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Abstract

This paper concerns pitfalls associated with the use of approximations to dynamic Euler
equations. Two applications of the approximations are notable. First, tests for precautionary
saving motives typically involve regressing consumption growth on uncertainty in expected
consumption growth. The parameter estimates are used to measure the strength of precautionary
motives, which is also related to the coefficient of relative risk aversion, Another application
estimates the sensitivity of consumption growth to the expected real interest rate, with the
coefficient on the latter equal to the intertemporal elasticity of substitution in consumption, often
the inverse of the coefficient of relative risk aversion. The two literatures yield very different
estimates of how prudent or risk averse consumers are or, alternatively, how willing they are to
substitute consumption over time. We investigate one possible reason for these apparently
contradictory results: both methods of estimation rely on linear approximations of Euler
equations. We demonstrate that biases associated with these approximations can be substantial,

~ and that the direction of the biases is consistent with the divergent estimates found in the
literature. '
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L Introduction

This paper concerns pitfalls associated with the use of approximations to dynamic Euler
equations. There are a variety of economic applications that rely on approximations to dynamic
Euler equations when no closed form solution for the optimal consumption rule exists. In this
paper we focus on two of these applications. First, there is a large and growing empirical
literature on precautionary saving that examines how consumption growth and saving behavior
are affected by uncertainty. Tests for precautionary saving motives typically involve regressing
consumption growth on measures of uncertainty in expected consumption growth, the idea being
that future uncertainty will depress current consumption and raise consumption growth. This
estimating equation is derived from a second-order Taylor expansion of the Euler equation which
is the first order condition for optimal consumption choice, and relates marginal utility today to
expected marginal utility tomorrow. The parameter cstirhates can be used to measure the strength
of precautionary saving motives, where in the absence of precautionary motives future
uncertainty should not affect consumption growth.

The second application concerns the effects of movements in the expected real interest
rate on consumption growth. Here, the major assumption is that the interest rate is stochastic. It
can be shown by taking a second-order Taylor expansion of the Euler equation that consumption
growth is approximately linearly related to the conditional expected real interest rate, with the
coefficient on the interest rate equal to the intertemporal elasticity of substitution or the inverse

of the coefficient of relative risk aversion for popular forms of the utility function'. In this case,

'Recently, the asset pricing literature has developed more general forms of the utility
function which break the link between the coefficient of relative risk aversion and the
intertemporal elasticity of substitution. See, for example, Epstein and Zin (1991) and Weil
(1989).



regressions of consumption growth on expectatibns about future interest rates are used to derive
measures of the intertemporal elasticity of substitution and the degree of relative risk aversion.

Most of the empirical work in both of these literatures is based on linear approximations
of Euler equations. However, the two literatures yield very different results. The estimated effects
of consumption uncertainty on consumption growth are typically small, indicating that

.precautionary motives are weak or nonexistent. For utility functions characterized by decreasing
absolute risk aversion, these results also imply implausibly low levels of relative risk aversion.
However, the estimated effect of the expected real interest rate on consumption growth is also
typically small, indicating a small intertemporal elasticity of substitution or a very high degree of
relative risk aversion. More specifically, given that the within-period utility function is isoelastic,
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such that u(C) = 1%: , the first literature yields estimates of p that are generally below 1.3, and
are often insignificantly different from zero. The second literature typically yields estimates of p
that range from 3 to 10, and are sometimes even higher.

In this paper we investigatfc one possible reason for theselapparently contradictory results -
Specifically, both methods of estimating p rely on linear approximations of Euler equations.
However, if the Euler equations are very nonlinear, then these approximations may be quite poor,
and this can result in biased parameter estimates. We demonstrate that these biases can be
substantial, and that the direction of the biases is consistent with the divergent estimates of p
found in the literature. Our appr;)ach is to compute, numerically, true consumption functions for
each model. We can then contrast the actual relationships between consumption growth,

uncertainty in consumption growth, and the expected real interest rate, with the relationships

implied by the linear approximations.



Section II discusses in more detail how approximations to Euler equations have been used
in previous literature, and why estimates based on these approximations can be biased. Section
IIT describes our methods for computing consumption functions, and shows the results of these

computations. Section IV concludes.

I 2 i Euler Equat

We start with a simple model of consumption, Individuals choose consumption and saving in
each period so as to maximize expected lifetime utility. We assume that there is one asset, A, and
that assets held between ¢ and #+1 earn a gross return of R,,,. Decisions are made conditional on
current resources (cash-on-hand) held at the beginning of the time period, and on information
about future incomes and interest rates. Utility is additively separable and is discounted across
periods at rate &. Sub-utility functions in each period are identical and isoelastic-elastic. The .

maximization problem is summarized as:

I-¢ :
1 1 1-p
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Cash-on-hand (x,=A,+y,) evolves according to:

X = R:+1 [x: - Cr] MR /NE 2)

where y,,, is labor income earned in time ¢+1.
We consider two models, each of which involves imposing restrictions on R,,, and y,,, in

(2). First, following most of the literature on precautionary saving, we assume that the reat



interest rate in not stochastic and is fixed at » = R - 1. The only uncertainty consumers face is in
labor income, which fluctuates from period to period. Second, following most of the macro
literature on consumption and real interest rates, we assume that the real rate of return is
stochastic but that labor income is fixed at y. There are two strains within the macro literature.
One strain focuses on portfolio choice, so that A, may be thought of as total wealth derived from
a “market” portfolio of assets and including the (risky) returns to human capital accumulated by
the individual. In this case “labor income” includes only (non-risky) income, y, from non-
accumulated assets. For example, Merton (1969), Samuelson (1969), and Campbell (1993)
among others, use extreme versions of this model, in which y is set to zero and all income is
modeled as asset income. The second strain focuses on estimating the intertemporal elasticity of
substitution in consumption and assumes that consumers receive labor income in every period,
but can trade off consumption today for consumption tomorrow by accumulating and
decumulating a single, liquid asset, A,. Since this literature focuses on estimating a linearized
version of the Euler equation whiqh does not explicitly depend on labor income, it is not
necessary to make any assumptions about the stochastic properties of earnings. Examples in this
vein are Hall (1988), Campbell and Mankiw (1989), Deaton (1992), and Atanasio and Weber
(1993). In our model with risky interest rates, we follow the second strain of macro literature and
assume a single asset with risky return gross return, R,, but fixed labor income, y.

