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ABSTRACT
The econometrics literature contains many alternative measures of goodness of fit, roughly
analogous to R?, for use with equations with dichotomous dependent variables. There is,
however, no consensus as to the measures' relative merits or about which ones should be
reported in empirical work. This paper proposes a new measure that possesses several useful
properties that the other measures lack. The new measure may be interpreted intuitively in a

similar way to R in the linear regression context.
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1. INTRODUCTION

The econometrics literature contains many alternative measures of goodness of fit,
roughly analogous to R?, for use with equations with dichotomous dependent variables
(DDVs). There is, however, no consensus as to the measures' relative merits and they are
not consistently reported in empirical work. The upshot is that, whereas reported results of
linear regressions invariably include the R? or adjusted R?, results of DDV equations do not
consistently contain any one measure of fit.

Among earlier proposals, moment-based measures generally fail to deal with the
pervasive problem of heteroskedasticity or use restrictive linear approximations. Those
based on likelihood ratio statistics are preferable because of their relationship to valid
hypothesis tests. However, they are often obtained by arbitrary rescalings of functions of
the likelihood ratio statistics.

This paper proposes a new measure that possesses several important properties that
the current measures lack. The measure is constructed by imposing certain restrictions on
its relationship with the underlying likelihood ratio statistic. These restrictions, including
one expressed in terms of marginal increments in fit, are shown to be consistent with the
formal properties of R? in the linear case and to provide consistently accurate signals as to
statistical significance. The new measure may be interpreted intuitively in a similar way to
R? in the linear regression context, even away from the endpoints of its range of values.

‘Section 2 introduces the DDV model and constructs the new measure of fit. In

section 3, the new measure is compared with earlier proposals using various criteria.



Section 4 contains some remarks on mode! selection, section 5 then provides numerical
illustrations based on a model for predicting recessions, and section 6 concludes.
2. THE DDV MODEL AND THE NEW MEASURE OF FIT

2.1 The DDV Model

This section presents the basic DDV model and discusses briefly both its estimation
and tests of the hypothesis that all coefficients but the coﬁstant term are zero, which is
usually associated with R®. The exposition in this introduction is somewhat sketchy.
Greater detail is provided, for example, in Maddala (1983) or Amemiya (1981).

The standard DDV model is defined in reference to a linear relationship of the form

y*=p8x+e, (1)

where y* is unobservable, 8 is a vector of k+1 coefficients, and x is a vector of values of
k+1 independent variables, the first one of which is always unity. There is also an
observable variable y, which has only two possible values and is related to y* in the

following way:

=1 Iif y*»>0
= 0 otherwise.

The form of the estimated equation is

P{y=1]x) = F(B'x), | (2)

where F is the cumulative distribution function for -€. In practice, F is usually specified as
normal or logistic, but any other continuous distribution function whose first two
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derivatives exist and are well-behaved may be used. It suffices that F be twice
continuously differentiable and that the resulting likelihood function be concave in 8.
The model is usually estimated by maximizing the likelihood function, which is

defined as:

I = {H Fe'x) JI (1-Fip'x)))

YJ=1} {Yj=0}

Sufficient first and second order conditions for a maximum likelihood estimate b of 8 are:

0L(b)/3B = 0 and o (3°L(b)/3B%)a < O

for all k+1-element vectors «. The resulting unconstrained maximum value of L will be

denoted as L,. The fitted values from equation (2) are

¥ = Ply=1|x) = F(b'x).

Consider the hypothesis H; that all k coefficients of B, other than the first, are zero.
Then, if there are n observations, of which n, are such that y=1, L is maximized under H,
when F(B,) =y = n,/n and the maximum constrained value of L is
L=y (1-¥)" ™. Note also that the average value of the log-likelihood function has a

particularly simple form that depends only on y:

I

a_(y)

logL /n = ylog(y)+(1-¥) log(1-¥) (3)

This fact will be useful in some of the subsequent analysis.



