, = d, + £, where ¢, ~ f. The VaR estimate for time t derived from model m conditional
on the information available at time t-k, denoted VaR,,(k,), is the forecasted critical value of f,,,,
model m’s assumed or estimated innovation distribution, that corresponds to its lower o percent

tail; that is, VaR_(k,x) is the solution to

. VaR (k)
o
f fm.(x)dx = 1—-.

-

Given their roles as internal risk management tools and now as regulatory capital



measures, the evaluation of VaR estimates and the models generating them is of particular
interest to both banks and their regulators. Note, however, that the regulatory evaluation of such
models differs from institutional evaluations in three important ways. First, the regulatory
evaluation has in mind the goal of assuring adequate capital to prevent significant losses, a goal
that may not be shared by an institutional evaluation. Second, regulators, although potentially
privy to the details of an institution's VaR mode], generally cannot evaluate the basic components
of the model and their implementation as well as the originating institution can. Third, regulators
have the responsibility of constructing evalu ~tions applicable across many institutions. Hence,
although individual banks and regulators may use similar evaluation methods, the regulatory
evaluation of VaR models has unique characteristics that need to be addressed.

In this section, the current regulatory framework, commonly known as the "internal
™imodels" approach, as well as three statistical evaluation methods.are discussed.? These methods
" are-based on testing the null hypothesis that the VaR forecasts in question exhibit specified

properties characteristic of accurate VaR forecasts. In addition, an alternative method based on
comparing probability forecasts of regulatory events of interest with the occurrence of these
events is proposed. This method gauges the accuracy of VaR models using a proper scoring rule

chosen to match as closely as possibie the interests of the banking regulators.

A. Current Regulatory Framework
The current U.S. regulatory framework for the “market risk™ exposure of commercial

banks’ trading accounts is based on an amendment to.the 1988 Basle Capital Accord.” Beginning

% Another evaluation method, known as "historical simulation”, has been proposed and is based on comparing
VaR estimates to a histogram of observed ¢,s. However, as noted by Kupiec (1995), this procedure is highly
dependent on the assumption of stationary processes and is subject to the large sampling error associated with
quantile estimation, especially in the lower tail of the distribution. This method is not considered here.

¥ This capital requirement covers all positions in a bank’s trading account (i.e., assets carried at their current
market value) as well as all foreign exchange and commodity positions wherever located. The final rule applies to

5



in 1998, regulatory capital charges for “market risk” exposure can be calculated in one of two
ways.* The first approach, known as the “standardized” approach, consists of regulatory rules
that assign capital charges to specific assets and roughly account for selected portfolio effects on
banks’ risk exposures. However, as reviewed by Kupiec and O'Brien ( 1995a), this approach has
a number of shortcomings with respect to standard risk management procedures.
Under the alternative “internal models™ approach, capital requirements are based on the
VaR estimates generated by banks’ internal risk measurement models using the standardizing
regulatory parameters of a ten-day holding period (k = 10) and 99% coverage (& = 1). Thus, a
bank’s market risk capital is set according to its estimate of the potential loss that would not be
exceeded with.one percent certainty over the subsequent two week period. Specifically, .a bank’s
“market risk capital requirement at time t, MRC,,, is based on the larger of VaR_(10,1) or a
- multiple ofithe average of { VaR ,(10,1)}

-1 .that is,
1=t-60

(10,1), VaR_(10,1) | + SR

mt-i mt’

MRC,, - max|S_ 6_1022 VaR
where S, and SR,, are a regulatory multiplication factor and an additional capital charge for the
portfolio's idiosyncratic risk, respectively.

The S, multiplier links the accuracy of the VaR model to the capital charge by varying
over time as a function of the accuracy of the VaR estimates. ‘In the current evaluation
framework, S, is set according to the accuracy of the VaR estimates for a one-day holding period

{k = 1) and 99% coverage level (« = 1); thus, an institution must compare its one-day VaR

any bank or bank holding company where trading activity equals greater than 10 percent of its total assets or whose
trading activity equals greater than $1 billion.

4 An alternative approach for determining capital charges for banks' “market risk” exposure is the
“precommitment” approach that has been proposed by the Federal Reserve Board of Governors; see Kupiec and
O'Brien (1995b) for a detailed description.



estimate with the following day’s trading outcome.* The value of S,, depends on the number of
times that daily trading losses exceed the corresponding VaR estimates over the last 250 trading
days. Recognizing that even accurate models may perform poorly on occasion and to address the
low power of the underlying binomial statistical test, the number of such exceptions is divided
into three zones. Within the green zone (four or fewer exceptions), a VaR model is deemed
acceptably accurate, and S, remains at 3, the level specified by the Basle Committee. Within the
yeliow zone (five through nine exceptions), S, increases incrementally with the number of
exceptions. Within the red zone (ten or more exceptions), the VaR mode! is deemed to be
inaccurate, and S,,, increases to four. The institution must also explicitly improve its risk
measurement and management system.
Clearly, banking regulators have shifted the emphasis of the “market risk” capital rules

toward-VaR models. This change in focus necessitates a change in regulatory procedure; |
‘specifically, regulators must evaluate the accuracy.of the VaR models used to set these new

capital requirements.

B. Alternative Evaluation Methods

In this section, four evatuation methods for gauging VaR model accuracy are discussed.
For the purposes of this paper and in accordance with the current regulatory framework, the
holding period k is set to one. Thus, given a set of one-step-ahead VaR forecasts generated by
model m, regulators must determine whether the underlying model is “acceptably accurate™, as
discussed above. Three statistical evaluation methods using different types of VaR forecasts are
available; specifically, evaluation based on the binomial distribution, interval forecast evaluation

as proposed by Christoffersen (1997)-and-distribution forecast evaluation as proposed by

5 An important question that requires further attention is whether trading outcomes should be defined as the
changes in portfolio value that would occur if end-of-day positions remained unchanged (with no intraday trading or
fee income) or as actual trading profits. In this paper, the former definition is used.
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Crnkovic and Drachman (1996). The underlying premise of these methods is to determine
whether the VaR forecasts in question exhibit a specified property of accurate VaR forecésts
using a hypothesis testing framework.

