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ABSTRACT:

Beginning in 1998, U.S. commercial banks with significant trading activities must hold
-capital against their defined market risk exposure. Under the “internal models” approach
embodied in the current regulatory guidelines, this capital charge is a function of banks’ own
value-at-risk (VaR) estimates. Clearly, the accuracy of these VaR estimates is of concern to both
banks and their regulators.

- To date, two hypothesis-testing methods for evaluating VaR estimates have been
proposed; namely, the binomial and the interval forecast methods. For these tests, the null
hypothesis is that the VaR estimates in question exhibit a specified property characteristic of
accurate VaR estimates. As shown in a simulation exercise, the tests generally have low power
and thus are prone to misclassifying inaccurate VaR estimates as “acceptably accurate”.

An alternative evaluation method, based on regulatory loss functions, is proposed. Loss
functions that capture regulatory concerns are discussed; specifically, the magnitude loss function
that assigns a quadratic numerical score when an observed portfolio loss exceeds its VaR
estimate. Simulation results indicate that this method is capable of distinguishing between VaR
estimates generated by accurate and alternative VaR models. The additional information
provided by this method, as well as its flexibility with respect to the specification of the loss
function, make a reasonable case for its use in the regulatory evaluation of VaR estimates.
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I. Introduction

In August of 1996, the U.S. bank regulatory agencies adopted the market risk amendment -

{MRA) to the Basle Capital Accord. The MRA, which became effective in 1998, requires that
commercial banks with significant trading activities set aside capital to cover the market risk
exposure in their trading accounts.! The market risk capital requirements are to be based on the
“value-at-risk” (VaR) estimates generated by the banks’ own risk management models. In
general, VaR models attempt to forc;:ast the time-varying distributions of portfolio returns, and
VaR estimates are simply specified lower quantiles of these forecasted distributions. In other
words, VaR estimates are forecasts of the maximum portfolio loss that could occur over a given
‘holding period with a specified confidence level.

~ Given the importance of VaR estimates to banks and now their regulators, evaluating the
' accuracy of the models underlying them is a necessary exercise. As highlighted by Hendricks
“and Hirtle (1997),

“The actual benefits from this information depends crucially on the quality and
accuracy of the VaR models on which the estimates are based. To the extent that
these models are inaccurate and misstate banks” true risk exposures, then the
quality of the information derived from any public disclosure will be degraded.
More significantly, inaccurate VaR models or models that do not produce
consistent estimates over time will undercut the main benefit of a models-based
capital requirement: the closer tie between capital requirements and true risk
exposures. Thus, validation of the accuracy of these models is a key concern and
challenge for supervisors.”

To date, two hypothesis-testing methods for evaluating VaR estimates have been proposed: the
binomial method, currently the quantitative standard embodied in the MRA, and the interval

forecast method proposed by Christoffersen (1998).2 For these tests, the null hypothesis is that

! For the details of the market risk amendment, see Federal Register (1996).

2 Note that other methods for evaluating VaR models have been proposed, but they focus on other aspects of
the models’ forecasted distributions. For example, Crnkovic and Drachman (1996) focus on the entire forecasted

distribution, and Lopez (1997) focusses on probability forecasts generated from the forecasted distributions.
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the VaR estimates in question exhibit a specified property characteristic of accurate VaR
estimates. If the null hypothesis is rejected, the VaR estimates do not exhibit the specified
property, and the underlying VaR model can be said to be “inaccurate”. If the null hypothesis is
not rejected, then the model can be said to be “acceptably accurate”.

However, for these evaluation methods, as with any hypothesis test, a key issue is their
statistical power; i.e., their ability to .reject the null hypothesis when it is incorrect. If the
hypothesis tests exhibit low power, then the probability of misclassifying an inaccurate VaR
model as “acceptably accurate” will be high. This paper examines the power of these tests within
the context of a simulation exercise using several data generating processes.

In addition, this paper proposes an alternative evaluation method that is not based on a

" “the accuracy of VaR estimates is gauged by how well they minimize a loss function that

represents the evaluator’s concerns. In this paper, three loss functions that represent specific

- “regulatory concemns are discussed; specifically, the binomial loss function that assigns a

numerical score of one when a VaR estimate is exceeded by the corresponding portfolio return; © -

the zone loss function based on the adjustments to the multiplication factor used in the MRA;
and the magnitude loss function that assigns a quadratic numerical score when a VaR estimate is
exceeded by the portfolio return. Although statistical power is not relevant for this evaluation
method, the related issues of comparative accuracy and model misclassification are examined
within the context of a simulation exercise.

The simulation results indicate that the hypothesis-testing methods can have relatively
low power and thus a relatively high probability of misclassifying inaccurate VaR estimates as
“acceptably accurate”. For the proposed evaluation method, the simulation results indicate that
the degree of model misclassification generally mirrors that of the other methods. However, in

certain cases, it provides additional useful information on the accuracy of VaR estimates. Of the

C dmmept e«

-~ hypothesis testing framework, but instead uses standard forecast evaluation techniques. Thatis,- .



three loss functions examined, the magnitude loss function seems to be more capable of
distinguishing between accurate and alternative VaR estimates because it incorporates additional
information -- the magnitude of the trading losses -- into the evaluation. The ability to use such
additional information, as well as the flexibility with respect to the specification of the loss
function, make a reasonable case for the use of the loss function method in the regulatory
evaluation of VaR estimates.

Section I below describes the current regulatory environment and the three evaluation
methods. Section III presents the simulation results that indicate the usefulness of the proposed
evaluation method, particularly using the magnitude loss function. Section IV presents a detailed
example of how this method can provide additional information useful in the regulatory -

- & “ wevaluation of VaR estimates, and Section V concludes,

*™ 1L Alternative Evaluation Methods

VaR models are characterized by their forecasted distributions of k-period-ahead portfolio -
returns. To fix notation, let y, denote the log of portfolio value at time t. The k-period-ahead
portfolio return is €, = y,,, - y.* Conditional on the information available at time t,eisa .
random variable with distribution f,,; that is, €. | Q ~ f, . Thus, VaR model m is
characterized by f,,,,, its forecast of f,,,.