Risky labor i
For the case of a certain interest rate and risky labor income, the Enler equation associated with

utility maximization is:
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or, in the specific case of isoelastic-elastic utility:

1+r

C i
1+6

‘-p =

YE[CH]. @)

Because marginal utility is not linear in consumption in equation (4), it is not possible to derive
an equation that relates expected future consumption to current consumption. Instead, what is
commonly done is to linearize the right-hand-side of (4) and derive an equation that relates the
expected growth in consumption to the expected squared growth in consumption. Specifically,
taking a second-order Taylor approximation of marginal utility in #+7 around the point C,,

inserting into (4), and rearranging yields:

S et def| ), @
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where 1+p equals the coefficient of relative prudence ----}-;—-’-J , defined by Kimball (1990),
u'(C)

which equals zero if there are no precautionary saving motives. The error term, v,, is composed of

an additive series of moments of consumption growth. Specifically:

v, - ,23: (—W[jﬁl o)) E[(ilé-f—)'] . ®
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Equation (5) indicates that, if precautionary saving motives exist, then uncertainty (as
measured by the conditional expectation of squared future consumption growth) is positively
related to anticipated consumption growth. The intuition underlying.this result is straightforward:
prudent individuals will delay consumption until uncertainty about the future is resolved, so that
consumers facing more uncertainty will display higher consumption growth on average.

Equation (5) has been used as the basis for a large and growing body of empirical work. .
One set of papers examines the relationship between consumption growth and income risk. As
has been pointed out by Dynan (1993), equation (5) concerns the relationship between
consumption growth and uncertainty in consumption, not in income. However, it makes sense to
establish, as an empirical fact, whether or not those who face riskier income streams have higher
average consumption growth than others. These papers generally find that future income .
uncertainty decreases the level of current consumption, lending some support to the hypothesis
that precautionary motives reduce the willingness of individuals to consume out of uncertain ‘

- future income. For.example, Carroll (1994) presents evidence using a normalized variance of
individual income, and Kimball’s (1990) “equivalent precautionary premium” as measures of
income uncertainty. Guiso, Jappelli, and Terlizzese (1992) provide similar evidence using a self
reported measure of earnings uncertainty drawn from the 1989 Italian Survey of Household
Income and Wealth. Note that these studies do not depend on linearized Euler equations, but
instead rely on some reduced form solution to the consumption function itself.

An alternative approach is to estimate (5) directly. This is done by Dynan (1993), who
uses household-level consumption data from the 1985 Consumer Expenditure Survey. This

survey has a short panel element, with each household surveyed in as many as 4 consecutive



calendar quarters. Dynan estimates (5) by regréssing average consumption growth over the period
for each household on (time) average squared consﬁmption growth. She uses instrumental
variables to account for the fact that taste shifters, which are likely to be correlated with the
variance of consumption growth, may be included in the error term, and‘ because the short length |
of the panel will make the sample mean of actual squared consumption growth a poor measure of
risk. The instruments include variables such as indicators for occupation and industry and
education measures, which are plausibly related to consumption uncertainty. Dynan’s fairly
precise estimates of the coefficient on squared consumption growth range from .012 to .156,
implying a coefficient of relative prudence in the range of .024 to .312, and a negative value of p
(which also equals the coefficient of relative risk aversion) in the range of -.976 and -.688. As

_ Dynan points out, this range of values for p is implausible. Merrigan and Normandin (1996),
using British data, and Kuehlwein (1991), using the US Panel Study of Income Dynamics, also
estimate relatively low values for p, in the range of .78 to 1.33 for Merrigan and Normandin.
Kuehlwein estimates a higher value for p, equal to about 0.25, but it is not statistically different
from zero.

All of this work relies on IV estimation, and the identifying assurnption is that the
instruments—typically variables which measure industry, occupation, education, and
employment status—are not correlated with the error term in (5). However, as shown in (6), the
error v, consists of terms that contain third and highcr moments of consumption growth. It seems

implausible that if the instruments are correlated with uncertainty in consumption growth, they



would be uncorrelated with skewness, kurtosis, and higher moments of consumption growth.?
Furthermore, it is likely that the approximation error v, is correlated with uncertainty in
consumption growth, and this will produce biased parameter estimates if (5) is estimated using
ordinary least squares. Consider, for example, the first term in (6), which equals expected cubed
consumption growth multiplied by -(1+p)(2+p)/6. If those who face more uncertainty in -
consumption growth also have consumption growth that is more skewed to the right, the first
term in v, and expected squared consumption growth will be negatively correlated. In this case,
and ignoring higher-order moments in v,, a regression of consumption growth on expected
squared consumption growth will yield an estimate of (1+p)/2 that is biased down. Although it is
not possible to prove analytically that the bias will go in one direction or the other, our numerical
calculations discussed below support the idea that bias due to approximation error will yield
estimates of p that are too low. It is important to emphasize that this bias is not a result of
measurement error, data quality, or misspecification of preferences—even if all variables were
accurately measured and the econpmetrician knew individual’s true objective function, the bias
would still exist—but is instead solely the result of approximation error.