However, as noted by Diebold and Lopez (1996), most forecast evaluations are conducted
on forecasts that are generally known to be less than optimal, in which case a hypothesis testing
framework may not provide much useful information. In this paper, an alternative evaluation
method for VaR models, based on the probability forecasting framework presented by Lopez
(1997), is proposed. Within this method, the accuracy of VaR models is evaluated using
standard forecast evaluation techniques; i.e., how well the forecasts genefated from these models

minimize a loss function that reflects the interests of regulators.

B:l-:Evaluation of VaR estimates based on the binomial distribution
" Under the “internal models” approach, banks will report their specified VaR estimates to
-thecregulators;who observe whether the trading losses are less than or greater than these
estimates. ‘Under the assumption that the VaR estimates are independent across time, such
observations can be modeled as draws from an independent binomial random variable with a
. probabitity of exceeding the corresponding VaR estimates equal to the specified o percent.

As discussed by Kupiec (1995), a variety of tests are available to test the null hypothesis
that the observed probability of occurrence over a reporting period equals «.® The method that
regulators have settled on is based on the percentage of exceptions (i.e., occasions where ¢,
exceeds VaR, (1,¢) = VaR, (a) ) in a sample. The probability of observing x such exceptions in

a sample of size T is

T
Pr(x; e, T) =[ ]a"(l—a)T"‘.
X

® Kupiec (1995) describes other hypothesis tests that are available and that depend on the bank monitoring
scheme chosen by the regulator.



Accurate VaR estimates should exhibit the property that their unconditional coverage, measured
by «’ = x/T, equals the desired coverage level ¢. Thus, the relevant null hypothesis is o*=e, and

the appropriate likelihood ratio statistic is

LR = 2[log(a“(1 - a‘)T"‘) - log((x*(l—a)T‘*)].

Note that the LR, test of this null hypothesis is uniformly most powerful for a given T and that
the sfatistic has an asymptotic %?(1) distribution.

However, the finite sample size and power characteristics of this test are of interest. With
respect to size, the finite sample distribution for a specific («,T) pair may be sufficiently different
from a 7, distribution that the asymptotic critical values might be inappropriate. The finite-
sample distributionfor-a specific (,T) pair can be determined via simulation and compared to
the asymptotic one in.order to establish-the size of the test. As for power, Kupiec (1995)
describes how this test has a limited ability to distinguish among alternative hypotheses, even in
~“moderately large samples. Specifically, for sample sizes of regulatory interest (i.e., - '
approximately 250 or 500 trading days) and small values of «, the power of this test in céses

where the true « 1s 110% of the rested & generally does not exceed 10%.

B.2. Evaluation of VaR interval forecasts

VaR estimates can clearly be viewed as interval forecasts; that is, forecasts of the lower
left-hand interval of f, the innovation distribution, at a specified probability level &.. Given this
interpretation, the interval forecast evaluation techniques proposed by Christoffersen (1997) can
be applied.” The interval forecasts can be evaluated conditionaliy. or unconditionally; that is,
forecast performance can be examined over the entire sample period with or without reference to

information available at each point in time. The LR, test is an unconditional test of interval

7 Interval forecast evaluation techniques are also proposed by Granger, White and Kamstra (1989).
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forecasts since it ignores this type of information.

However, in the presence of the time-dependent heteroskedasticity often found in
financial time series, testing the conditional accuracy of interval forecasts becomes important.
The main reason for this is that interval forecasts that ignore such variance dynamics might have
cotrect unconditional coverage (i.e., & = &), but in any given period, may have incorrect
conditional coverage; see Figure 1 for an illustration. Thus, the LR, test does not have power
against the alternative hypothesis that the exceptions are clustered in a time-dependent fashion.
The LR, test proposed by Christoffersen (1997) addresses this shortcoming.

For a given coverage level «, one-step-ahead interval forecasts { ( -, VaR_(«) ) }:1 are
- generated usinganodel m. From these forecasts and the obéerved innovations, the indicator
variable I, is constructed as

Lif g € (-», VaR, (o) ]
il £ € (= VaR (@)]
- Accurate VaRvinterval forecasts should exhibit the property of correct conditional coverage,
- which implies that the{ I, }'Tl series must exhibit correct unconditional coverage and be serially
independent. Christoffersen (1997) shows that the test for correct conditional coverage is formed
by combining the tests for correct unconditional coverage and independence as the test statistic
LR, = LR, + LR, * x2)

The LR, statistic is a likelihood ratio statistic of the null hypothesis of serial
independence against the alternative of first-order Markov dependence.® The likelihood function
under this alternative hypothesis is L, = (1-m,, )T“’T::;"(I -7, )T'f’ m,", where the T, notation
denotes the number of observations in state j after having been in state I the period before,

o = T/ (Too*To, Jand m, =T, /(Tw-rT“‘). - Under the null hypothesis of independence,

¥ Note that higher-order dependence could be specified. Christoffersen (1997) also presents an alternative test
of this null hypothesis based on the runs test of David (1947).
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T = Wy, = W, Ly = (1-m) @ TogTo T apg o o (Tg *T,, J/T. Thus, the test statistic is

LR,, = 2[logL, - logL,] 2 1),

B.3. Evaluation of VaR distribution forecasts

Crnkovic and Drachman (1996) state that much of market risk measurement is
forecasting f,, the probability distribution function of the innovation to portfolio value. Thus,
they propose to evaluate VaR models based on their forecasted f,, distributions; see Diebold er
al. (1997) for further discussion. Their evaluation method is based on the observed quantiles,
T

which are the quantiles under { fmt}

- in which the observed innovations actually fall; i.e., given
= £

fm-and the observed-e,, the corresponding observed quantile is Qe (8) = j f (x)dx. The

authors propose to evaluate a VaR model by testing whether observed qu:;;itiles derived under the
~ model’s distribution forecastssexhibit the properties of observed quantiles from-accurate

- distribution forecasts. .Specifically, since the quantiles of random draws from a distribution are
uniformly distributed over the unit interval, the null hypothesis of VaR model accuracy can be
tested by determining whether{q,, }L are independent and uniformly distributed. (Note: that this
testing framework permits the evaluation of observed quantiles drawn from possibly time-
varying forecasts.)