VaR estimates are the most common type of forecast generated from VaR models. A
VaR estimate is simply a specified quantile of the forecasted return distribution over a given
holding period. The VaR estimate at time t derived from model m for a k-period-ahead return,
denoted VaR,,(k,u), is the critical value that corresponds to the lower o percent tail of Lo

Thus, VaR_(k,a) = F',(a/100), where F., is the inverse of the cumulative distribution

*  The usefulness of modeling portfolio returns, as opposed to the underlying market risk factors, in a VaR

framework is discussed in Zangari (1997).



function corresponding to f,.,,, or equivalently, VaR_ (k) is the solution to

VaR,, (k)
o
f f . (x)dx = 0

—o0

A. Current Regulatory Framework
The current, U.S. capital rules for the market risk exposure of commercial banks,
effective as of 1998, are explicitly based on VaR estimates. The rules cover all assets in a bank’s .-
trading account (i.e., assets carried at their current market value) as well as all foreign exchange
and commodity positions wherever located in the bank. Any bank or bank holding company
whose trading activity accounts for more than ten percent of its total assets or is more than $1
4=~ +billion must hold regulatory capital against their market risk exposure. The capital charge is to
" be calculated using the so-called “internal models” approach.*
Under this approach, capital charges are based on VaR estimates generated by banks’

" internal, risk management models using the standardizing parameters of a ten-day holding period
(k = 10) and 99 percent coverage (« = 1), In other words, a bank’s market risk capital charge is
based on its own estimate of the potential loss that would not be exceeded with one percent -
certainty over the subsequent two week period. The market risk capital that bank m must hold
for time t+1, denoted MRC,,,,, is set as the larger of VaR,(10,1) or a multiple of the average of

the previous sixty VaR _(10,1) estimates; that is,

MRCmt+l mt—i(lo’l) + SRmt'

59
- max| VaR_(10,1); S_ » L ¥ VaR
6010

where S, and SR, are a multiplication factor and an additional capital charge for the portfolio's

* Note that an alternative method for monitoring the market risk exposure of commercial banks is the
“precommitment” approach proposed by Kupiec and O'Brien (1995).
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idiosyncratic credit risk, respectively. Note that, under the current framework, S_, > 3.

The S, multiplier is included in the calculation of MRC,,,, for two reasons. First, as
described by Hendricks and Hirtle (1997), it adjusts the reported VaR estimates up to what
regulators consider to be a minimum capital requirement reflecting their concerns regarding _
prudent capital standards and model accuracy.’ Second, S €xplicitly links the accuracy of a.
bank’s VaR model to its capital charge by varying over time. S 18 set according to the accuracy
of model m’s VaR estimates for a one-day holding period (k = 1) and 99 percent coverage,
denoted VaR,,(1,1) or simply VaR__.

S is a step function that depends on the number of exceptions (i.e., occasions when the
portfolio return €, is less than VaR_,) observed over the last 250 trading days.® The possible

+ = «number of exceptions is divided into three zones. Within the green zone of four or fewer

e -%exceptions, a VaR model is deemed “acceptably accurate”, and S, remains at its minimum value -
of three. Within the yellow zone of five to nine exceptions, S, increases incrementally with the - -«
number of exceptions. Within the red zone of ten or more exceptions, the VaR model is deemed

* to be “inaccurate”, and S_, increases to its maximum value of four. The institution must also
explicitly improve its risk management system. : -
Clearly, the “internal models™ approach embodied in the MRA represents a significant

change in how regulatory oversight of bank activities is conducted. Having established that
market risk capital will be a function of banks’ own VaR estimates, the regulators must now
focus on evaluating the accuracy of these VaR estimates. In the following section, three methods

for evaluating VaR estimates are discussed. In accordance with the current regulatory

framework, one-step-ahead VaR estimates are analyzed.

5 See Stahl (1997) for a mathematical justification of the multiplication factor.

8 See Finger (1996) for a discussion and example of such exceptions with respect to emerging markets data.
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B. Alternative Evaluation Methods

Under the MRA, regulators must determine whether a bank’s VaR moﬁel is “acceptably
accurate” given 250 VaR estimates and the corresponding portfolio returns. To date, two
hypothesis-testing methods have been proposed for this type of evaluation: evaluation based on
the binomial distribution and interval forecast evaluation, as proposed by Christoffersen (1998).
Both methods use hypothesis tests to determine whether the VaR estimates exhibit a specified
property characteristic of accurate VaR estimates.

However, as noted by Diebold and Lopez (1996), it is unlikely that forecasts from a
model will exhibit all the properties of accurate forecasts. Thus, evaluating VaR estimates solely
upon whether a specific property is present may yield only limited information regarding their

 »=> - accuracy. In addition, the power of the tests used in the evaluation must also be considered. In
- == >*this paper, an evaluation method based on determining how well VaR estimates minimize a
-+ regulatory loss function is proposed. Clearly, this evaluation method can provide information

that is of direct interest to the regulators.

B.1. Evaluation of VaR estimates based on the binomial distribution —

Under the MRA, banks will report their VaR estimates to the regulators, who observe
when actual portfolio losses exceed these estimates. As discussed by Kupiec (1995), assuming
that the VaR estimates are accurate, such exceptions can be modeled as independent draws from
a binomial distribution with a probability of occurrence equal to one percent. Accurate VaR
estimates should exhibit the property that their unconditional coverage «” = x/250, where x is the
number of exceptions, equals one percent. Since the probability of observing x exceptions in a

sample of size 250 under the null hypothesis is

) 0.01* « 0.992%0-x
X

[ 250
Pr(x) =



the appropriate likelihood ratio statistic for testing whether o = 0.01 is

IR, = 2logla*(1 - a)™*) - log{0.01* » 0.99250%)]

Note that the LR, test is uniformly most powerful for a given sample size and that the statistic
has an asymptotic x*(1) distribution.

The finite sample size and power characteristics df this test are of interest. With respect
to size, the finite sample distribution of LR, for the specified parameters may be sufficiently
different from a (1) distribution that the asymptotic critical values may be inappropriate. Table
1, Panel A presents the finite-sample critical values as determined via simulation, and
meaningful differences between the two distributions are present and must be accounted for
when drawing statistical inference. As for the power of this test, Kupiec (1995} describes how

™

this test has a limited ability to distinguish among alternative hypotheses and thus has low power -

B .

in samples of size 250.

B.2. Evaluation of VaR using the interval forecast method

VaR estimates are also interval forecasts of the lower one percent tail of f,,1» the one-step-
ahead return distribution. Interval forecasts can be evaluated conditionally or unconditionally;
that is, with or without reference to the information available at each point in time. The LR _ test
1s an unconditional test since it simply counts exceptions over the entire period. However, in the
presence of time-dependent heteroskedasticity, the conditional accuracy of interval forecasts is an
important issue. Interval forecasts that ignore such variance dynamics may have correct
unconditional coverage, but at any given time, will have incorrect conditional coverage; see
Figure 1 for an illustration. In such cases, the LR, test is of limited use since it will classify
inaccurate VaR estimates as “acceptably accurate”.