The hypothesis H, may be tested using the likelihood ratio A=L /L,. A well-known
result (see, for example, Rao 1973) states that -2 log A is asymptotically distributed under
H, as a chi-squared variable with k degrees of freedom.

2.2 Motivation for the New Measure: R? and the Classical Test Statistics

In the standard linear model with normally distributed errors, there is a simple exact

relationship between R? and the likelihood ratio statistic. The relationship is best expressed

in terms of the average value of the statistic, namely,

Ar= (2/n) (logL ~logl),

which takes on values between zero (when there is no fit) and infinity (when the fit is

perfect). Then

R? = l—(Lc/Lu)Z’“ =1-exp(-4,). ‘ (4)

See, e.g., Anderson (1958). R? may be seen as a nonlinear rescaling of the average

likelihood ratio statistic that takes on values in the unit interval. The endpoints of the

interval correspond in a straightforward way to “no fit” and to a “perfect fit", respectively.
Furthermore, differences in the statistic are related to differences in R? in an

intuitive way. Specifically,

dR?/(1-R*) = dA. ()

The left hand side of this equation is a marginal R?, that is, it is the change in explained
variation as a proportion of the variation that remains to be explained. The equation
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indicates that for a small change in A, the change also represents the marginal R%. This
relationship holds for any starting value of R%.

The above relationship also holds locally for the average values of the other
classical test statistics -- Lagrange multiplier and Wald -- in a neighborhood of the null H,.
Let W and LM, respectively, denote the values of the Wald and Lagrange multiplier
statistics in the linear case, and define their average values as A, =W/n and A,,,.=LM/n.
It may be shown (see similar equations in Evans and Savin 1982, for example) that

A

R* =4, =24/(1+3) =1-e "=, (6)

From these identities, it may be verified that

R? =0 for A =0,
limR* =1 as A,-B, and (7)
dR?/(1-R%) = dA.

' 1

(dRZ/d_Afl) for A =0,

where B, is the upper bound for the corresponding statistic, that is, B,==1 for the Lagrange °
maultiplier and = for the likelihood ratio and Wald statistics.
2.3 Construction of the New Measure of Fit

Let us turn now to the DDV case. With a DDV, the approach of equation (4) fails
because the average likelihood ratio statistic is bounded. Let A (with no subscript) denote

the average likelihood ratio statistic in the DDV case, that is,

A= (2/n) (logL, -loglL,).



The upper bound for A corresponds to the case where the fit is perfect and L,=1. The

upper bound is thus given by

B=-(2/n)logL_= -2A_(}),

where A, is as given in equation (3) and is only a function of the average value of the
DDV. Asy approaches one of the extreme values of 0 or 1, B approaches zero. B is
symmetrical in y and attains its maximum value when y =14, for which

B .. = log4d =1.386.

The analysis.of section 2.2 may be used to motivate, in the DDV case, a set of
requirements for an R’ analogue that possesses many of that measure’s useful features.
The following requirements are suggested by the analysis.

(i) The measure should take on values in the unit interval and have the right interpretation
at the endpoints, i.e., zero corresponds to no fit and one corresponds to a perfect fit.

(ii) The measure should be based on a valid test statistic for the hypothesis that the
coefficients of all explanatory variables, save the constant, are zero. |

(iii) The derivative of the measure with respect to the test statistic should accord with the
corresponding derivative in the linear case.

Requirement (i} is stx'aightfprward. The range of values is in principle arbitrary,
but (i) corresponds to the conventional values of R? in the linear case.

Requirement (i1) is theoretically appealing and has the practical intent of avoiding
conflicting signals between the measure of fit and the related statistical test. Of course, the
linear case R?* may be derived in a least-squares context without reference to distributional
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assumptions. Nevertheless, R” has the desirable property that, given the number of
observations and regressors, the ranking of models generated by R? agrees exactly with the
ranking generated by the corresponding F test.