B. Riskvi

When there is stochastic variation in the real interest rate, the Euler equation associated with

utility maximization takes into account expectations about future interest rates:

*Most studies (e.g. Dynan, 1993; Merrigan and Normandin, 1996) report the results of
overidentification (OID) tests, and in most cases these tests pass. However, it is not clear whether
or not the tests pass because many of the instruments have little explanatory power in the first
stage regression. Furthermore, it should be noted that OID tests are not equivalent to tests for the
validity of identifying restrictions; the tests can, in principle, pass even though the instruments
are correlated with some unobserved component of the error term.

8
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or, in the specific case of isoelastic-elastic utility:
- 1 -
C* = (75) Bl C.31. (8)

As before, equation (8) can be transformed into a consumption growth equation by taking a
second-order Taylor expansion, in this case of next period’s marginal utility times the gross
return on assets around the points C,,, = C, and r,,, = 0. The resulting consumption growth

equation is:

E,[ C”IC: < ] = %[ 1?6] + %E: I+ ( lzp)E,[( C”lc: c')z] - cov(E'—”CT:E—’— o )+ v,,(9)
where the error term v, contains higher-order moments and co-moments of consumption growth

- and next period’s real interest rate. Note that the coefficient on the-expected rea! interest rate is
defined as the intertemporal elasticity of substitution in consumption (IES=1/p). An alternate
method of deriving a estimable consumption-growth equation is to assume that consumption and
asset returns are jointly lognormal, see for example Campbell and Mankiw (1989) and the

discussion in Chapter 2 of Deaton (1992). The resulting equation is a logarithmic version of (9):

r
E [In(C,)-In(C)] = -% + ﬁE, r.g + Yapvar,[In(C, ) -In(C) —-i‘;l , (10)



which also implies that consumption growth (now measured as the change in logs) is linearly
related to the expected real interest rate, again with coefficient equal to 1/p.

Equation (9) and its variant (10) have typically been estimated using time-series data. The
growth rate of aggregate consumption is regressed on next period’s interest rate, which is
instrumented with variables known at time ¢ to account for the fact that it is the conditional
expected future interest rate that affects consumption growth. The right-hand-side variables other
then the expected real interest rate are included in the error term. The resulting estimated
coefficient implies a value for 1/p, or the IES.

Though equations (9) and (10) relate consumption growth to the expected return on a
single, }isky asset, in practice there are many different types of assets and a question arises as to
which asset’s returns to use in estimation.’ The literature has made use of a variety of returns to
estimate tﬁc sensitivity of consumption growth to the expected real interest rate (the IES) in
equations (9) or (10). Overall, the estimates support the idea that p is much larger than the
literature on precautionary saving would suggest. For-example, Campbell and Mankiw. (1989)
use the real three month t-bill rate and estimate a value of 1/p equal to 0.276, implying p equals
3.6. Hall (1988) uses several rates of return, the real three month t-bill rate, the real return on an
indexed stock portfolio, and the regulated pass book interest rate on savings accounts. His results
indicate that the IES is between .03 and 0.1, implying that p ranges from 10 to the implausibly
high value of 33. Attanasio and Weber (1993) use the deflated interest rate on building society

deposits (Britain) and estimate a statistically significant IES parameter to be about 0.35, implying

*Note that in a model of optimal portfolio choice with isoelastic utility and several
different assets, (9) and (10) will hold for each asset in the portfolio.

10



p is approximately 3. Wirjanto (1994) uses the three month prime éorporate paper rate (Canada)

- and estimates a statistically significant, but nevertheless relatively low value for the IES, equal to
about 0.25, or p equal to 4. Campbell, Lo, and MacKinlay (1997, chapter 8) use a real indexed
stock return and the real six month commercial paper rate, finding in both cases that the
estimated value for the IES is insignificantly different from zero and that point estimates are
often negative. Deaton (1992) provides a useful summary of results.

Two points deserve mention. First, as for the model of precautionary saving discussed
above, approximation error may resuit in biased estimates of the intertemporal substitution
elasticity. The second and higher-order moments and co-moments of consumption growth and
the expected real interest rate need not, in general, be orthogonal to the expected real interest
rate, and the variables used as instruments for the expected real interest rate (typically lagged
interest rates) may also forecast these higher moments. Our work in the next section examines
the direction and size of these biases.

Second, existing research _makes clear that there are other reason why:estimates of (9)
and/or (10) may yield biased estimates of p. One issue that has been discussed is aggregation
bias: even if (9) or (10) is a good description of individual behavior, it may be unreasonable to
think that these equations should describe the relationship between growth in aggregate
consumption and the real interest rate. Attanasio and Weber (1993) provide evidence that when
disaggregated data are used to estimate (10), the estimate of p is a much more reasonable 1.3. It
may be that aggregation is a much more important source of bias than is the linear approximation

of Euler equations.

11



I Numerical Soluti - o Func

To assess the extent to which approximation bias is a problem, we numerically compute
consumption functions, and contrast the “true” relationships between consumption growth,
consumption uncertainty, and the expected real interest rate, with the relationships implied by the
linear approximations. This is done for a variety of assumptions about the size of p and the
stochastic process that governs the evolution of income and the interest rate.
A.Risky labor income

We start with the first model discussed above, in which the interest rate is fixed but there
is uncertainty in labor income *. The first step is to choose a utility function and a stochastic
process for income. We use an isoelastic utility function with a variety of values for p. We

assume that income growth follows a first-order moving-average process with the general form:

ln(y,) = ln(y,_l) tHH e, - ¢'€,_1 . (11)

The choice of a first-order moving average process is roughly consistent with evidence from the
micro data, see for example MaCurdy (1982), Abowd and Card (1989), and Pischke (1996).
Though these studies generally suggest individual income changes follow a MA(2) rather than
MAC(1) process, the latter is a good approximation which requires one fewer state variables to

solve the model, greatly reducing computational complexity.