The LR, test, adapted from the more general test proposed by Christoffersen (1998), is a

- test of correct conditional coverage. Given a set of VaR estimates, the indicator variable L, , is
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constructed as

1 lif g, < VaR

mt~1

Oife, > VaR
Since accurate VaR estimates exhibit the property of correct conditional coverage, the I_,, series
must exhibit both correct unconditional coverage and serial independence. The LR__ test is a
joint test of these two properties. The relevant test statistic is LR, = LR +LR, ,, which is
distributed x*(2). The finite sample critical values for the regulatory parameter values are shown
in Table 1, Panel B.
The LR, statistic is the likelihood ratio statistic for the null hypothesis of serial
independence against the alternative of first-order Markov dependence.” The likelihood function
=+ - --underthis aliernative hypothesis is L, = (1-m, {®m,"(1-7, J™n " where the T, notati
“under this alternative hypothesis is L, = (1-m,, J*my'(1-7,, )™ x,,", where the T, notation

™=~ denotes the number of observations in state J after having been in state i the period before, - ke

Tor = Tor /{Too* Ty, Jand m, =T, I(Tyo*T, ). Under the null hypothesis of independence,
Moy = T, = 7, and the relevant likelihood function is L, = (l—n)T”‘”T'"nT"”T”, where
T = (T01 +T,, )I250. The test statisticLR._, equals 2[logLA - logLO] and has an asymptotic

¥*(1) distribution.

B.3. Evaluation of VaR estimates using regulatory loss functions

The loss function evaluation method proposed here is based, not on a hypothesis-testing
framework, but on assigning to VaR estimates a numerical score that reflects specific regulatory
concerns. Although this method foregoes the benefits of statistical inference, it provides a
measure of relative performance that can be used to compare VaR estimates across time and

across institutions.

7 As discussed in Christoffersen (1998), several other forms of dependence, such as second-order Markov

dependence, can be specified. For the purposes of this paper, however, first-order Markov dependence is used.
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To use this method, the regulatory concerns of interest must be translated into a loss
function. The general form of these loss functions is

f(e,.,, VaR ) if €,, < VaR,

1+1

C

mt+f

g(am, VaR )ife, > VaR
where f(x,y) and g(x,y) are functions such that f(x,y) > g(x,y). The numerical scores are
constructed with a negative orientation; i.e., lower values of C,,,, are preferred since exceptions

are given higher scores than non-exceptions. Numerical scores are generated for individual VaR
250

estimates, and the score for the complete, regulatory sample is C, = El C
1=

general conditions, accurate VaR estimates will generate the lowest possible numerical score.®

mis+  onder very
" Once a loss function is deﬁn_gd and C, is calculated, a benchmark can be constructed and used to
+ evaluate the performance of a set of VaR, estimates. Although many regulatory loss functions

~ can be constructed, below are described the three analyzed in this paper.

a. Loss function implied by the binomial method
The loss function implied by the binomial method is

1if e, < VaR_,
C =

mt+}

0ife, = VaR , .
Note that the appropriate benchmark is E[Clm+1 ] = 0.01, which for the fuil sample is
E[Cm] = 2.5. As before, only the number of exceptions is of interest, and no additional

information over that contained in the binomial method is included in this analysis.

b. Loss function analogous to the adjustment schedule for the S,, multiplier

The numerical score assigned to a set of 250 VaR estimates can be generated by assigning

8 See Diebold, Gunther and Tay (1997) as well as Granger and Pesaran (1996) for further discussion with
espect to distribution and probability forecasts, respectively. ..
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a score to each element of the set or by assigning a score based on the entire set. The adjustment
to the S, multiplier embodied in the MRA is based on the entire set of VaR estimates. Phrased
in the notation above, the loss function that generates an analogous numerical score is

' 0if e, > VaR_,

0 ife, <VaR_ and O<x<4

04/5 if e,, < VaR_ and x=5

0.5/6 if e,, < VaR_ and x=6

"™ | o657 ife,, < VaR_ and x=7

0.75/8 if g,, < VaR_ and x =8

0859 if ¢,, < VaR_ and x=9

l/x if g, < VaR_ and x:10

- [

“wherex is the number of exceptions in the sample and the numerical weights are the actual S
* - values divided by x.° The benchmark for this numerical score is

250

E[cm] - Z C_..

250 250
=Y Pr(x)x| Y, C,..|x| = 005597
i=1

x=0

Note that this loss function incorporates the regulatory concerns expressed in the S,_, multiplier,

but like the binomial loss function, it is based only on the number of exceptions in the sample.

¢. Loss function that addresses the magnitude of the exceptions
As noted by the Basle Committee on Banking Supervision (1996), the magnitude, as well

as the number, of the exceptions are a matter of concern to regulators. As discussed by

®  As currently constructed, the S, adjustment schedule does not address VaR estimates that are possibly too

conservative; i.e., VaR estimates that lead to a lower than expected number of exceptions. Given the regulatory
interest in providing adequate capital against negative outcomes, the absence of such outcomes is not relevant.
However, from the perspective of VaR model evaluation, such outcomes might indicate modeling error. This
concern could be addressed by modifying the loss function to. inciude a non-zero score when x < 3,
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Hendricks (1996), the magnitude of the observed exceptions can be quite large; in that study, the
portfolio losses exceed the corresponding VaR estimate by 30 to 40 percent, on average, and, in
the extreme cases, by lip to 300 percent,

This concern can readily be incorporated into a loss function by introducing a magnitude .

term. -Although several are possible, a quadratic term is used here, such that

I+ (e, - VaR P ife, < VaR_
C .

mi+l

0 ife, = VaR
Thus, as before, a score of one is imposed when an exception occurs, but now, an additional term

based on the magnitude of the exception is included. The numerical score increases with the
magnitude of the exception and can provide additional information on how the underlying VaR
*«.model forecasts the lower tail of the underlying f,,, distribution. Unfortunately, the benchmark
* “‘based’on the expected value of C,,,, cannot easily be determined because the f.,, distribution is
unknown. However, simple, operational benchmarks based on certain distributional assumptions -

- can be constructed and are discussed in Section v,

III. Simulation Exercise .
To analyze the ability of the three evaluation methods to gauge the accuracy of VaR

estimates and thus avoid VaR model misclassification, a simulation exercise is conducted. For

the two hypothesis-testing methods, this amounts to analyzing the power of the statistical tests:

i.e., determining the probability with which the tests reject the specified null hypothesis when it

is incorrect. With respect to the loss function method, its ability to evaluate VaR estimates is

gauged by how frequently the numerical score for VaR estimates generated from the true data

generating process (DGP) is lower than for the VaR estimates from alternative models. If the

method is capable of distinguishing between these scores, then the degree of VaR model

misclassification will be low.
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* evaluation methods in the presence of variance dynamics. The third segment models €

The first step in this simulation exercise is deciding what type of portfolio to analyze.
Although VaR models are commonly applied to complicated portfolios of financial assets, the
portfolio value y,,, used here is specified as Y1 = ¥, * &,y where g, 1Q ~ f,.,- This
process is representative of linear, deterministic conditional mean specifications. It is only for
portfolios with nonlinear elements, such as portfolios with derivative instruments, that this
choice presents inference problems;' further research along these lines, as by Pritzker (1996), is
needed.