Requirement (iii) is essential if the value of the measure of fit is to be in itself
meaningful. The significance of the extreme values of zero and one is clear. However,
through experience, practitioners also tend to develop a sense of what an interior value of
R? means. Generally, for instance, 0.25 may be interpreted as “modest”, 0.5 as “strong”
and 0.75 as “very strong”. If (iii) is not imposed, the possibility of such interpretations is
lost. |

To see this, consider the measure (A/B)', where ¥ is a positive number and A and
B are defined as in this section. This measure satisfies requirements (i) and (ii), regardless
of the value of v, and has the appropriate interpretation at 0 and 1. Now suppose that .
A/B=' and lety = 2, 1 or 2. The resulting values of the measure of fit are then 0.25,
0.5 0or 0.71, respectively, which cover the whole gamut from “modest” to “very strong”. It
is thus clear that the scaling of interior points, in this case accomplished through vy, cannot
be completely arbitrary if the measure is to be interpretable.

We now construct a measure of fit that satisfies (i)-(iif). In line with (i), the
measure is based on A, the average likelihood ratio statistic.in the DDV case. In order to.
achieve the appropriate scaling, we specify (iii) as a differential equation with boundary
conditions defined by (1).

The expression of (iii) as a differential equation rests primarily on an analogy with
the relationship between marginal R? and the LM statistic in the linear case. The LM
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statistic is a natural model because, like A, it is bounded above. Using equation (6),

marginal R? in the linear case may be expressed in terms of the average LM statistic as:

dR?*/(1-R?*) = da,, /{1-A_). (8)

That is, marginal R? increases at a rate inversely proportional to the distance between the
current value of the statistic and its upper bound. This distance is the unexplained fraction
of the variance of the dependent variable.

In the DDV case, a measure based on the statistic A may be constructed by
analogy, using the fact that 0 < A/B < 1. The measure is designed so that the marginal
increment in fit is inversely proportional to the fraction of the “information content” of y
(see Theil 1971, section 12.6) that is still unexplained, where this fraction is interpreted as

1-A/B. Hence, define ¢, implicitly by the differential equation:

do,/ (1-¢,) = dA/(1-A/B). - (9)

With the initial condition ¢y(0)=0, the solution to the equation is
¢, = 1- (1-A/B)® = 1-(logL /logL ) ‘¥ ™%
This solution also satisfies the conditions ¢y(B)=1 and ¢,'(0)=1.
The similarity between equations (8) and (9) suggests that, in a well-defined way,
requirement (iii) holds over the entire range 0<d,<1. Also, note that if B is “replaced by”

infinity in the formula for ¢,



JLILBim 1-{1-4/B)% = 1 -exp(-A4) ,

which is the exact expression for R? in the linear case (equation 4), where A is unbounded.

~The applicability of the measure ¢, extends beyond the DDV case. Although
several special features of the DDV model have been used to motivate the need for such a
measure and 10 specify the requirements that it should meet, the foregoing derivation uses
only a few basic facts about the statistical problem. First, the model is estimated by
maximum likelihood. Second, the hypothesis that all the coefficients except for the
con.stant term are zero is tested using a likelihood ratio test. Third, the average likelihood
ratio statistic has a finite upper bound. Under these conditions (which are also met, for
instance, in polychotomous dependent variable cases such as multinomial logit or probit),
&, may be used as a measure of fit.

3. COMPARISON OF THE NEW MEASURE
WITH EARLIER PROPOSALS

3.1 A Summary of Previous Proposals
Many measures of fit have been proposed in the context of the DDV model. The
following is a fairly comprehensive list of measures contained in the literature, with an

indication of the original proponents.

¢, =1 -1logl,/logl, McFadden (1974)

=1-(p/L 0" Cragg-Uhler (1970)

<
r
|



1 - (LC/LU)Z’“

1 - 12/n Cragg-Uhler (1970)

¢, =

» 2(logl,-~legl) .