Crnkovic and Drachman (1996) suggest that these two properties be examined separately
and thus propose two separate hypothesis tests. As in the interval forecast method, the
independence of the observed quantiles indicates whether the VaR model captures the higher-
order dynamics in the innovation, and the authors suggest the use of the BDS statistic (see Brock

et al. (1991) to test this hypothesis. However, in this paper, the focus is on their proposed test of

the second property.®-The test of the uniform distribution of {Put }L is based on the Kupier

® Note that this emphasis on ti: -zcond property should understate the power of the overall method since
misclassification by this second 1~ .:ight be correctly indicated by the BDS test.
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statistic, which measures the deviation between two cumulative distribution functions.!® Let
D, (x) denote the cumulative distribution function of the observed quantiles, and the Kupier

statistic for the deviation of D,,(x) from the uniform distribution is

K, = H[Dm(x),x] = maxoﬂsl(Dm(x) - x) + maxoﬂsl(x - Dm(x)).

where G(A) = 2Y (4j 2 1-)e "% and v, o= maxOSm,Dm(x) - xl. (Note that for the
=

The asymptotic distribution of K_ is characterized as

0.24

JT + 0.155 +
J/T

Prob(K > Km) = G(

- purposes of-this paper, the finite sample. distribution of K_, is determined by setting D, (x) to the

‘true data=generating:process in:the simulation exercise.) In general, this testing procedure is

- ‘relatively data-intensive, and the:authors note that test results begin to seriously deteriorate with.

fewer than 500 observations.

B.4. Evaluation of VaR probability forecasts

The evaluation method proposed in this paper is based on the probability forecasting

framework presented in Lopez (1997). As opposed to the hypothesis testing methods discussed

previously, this method is based on standard forecast evaluation tools.” That is, the accuracy of

VaR models is gauged by how well their generated probability forecasts of specified regulatory

events minimize a loss function relevant to regulators. The loss functions of interest are drawn

from the set of proper probability. scoring rules, which can be tailored to the interests of the

forecast evaluator. Although statistical power is not relevant within this framework, the degree

of model misclassification that characterizes this method can be examined within the context of a

' Crnkovic and Drachman (1996) indicate that an advantage of the Kupier statistic is that it is equally sensitive
for all values of x, as opposed to the Kolmogorov-Smirnov statistic that is most sensitive around the median. See

Press et al. (1992) for further discussion.
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Monte Carlo simulation exercise. |

The proposed evaluation method can be tailored to the interests of the forecast evaluator
(in this case, regulatory agencies) in two ways." First, the event of interest to the regulator must
be specified.' Thus, instead of focussing exclusively on a fixed quantile of the forecasted
distributions or on the entire distributions themselves, this method allows the evaluation of VaR
models based upon the particular regions of the distributions that are of interest.

In this paper, two types of regulatory events are considered. The first type of event is
similar to the one examined above; that is, whether &, lies in the lower tail of its distribution. For
the purposes of this evaluation method, however, this type of event must be defined differently.
- Using the.unconditional distribution of ¢, based on past observations, the desired empirical
* quantile loss is determined, and probability forecasts of whether subsequent innovationswill be

-less than:it-are generated. In mathematical notation, the generated probability forecasts are

CV(aF)
P, = Pr(e, < CV(a,F)) = f f_(x)dx,

where CV(a.F) is the lower % critical value of F, the empirical cumulative distribution
function. As currently defined in the “market risk” capital rules, regulators are interested in the
lower 1% tail of f, , but of course, other quantiles might be of interest. The second type of event,
instead of focussing on a fixed quantile region of f,,, focusses on a fixed magnitude of portfolio
loss. That is, regulators may be interested in determining how well a VaR model can forecast a
portfolio loss of p% of y, over a one-day period. The corresponding probability forecast

generated from model m is

""" Ctnkovic and Drachman (1996) note that their proposed K, statistic can be tailored to the interests of the
forecast evaluator by introducing the appropriate weighting function. :

12 The relevance of such probability forecasts 1o financial regulators (as well as market participants) is well
established. For example, Greenspan (1996b) stated that “[i}f we can obtain reasonable estimates of portfolio loss
distributions, [financial] soundness can be defined, for example, as the probability of losses exceeding capital. In
other words, soundness can be defined in terms of a quantifiable insolvency probability,”
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I

p - p
mt Pl{ y, < ( l“ﬁJyH) - ‘{dmr ey < ( 1‘"1"'0_0)3’1—1)

(-p/100)y, | ~dy,
Pr( € < ( 1—1—36] Yoy - dml) = f f(X)dx.

Il

The second way of tailoring the forecast evaluation to the interests of the regulators is the
selection of the loss function or scoring rule used to evaluate the forecasts. Scoring rules
measure the "goodness” of the forecasted probabilities, as defined by the forecast user. Thus, a
regulator's economic loss function should be used to select the scoring rule with which to
evaluate the generated probability forecasts. The quadratic probability sc;ore (QPS), developed
by Brier (1950), specifically measures the accuracy of probability forecasts over time and will be
* used in‘this simulation exercise: The QPS is the-analog -of mean squared error for probability
forecasts and.thus implies a quadratic-loss function.'.: The QPS for model m over a sample of |

.size T is

T

> 2(P, - R

t=1

QPS_ -

|-

where R, is an indicator variable that equals one if the specified event occurs and zero otherwise.
Note that QPS,, € [0,2]) and has a negative orientation (i.e., smaller values indicate more accurate
forecasts). Thus, accurate VaR models are expected to generate lower QPS scores than
inaccurate models.