The simulation exercise is conducted in four segments. To examine how the evaluation

methods perform under different distributional assumptions, f,,, is set to be the standard normal

“distribution and a t-distributggn with six degrees of freedom, which induces fatter tails than the

- normal, in the first two segments. The second two segments examine the performance of the

. asa

- GARCH(1,1)-normal process, and the fourth segment does so as a GARCH(1,1)-4(6) process.

In each segment, the true DGP is one of eight VaR models evaluated and is designated as
the “true” model or model 1. Traditional power analysis of a hypothesis test is conducted by
varying a particular parameter and determining whether the corresponding incorrect null -
hypothesis is rejected; such changes in parameters generate what are termed local alternatives. In
this study, non-nested, but common, VaR models are used as reasonable “local” alternatives. For
example, a common type of VaR model specifies the variance of €, as an exponentially

weighted moving average of squared innovations; that is,
By = (1 - A)% AeZ, = Ah_ + (1 - A)en
1=

This VaR model, a version of which is used in the well-known Riskmetrics calculations (see J.P.

Morgan, 1996), is calibrated here by setting A equal to 0.94 or 0.99, which imply a high-degree

12
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of persistence in variance.'® The alternative VaR models used in each segment of the simulation
exercise are described in the subsections below. |
The simulation runs are structured identically in each of the segments. For each run, the
-simulated y,+'! series-is generated using the chosen DGP. After generating an in-sample period of ..
3500 observations, the chosen VaR models are used to generate one-step-ahead VaR estimates
for the next 250 out-of-sample observations of y,,,. The results are based on 1000 simulations.
The simulation results are organized below with respect t;) the four segments of the exercise.
Two general points can be made. First, with the size of the tests set at 5%, the power of
the two hypothesis-testing methods varies considerably against the incorrect null hypotheses
“implied by the alternative VaR models. In some cases, the power of the tests is high (greater than
75%}, but in the majority of the cases examined, the power is poor (less than 50%) to moderate
* +** (between 50% and 75%). The results iﬁdicate that these two methods are likely to misclassify s
" VaR estimates from inaccurate models as “acceptably accurate”.
T Second, the degree of model misclassification exhibited by the loss function method
roughly matches that of the other two methods; i.e., when the hypothesis-testing methods exhibit
low power, the loss function method is generally less capable of distinguishing between accurate -5
and inaccurate VaR estimates. However, overall, the loss function method has a moderate to
high ability to gauge the accuracy of VaR estimates. Across the three, regulatory loss functions,
the results for the magnitude loss function are relatively better, indicating a greater ability to
distinguish between models. This result is not surprising given that the magnitude 1oss function

incorporates additional information -- the magnitude of the exceptions -- into the evaluation.

' Note that this VaR model is often implemented with a finite lag-order. For example, the infinite sum is
frequently truncated at 250 observations, which accounts for over 90 percent of the sum of the weights. See
Hendricks (1996) for further discussion on the choice of A and the truncation lag. In this paper, no such truncation is
imposed, but of course, one is implied by the overall sample size of the simulated time series.
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A. Simulation results for the homoskedastic standard normal DGP
For the first segment, the true DGP is the standard normal; i.e., g, ~ N(0,1). The
seven alternative models examined are normal distributions with variances of %2, %, 1% and 1v%;
the two calibrated VaR models with normal distributions; and the historical simulation model. .
For this last model, the VaR estimates are formed as the lower 1% quantile of the empirical
distribution of the 500 previously observed returns.

Table 2, Panel A presents the powér analysis of the hypothesis-testing evaluation methods
for a fixed test size of 5%. For the homoskedastic alternatives (models 2 through 5), the power
results vary considerably and are related to the differences in the variance; i.e., larger differences
induce greéter relative power. Similar results are seen for the historical simulation model (model.
8). With respect to the calibrated models {(models 6 and 7), the tests have no power since, even

“rre= & though unnecessary heteroskedasticity is introduced, these VaR estimates are still quite similar to e ™
—* - those of the true DGP.
Table 2, Panel B contains the comparative accuracy results for the loss function method - =
using the specified loss functions. The numerical scores for models 4 and 5, which generate
! conservative VaR estimates and thus fewer exceptions, are never larger than those for the true -
DGP. This method cannot distinguish between the true DGP and these models, but this result is
acceptable given the regulatory viewpoint implicit in the loss functions; i.e., regulators are
concerned if not enough capital is held against possible losses, but not if too much capital is held.
However, this method clearly can distinguish between the true DGP and the low vafiance models
(models 2 and 3) that consistently generate smaller VaR estimates than necessary. With respect

to the calibrated and historical models (models 6 through 8), the degree of misclassification is

generally moderate, although the magnitude loss function exhibits relatively better results.
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B. Simulation results for the homoskedastic t(6) DGP

For the second segment, the true DGP is a t(6) distribution; i.e., €., ~ t(6). The seven
alternative models are two normal distributions with variances of 1 and 1% (the same variance as
the true DGP); the two-calibrated models with normal distributions as well as with t(6) .
distributions; and the historical simulation model.

Table 3, Panel A show that the overall power of the LR tests against these alternative
models is low. With the exception of the N(0,1) model (model 2), the power results are below
30%; thus, the alternative VaR estimates are incorrectly classified as “acceptably accurate” a
large percentage of the time. This result is mainly due to the similarity of the alternative VaR
models to the true DGP. For example, although models 4 through 7 introduce unnecessary
heteroskedsaticity, their VaR estimates are similar to the true, but constant, VaR estimates.

" Table 3, Panel B contains the results of the loss function evaluation. For the normality- -~ ..

based models (models 2 through 5), the three loss functions have moderate to hi gh ability to

~ distinguish between alternative VaR estimates, with the zone loss function doing worst and the - ~

magnitude loss function doing best. However, with respect to models 6 through 8, this method

shows a high degree of model misclassification due to the model’s similarity to the true DGP. =

C. Simulation results for the GARCH(1,1)-normal data generating process

For the last two segments, variance dynamics are introduced by using conditional
heteroskedasticity of the GARCH form; i.e., h,, = 0.075 + 0.1083 + 0.85h,, which has an
unconditional variance of 1¥2. The only difference between the DGP’s in these two segments is
the chosen distributional form. For the third segment, ¢ ,, 1Q, ~ N(O,hu1 ), and for the fourth

segment, €, 1Q, ~ t( h .6 ) The seven alternative VaR models examined are the

t+1 t+1°

homoskedastic models of the standard normal, N(0,1%2) and the t(6) distribution; the historical

simulation model; and the calibrated models with normal innovations and the GARCH model
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with the other distributional form.