2(logl,-loglL,) 2logL_~n

%5 = 2(loglL, -logl })+n 2 loglL_ Veall-Zimmermann (1992)
¢, = P2y, 9) Morzison (1972), Go;dberger (1973)
¢, =1 - E{y-9)%/E(y-y)? Efron (1978)
¢, = o2 (y, x) ' Davidson-McKinnon (1593)

The notation in these formulas has been introduced earlier with the exception of the
correlation coefficient, which is denoted p.

Measures one, two, three and six are discussed in the Maddala (1983) survey,
whereas Amemiya (1981) considers numbers one, six and seven. Dhrymes (1986) contains
an extensive discussion of the first measure only, and Magee (1990) suggests a general
procedufe that is used to define measures two, three, four and seven.

Measures four and five are analyzed in recent surveys by Veall and Zimmermann
(1992) and Windmeijer (1995). Those papers focus on- the fit of equation (1), involving
the latent dependent variable y*, and both endorse a proposal by McKelvey and Zavoina -
(1975) based on the fitted values from (1): E{§y*~y*) 2/ (E (P*—F*) 2 + 1) . However,
both surveys also conclude that this measure is not very useful in assessing the fit of the
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probability equation (2), which is our focus here. Finally, measure eight may be inferred
from a test proposed by Davidson and McKinnon (1993, p. 525) in the context of an
artificial regression.

Measures one to five are based on the maximum likelihood statistics. Measures six
to eight, in contrast, are based on first and second moments of the actual and fitted values
of the dependent variable y and of the explanatory variables x. Thus, it is appropriate to
analyze each of the two subsets separately, as in the next two subsections. It will be
argued that each of the foregoing measures lacks at least one of the important properties
(i)-(iii) ‘that an R? analogue should have.

3.2 Comparison of New Measure with Likelihood-Based Alternatives

The use of the average likelihood (A) and its upper bound (B), defined for the DDV
model in section 2.3, simplifies the analysis.of the likelihood-based measures of fit ¢y-d;,
as well as their relationships. In this section, we begin by examining whether each of the
measures satisfies conditions (i) and (iii) of section 2.3. The results are summarized in
table 1, which presents for each of the measures: an expression in terms of A and B, the
values of the measure at the endpoints, and the derivative of the measure with respect to A
(d¢, /dA) when A=0. Condition (i) suggests that the endpoint values should be zero and
one, respectively, and condition (iii) suggests that the derivative should be one.

Closed-form relationships exist among some of the measures. For instance, it may
be shown that ¢, <, if and only if B> 1 and that ¢, <, and ¢;> ¢, for 0<A<B.

More importantly, table 1 demonstrates the following conclusions. First, all the
measures have a value of zero when A=0. Second, measures two and four fail the upper
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bound criterion. They have upper bounds that depend on B, but which in all cases are

- much less than one. Third, measures one, three and five violate the requirement that the
derivative at A=0 be unity. Measure one may meet this requirement, but only with the
data-driven condition that B is exactly one (y=.1997). Thus, only measure zero satisfies
requirements (i)-(iii).

Evidence that ¢, is preferable to measures one to five is provided by a comparison
of these measures with the odds ratio in the context of a two-by-two contingency table.
Suppose that there is only one independent variable x in (1) and that, like y, x is
dichotomous. The information contained in a given sample may be summarized in a two-

by-two table of frequencies of the form:

y=1 y=0
x=1 ny, Ny,
x=0 ny, Ngg

The odds ratio r =n  n, ./ (n ,n, ) is an index of the degree of independence of x
and y. Independence corresponds to r=1, whereas positive and negative relationships are
indicated by r greater than and less than one, respectively. Under the null of
independence, r has a hypergeometric distribution with parameters n,, +n,,, g, +ng and
n,,+n, (Lehmann 1986, section 4.6). Given the sample size (n) and the marginal

distributions of x and y (x= (n,,+n ) /n and y= (n,,+n,,) /n), the value of r is

sufficient to determine all the frequencies in the table. In turn, the information in the table
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is sufficient to calculate the likelihood-based measures of fit if the distribution function' Fin
(2) is specified.