A key property of the QPS is that it is a strictly proper scoring rule, which means that
forecasters must report their actual probability forecasts to minimize their expected QPS score.
To see the importance of this property for the purpose of regulatory oversight, consider the

following definition; see also Murphy and Daan (1985). Let P, be the probability forecast

13 Other scoring rules, such as the logarithmic score, with different implied loss functions are available: see
Murphy and Daan (1985) for further discussion.
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generated by a bank’s VaR model, and let S(x,, j) denote a scoring rule that assigns a numerical
score to & probability forecast r, based on whether the event occurs (3=1) or not (j=0). The
reporting bank’s expected score is

E[S(r,j)Im] = P_,S(r,1) + (1 - Py )S(r,0).
The scoring rule S is strictly proper if E[S(Pmt, i)l m] < E[S(rt, i)l m] ¥ r# P_. Thus,
truthful reporting is explicitly encouraged since the bank receives no benefit from modifying
their actual forecasts. This property is obviously important in the case of a regulator monitoring
and evaluating VaR models that it does not directly observe."

In addition to being an intuitively simple and powerful monitoriﬂg tool, QPS highlights
the three main attributes of probability forecasts: accuracy, calibration and resolution. As shown
by Murphy (1973), the QPS can.be decomposed as QPS .= ‘QPS; + LSB - RES, where QPS;
«-4i8'QPS evaluated with.all:the forecasts set equal to the observed frequency .of occurrence.

~-~Accuracy refers to the closeness, on average, of the predicted probabilities to the observed

- realizations and is'directly measured by QPS. Calibration, which is measured by LSB; refers to
"the degree of equivalence between the forecasted and observed frequencies of occurrence.
Resolution, which is measured by RES, is-the degree of correspondence between the average of -
subsets of the probability forecasts with the average of all the forecasts. Although not used in the
following simulation exercise, this decomposition further illustrates the usefulness of the
probability forecast framework for tailoring the evaluation of VaR models to the regulator’s
interests.

The QPS measure is specifically used here because it reflects the regulators’ loss function
with respect to VaR model evaluation. As outlined in the market-risk regulatory supplement, the

goal of reporting VaR- estimates-is to-evaluate the qualityand accuracy of a bank’s risk

" ‘Ine scoring rule S is proper if E[ S(Poi}| m] s E['S(rt, i)l m] ¥ r» P_,. Such scoring rules do not
encourage the misreporting of bank’s probability forecasts, but they do not guard against it completely.
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madsagement system. Since model accuracy is an input into the deterministic capital requirement
MP.L,, the regulator should specify a loss function, such as QPS, that explicitly measures

accuracy.

I1I. Simulation Experiment
The simulation experiment conducted in this paper has as its goal an analysis of the
ability of the four VaR evaluation methods to gauge the accuracy of alternative VaR models (i.e.,
models other than the true data generating process) and thus avoid model misclassification. For
the three statistical methods, this amounts to analyzing the power of the statistical tests; i.e.,
~determining the probability with which the tests reject the specified null hypothesis when in fact
"1t is incorrect. With-respeot to the probability forecasting method, its ability to correctly classify
“VaR models (i.e., accurate versus inaccurate) is gauged by how frequently the QPS value for the
trué data generating process is lower than that of the alternative models.
The first step in this simulation exercise is determining what type of portfolio to analyze.
VaR models are designed to be used with typically.complicated portfolios of financial assets that
can include currencies, equities, interest-sensitive instruments and financial derivatives.
However, for the purposes of this exercise, the portfolio in question is simplified to be an
integrated process of order one; thatis, y, = y,_, + €, where g has distribution f,. This
specification of y,, although greatly simplified, can be said to be representative of linear,
deterministic conditional mean specifications. It is only for portfolios with nonlinear,
deterministic conditional means, such as portfolios with derivative instruments, that this choice
presents inference problems.
The simulation exercise-is conducted in four distinct, yet interrelated, segments. In the
first two segments, the emphasis is on the shape of the f distribution alone. To examine how

well the various evaluation methods perform under different distributional assumptions, the
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experiments are conducted by setting f, to the standard normal distribution and a t-distribution
with six degrees of freedom, which induces fatter tails than the normal. The second two
segments examine the performance of the evaluation methods in the presence of variance
dynamics in ¢, Specifically, the third segment uses innovations from a GARCH(1,1)-normal
process, and the fourth segment uses innovations from a GARCH(1,1)-t(6) process.

In each segment, the true data generating process is one of the seven VaR models
evaluated and is designated as the "true" model or model 1. Traditional power analysis of a
statistical test is conducted by varying a particular parameter and determining whether the
incorrect null hypothesis is rejected; such changes in parameters generate what are usually
termed local alternatives. . However, in this analysis, we examine alternative VaR models.that are .
not all nested, but-are commonly used in:practice and are reasonable alternatives. Fér example, a -
popular type of VaR model specifies the variance h,,.as.an-exponentially weighted moving

"average of squared innovations; that is,

h_ (&) = (1 - A)fj Mel = Ah,, ., + (1 - M),
i=0

This VaR model, as used in the well-known Riskmetrics calculations (see J.P. Morgan, 1995), is
calibrated here by setting A equal to 0.97 or 0.99, which imply a high-degree of persistence in
variance.” A description of the alternative models used in each segment of the simulation
exercise follows.