“In general, there is no closed form solution to the optimization problem presented in (1)-
(2) with risky labor income. However, for specific utility functions, an analytical solution can be
derived. The most notable example is the quadratic utility case. This is not a case we want to
analyze in detail since linear marginal felicity functions preclude precautionary savings motives.
As arobustness check however, we used our numerical approach to solve for the optimal
consumption solution when utility is quadratic and the real rate of interest equals rate of time
preference, and verified that it was equivalent to the analytical solution.

12



In the simpler case of independently distributed income, the second step would be to
solve for consumption in each period as a function of cash-on-hand, i.e. income plus assets .
(positive or negative) carried in from last period. Serial correlation in income complicates
matters, since it means that there will be two state variables (cash-on-hand and lagged income)

rather than one. Nonstationarity in income further complicates matters, since it means that in

practice quite a wide range of incomes (and, therefore, state variables) may be possible. To deal. . -

with these problems, we work with stationary ratios of variables, solving for the optimal level of
consumption relative to income. This specification is computationally more convenient than
solving for the level of consumption itself, because it both, reduces the range of possible values

- for cash-on-hand, and implies that the second state variable in the model is the innovation to
income growth, rather than the lagged level of income.

As shown in Deaton (1991), the ratio of consumption to income at time ¢ will be
stationary, and can be solved for as a function of two state variables, the ratio of cash-on-hand to
income (denoted w,) and the income growth innovation, €, Let 8, equal the ratio of .consumpﬁon
to income in ¢ and z, equal the ratio of income in 7 to last period’s income, so that z, equals

e" "% The Buler equation can be expressed as:

e,(wper)—p - B,re,,l( [1 +r] [W;_e,(wp er)}z;l +1 s e,.;])-pz;:‘], dF(Eﬁl) =0 3 (12)

where P equals (1+r)/(1+6).
The Euler equations are solved via backwards recursion, starting with a terminal time
period 7. We choose a grid of 200 values of w,., and solve for a set of corresponding values of

0r. Although it will generally be the case that 0 is a function of the income innovation € as well

13



as the cash-on-hand to income ratio w, this is not true of the terminal period: assuming that the
- consumer dies with no net assets, then consumption in the last period of life equals cash-on-hand,
so that O eq-uals wy for all values of €. Given this solution for 0, one can solve for the values
of By, that satisfy the Euler equation for a grid of possible values of wy, and €..,. Solutions for
earlier periods can be found by working backwards, i.e. solving for 8, as a function of w,and ¢,,
given the solutions for 6,,,.

Two technical points deserve mention. First, the distribution of the error €, is specified as
a discrete 10-point approximation to a normal distribution, which considerably speeds
computation time. Sécond, and more importantly, the grid of values for the ratio of cash-on-hand
to income, w,, must be chosen with considerable care, and must be allowed to differ from period
to period. The problem is that the solutions to 0, in any period imply a possible range of values of
w,,;: one cannot solve for values of 6, which, if chosen, can result in values of w,,; that were not
included in the grid range when solving for 8,,,. To see this problem more clearly, consider the
identity that relates cash-on-hand in #+1 to cash-on-hand and consumption-in ¢ (where all

variables are expressed as ratios to income):

w,q = (1+9)[w, - 0,]z,; + 1. (13)

Since we work backwards in time, when we solve for 0, as a function of w, the range of grid
values for w,,, has already been set in the previous iteration. Let the maximum and minimum
values of w,,, be-w,"*and w,"". Note that because there are 10 possible values of the shocks €,
therc. are 100 possible values of z,,,, the ratio of income in t+1 to income in t. We must choose a

range for w, such that for all 100 combinations of €, and €,

14



wh (1+9)[w, - Bl(wr,e,-)]z,:]l +1<wil (14)
It is impossible to solve analytically for the maximum feasible range of w,. Instead, we must seek
a range for w, by trial and error. Note from (14) that the wider the range of w,, the more likely w,,,
in (13) will fall outside the range specified in (14). Our approach is to choose a {generous) initial -
range of w,, see if it is possible to solve the Euler equation without violating (14), and then
contract the range of w, if necessary. A problem with this general procedure is that the range for
the cash-on-hand to income ratio generally shrinks as one goes back in time, and this limits the
number of “years” for which the Euler equations can be solved. In what follows we present
results for 6 years (i.e. up to T-6). Although this may seem short, we show that the consumption .
functions for which we solve do not vary much from period to period prior to year T-2.

An alternative procedure is to use the same range of values for w, in each period.
However, in this case one must devise some way to “fill in” values of 6,,, and w,,, which are
required to solve the Euler equation, but which have not been solved for; i.e., the condition in
(14) fails. A common procedure is‘ to use linear extrapolation to impute the values of 6,,,(w,,.€)
and w,,, that lie outside of the grid range w,Ti" to w,,, . The advantage of using linear
extrapolation is that the grid range need not shrink as one goes back in time, and it is possible to
compute consumption functions for many more time periods. The disadvantage is that linear
extrapolation introduces errors into the solutions, and these errors are compounded as one works
backward in time. We experimented with computing consumption functions over a fixed grid

range using linear extrapolation, and found the errors induced by extrapolation significantly

15



altered the results. We concluded that the benefit of having consumption functions for more
“years” was not worth the costs due to extrapolation error. We discuss this issue further below.

Figure 1 shows results from what we call our “baseline case.” In this case, we have set the
parameters of the income equation (11) to p equal to .02, ¢ equal to .444, and the standard
deviation of € (denoted o) to .25. The parameters values for ¢ and o are from MaCurdy (1982)
and Pischke (1996). The estimated values for o and ¢ may be biased by measurement error in.. .
recorded income; therefore we vary the values of these parameters to reflect this possibility in
several other cases discussed below. The baseline interest rate r is set to .03, the rate of time
preference, 8, is set to .05, and the parameter p of the isoelastic utility function is set to 3. We
used these parameters to solve for six years of consumption functions, excluding the last period
of life, T, in which consumption equals cash-on-hand.