Let F be logistic. The estimate of the slope coefficient B, is then log(r) and, for
any given set of marginal distributions of x and y, all the likelihood-based measures zero to
five are monotonically increasing in the odds ratio. For instance, suppose that a sample of
500 observations is drawn from a population with x=y=.5, If the odds ratio is
alternatively 1, 3, 30, and 300, then ¢,=0, .07, .48, and .81, respectively. However,
when the marginal distributions are allowed to vary, the odds ratio and the measures of fit
‘'may not move in tandem.

For various marginal distributions of x and y and a sample of size 500, table 2
presents the critical value of the odds ratio at the .00001 level, as well as thé: values of
measures zero through five that correspond to each critical value of the odds ratio. We
focus on a Jow significance level because, otherwise, the corresponding values of all the
measures of fit would tend to be quité low.

As y changes with x held constant, measures one, three and five sometimes move
with the odds ratio, but sometimes move in the opposite direction, as when x=.05, The
range of values of these measures is fairly broad, particularly considering that the
significance level of the critical odds ratios is constant. Measure zero, in contrast, remains
virtually constant, which is consistent with the constant significance level and supports the
proposed interpretation of this measure. The same conclusion may be reached with regard
to measures two and four in the context of table 2. Note, however, that those measures
- fare well only in a neighborhood of A=0, where, like ¢,, they meet certain conditions
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with regard to their level and first derivative (see table 1). As A approaches B, measures
two and four fail requirement (i) of section 2.3 and cannot approach unity.

Another comparison of the likelihood-based measures follows from an important
and useful feature of the standard R? that it may be transformed into an F statistic by
F = R*/ (1-R*%)(n-k-1) /k, where n is the number of observations and k the number
of explanatory variables. From this expression, a level of significance may be calculated
for the statistical test that all coefﬁcients but the constant term are zero (see Maddala

1977). If any of the ¢; measures in the DDV model is interpreted as an R?, the same

- - procedure may be applied purely formally to obtain an F-test significance level.

Consider a data set with n observations, a DDV y, and k explanatory variables (not
necessarily dichotomous). Let X=-2 log- A be the chi-squared statistic described in section
2.1 for testing whether all k coefficients in the DDV model are zero. From X (and k), a
level of significance ay for the chi-squared test may be calculated. In addition, X (together
with n and y) may be used to calculate any of the measures of fit ¢, through &, that are
based on maximum likelihood estimates. Now interpret the value of one of these measures
as the R? from a linear regression and perform an F test formally by calculating
F, = cp;/ (1-¢,)(n-k-1) /k and its significance level o.

If the interpretation of ¢, as an R” is plausible, the implicit ¢, will be roughly equal
to ay. Results for n=>500, k=2 and significance levels of .01, .05 and .10 are presented

in table 3 for measures zero through five. The table shows cases in which y=.05 and .5

because the results for measure one are quite sensitive to this parameter.
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The results in table 3 are fairly striking in support of ¢,. The statistical
‘significance implied by interpreting this measure as an R? is almost identical to the actual
significance measure of the appropriate chi-squared test. However, the results for both ¢,
and ¢; are consistently very low, with the high levels of these measures overstating the
significance of the relationships. For ¢,, the results depend on the value of y. When
y =.05, measure one overstates the significance substantially, although not as much as
measures three and five. When y =.5, on the other hand, the values of measure one tend
to be low and the significance levels too high. This pattern suggests that there may be an

~ intermediate case i which ¢, does relatively well. In fact, for y =.1997, ¢, is identical to

¢,, and both perform quite well. In table 3, as in table 2, ¢, and ¢, perform about as well
as ¢,. Again note, however, that measures two and four are subject to upper bounds.that
are considerably less than one.