Table 4, Panel A presents the power analysis of the hypothesis-testing methods. The
power results are mainly driven by the differences between the distributional assumptions used . -
by the true DGP and the alternative models, Specifically, the tests have low power against the
calibrated normal models (models 5 and 6) since their smoothed variances are quite similar to the
true GARCH variances. However, the results for the GARCH-t(6) model (model 7) are much
better due to the t(6) assumption. Overall, the hypothesis-testing methods seem to have
substantially less power against VaR models characterized by close approximations of the true
variance dynamics and have better power against models with incorrect distributional

- assumptions. With respect to the other models, the LR tests generally have low power since they

~share the DGP’s unconditional variance.

iy

*-~ “similar; that is, this method has a low to moderate ability to distinguish between the true and =

‘alternative VaR models. For the heteroskedastic models, the more conservative GARCH-t(6)
model (model 7) obviously minimizes the loss functions due to the smaller number of
exceptions. For the calibrated normal models (models 5 and 6) and the historical model (model s
8), this method generally has a poor ability to correctly classify them. With respect to the
homoskedastic models (models 2 through 4), the degree of misclassification is low for the
standard normal (model 2), but much higher for the other two models that have the same
unconditional variance as the true DGP. Note, as previously mentioned, that the magnitude loss

function is relatively more able to correctly classify VaR estimates than the other loss functions.

D. Simulation results for the GARCH(1,1)-1(6) DGP
Table 5, Panel A presents the power analysis of the hypothesis-testing methods. The

power results are clearly tied to the presence of heteroskedasticity in the alternative VaR models.
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The homoskedastic models (models 2 through 4) are identified as “inaccurate” with very high
power since their VaR estimates cannot match the magnitude of the observed returns from the
true DGP. However, for the heteroskedastic models (models 5 through 7) and the historical
model (model 8), which are more capable of tracking the underlying variance, the power of the ...,
tests declines dramatically. |
For the loss function method, the results in Table 5, Panel B indicate that the VaR
estimates from the true and alternative models, except the historical model (model 8), can be
differentiated. For the homoskedastic alternatives (models 2 through 4), this ability is driven
mainly by the fact that constant VaR estimates cannot track the actual returns process well. The
heteroskedastic models (models 5 though 7) that can adjust over time do better, but can still be -
o - identified as inaccurate due to their misspecificed distributional assumptions. For the historical
* % e ~mode, the method’s-ability to distinguish it from the true DGP is diminished. Note again that, of .
¢ - 4 the three loss functions, the magnitude loss function is again most capable of differentiating

. between the models.

% IV. Implementation of the loss function method : v T
The simulation results presented above indicate that the loss function method is generally
capable of distinguishing between VaR estimates from the true DGP and alternative models.
Although this ability varies, the method can provide information useful for the regulatory
evaluation of VaR estimates, particularly when the magnitude loss function is used. This result
is not surprising given that it incorporates the additional information on the magnitude of the
exceptions into the evaluation. In this section, this evaluation method is made operational by

creating a benchmarking process and by illustrating its use in a detailed example.
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A. Creating a benchmark for the observed numerical scores

Under the current regulatory framework, regulators observe { €., VaR_.. | }lzf? for bank
m and thus can construct, under the magnitude loss function, C, = §§ Crii( 80 VAR }
However, for a realized value C,:, ,-aside from the number of exccptic;ls, not much inference on
the performance of the underlying VaR estimates is available; i.e., it is unknown whetherC,, is a
“high” or “low” number. Although comparisons could be made cross-sectionally across banks
(m = 1,...,M), a more reasonable method for creating a comparative benchmark is to focus on the
distribution of C,, which is a random variable due to the random observed portfolio returns.

Since each observation €. | Q ~ £, additional assumptions on the dependence of the

"observed returns and their digtributions must be imposed in order to analyze f ( C. ), the

- ~distribution of C . -

An immediate and commonly used assumption is that the observed returns are e
independent and identically distributed (iid); i.e., €., ~ f. This is quite 2 strong assumption,
" especially given the heteroskedasticity often found in financial time series.!! However, the small
sample size of 250 mandated by the MRA allows few other choices. Having made the
assumption that the observed returns are iid, their empirical distribution, denoted f( g, ), canbe
estimated using a variety of methods. For example, nonparametric methods, such as smoothed
kernel density estimators as per Silverman (1986) or unsmoothed bootstrap methods, could be
used. Generally, for issues of tractability, parametric methods are commonly used; i.e., a specific
distributional form is assumed, and the necessary parameters are estimated from the available
data. For example, if the returns are assumed to be normally distributed with zero mean, the
variance can be estimated such that f( ;) is N(0,6%).

A reasonable alternative to assuming independence is to impose some form of

' See Kearns and Pagan (1997) for a discussion of the consequences of ignoring the dependence in financial

data when drawing inference about the tails of the data’s distribution.
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dependence on the data. For example, if the returns are assumed to be driven by a GARCH
process, the necessary parameters could be estimated and used to specify the return distributions
f( €. 1 Q ) which depends on the information set at time t. However, the small sample size will
~  limit the usefulness of such parameter estimates. The calibrated models previously discussed .
present a reasonable alternative specification of the dependence in the data. The impact of
misspecified temporal dynamics on the construction of f( C. ) relative to that of the iid
assumption is not known; further research is necessary. In the example that follows, both types
of assumptions are used to examine reported VaR estimates.
Once f{e,,, Jor f{e,,, | 0, ) has been determined, the empirical distribution of the
numerical score C,, under the distributional assumptions, denoted I‘( C, ), can be generated since |
« the distribution of the observed returns and the corresponding VaR estimates are now available.
" For example, if € ,, ~ N( 0,62 ), then the corresponding VaR estimates are VaR; = -2.326. If
‘-~ the assumption is that €, ~ N(O,ﬁm), then VaR; = —2.32\/17E. Using this information,
' f(Cm) can then be constructed via simulation by forming say 1000 values of the numerical score
C,» €ach based on 250 draws from f’( £ ) and the corresponding VaR estimates. '
: Once f'( C,, ) has been generated, the empirical quantile §_ = IA:’(Cm), where F{( C,)is
the cumulative distribution function of ?(Cm ), can be calculated for the observed value C,..
This empirical quantile provides a performance benchmark, based on the distributional
assumptions, that can be incorporated into the regulatory evaluation of the underlying VaR
estimates. In order to make this benchmark operational, the regulator should select a threshold
quantile ?( C,, ) as the threshold above which concerns regarding the performance of the VaR
estimates are raised. This decision should be based both on the regulators’ preferences and the

severity of the distributional assumptions used. If §_ is below the threshold that regulators

2 Note that although a closed form solution for ?( Cm) should be available if a parametric assumption is made,

simulation methods will be used in this paper.
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believe is appropriate, say below 80%, then C,, is “typical” under the assumptions made on
?( €,,, ) and under the regulators’ preferences. If g, is above the threshold, tHen C, canbe
considered atypical given their preferences, and the regulators should take a closer look at the
underlying VaR model.

Note that this method for evaluating VaR estimates does not replace the hypothesis
testing methods, but instead, provides complementary information, especially regarding the
magnitude of the exceptions. In addition, the flexibility of this method permits many other
concerns to be incorporated into the analysis via the choice of the loss function, In the example
below, how this method might be employed in an actual case is illustrated, and it can be seen
that, in certain cases, the loss function method flags important information not captured in the

- standard binomial analysis.