Figure 1 shows characteristics of the consumption function for period T-6, the “earliest”

year for which we have a solution. The top left-hand panel graphs the relationship between

- - expected consumption growth and the cash-on-hand to income ratio. Note that consumption -

growth(C

1~ C,)/C, can also be expressed as (0,,,2

~8,)/0,. The graph shows consumption

1+ 1

growth expected as of time #:

E[eul 241 |w!’€t] _er(wr’ €,)

B(w,€,)

’ (15)

which is easily computed for each of the possible values of w, and €,. Note that as many as ten
functions could be graphed, one for each of the ten possible values of €,. To avoid clutter, we

graph only three. The line marked “k=1" denotes the graph for the lowest value of €, “k=5" is the

16



fifth-lowest value, and “k=10" is the highest. In the same way, we can easily compute expected
squared consumption growth, which is shown plotted against cash-on-hand to income in the
upper right-hand panel of Figure 1.

Two features of the graphs in the top panels of Figure 1 illustrate the main properties of
the consumption functions. First, individuals with low cash-on-hand (relative to income) have
both higher expected consumption growth, and higher expected squared consumption growth.-
These results are consistent with the findings of Carroll (forthcoming) and Carroll and Kimball
(1996): because poor consumers have a lesser ability to buffer shocks to income, the conditional
variance of consumption growth rises and precautionary motives work to depress consumption
and increase its rate of growth. Second, for any given cash-on-hand to income ratio, consumption
growth is higher for lower values of €, This ordering of the consumption functions is due to the
existence of trahsitory noise in individual income. Because a negative shock to income today
implies higher income tomorrow, individuals increase the amount of consumption relative to
income out of any given level of cash-on-hand, thereby smoothing out transitory changes in
income by accumulating and decumulating assets. However, individuals also expect higher
consumption tomorrow, so the expected rate of growth of consumption increases.

Given the oﬁtimal solution for the first and second conditional moments of consumption
growth displayed in the top two panels of Figure 1, we are now in a position to compare their
relationship with that implied by the Taylor expansion (5). These comparisons are made in the
bottom two panels of Figure 1. The bottom left-hand panel graphs the relationship between
expected consumption growth and expected squared consumption growth. There are actually ten

different functions relating these two variables, one for each value of €, and three of these are
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graphed. However, they are sufficiently similar that they are not visually discernable on the
graph, so that they appear to lie on a single line. The consumption growth equation implied by
the Taylor expansion (5), indicates the function graphed “should” have an intercept equal to

-!-[:—"(5-] and a slope of (1+p)/2=2 given the baseline parameters. This linearized equation is
+r

p
shown in the lower left hand panel. The lower right-hand panel shows how much the linear .
approximation overstates the actual relationship between expected consumption growth and
expected consumption growth squared, by plotting the ratio of the true slope implied by the
optimal consumption policy, to (p+1)/2, the slope implied by Taylor expansion. To simplify
notation in what follows, let the true slope be denoted as (p’+1)/2, although it should be kept in
mind that p” is not a fixed number, and varies with the cash-on-hand to income ratio.

The bottom two panels of Figure 1 give a visual impression of the bias induced by
linearization. The left panel shows that the siope of the true function relating expected
consumption growth to the expected squared consumption growth is lower than that implied by
-+ the equation based on linear apprqximation. The right panel indicates that the approximation—biaé-f_ ,
in the slope can be substantial: for a reasonable range of cash-on-hand to income, the true slope
is found to be between 70% and 80% of what would be inferred from equation (5). The bias in p
is even larger in percentage terms. For example, if the ratio of (p"+1)/2 to (p+1)/2is .75 and p
equals 3, then p” is equal to 2, only 67% of p.

An important aspéct of these results is that the bias also varies with wealth, and is more
severe for less wealthy households. It is therefore not surprising to find that estimates of p differ

across groups of individuals when the sample is split based on wealth or occupation, as in Dynan

(1993) and Merrigan and Normandin (1996). These studies consider the possibility that liquidity
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constraints may bias estimates of p downward for less wealthy consumers, and, consistent with

- this hypothesis, they report lower values for less wealthy households. Note, however, that these
findings are also consistent with the direction of bias shown in Figure 1, indicating that even
without liquidity constraints, poorer households can be expected to appear less prudent simply
because the linearized Euler equations of less wealthy individuals will be subject to greater
downward approximation bias. We now ask how such bias changes over time.

Figure 2 graphs the ratio of the true slope (in the relationship between expected
consumption growth and its variance) to that implied by the Taylor expansion for k=5 for all six
périods, again using the basélinc parameters. As the figure shows, the bias decreases as we begin
to move backward from the final period, T. For example, at T-1 the true slope ranges from 40 to
60 percent of what is implied by the Taylor approximation, depending on the level of cash-on-
hand. At T-2 this ratio is roughly between 60 and 70 percent, and by the time we reach T-3 the
bias in the slope levels off to between 70 and 80 percent where it remains as we move further
back in‘time. In other words, the qptim'a! consumption functions “converge” quite rapidly.