The foregoing results assume specific values of n, k and y, and only sensitivity to
the latter has been examined here. Nevertheless, experimentation with other values of n-
and k shows that the results are robust. For small samples or many independent variables,
the results for measure zero may deteriorate a bit, but they are still good and incomparably
better than those obtained with the other measures.
3.3 Comparison of New Measure with Moment-Based Measures of Fit

We proceed to compare measures six to eight, as defined in section 3.1, with ¢,.
The moment-based measures make some intuitive sense and can be sometimes helpful in
evaluating the results of estimates with DDVs. However, they are based on second
moments (sums of squares), whereas the maximum likelihood framework that produces the

15



estimates does not depend on such statistics in the DDV case. Hence, the use of the
moment-based functions as measures of fit is inconsistent in principle with the use of
maximum likelihood for estimation. The moment-based measures tend to ignore either or
both the heteroskedasticity and nonlinearity problems of the basic linear probability model.

To see this, we perform a Monte Carlo experiment in which a likelihood-based
measure (¢,) and a moment-based measure (¢,) are used for model selection. The object
is to distinguish the true model, which contains a single variable x;, from a model with a
single variable x, that is imperfectly correlated with the first. Thus, suppose
y* = ¢ + bx +u with x,,u, ~ N(0,1) and x, and u, uncorrelated. The DDV y is
based on whether y* is positive. Suppose further that there are two other variables
X,, U, ~ N(O, 1} suchthat x = px, + \fl_—? u, with X, and u, uncorrelated. The
correlation between x, and x, is p, which is set at .9 in the simulations that follow.

The strategy of the Monte Carlo experiments is to simulate a sample of size 500, to
estimate probit equations based on x, and x,, respectively, and to observe the ranking of
the two models according to each of the two measures of fit. One thousand iterations are
performed and the probability of selecting the wrong model with each of the two measures
i1s noted. The results are presented in table 4. Note that to make the results in this table
more easily interpretable, combinations of the parameters ¢ and b are selected so that the
means of y and of ¢, have specific reference values. For each of these combinations, the
table indicates the probability p(¢$,) of an error (selecting model 2) using measure i=0 or 7
and the results of a Monte Carlo t-test of whether the probability of an error is higher with
&, than with ¢,
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Not surprisingly, since the parameters are estimated by maximum likelihood, the
- likelihood-based measure has a tendency to perform better. When the fit of the model is
particularly good {¢,=.5), both measures are very accurate. However, when the fit is not
as good and the mean y is away from .5, the likelihood-based measure clearly outperforms
the moment-based.
4, SOME REMARKS ON MODEL SELECTION

As a criterion for empirical model selection, R? has the drawback that it can only

increase when additional variables are introduced. For this reason, empirical researchers
* -frequently use and report R?, which increases with an additional variable only if the

improvement in fit is sufficient to overcome a loss in degrees of freedom. Adjusted R? is.

defined implicitly (see Maddala 1977) by:

1-F = (1-R%-(n-1)/(n-k-1),

where k is the number of explanatory variables. Like R%, ¢, is nondecreasing with the

introduction of additional explanatory variables. By analogy, we can define an adjusted &,
by

o2 = 1 - (1-¢,)(n-1)/(n-k-1) .

An alternative degrees-of-freedom adjustment may be obtained by employing the
form of the Akaike information criterion (AIC) within the formula for ¢,. Citing earlier |

research that shows that no one adjustment for degrees of freedom dominates other possible
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choices, Amemiya (1981) expresses a preference for the AIC (= -log L,+k) because of its

simplicity. The resulting adjusted ¢, is in this case:

-—2 leg L,

¢g =1 “((iogLu~k}/(loch)) g .

The AIC adjustment tends to impose a more severe penalty for additional variables
than the R*-type adjustment. For example, when ¢,=0.5 and n=120, the inclusion of one
additional variable tends to reduce ¢; by 0.014 or more, depending on the value of v,
whereas ¢j is reduced only by about 0.005. The stiffer penaity associated with the AIC
" 'may be desirable, since, in the linear model, the condition for an additional variable to
increase R? is only that its t statistic exceeds one.