= B. Detailed example

For this detailed example, the performance of three sets of VaR estimates is examined
using the three evaluation methods. As will be shown, inference on the accuracy of the VaR
estimates based on the loss function method matches that drawn from the hypothesis-testing : =y
methods. However, since it incorporates additional information on the magnitude of the
exceptions, the loss function method permits further inference of particular interest to regulators.

The underlying returns process is ¢, , | Q ~ t( hm,6) with h,, =0.075 + 0.108? +0.85h,.
VaR estimates are generated from three VaR models: the true G.ARCH-t(G) model; the historical
simulation model based on a rolling window of the 500 previous observations; and the calibrated
normal model with A = 0.94. The models are henceforth denoted as the true, historical and
calibrated models, respectively. The 1250 generated observations are analyzed over the five,

contiguous but non-overlapping periods of 250 observations. The five periods of simulated data

and the corresponding VaR estimates are plotted in figures 2 through 6.
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Table 6 contains the evaluation results for the two hypothesis-testing methods. Panel A
reports the number of exceptions in each of the five periods for the three sets of VaR estimates,

and Panels B and C report the LR, and LR _ statistics, respectively. The occasions for which the

- null hypothesis of correct-unconditional or conditional coverage, respectively, are rejected at the 5

8

5% significance level are noted. For the true model, both tests do not reject the null hypothesis -

that the VaR estimates exhibit the specified properties, and the S;,l, multiplier would remain at

three. For the historical model, the number of exceptions is particularly large in the second and

third periods, and the corresponding test statistics reject the null hypotheses. In these periods, S,
increases to its maximum value of four. However, for the other time periods, this VaR model is
“acceptably accurate”, even though the hypothesis tests indicate a problem in the fifth period

when no exceptions occurred. For the calibrated model, the null hypotheses are rejected in oniy ,
‘one case, and S, is above three in all but one period. L e

Table 7, Panel A contains the numerical scores under the magnitude loss function. As - -

~ mentioned, these scores alone do not provide much usefut inference for evaluating the VaR

estimates. However, by making assumptions on the distribution of the observed returns, an
approximate distribution of the numerical scores can be created and used to provide a benchmark-as
for evaluation. Once the needed distributional assumptions are in place, f(C m ) can be generated
via simulation,

Since, in this example, the true DGP is known, the actual f (Cm ) can be generated. Table
7, Panel B reports the empirical quantiles q_ under f( C, ) Three results are immediately clear.
First, the inference drawn from the loss function method generally matches that of the two
hypothesis-testing methods; i.e., the q,;s are generally low (below the threshold 80%), except in
a few distinct cases. Second, the q,f,s for the historical model in the second and third periods are
high (above 80%) due to the large number of exceptions. Third, the q,:ls for all of the models are

high in the fourth period, even though the number of exceptions is low. Recall that the two
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hypothesis-testing methods indicated that these three sets of VaR estimates were “acceptably
accurate”.
The reason for the relatively high scores and q,:,s in the fourth period can be seen in
Figure 5. Observation number 217 is a particularly large negative number; in terms of relative -
magnitudes, it exceeds the VaR estimates by about 120% for the true model, 50% for the _
historical mode! and 144% for the calibrated model. This result clearly indicates the advantages
of the loss function evaluation, By incorporating additional information relevant to the regulator
into the evaluation, this method can alert the regulator when an extraordinary event, not
detectable by the hypothesis-testing methods, has occurred.
In an actual implementation of the loss function evaluation method, the true DGP is not
- known. Hence, Panels C and D of Table 7 contain the q,;s under two different ?(Cm ) In Panel
S f( Cn; } is formed under the assumption that e, ~ N(0,62), InPanel D, f(c, | Q) 1s formed » .. =
“under the assumption that g, ~ N (O,ﬁt+I ) where ﬁm follows an exponentially- weighted
- moving average of squared observed returns with a calibration parameter of 0.94."* The
empirical quantiles under these two assumed distributions are higher than those under the true
% DGP, which induces a form of Type I error; that is, under these assumed distributions and fora s
fixed threshold quantile, the observed Cn:fs will indicate more instances of possibly large
exceptions than are called for under the true DGP. The reason for this upward bias is that under

these distributional assumptions on €,,,, the expected value of C_,, conditional on an exception

having occurred will be lower than under the true DGP. M Thus, when the C,;/s are compared to

" Note that, in forming the h,,, series for each simulation run, an initial value b, must be chosen, The results

presented in Table 7, Panel D are based on setting ﬁ, equal to the estimated variance of the simulated sample. An
alternative specification in which h, = ¢,® generates qualitatively similar results.

" Note that this upward bias in the q|:1sis brought about by distributional assumptions that generate returns

that, conditional on being exceptions, are not as negative as those actually observed. If the distributional
assumptions were to generate returns that were generally more negative than actually observed, the bias would go in
the opposite direction and cause a form of Type II error; i.e., not indicate concerns when they truly may be present.
Although such distributional assumptions could be made, the general concern is that observed returns are being
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f(C, ) and }(C,, | Q), they will generally be in a higher quantile than under f(C,, ), as implied
by the true DGP.

Although this upward bias is present in the q,:,s, useful inference can still be drawn. If
the threshold quantile remains at 80%, the previously noted instances are also found to indicate
concern under the two assumed distributions.'® In addition, four new instances arise: the
calibrated model in the first, second and fifth periods as well as the true model in the fifth period.

For the calibrated model in the first period depicted in Figure 2, the observed exceptions
range from about 9% to 27% more than their stated VaR estimates, which are relatively low
compared to the magnitudes cited by Hendricks (1996). Thus, the “high” q,:,s for these VaR

estimates under the two assumed distributions is based more on the number of exceptions than

their:magnitude. In this case, inference based on the loss function method provides additional

™ 7 detail, but-does'not change our overali evaluation of the VaR estimates. In the second period, the &

“number of exceptions is still within the yellow zone, but the loss function method highlights that
™ their magnitude, which range from 5% to 45% beyond the observed return, may be a concern.
For the fifth period, the number of exceptions are again acceptable at two, zero and five
*  for the true, historical and calibrated models, respectively. Although the loss function method. e
cannot provide additional information on the historical model due to the lack of exceptions {an
acceptable outcome under this regulatory loss function), the qnis for the other two models are
between 80% and 90%. The reason for these high q,,’,s is that the exceptions in both cases are
relatively large. The true model’s two exceptions are both over 50%, and the calibrated model’s

five exceptions range from 1% to 50%. Thus, even though both models are “acceptably

generated from DGP’s with fatter, not thinner, tails than empirically observed,
13 Note that an alternative way to conduct this type of evaluation is to recognize the upward bias imparted by
the assumptions and use a higher threshold quantile, say 90%. This route is complicated by the fact that the proper
alternative threshold is not readily apparent. It is simpler to set the threshold quantile quite high at 80% and examine
the additional cases with care.
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accurate” under the MRA guidelines, the loss function method based on these distributional

assumptions provides useful, if biased, information on the performance of the VaR estimates.