It should be noted that, although we graph the results for each of the years only for values
of the cash-on-hand to income ratio of .5 to 1.5, we actually computed consumption functions for
a much wider ranges of this ratio for the periods closer to T. For example, for year T-1 the .
functions were computed for cash-on-hand to income ratios that ranged from .0005 to 8.8. To
avoid linear extrapolation, this range was narrowed as we worked backward, so that the ratio
ranged from .528 to 1.6 by T-6. I we had wanted to solve for many more “years” (without linear
extrapolation), we would have had to begin, in T, with a much wider range of cash-on-hand to

income ratios.
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We examined how different the results of Figures 1 and 2 would have been had we used
linear extrapolation to solve for the consumption functions. Figures 3 and 4 correspond to
Figures 1 and 2, only they were derived by restricting the range of cash-on-hand to income to .5
to 1.5 in all of the time periods, and using linear extrapolation when necessary, Figure 3
demonstrates that linear extrapolation has pronounced effects on the results. Note that the
consumption functions themselves do not seem to be greatly affected by extrapolation error. This
can be seen from the top two panels which do not appear too different from those in Figure 1.
However, linear extrapolation clearly affects the relationship between expected consumption
growth and expected squared consumption growth, shown in the bottom two panels. For
example, the results with extrapolation imply that for high values of cash-on-hand relative to
income, and for *“good” income draws (k=10), p is actually biased up rather than down. But,
when the cash-on-hand to income ratio and the income innovation are high, the consumer will
choose to enter the next period with a high level of assets, and is therefore more likely to have a
+ cash-on-hand to income ratio that is higher than the- maximum value of cash-on-hand torin_coxrlle |
that has been set. Thus, these “results” reflect the effects of extrapolation rather than a genuine
feature of the model. Likewise, Figure 3 indicates that for low values of cash-on-hand to income
and “bad” income draws, p is biased down by even more than is shown in Figure 1. Again,
however, this is solely the result of errors introduced by extrapolation. Figure 4 (which, like
Figure 2, shows results for k=>5) indicates that these errors become “compounded” as one works
backwards through time periods. For T-1, the results from Figure 2 (without extrapolation) and

Figure 4 (with extrapolation) are nearly identical. By T-6 there are pronounced effects of
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extrapolation at the “edges” of the functions. For all of the results that follow, we do not rely on
linear extrapolation.

How sensitive are our results to changes in the baseline set of parameters? Figures 5
through 11 show results that correspond #o those in Figure 2, but with changes from the baseline
case. Again, we graph results for k=35. It should be kept in mind, however, that within each year
the extent of bias depends not only on the c;ash-on-hand to income ratio w, but also on the
innovation to income € (with k=1 to 10 representing the ten possible values of €). To summarize
the results shown in the figures, we compute for each time period the weighted average of the
true slope {p*+1)/2 to the linearized slope (p+1)/2. The weights are constructed in the following
way. First, we simulate the consumption and saving decisions of 5000 consumers: each consumer
is assumed to begin in T-6 with cash-on-hand equal to income, so that w4 equals 1. We then
draw values of €, through €, for each consumer, and use the policy functions for the
appropriate year to solve for 6 and for the cash-on-hand to income ratio w in each year. Second,

- we use the simulated data to.estirgate the joint density of (w, €) for each year from T-5.to T-1.%.
This density function is used td compute the weighted average of the ratio of the true to
linearized slope. The results are shown in Table 1.

The results of Table 1 and the corresponding figures are summarized as follows. First, the
extent of bias is very sensitive to g, the standard deviation of €. When o is reduced from .25 to
.125, the ratio of the true slope to that implied by equation (5) rises, from an average of .75 to .97

in T-5, implying an increase in p*/p from .67 to .96 (see columns 1 and 2 of Table 1, and Figure

5 The density is computed nonparametrically, using a quartic kernel with a bandwidth of
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5). An implication is that estimates of p based on the linearized Euler equation may indicate that
people with riskier income streams are less prudent (and less risk averse) than those with less
risky income streams, even if in fact there is no difference across the groups. Bias duer to
approximation error may make it difficult to test whether risk aversion affects how individuals
select into different occupations.

Second, the bias is also very sensitive to ¢, the moving average parameter. We lowered ¢
from .44 to .20. The results shown in Table 1 and Figure 6 indicate that this increases the extent
of downward bias, so that the ratio of the slopes falls from .76 in the baseline to .68. Decreases
in ¢ imply that income innovations are more persistent, so that a given shock translates into a
larger change in life-time wealth. It is therefore not surprising that declines in ¢ have effects
similar to increases in o,

The results discussed above indicate that a smaller value for o will lead to less downward
bias in p, whereas a smaller value for ¢ will lead to more bias. It should be noted that empirical
estimates of both parameters (o and ¢) will tend to be biased upward if there is measurement
error in recorded income. For example, suppose that ¢ and ¢ are estimated at 0.25 and 0.44,
respectively, from (11). If, due to the presence of measurement error, the true standard deviation
of the income innovation is only 75% of what is estimated (so that o is really 0.19 instead of

0.25), the true value of ¢ would be 0.26 instead of 0.44.° In Figure 7, we show the case with

®To see this, consider the following equation for the log difference in income: Alny, = p +
N, - AN, + V, - V., Where the last two terms are the first difference in i.i.d. measurement error and
7 is the true innovation to the growth in income. If income growth is estimated as in (11) with
Alny, _ p + €, - e, yielding estimates of the variance of € and ¢ equal to 0.25 and 0.44
respectively, then by equating variances and covariances across the two equations, the variance
of 1, 6% is inversely related to the true moving average parameter, A: 6> =( 0.01932)/(1-1)*
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$=0.26 and 0=0.19. The results indicate that there is somewhat less downward bias than in the
baseline case, but it is clear that the decline in ¢ offsets some of the effects of the decline in .