The foregoing suggestions for use of the measure of fit in model selection seem
plausible, but more research is required to determine whether the modifications are useful
in practice. Such research, which is beyond the scope of this paper, might use Monte
Carlo simulations to examine the effectiveness of the adjustments in the context of the
selection of nested and nonnested models.

5. NUMERICAL ILLUSTRATIONS USING A MODEL
FOR PREDICTING RECESSIONS

This section illustrates the application of the new and previously suggested measures
to an equation that predicts whether or not an economy will be in a recession 12 months
ahead. The dependent variable y in this equation equals 1 if the economy is in a recession,

and 1t equals 0 otherwise. The equation includes, in addition to a constant term, a single
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explanatory variable (SPREAD) representing a yield curve spread: the difference between

a 10-year government bond and a 3-month government bill. Specifically,

P(y,=1|SPREAD, ) = F(B,*B,SPREAD, .),

where the distribution F is taken to be normal.

The equation is estimated for France, Germany, Italy, the United Kingdom and the
United States with monthly data from January 1973 to December 1994. The interest rate
data is as of the end of the month. The recession DDV is based on business cycle dating
by the National Bureau of Economic Research (NBER) for the United States and by the
Columbia Center for Business Cycle Research for the European countries. For France and
Italy, data for the full sample were not available. A similar set of estimates and a
discussion of the underlying economics may be found in Estrella and Mishkin (1996) (see
also Estrella and Hardouvelis (1991) for a U.S. application over a longer sample period).

Results are shown in table 5. The ordering across countries produced by the nine
basic measures is identical, which is attributable to the large differences in fit that make
distinctions easy. That the ordering is reasonable may be confirmed by exémining figure
1, which plots the fitted probabilities from the equation against the shaded recessionary
periods (when y=1). Of course, visual inspection of the figure can only provide a
subjective assessment of the fit. Nevertheless, the numerical results confirm the patterns
suggested by the discussion of the earlier sections, as inspection of the numbers in table 5

indicates.
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Measures six to eight, which are based on moments, produce results that are very
similar to each other. These results are also generally similar to those obtained with ¢,,
except in the case of the United States in which Yy, and hence the upper bound for ¢,, are
low. The moment-based measures are also generally lower than those corresponding to the
preferred measure ¢,. This latter difference is particularly large in the case of Germany,
for which the failure of the moment-based measures to account for heteroskedasticity
results in giving “too much weight” to the outliers in the second-moment calculation.

The alternatives based on maximum likelihood exhibit the behavior that would be
expected from the anatysis of sections 2 and 3. For example, measures two and four,

- whose va;ues cannot exceed 0.75 and 0.58, respectively, produce relatively low estimates.
In contrast, measures three and five, which are obtained by blowing up measures two and
four, respectively, in a somewhat arbitrary way, are consistently higher than all the others.

Measure one makes the smallest distinction between the fits for Germany and the
United States, about 8 percentage points as compared with 20 for ¢,. B is not far from
one for the United States, but is essentially at its maximum value (1.386) for Germany.
Hence, the nonlinear adjustment included in ¢,, but not in ¢,, has a much more noticeable
effect for Germany.

The entry in the table labeled MZ corresponds to the McKelvey-Zavoina measure ‘of
fit of the latent equation, as defined in section 3.1. These results are consistently on the
high side. Finally, the values of the two measures of section 4 that adjust for degrees of

freedom are also presented in the table.
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6. CONCLUSIONS

This paper proposes a new measure of fit for equations with dichotomous dependent
variables that has various desirable properties that earlier proposals lack. Of the measures
examined in this paper, the new proposal is the only one that conforms with classical R? in
terms of both its range and its relationship with the underlying test statistics.