V. Conclusion
As implemented in t.he U.S., the market risk amendment to the Basle Capital Accord
requires that commercial banks with significant trading activity provide their regulators with VaR
estimates from their own internal models. The VaR estimates will be used to determine the
banks’ market risk capital requirements. This development clearly indicates the importance of
evaluating the accuracy of VaR estimates from a regulatory perspective. In this paper, three
methods for evaluating VaR estimates are discussed.
The binomial and interval forecast methods are based on a hypothesis-testing framework
"""'and are used 1o test the null hypothesis that the reported VaR estimates are “acceptably accurate”, .
- where accuracy is defined by the test conducted. As shown in the simulation exercise, the power.
of these tests can be low against reasonable alternative VaR models. This result does not negate
their usefulness, but it does indicate that the inference drawn from this analysis should be
questioned.
The loss function method is based on assigning numerical scores to the performance of
the VaR estimates under a loss function that reflects the concerns of the regulators. As shown in
the simulation exercise, this loss function method can distinguish between VaR estimates from
the actual and alternative VaR models. Furthermore, it allows the evaluation to be failored to
specific interests that regulators may have, such as the magnitude of the observed exceptions.
Although when implemented, this evaluation method introduces certain biases due to the
necessary distributional assumptions, the analytical results provide useful information on the
performance of the VaR estimates. Since these three methods provide complcmentary

information, they could all be useful in the reguiatory evaluation of VaR estimates.
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Figure 1.
GARCH(1,1)-Normal Process with One-Step-Ahead,
Lower 5% Conditional and Unconditional Confidence Intervals

0 100 200 300 400 500

This figure graphs a realization of 500 observations from a GARCH(1,1)-normal process
along with two sets of lower 5% confidence intervals. The variance dynamics are characterized
ash, =0075 + 0. 108 + 0.85h,, which implies an unconditional variance of 1.5. The
straight line is the uncondltlonal lower 5% confidence interval based on the unconditional
N(0,1%%) distribution, and the jagged line is the conditional, lower 5% confidence intervals based
on the true data-generating process. Although both exhibit correct unconditional coverage (i.e.,

a’=0.05), only the conditional confidence intervals exhibit correct conditional coverage.
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Figure 2,
Simulated Series for the Illustration:
First Period of 250 Observations

50 100 150 200 250

50 100 150 200 250

The solid line bordering the horizontal zero-axis in each panel represents the observed
negative returns. The dotted line in each panel represents the corresponding VaR estimates from
each of the three models; i.e., the true model, the historical simulation model and the calibrated

model, respectively. The points at which the solid line crosses the dotted line are the exceptions
in the sample. -
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Figure 3.
Simulated Series for the INustration:
Second Period of 250 Observations

50 100 150 200 250

The solid line bordering the horizontal zero-axis in each panel represents the observed
negative returns. The dotted line in each panel represents the corresponding VaR estimates from
each of the three models; i.e., the true model, the historical simulation model and the calibrated

model, respectively. The points at which the solid line crosses the dotted line are the exceptions
in the sample. '
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Figure 4.
Simulated Series for the Ilustration:
Third Period of 250 Observations

The solid line bordering the horizontal zero-axis in each panel represents the observed
negative returns. The dotted line in each panel represents the corresponding VaR estimates from
each of the three models; i.e., the true model, the historical simulation model and the calibrated

model, respectively. The points at which the solid line crosses the dotted line are the exceptions
in the sample. ‘
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Figure 5.
Simulated Series for the INustration:
Fourth Period of 250 Observations

Y i 4

The solid line bordering the horizontal zero-axis in each panel represents the observed
negative returns. The dotted line in each panel represents the corresponding VaR estimates from
each of the three models; i.e., the true model, the historical simulation model and the calibrated
model, respectively. The points at which the solid line crosses the dotted line are the exceptions
in the sample. '
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Figure 6.
Simulated Series for the Ilustration:
Fifth Period of 250 Observations

50 100 150 200 250

The solid line bordering the horizontal zero-axis in each panel represents the observed
negative returns. The dotted line in each panel represents the corresponding VaR estimates from
each of the three models; i.e., the true model, the historical simulation model and the calibrated
model, respectively. The points at which the solid line crosses the dotted line are the exceptions
in the sample. '
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Table 1. Finite-Sample Critical Values for the LR and LR, Statistics
Signifi Level
1% 3% 10%

Panel A Critical Values for the LR Statisti

Asymptotic ¥*(1) 6.635 3.842 2.706
Finite-Sample 5.497 - 5.025 3.555
(0.5%) (9.5%) (12.2%)

Lanel B. Crirical Values for the LR, Statistic

Asymptotic ¥*(2) 9.210 5.992 4.605
Finite-Sample 6.007 5.005 5.005
(0.2%) (1.1%) (11.8%)

The finite-sample critical values for the LR, and LR, test statistics for the lower one percent quantile (a=1)
are based on 10,000 simulations of sample size T = 250. The percentages in parentheses are the quantiles that
correspond to the asymptotic critical values under the finite-sample distribution.
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Table 2. Simulation Results for Homoskedastic Standard Normal DGP (Units: percent)

Models
- Homoskedastjc Heteroskedastic Historical

2 3 4 2 6 i 8
Panel A. Power of the LR, and LR Tests Against Alternative VaR Models*
LR,. 97.2 304 29.7 54.9 4.3 4.5 40.2
IR, 97.8 329 30.5 60.1 5.4 5.7 434

Panel B. Accuracy of VaR Estimates Using Regulatory Loss Functions®

Loss function
Binomial 100 94.4 0.0 0.0 55.3 55.4 28.3
Zone 99.6 66.8 0.0 0.0 17.9 18.2 6.7 ’
Magnitude 100 99.7 0.0 0.0 76.1 764 538
" The size of the tests is set at 5% using the finite-sample critical values in Table 1. -

'" Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical
* score than the “true” model; i.e., the percentage of the simulations for which the alternative VaR estimates are
correctly classified as inaccurate.