For the first segment, the true data generating process (DGP) for f, is the standard normal
distribution. The six alternative models examined are normal distributions with variances of 0.5,
0.75, 1.25 and 1.5 as well as the two calibrated VaR models with normal distributions. For the

second segment, the true-DGP for f, is a t(6) distribution. The six alternative models are two

15 Note that to implement this model, a finite lag-order must be determined. For this exercise, the infinite sum is
truncated at 250 observations, which accounts for over 90% of the sum of the weights. See Hendricks (1996) for
further discussion on the choice of A and the truncation lag.
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normal distributions with variances of 1 and 1.5 (the same variance as the true f) and the two

calibrated models with normal distributions as well as with t(6) distributions. For the latter two

segments of the exercise, variance dynamics are introduced by using conditional
heteroskedasticity of the GARCH form; i.c., hy = w + aetzhl + Bh,_|. In both segments, the
true data generating process is a GARCH(1,1) variance process with parameter values [w,c,3] =

[0.075, 0.10, 0.85], which induce an unconditional variance of 1.5. The only difference between

the data generating processes of these two segments is the chosen f; i.e., the standard normal or

the t(6) distribution. The seven models examined in these two segments are the true model; the

homoskedastic models of the standard normal, the normal distribution with variance 1.5 and the

t-distribution; and the heteroskedastic models of the two calibrated volatility models with normal
“innovations.and the GARCH model with the other distributional form.

- '+ -+ In:all-of the segments, the simulation runs are structured identically. For each run, the
“simulated y, series is generated using the chosen data generating process. The length of the in-
~sample series (after 1000 start-up observations) is set at 2500 observations, which roughly

cerresponds to ten years of daily observations. The seven atternative VaR models are then used -
to generate the one-step-ahead VaR forecasts for the next 500 observations of y,. In the current
regulatory framework, the out-of-sample evaluation period is set at 250 observations or roughly
one year of daily data, but 500 observations are used in this exercise since the distribution
forecast and probability forecast evaluation methods are data-intensive.

The three types of VaR forecasts from the various models are then evaluated using the
appropriate evaluation methods. For the binomial and interval forecast methods, the four
coverage probabilities examined are o = [1, 5, 10, 25). For the distribution forecast method, only
one null hypothesis can be specified. For-the probability forecast method, two types of regulatory
events are examined. First, using the empirical distribution of ¢, based on the 2500 in-sample

observations, CV(a,F), the desired empirical quantile loss, is determined, and probability
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forecasts of whether the observed innovations in the out-of-sample period will be less than it are

generated.”® In mathematical notation, these generated probability forecasts are

cv(a.F)
= Pre, < CV(a,F)) = f f (x)dx,

P

mt

where CV(o,F) is the lower «% critical value of F, the empirical cumulative distribution function
of the 2500 observed innovations. The four empirical quantiles examined are « =[1, 5, 10, 25].
Second, a fixed 1% loss of portfolio value is set as the one-day decline of interest, and
probability forecasts of whether the observed innovations exceed that percentage loss are
generated. Thus, |

P - Pf(y: <'0-99Yt-|) = Pr(y‘_lﬂ:l < 0.99yl_,) = Pr(s:t < -0.01y, ) i}

- JV. ‘Simulation Results

The-simulation results are organized below with respect to the four segments of the
~ simulation-exercise; that is, the results for the four evaluation methods are presented for each
data generating process and its alternative VaR modeis. The results are based on 1000
simulations. |

Three general points can be made regarding the simulation results. First, the power of the
three statistical methods varies considerably against the varied alternative models. In some
cases, the power of the tests is high (greater than 75%), but in the majority of the cases examined,
the power is poor (less than 50%}) to moderate (between 50% and 75%). These results indicate
that these evaluation methods are likely to misclassify inaccurate models as accurate.

Second, the probability forecasting method seems well capable of determining the

accuracy of VaR-models:- That is, in pairwise comparisons between the true model and an

' The determination of this empirical quantile of interest is related to, but distinct from, the *historical
simulation™ approach to VaR model evaluation; see Butler and Schachter (1996).
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alternative model, the QPS for the true model is lower than that of the alternative model in the
majority of the cases examined. Thus, the chances of model misclassification when using this
evaluation method would seem to be low. Given this ability to gauge model accuracy as well as
the flexibility introduced by the specification of the regulatory loss function, a reasonable case
can be made for the use of probability forecast evaluation techniques in the regulatory evaluation
of VaR models.

Third, for the cases examined, all four evaluation methods generally seem to be more
sensitive to the chosen misspecifications of the distributional shape of f, than to the chosen
misspecifications of the variance dynamics. That is, the four methods seem to be more capable
of differentiating between the true model.and an alternative model with the same. variance
*- dynamics but different distributional shape. Further simulation work must be conducted to
- determine the-rebastness of this result.

* As'previously mentioned, an important issue in.examining the simulation results for the
- statistical evaluation:methods is the finite-sample size of the underlying test statistics. Table 1
presents the finite-sample critical values for the three statistics examined in this paper. For the
two LR tests, the corresponding critical values from their asymptotic distributions are also
presented. These finite-sample critical values are based on 10,000 simulations of sample size T
= 500 and the corresponding a. Although discrepancies are clearly present, the differences are
not significant. However, the finite-sample critical values in Table 1 are used in the power
analysis that follows. The critical values for the Kupier statistic are based on 1000 simulations of

sample size T = 500,

A. Simulation resultsfor the-homoskedastic standard normal data generating process

Table 2, Panel A presents the power analysis of the three statistical evaluation methods

for a fixed test size of 5%.

20



- Even though the power results are generally good for the N(0, 0.5) and N(0,1.5) models, overall
the statistical tests have only low to moderate power against the chosen alternative
models.

- For the LR, and LR,, test, a distinct asymmetry arises across the homoskedastic normal
alternatives; that is, the tests have relatively more power against the alternatives with
lower variances (models 2 and 3) than against those with higher variances (models 4 and
5). The reason for this seems to be that the relative concentration of the low variance
alternatives about the median undermines their tail estimation.