Figures 8 and 9 show the effects of changing the parameter p. When p is reduced from 3
to 2 (Figure 8), the amount of bias falls, so that the ratio of the true slope to the linearized siope
averages .87 in T-5. A value of p of 4 (Figure 9) reduces the average ratio to .66. Note this
implies the valuc.of p which would be inferred from the linearized regression, p, is only 57
percent of the true value. Thus, the extent to which the degree of prudence is understated (in
percentage terms) is positively related to the true degree of prudence. Figures 10 and 11 show the
effects of changing the parameters r and . Our results indicate that increasing the rate of interest
(and keeping the discount rate constant, so that consumers are more “patient”) has little effect on
the extent of bias in the slope. Likewise, changing p has little effect.
B. Risky Interest Rates

In this section we anatyze the relationship between expected consumption growth and the
* expected real interest rate, when the latter is stochastic but labor income is deterministic.” We -
assume that the interest rate follows a first-order autoregressive process, which seems to fit the
data reasonably well for a variety of asset returns (Campbell, Lo and MacKinlay, 1997; Fama and

French, 1988). The gross return R ,,=141,,, is assumed to follow:

’As in the model with risky labor income, the model with risky interest rates does not in
general have a closed form solution. However, for explicit assumptions about asset returns and
labor income an analytical solution can be derived. For example, Merton (1969) and Samuelson
(1969) both show that if R is identically and independently distributed, and there is no labor
income risk, the optimal consumption will be proportional to wealth in every period. We do not
focus our analysis on this special case because we want to analyze the relationship between
consumption growth and time-varying, conditional expected returns. Nevertheless, as a
robustness check on our numerical solutions, we verified that the computed solution was the
same as the analytical solution derived in this special case.
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R1+1 8= a(Rr -8+ € (16)

where g is the mean return and 0 < la | < 1.We will assume the error term is normalty distributed,
with mean zero and constant variance, o, and as before, we make a discrete approximation to the
underlying distribution for e. We solve the model for a variety of values of g, & and g,. These -
values are taken from estimates of (16) for several different types of assets (commercial paper,
stocks, and t-bills), the returns of Which have been used in past research when estimating the
effect of interest rates on consumption growth as in (10).

- When solving for the optimal consumption functions, there are two methodological
differences from the case of risky labor income discussed above. First, though the consumption
functions will continue to depend on cash-on-hand, the latter now evolves in a stationary way
since the driving process in (16) is no longer nonstationary. As a result, we can solve directly for
the level of consumption as a function of the level of cash-on-hand, rather than having to define
the Euler equation in terms of ratios of variables to current income. Second, the interest. factor R;
is now a state variable, since autocorrelation in asset returns implies that R, forecasts R,,,.

With these changes, the solution proceeds as before, by backward recursion on the

following set of dynamic equations:
CxpR)™P - B[Cpoy(R, %, -C xRN +¥,R, ) PAF(R,, IR ) = O, ar
where y is deterministic labor income. The term dF(R,, ;| R,) is the density of next period’s gross

return on assets conditional on this period’s return. We specify the joint density of R,,; and R, as

a 25 by 25 discrete approximation to a bivariate normal, so that conditional on any value of R,
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there are 25 possible outcomes for R,, ;. The choice of 25 points represents a compromise. Using
a large number of values for the gross return is more realistic, and allows one to examine how the
properties of the consumption function differ across a larger set of returns. However, one must
solve for separate consumption functions for each possible value of the state value R, so that the
more points one uses the longer the computations take.
To set values for the mode!l’s underlying parameters, we choose a range of values for o,
o, and p and leave the other parameters unchanged from our baseline case in the last section
(results do not change qualitatively when varying these other parameters). Using time series data
on the six month commercial paper rate and the three month t-bill rate, and using the implicit
price deflator to estimate expected inflation, we estimated « at about .9 for both assets, with g,
differing across the two returns and equal to 0.01, and 0.05, respectively. Alternatively, if R is the
return on an indexed stock portfolio such as the Standard and Poor 500, Fama and French (1988)
report that returns are slightly negatively autocorrelated at annual frequencies, and so we also
consider the case when ¢ = -.1, with o, much is higher at 0.15 (see Campbell, Lo, and -
MacKinlay, 1997). Finally, we allow p to take on the values of 3, 6, and 8. For this model we
define our baseline case as: p=3, 0=.9, 6,=0.05, and g=1.04. Deterministic labor income is
normalized to 1.

As before, our strategy is to compute numerical solutions to the dynamic programming
problem in (17), which yiclds the conditional expected value of consumption growth over a grid - -
of values for x, and R,. Since C, is a function of x, and R,, we can compute the true relationship

| between consumption growth and the expected real interest rate from 25 values of C and R, for

any given level of cash-on-hand, x. The ratio of the this true slope (which we define to be 1/p” )to
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what would be implied from the Euler equation in (9) or (10) (equal to 1/p) is given in Figure 12,
for baseline parameter values, for each of the time periods. It should be kept in mind that we
could have actually graphed 200 lines in each graph, one for each of the 200 values of x,. To
avoid clutter, we average the functions over all values of x, from .5 to 5. Thus, the figure masks
the fact that there is actually a non-monotonic relationship between the degree of upward bias in
p and the level of cash-on-hand: as wealth increases, the bias rises at first, but then drops.
However, for any given value of E, [r,,,], the ratio p*/p only varies by about 5 percent across
values of cash-on-hand relative to income ranging from .5 to 5.

Figure 12 displays several notable qualities. First, for most reasonable values of the
expected real interest rate, the linearized equation will overstates the parameter p, or understates
the IES (equal to 1/p.} In general, it is only for a few large negative values of the real interest rate
that the bias works to overestimate the slope. Moreover, the upward bias in p increases as the
expected real interest rate increases. Second, the parameter p is overestimated by anywhere from
zero to’' 15 percent,-depending on the expected real interest rate. Third,unlike the case of risky
labor income discussed above, the ratio does not seem to change much from period to period.