The new measure is like an R? in that it is contained in the unit interval and has
suitable interpretations at the endpoints of the interval. In addition, unlike the earlier
proposals, its marginal relationship with the averége likelihood ratio statistic is closely in
line with similar relationships between R? and the classical tests in the linear model. Thus,
.the behavior of this new measure in the interior of the unit interval is more intuitively

interpretable and is consistent with the statistical significance of hypothesis tests normally

associated with R>.
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Table 1. Properties of Likelihood-Based Measures

Measure As function  Value at Value at Derivative
of A and B A=0 A=B at A=0
&b, 1- (1-A/B)? 0 1 1
&, A/B 0 1 1/B
&, 1- exp(-A) 0 1-exp(-B) 1
<.75
b, _l-exp(-A) 0 1 (l-exp(-B))"
1-exp(-B) >1.33
b, Al(A+1) 0 B/(B+1) 1
< .581
s - _A/(A+]) 0 1 (B+1)/B
B/(B+1) > 1.72




Table 2. Critical Values of Odds Ratio and Corresponding Measures of Fit

X v r* ¢o ¢1 ¢, ¢, ¢, ¢s

05 .05 987 032 .09 031 .095 031  .107
05 1997 577 034 .03 033 052 033  .065
05 5 794 034 025 034 .45 033 .0S7
5 .05 794 035 .08 .034 .02 .033 .16
51997 271 037 037 .37  .058 .036 .07
5 S 218 037 .027 036 .04 036 .06

Note: r* is the critical value of the odds ratio for a significance level of .00001. Results
are based on 500 observations and the measures of fit are derived from a logit model.



Table 3. Comparison of Actual (x°) and Implicit (F) Significance Levels

F Level
vy x*Level &, b, b, $, b, Ps
.05 .01 010 .000 .010 .000 .010 .000
.05 .05 049 002 .051 .001 .051 .000
.05 .10 100 .009 .101 004 .101 002
5 .01 010 .029 .010 .003 010 .001
5 .05 050 .09 .051 .024 051 010
5 .10 .101 .163 .101 058 101 031




Table 4. Monte Carlo Comparisons of ¢, and ¢,

Ey Edy pd) p(d) P@)p(dy) tstatistic pvalue
.05 .1 064 .110 046 5.21 .000
.05 3 .004 008 004 2.00 .023
.05 5 .000 .000 000 na na
2 .1 .052 .060 008 1.64 .051
2 3 .003 002 -.001 -1.00 .159
2 5 .000 000 000 na na
5 1 .061 .064 003 0.73 .233
5 3 .002 002 .000 na na
5 35 000 000 000 na na




Table 5: Numerical Illustration of Measures of Fit

Statistic France  Germany Italy UK us
n . 192 252 216 252 252
y 0.573 0.488 0.444 0.484 0.179
A 0.000 0.628 0.075 0.200 0.356
B 1.365 1.386 1.374 1.385 0.938
Measures of fit:

b, 0.000 0.567 0.074 0.194 0.361
¢, 0.000 0.454 0.055 0.144 0.379
b, 0.000 0.467 0.072 0.181 0.299
b, 0.000 0.622 0.097 0.241 0.492
b, 0.000 0.386 0.070 0.166 0.262
& 0.000 0.664 0.121 0.287 0.542
b 0.000 0.496 0.067 0.177 0.347
b, 0.000 0.496 0.067 0.177 0.346
b, 0.000 0.464 0.071 0.181 0.340
MZ 0.000 0.704 0.119 0.283 0.514
Leris -0.010 0.561 0.065 0.186 0.352
oy -0.005 0.565 0.070 0.191

0.358




Figure 1. Probability of Recession Using Yield Curve Spread (t-12). Monthly
Data, January 1973 to December 1994. This figure provides a visual illustration of the
fit of the equation for predicting recessions in each of the five countries in the sample.
The predictor is the yield curve spread twelve months earlier. Shaded regions indicate
recessions.
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