- Both LR tests have no power against the calibrated heteroskedastic alternatives. This result is
probably due to the fact that, even though heteroskedasticity.is introduced, these
alternative'models are not very different from the standard normal in the lower tail.

+TheK statistic seems to haveigood power against the homoskedastic models, but low power
“" againstthe twe heteroskedastic models. This result may be largely due to the fact that
o everrthough incorrect, these alternative. models and their associated empirical quantiles
are quite similar to the true model.

Tabie 2, Panel B contains the five sets of comparative accuracy results for the probability
forecast evaluation method. The table presents for each defined regulatory event the frequency
with which the true model's QPS score is Jower than the alternative model's score. Clearly, in
most cases, this method indicates that the QPS score for the true model is lower than that of the
alternative model a high percentage of the time (over 75%). Specifically, the homoskedastic
alternatives are clearly found to be inaccurate with respect to the true model, and the
heteroskedastic alternatives only slightly less so. Thus, this method is clearly capable of

avoiding the misclassification-of inaccurate models for this simple DGP.

B. Simulation results for the homoskedastic (6) data generating process
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Table 3, Panel A presents the power analysis of the three statistical evaluation methods
for the specified test size of 5%.

- Overall, the power results are low for the LR tests; that is, in the majority of cases, the chosen
alternative models are classified as accurate a large percentage of the timé.

- However, the K statistic shows significantly higher power against the chosen alternative
models. This result seems mainly due to the important differences in the shapes of the
alternative models' assumed distributions with respect to the true model.

- With respect to the homoskedastic models, both LR tests generally exhibit good to moderate
results for the N(0,1) model, but poor results for the N (0,1.5) model, which has the same

* variance as:the true DGP. With respect to the heteroskedastic models (models 4 through

7), power against these alternatives is generally low with only small differences between

the sets.of normal and t(6) alternatives.

Table:3y Panel B contains the five sets of comparative accuracy results for the probability
~forecast evaluation method. Overall, the results indicate that this method correctly gauges the
accuracy.of the alternative models examined; that is, a moderate to high percentage of the
simulations-indicate that the loss incurred by the alternative models is greater than that of the true
model.

- With respect to the homoskedastic models, this method classifies the N{(0,1) model as
inaccurate than the N(0,1.5) model, which has the same unconditional variance as the true
model. With respect to the heteroskedastic models, the two models based on the t(6)
distribution are more clearly classified as inaccurate than the two normal models. The
reason for this difference is probably that the incorrect form of the variance dynamics
more directly affects f, for the t(6) alternatives (models 6 and 7} more than for the
normal alternatives (models 4 and 5).

- With respect to the empirical quantile events, the general pattern is that the distinction between
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the true model and the alternative models increases as & increases, but then decreases at
a=25. This outcome arises from the countervailing influences of observing more
outcomes, which improves model distinction, and movement toward the median, which
obscures model distinction. A similar result should be present in the fixed percentage

event as a function of the loss percentage p.

C. Simulation results for the GARCH(1,1)-normal data generating process
Table 4, Panel A presents the power analysis of the statistical evaluation methods for the

specified test size of 5%. The power results seem to be closely tied to the differences between
the distributional shapes of true.model and the alternative models.
- - With respect to the three homoskedastic VaR models, these statistical methods were able to

. :differentiate between the N(0,1) and t(6). models given the differences between their f,, -
= forecmsts.and the actual {, distributions. However, the tests have little power against the -

N(0,1.5) model, which-matches the true model’s unconditional variance.

- - With respect to the heteroskedastic models, these methods have low power against the
calibrated VaR models based on the normal distribution. The result is mainly due to the
fact that these smoothed variances are quite similar to the actual variances from the true
data-generating process. However, the results for the GARCH-t alternative mode! vary
according to «; that is, both LR statistics have high power at low «, while at higher & and
for the K statistical teéts, the tests have low to moderate power. This result seems to
indicate that these statistical tests have little power against close approximations of the
variance dynamics but much better power with respect to the distributional assumption of
f. |
Table 4, Panel B presents the five sets of comparative accuracy results for the probability

forecast evaluation method. Overall, the results indicate that this method is capable of
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differentiating between the true model and alternative models.

- With respect to the homoskedastic models, the loss function is minimized for the true model a
high percentage of the time in all five regulatory events, except for the a=1 case for the
normal models. In relative terms, the t(6) model is classified as inaccurate more
frequently, followed by the N(0,1) model and then the N(0,1.5) model.

- With respect to the heteroskedastic models, the method most clearly distinguishes the GARCH-
t model, even though it has the correct dynamics. The two calibrated normal models are
only moderately classified as inaccurate. These results seem to indicate that deviations
from the true f, seem to have a greater impact than misspeciﬁcatién of the variance

dynamics,.especially in the tail.

- D Simulation results for the. GARCH(1,1 )-1(6) data-generating process
< % Table*5, Panel A presents the power analysis of the three statistical methods for the

-specified test size of 5%. Thepower results seem to be closely tied to the distributional

differences between the true model and the alternative models.

- With respect to the homoskedastic models, all three tests have high power; i.e.,
misclassification is not likely. Specifically, the N(0,1) model, which misspecifies both -
the variance dynamics and f, is clearly seen to be inaccurate, although the t(6) model and
the N(0,1.5) model are also easily identified as inaccurate.

- With respect to the heteroskedastic models, the LR tests have high power under the a=1 nuil
hypothesis, but this power drops significantly as o increases. The K statistic also has low
power against these alternative models. As in the previous segment, these results seem to
indicate that the statistical tests have most power against alternative models with
misspecified distributional assumptions and less so with respect to model with in accurate

variance dynarmnics.
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Table 5, Panel B presents the comparative accuracy results for the probability forecast
evaluation method. Once again, the results indicate that the method is capable of differenéiating
between the true model and the alternative models.