The remaining figures show how this ratio changes when the values of various parameters
are changed from the baseline case. For example, Figure 13 shows that when the standard .
deviation of e is lower (set equal to 0.01 in the figure), the bias in p is always upward, but the
magnitude is small for the range of interest rates implied by the lower variance. With o, as low as
0.01, p is overstated by 8 percent at most, when the expected real interest rate is around 8
percent. Figures 14 and 15 show how the bias changes when p is assumed to be higher than the

base case, with values of 6 and 8 respectively. Again, the bias is generally positive, and ranges
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from zero to 15 percent of what is implied by the Taylor expansion, depending on the expected
real interest rate. As in the other cases, the bias increases with the expected real interest rate.
Figure 16 shows the same graph when the AR coefficient is negative, equal to -0.1, and the
standard deviation of e is 0.15, mimicking the annual return on an indexed stock portfolio.
Negative autocorrelation reduces the variance in the expected returns, whit;:h appears to limit the
bias relative to the base case; p is overestimated by 2 to 8 percent as the interest rate rises.

The results illustrate several points. First, not only is the direction of bias in p the
opposite of what was found in the risky labor income model, the overall degree of bias is
smaller. Results in the last section indicated that p could be underestimated by as much as 60
percent of the true value, whereas findings in this section suggest that p is generally
overestimated by no more than 15 percent. Note that there is no reason to expect the bias to be
similar in the two cases since the models are fundamentally different. Second, like the risky labor
income model, the overall degree of bias is not constant, and depends on a number of

- economically meaningful variablgs such as the current interest rate and how wealthy the
individual is. Third, and also like the risky labor income case, more variance in the driving
process results in more bias in the estimated coefficient.

IV. Conclusior

This paper demonstrates that the use of linear approximation of dynamic Euler equations
can be risky. In both of the models we consider, approximations can result in incorrect inferences.
about the degree of risk aversion and the importance of precautionary saving motives.
Furthermore, our results help to resolve some puzzies in literature on consumption behavior. For

example, the empirical literature on models of precautionary saving motives indicates
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implausibly small values of the degree of risk aversion (see Dynan, 1993). However, our results
indicate that approximation error is likely to result in measures of the degree of risk aversion that
are biased down. On the other hand, there is a large literature that examines how expected real
interest rates affect consumption growth, and estimates of these models imply a very large
coefficient of relative risk aversion. Oﬁr results indicate that in this case approximation error is
likely to result in measures of risk aversion that are biased up.

Our results may also explain why estimates of parameters of the utility function (using
micro-level data) may differ across sub-samples of the population, split according to wealth or
the degree of income uncertainty. Bias associated with the use of linear approximation varies
with wealth and income risk, so that what would appear to be genuine differences in behavior
_across sub-groups may be an artifact of approximation error, Furthermore, the downward bias in
the coefficient of relative prudence is inversely related to the degree of true prudence. We are
therefore faced with the irony that the more prudent individuals are, the more we will
underestimate the true degree of precautionary behavior.

The findings strongly suggest that studies which focus on assessing the importance of
liquidity constraints in linearized Euler cquaﬁons by splitting the sample according to wealth (or
some other indicator of whether households are likely to be liquidity constrained) will lead to
incorrect inferences about the degree to which the consumption growth of various subsamples is
excessively sensitive to predictable componenté of income. This point has be made by Zeldes
(1989b) and Carroll (forthcoming) with respect to omitting the variance of consumption growth
from tﬁc linearized equation. The findings here are relevant to this body of work because they

show, not only that higher order moments may be important omitted terms, but also how the bias
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varies with a number of economically meaningful variables. The problem is that predictable
income growth will be correlated with omitted terms which are the source of linearization bias.
The linearization bias itself varies with wealth and income uncertainty and prudence, the same
factors that determine how willing individuals are to borrow, and how able they are to buffer

' transitory shocks to their income without desiring to borrow?. In short; the same variables that
influence the degree of linearization bias also influence the probability of being liquidity
constrained. This makes it very unclear whether it is actually possible to split the sample in such
a way that successfully identifies groups as constrained or unconstrained on the one hand, and
holds fixed the linearization bias across the subsamples on the other.

k is not clear how these problems can be handled empirically. One “solution” would be to
derive explicit measures of the higher-order terms that are the source of the bias. In practice this
is infeasible, simply because there are an infinite number of terms. It would be useful to explore,
in future work, whether controlling for a handful of higher-order moments reduces the extent of
the bias. However, this approach is unlikely to be worthwhile for the macro literature, discussed:
above, that uses aggregate data to examine how expected interest rate movements affect
consumption growth.” An alternative is to use GMM estimates that do not rely on linear

approximations to the Euler equation. In practice, however, other problems arise in applying the

*Ludvigson (1996) documents how variation in certain key preference and uncertainty
parameters affects how often an individual will be constrained, in a model of forward looking
consumption choice subject to a time-varying borrowing limit.

® To see the problem, consider the third term on the right-hand-side of equation (9). This
term would in theory be measured as the average, over all individuals, of the variance of
consumption growth, rather than the variance of aggregate consumption growth. In the presence
of idiosyncratic (i.e. individual-specific) risk, the two measures will be quite different.
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GMM approach, the most notable difficulty being that overidentifying restrictions are often

- strongly rejected, suggeSting that there is something else amiss with the model (e.g., see Hansen
and Singleton, 1982; Campbell, Lo, MacKinlay, 1997, chapter 8).'° The findings in this paper
show that even if the econometrician has the correct model of consumer behavior, estimates of
key preference parameters may be biased if the estimating growth equation is linearized. The
results therefore present an additional challenge to empirical researchers who, in practice, face a -

number of potentially conflicting specification issues.

YCampbell and Mankiw (1989) have shown that overidentifying restrictions are not
rejected when one controls for predictable income growth in the linearized equation. This
indicates that it may be necessary to account explicitly for the presence of liquidity constraints or
other types of market frictions in the nonlinearized Euler equation when attempting to estimate
parameters of the utility function. Unfortunately, this proposition is not entirely straightforward
since the shadow price associated with these constraints is unobservable.
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