The results are based on 1000 simulations. Model 1 is the true data generating process, ¢,,, ~ N(0,1). Models 2
through 5 are homoskedastic normal distributions with variances of ¥4, %, 1% and 1'%, respectively, Models 6 and 7
are normal distributions whose variances are exponentially weighted averages of the squared innovations calibrated
using A = 0.94 and A = 0.99, respectively. Model 8 is the historical simulation model based on the previous 500
observations,
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Table 3. Simulation Results for Homoskedastic t(6) DGP (Units: percent)

Models
Homoskedastic  Heteroskedastic Historical
2 3 4 S [} 1 8

Panel A. Power of the LR,_and LR, Against Alternative VaR Models®

LR, 59.1 10.8 15.3 14.6 20.3 19.9 7.9

LR, 61.5 11.2 17.4 19.9 304 305 124

Panel B. Accuracy of VaR Models Using Regulatory Loss Functions®

Loss function

Binomial 99.2 69.8 85.5 85.5 5.1 5.0 26.3

Zone 85.0 27.1 475 473 0.2 0.1 54

Magnitude 99.9 974 - 973 97.2 10.7 10.3 51.0

* The size of the tests is set at 5% using the finite-sample critical values in Table 1. - i

‘* Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical -
* score than the “true” model; i.e., the percentage of the simulations for which the alternative VaR estimates are
correctly classified as inaccurate,

The results are based on 1000 simulations. Model 1 is the true data generating process, £,, ~ t(6). Modeis 2 and 3
are the homoskedastic models with normal distributions of variance of 1 and 1.5, respectively. Models 4 and 5 are
the calibrated heteroskedastic models with the normal distribution, and models 6 and 7 are the calibrated
heteroskedastic models with the «(6) distribution, Model 8 is the historical simulation model based on the previous
500 observations.
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Table 4. Simulation Results for GARCH(1,1)-Normal DGP (Units: percent)

Model]s

2 3 4 3 5} i 8
Panel A. Power of the LR o and LR Against Alternative VaR Models®
LR, 52.3 214 30.5 5.1 10.3 81.7 232
LR, 56.3 254 38.4 6.7 11.9 91.6 33.1

Panel B. Accuracy of VaR Estimates Using Regulatory Loss Functions®

Loss function

Binomial 91.7 413 18.1 522 48.9 0 38.0
Zone 72.1 21.0 8.1 15.2 18.4 0 17.7
Magnitude  96.5 56.1 29.1 75.3 69.4 0 51.5

* The size of the tests is set at 5% using the finite-sample critical values in Table 1.

i* Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical
score than the “true” model; i.e., the percentage of the simulations for which the alternative VaR estimates are
correctly classified as inaccurate.

The results are based on 1000 simulations. Model 1 is the true data generating process, £, 1Q, ~ N(0,h,,, }

Models 2, 3 and 4 are the homoskedastic models N(0, 1), N(0,1.5) and 1(6), respectively. Models 5 and 6 are the
two calibrated heteroskedastic models with the normal distribution, and model 7 is a GARCH(1 1)-t(6) model with
the same parameter values as Model 1. Model 8 is the historical simulation model based on the previous 500
observations.
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Table 5. Simulation Results for GARCH(1,1)-t(6) DGP (Units: percent)

Models
H kedasti H kedasti Historical
2 3 4 2 [} 1 8

Panel A. Power of the LR, and LR . Against Alternative VaR Models®

LR,. 099.8 97.5 944 17.9 347 59.1 47.3

LR, 99.9 97.7 95.6 237 35.6 61.5 54.8

. Panel B. Accuracy of VaR Estimates Using Regulatory Loss Functions®

Binomial 99.9 99.9 99.8 82.6 66.9 99.2 42.4
Zone 999 990 97.1 47.2 42.7 85.0 29.9
Magnitude  99.9 99.9 99.9 94.8 78.0 99.9 53.7

* The size of the tests is set at 5% using the finite-sample critical values in Table 1.

® Bach row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical
score than the “true” model, i.e., the percentage of the simulations for which the alternative VaR estimates are
correctly classified as inaccurate.

The results are based on 1000 simulations. Model 1 is the true data generating process, g, 18, ~ t(h,,6 )
Models 2, 3 and 4 are the homoskedastic models N(0,1), N(0,1.5) and t(6), respectively. Models 5 and 6 are the two
calibrated heteroskedastic models with the normal distribution, and model 7 is a GARCH(1,1)-normal model with
the same parameter values as Model 1. Model 8 is the historical simulation model based on the previous 500
observations.
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Table 6. Hypothesis-Testing Results for the Detailed Example

Mode]

Panel A, Number of Exceptions

First period 1 2 S
Second period 3 11 6
Third period 1. 14 3
Fourth period 1 1 6
Fifth period 2 0 5
Panel B. LR Statistics
First period 1.1765 0.1084 1.9568
Second period 0.0949 15.8906" 3.5554
Third period 1.1765 25.7803° 0.0949
Fourth period 1.1765 1.1765 3.5554
Fifth period 0.1084 5.0252° 1.9568
Panel C. LR Statistics
First period 1.1846 0.1408 2.1617
- Second period 0.1681 16.9078" 3.8517
Third period 1.1846 30.1907 5.5202"
Fourth period 1.1846 1.1846 3.8517
Fifth period 0.1408 5.0252" 2.1617

The time periods are based on a division of the entire simulation run of 1250 observations into five, contiguous but
non-overlapping periods of 250 observations. The true model is ¢, |Q, ~ t(h,,,.6) with

h_, =0.075 +0.10£,2 +0.85h,. The historical simulation model is based on the 500 previous observations. The
calibrated mode! uses the calibrated variance parameter of A = 0.94 and the normal distribution.

The asterisk indicates that the null hypothesis is rejected at the 5% significance level using the finite-sample critical
values presented in Table 1.
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Table 7. Magnitude Loss Function Results for the Detailed Example

Model
Panel A. Numerical Scores
First period 1.1287 2.0803 7.1048
Second period 3.8180 - 58.3150 15.8955
Third period 1.4854 507.5814 24,7188
Fourth period 200.1094 - 71.4351 243.8740
Fifth period 15.6136 0.0 16.9524

Panel B. Empirical Quantiles under the True DGP (Units: Percent)

First period 13.7 22.0 54.1
Second period 3L0 89.6 64.6
Third period 11.3 86.9 37.6
Fourth period 95.9 86.1 97.0
Fifth period 53.8 0.0 56.1

Panel C. Empirical Quantiles under the Normal Distribution (Units: Percent)

First period 17.4 29.0 88.6
Second period 44.0 100.0 91.7
Third period 10.5 99.8 46.5
“Fourth period 100.0 99.8 100.0
Fifth period 82.7 0.0 84.3

Panel D. Empirical Quantiles under the Calibrated Normal Distribution (Units: Percent)

First period 20.5 33.1 90.1
Second period 529 99.6 93.4
Third period 13.6 99.3 62.2
Fourth period 99.9 98.8 99.9
Fifth period 86.7 0.0 88.5

The time periods are based on a division of the entire simulation run of 1250 observations intg five non-overlapping
periods of 250 observations. The true model is €,,, 1Q, ~ t( h,,,6) with h, =0.075+0.10¢; +0.85h,. The
historical simulation model is based on the 500 previous observations. The calibrated mode! uses the calibrated

variance parameter of A = 0.94. Empirical quantiles over the selected threshold of 80% are in bold,
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