- The comparative results for the regulatory event that ¢, exceeds the lower 1% value of the
empirical F distribution are poor while those for the other a-events is much higher. This
result is due more to the high volatility and thick tails exhibited by the data-generating
process than to the method’s ability to differentiate between models. That is, the
empirical critical values CV(1,F) were generally so negative as to cause very few
observations of the event; so few as {o diminish the methods ability to differentiate
between the models.. However, as « increases, the ability to differentiate between models

= also'increases and becomes quite high.

-~ ='With respect:to the‘homoskedastieaaltematiires;-the method is able to accurately classify the

- .. alternative models:a very high percentage of the time; thus, indicating that incorrect
modeling of the variance dynamics can be well detected using this evaluation method.

- With respect to the heteroskedastic alternatives, the method is able to correctly classify the
alternative models a moderate to high percentage of the time. Specifically, the calibrated
normal models are found to generate losses higher than the true model a high percentage
of the time, certainly higher than the GARCH-normal model that captures the dynamics
correctly. These results indicate that although approximating or exactly capturing the
variance dynamics can lead to a reduction in misclassification, the differences in f, are

still the dominant factor in differentiating between models.

V. Summary
This paper addresses the question of how regulators should evaluate the accuracy of VaR

models. The evaluation methods proposed to date are based on statistical hypothesis testing; that
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is, if the VaR model is accurate, its VaR forecasts should exhibit properties characteristic of
accurate VaR forecasts. If these properties are not present, then we can reject the null hypothesis
of model accuracy at the specified significance level. Although such a testing framework can
provide useful insight, it hinges on the tests’ statistical power; that is, their ability to reject the
null hypothesis of model accuracy when the model is inaccurate. As discussed by Kupiec (1995)
and as shown in the results contained in this paper, these tests seem to have low power against
many reasonable alternatives and thus could lead to a high degree of model misclassification.
An alternative evaluation method, based on the probability forecast framework discussed
by Lopez (1997), is proposed and examined. By avoiding hypothesis testing and instead relying
on standard forecast evaluation tools, this method attempts.to gauge the accuracy of VaR models
by determining how well they minimize the loss function chosen by the regulators. The
. simulation results indicate that-this method can distinguish between VaR models; that is, the: )
= probability forecasting method seems to be less prone to model misclassification. In addition, it |
generally seems to be more sensitive to misspecifications of the distributional shape than of the
variance dynamics. Given this ability to gauge model accuracy as well as the flexibility

introduced by the specification of regulatory loss functions, a reasonabie case can be made for the

use of probability forecast evaluation techniques in the regulatory evaluation of VaR models.
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| Figure 1
GARCH(1,1) Realization with One-Step-Ahead
90% Conditional and Unconditional Confidence Intervals

T00 Z00 300 200 500
Time

~ This figure graphs a realization of length 500 of a GARCH(1,1)-normal process along
with two sets of 90% confidence intervals. The straight lines are unconditional confidence
intervals, and the jagged lines are conditional confidence intervals based on the true data-
generating process. Although both exhibit correct unconditional coverage (o."=0=10%), only the
GARCH confidence intervals exhibit correct conditional coverage.
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Table 1. Finite-Sample Critical Values of LR, LR, and K Statistics

1% 5% 10%
Asymptotic x*(1) 6.635 3.842 2.706
LR,.(99) 7.111 4813 2.613
(1.2%) (7.5%) (7.5%)
LR,.(95) 7.299 3.888 3.022
(1.2%) (6.3%) (11.5%)
LR, .(90) 7.210 4.090 - 2.887
(1.3%) (6.2%) (11.4%)
LR, (75) 6.914 3.993 2.815
: (1.1%) (5.1%) (10.2%)
- Asymptotic x*(2) 9.210 5992 4.605
- LR..(99) 9.702 4.801 4.117
(1.1%) (1.8%) (7.0%)
LR..(95) 9.093 5773 4.628
(1.0%) (4.7%) (10.0%)
LR..(90) 9.966 6.261 4.768
(1.8%) (5.6%) (11.3%)
LR_(75) 9.541 6.254 4.741
(1.2%) (5.7%) (10.7%)
K 0.0800 0.0700 0.0640

The finite-sample critical values are based on a minimum of 1000 simulations. The.percentages in
parentheses in the panels for the LR tests are the quantiles that correspond to the asymptotic critical values under the
finite-sample distributions. '
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Table 2. Simulation Results for Exercise Segment 1 (Units: percent)

Mode] 2 3 4 3 6 Z
Panel A. Power of the LR, LR _and K Tests Against Alternative VaR Models®
LR,.(99) 99.9 54.6 323 70.0 33 6.5
LR,.(95) 99.9 68.3 51.5 94.2 2.7 9.2
LR,.(90) 99.9 61.5 474 03.1 23 7.3
LR, (75) 90.9 32.3 25.8 67.9 3.5 6.3
LR (99) 99.9 56.5 33.1 70.3 - 4.2 7.9
LR (95) 99.9 642 40.4 89.2 3.2 9.3
LR,.(90) 99.8 53.0 36.7 86.5 | 3.2 6.8
sete semrom's LR 75) 84.1 23.9 18.3 55.2 39 5.5
wue - K 100 87.7 60.6 99.3 1.6 2.3
._oPanel B. Accuracy of VaR Models Using the Probability Forecast Method®
QPSel(99) 864 76.5 83.1 97.2 78.3 66.1
QPSel(95) 98.9 84.4 82.5 97.9 80.5 74.3
QPSel(90) 99.6 89.5 82.9 95.3 81.2 76.6
QPSel(75) 98.7 78.7 71.7 85.2 75.5 70.9
QPSe2 94.0 78.0 64.1 72.7 67.5 68.6

* The size of the tests is set at 5%.
® Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the
true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on 1000 simulations. Model 1 is the true data generating process, N(0,1). Models 2-5
- are normal distributions with variances of 0.5, 0.75, 1.25 and 1.5, respectively. Models 6 and 7 are normal
distributions whose variances are exponentially weighted averages of the squared innovations calibrated using A =
0.97 and A = 0.99, respectively,
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Table 3. Simulation Results for Exercise Segment 2 (Units: percent)

Model 2 ° 3 4 3 & Z
Panel A. Power of the LR, LR . and K Tests Against Alternative VaR Models®
LR,.(99) 13.0 86.9 19.6 253 21.2 18.1
LR, (95) 11.5 62.1 38 3.1 68.1 52.7
LR,.(90) 25.7 35.5 13.9 8.0 73.9 60.0
LR (75) 35.3 8.4 30.6 18.9 30.6 18.9
LR_.(99) 15.5 86.1 20.7 28.1 - 21.3 18.5
LR (95) 5.9 57.1 2.2 3.9 45.6 32.7
LR_.(90) 18.2 29.3 9.2 6.1 | 61.8 46.6
. LR_(75) 24.8 8.4 19.3 12,2 43.0 . 28.6
K 69.5 49.8 57.0 64.4 97.6 987

Panel B. Accuracy of VaR Models Using the Probabiliiy Forecast Method®

QPSel(99)  68.1 849 79.1 6.6 96.3 91.0
QPSel(95) 645 88.4 90.5 79.0 98.2 95.2
QPSel(%0) 76.6 79.2 90.0 80.9 97.2 94.2
QPSel(75) 770 62.6 81.2 74.9 ~ 87.0 81.7
QPSe?2 71.7 76.2 79.7 80.4 84.0 84.1

* The size of the tests is set at 5%.
® Each row represents the percentage of simulations for which the alternative model had a higher QPS score than the

true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on 1000 simulations. Model 1 is the true data generating process, 1(6). Models 2 and
3 are the homoskedastic models with normal distributions of variance of 1.5 and 1, respectively. Models 4 and 5 are
the calibrated heteroskedastic models with the normal distribution, and models 6 and 7 are the calibrated
heteroskedastic models with the t(6) distribution.
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Table 4. Simulation Results for Exercise Segment 3 (Units: percent)

Mode]

2 K] 4 3 (4 Z
Panel A. Power of the LR, LR _and K Tests Against Alternative VaR Models"
LR,.(99) 22.7 73.9 71.3 4.3 4.8 91.6
LR,(95) 30.7 73.9 72.0 5.4 6.0 81.7
LR,.(90) 29.0 65.7 60.3 52 57 50.0
LR, (75) 18.3 38.0 304 3.3 3.6 10.9
LR (99) 29.3 77.1 73.0 6.4 7.9 91.5
LR (95) 32.0 72.8 69.3 56 6.2 68.6
LR.(90) - 30.0 63.1 60.9 53 6.2 394

.. LR.(75) 15.3 32.9 24.5 5.2 5.5 7.3
K 38.6 80.6 67.6 5.5 54 50.5

Panel B. Accuracy of VaR Models Using the Probability Forecast Method®
QPSel(99)  60.7 66.8 79.2 50.1 51.0 93.0
QPSel(95) 89.0 92.1 86.4 64.0 66.5 88.8
QPSel(90) 88.9 93.3 89.9 61.6 66.1 77.1
QPSel(75) 822 85.7 81.2 63.1 64.9 65.9
QPSe2 82.7 85.2 85.1 60.4 63.7 64.1

* The size of the tests is set at 5%. :
® Each row represents the percentage of simutations for which the alternative model had a higher QPS score than the

true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on 1000 simulations. Model 1 is the true data generating process, GARCH(1,1)-
normal. Models 2, 3 and 4 are the homoskedastic modeis N(0, 1.5), N(0,1) and (6), respectively. Models 5 and 6
are the two calibrated heteroskedastic models with the normal distribution, and model 7 is a GARCH(1,1)-1(6) model]
with the same parameter values as Model 1,

33



Table 5. Simulation Results for Exercise Segment 4 (Units: percent)

Model
2 3 4 3 (¢ Z
Panel A. Power of the LR, LR_ and K Tests Against Alternative VaR Models*
LR, (99) 60.8 100.0 96.4 85.8 87.1 86.5
LR,.(95) 75.5 100.0 96.9 60.3 63.2 62.1
LR,.(50) 80.4 100.0 96.0 36.8 385 393
LR (75) 87.4 98.9 86.5 8.3 9.0 9.4
LR (99) 64.5 160.0 | _ 96.7 87.4 | 89.0 87.7
-LR(95) 82.9 -100.0 96.9 569 - 60.9 594
LR_.(90) 90.1 160.0 96.0 294 33.1 294
LR_(75) 89.6 98.0 83.1 6.5 6.6 7.8
. K 98.7 100.0 98.2 45.4 49.6 50.6
Panel B. Accuracy of VaR Models Using the Probability Forecast Method®
- QPSel1(99)  60.7 49.3 49.3 46.3 46.7 41.7
QPSel(95) 99.6 91.8 90.8 84.2 84.0 69.9 _
QPSel(90) 100.0 98.6 08.2 90.4 90.6 76.4
QPSel(75) 99.2 99.8 99.6 90.6 _ 9].8 65.9
QPSe2 03.2 96.2 95.6 82.8 83.0 69.9

* The size of the tests is set at 5%,
® Each row represents the percentage of simulations for which the aiternative model had-a higher QPS score than the
true model; i.e., the percentage of the simulations for which the alternative model was correctly classified.

The results are based on 1000 simulations, Mode! 1 is the true data generating process, GARCH(1,1)-t(6).
Models 2, 3 and 4 are the homoskedastic models N(0,1 .5), N(0,1) and 1(6), respectively. Models 5 and 6 are the two
calibrated heteroskedastic models with the normal distribution, and model 7 is a GARCH(1,1)-normal model with
the same parameter values as Model 1.
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