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ABSTRACT

Prepayment plays a critical role in the performance of mortgage-backed securities. For
this reason, market participants have devoted substantial resources to developing formal
mathematical models of mortgage prepayment. Despite their considerable efforts, however,
the forecasting effectiveness of these propriety models has been unreliable. This paper in-
vestigates the structure of the prepayment function. We demonstrate that the prepayment
function is nonlinear and heteroskedastic. In particular, we find that prepayments are
increasingly more volatile at higher interest rate spreads. Our analysis suggests that these
unusual properties of pool prepayments are inherently caused by statistical aggregation.

JEL Classification: G13
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1. INTRODUCTION-

The U.S. mortgage market is one the largest debt market in the world. As of the
end of 1996, banks and other financial institutions owned $3.7 trillion of home mortgage
debt. The rapid growth of the mortgage market has been driven by mortgage securitiza-
tion. Today, almost half of the debt is securitized and resold as mortgage-backed securities
(MBS) by governmental, quasi-governmental institutions and private mortgage origina-
tors. Mortgage securitization has greatly enhanced liquidity in the mortgage market. The
mortgage market has also benefitted from an expanding secondary market facilitated by
the increased participation of loan brokers and private insurance mortgage companies.
These entities provide a wide variety of services that allow mortgage originators and other
investors to trade large portfolios of conforming or nonconforming loans in the secondary
market (whole loan market).

In many respects, a mortgage security is similar to an ordinary bond. Like bonds,
mortgage securities promise investors a stream of payments over a number of periods.
Mortgage passthroughs, however, are different from a typical government bond because
the promised cash payments depend on prepayment. Mortgage borrowers in United States
are given the right to prepay part or all of the principal without penalty. This embedded
option can change drastically the expected cash flows from a mortgage security. The

adverse effect of prepayment is particularly exaggerated in more exotic mortgage-backed
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derivative products such as collaterized mortgage obligations (CMOs) and stripped MBSs.
The perils of mortgage prepayment are exemplified by the experience of MBS in-
vestors in the early 1990s. Because of the unusually low interest rates during 1992-93,
conventional mortgage passthroughs and other MBS derivatives were attractively priced
over comparable Treasurjf securities. Investors needing higher yields to purnp up their
portfolio return were enti'céd to take large positions in MBSs. The Federal Reserve’s deci-
sion to raise interest rates in February 1994, however, sparked an unprecedented collapse
in prepayments. Market participants failed to anticipate this sudden slowdown in refi-
nancings, and as a result most MBS holders suffered substantial losses. In some instances,
the results were catastrophic. Orange County was forced into bankruptey in December
1994 after its municipal investment fund lost close to $1.7 billion. This huge loss stemmed
primarily from unhedged MBS positions and bad bets on the direction of interests rates
(see Jorion (1995)). The losses were even more devastating in the bankruptey of Askin
Capital Management, a group of hedge funds that was exposed to a $2.5 billion leveraged
position of CMOs. The damage, however, was not just confined to speculative hedge fund
investors. PaineWebber Group, a venerable financial firm, had to inject $33 million of its
own capital into its government hond funds to compensate shareholders for MBS losses.
The valuation of mortgage securities is a rather complex process that requires a fairly
high level of financial sophistication. Mortgage market participants use option adjusted
spread (OAS) models to value MBSs. Most investors do not build their own pricing models,
but rely instead on dealers and other independent sources.to obtain reliable price quotes.
OAS analysis is not an exact process because it is based on subjective assumptions about
implied forward rates and interest rate volatility. Moreover, the accuracy of OAS prices
depends on the efficacy of prepayment projections. Thus, when investors buy an MBS,
they also buy a unique set of assumptions. As the 1994 experience suggests, however, these

assumptions can fail badly.



The inability of forecasters to anticipate the magnitude of the shift in mortgage pre-
payments is somewhat puzzling given that they experienced similar refinancing episodes in
1986-87 and 1992-93. Some have argued that the propensity to prepay has changed over
time. The changing intensity of the prepayment cycles has been attributed to the evolving
character of the mortgage market over the last two decades. Bennett et al. (1997) find
that 12 percent of the borrowers in the 1990s prepaid their loan after 5 years. In contrast,
they estimate that, under similar economic conditions, the prepayment rate in the 1980s
would have only been around 7 percent. A study by Lekkas (1994) provides further support
to the changing nature of refinancings. The author reports that the 1986-87 experience
was dominated by high-rate borrowers who reduced their monthly payments by refinanc-
ing into lower-interest loans. By contrast, during 1992-93 borrowers elected to shift into

shorter-maturity mortgages.

Although borrowers appear to be more responsive to interest rate movements in the
1990s, we fail to see how this moderate change in refinancing habits would have generated
so much uncertainty in mortgage prepayments. Why are MBSs prepayment speeds so
erratic and unpredictable? In investigating this question, this paper takes a somewhat
unorthodox approach. Most studies in the literature have analyzed prepayment speeds
at the aggregate (pool) level. We focus instead on the microstructure of the mortgage-
backed bond. The prepayment experience of an MBS is simply the sum of all individual
prepayment decisions in the pool. We will argue that this process of aggregation makes

the prepayment function inherently unstable.

In Section 2, we briefly describe the instability of mortgage-backed prepayment rates.
Section 3 introduces a simple statistical model for individual prepayments. In Section 4,
we utilize this specification to establish the effects of aggregation. Section 5 summarizes

the model and draws some implications on the pricing of mortgage securities.

3



Figure 1. Prepayment Experience of FNMA 6s—12s 30-Year Passthroughs, 1982—94
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2. BACKGROUND

To illustrate the instability of MBS prepayment rates, we present a simple scatter dia-
gram of prepayment speeds and the relative interest rate differential between the weighted
average coupon (WAC) and the prevailing mortgage rate (Figure 1). The PSA prepayment
rates describe the experience of 30-year conventional Federal National Mortgage Associ-
ation (FNMA) passthroughs with coupon rates ranging between 7 and 12 percent.! The
solid curve in the scatter plot represents an in-sample forecast of prepayment rates.? It
1s clear from the S-Shape configuration of the in-sample prediction that prepayments are
nonlinear. | Homeowners are reluctant to refinance when spreads are negative because their
mortgage option i1s out of the money. In this negative range, we observe small residual
prepayments, resulting mostly from life events or other idiosyncratic factors.

Prepayment rates begin to accelerate once interest rate spreads widen. The rising
incentive to prepay at higher coupon spreads is best seen in the steepening slope of the
in-sample forecast. At the same time, however, observe that prepayments become more
heteroskedastic. That is, the residuals are more dispersed at higher interest rate spreads.
When the spread is equal to zero, FNMA prepayment rates range from 100 PSA to 300
PSA. By contrast, prepayments are more dispersed at a 200 basis points spread, ranging

from 200 PSA to 900 PSA. This large disparity in prepayment rates is also found in

! The Public Securities Administration (PSA) convention assumes that pool prepay-
ments rise 0.02 percent per month for the first 30 months of the life of the pool, and then

remain constant at 6 percent from the thirtieth month until maturity.
2 'We use a simple polynomial regression model to compute prepayment forecasts. This

nonlinear specification is based solely on the coupon spread. Our objective here is to
simply illustrate the nonlinear nature of prepayments. In a later section, however, we
will demonstrate that the polynomial specification is an excellent approximation of the

prepayment function.



individual FNMA coupon cohorts (for instance, 9 percent FNMA passthroughs) and is
even observed in single pools. The presence of heteroskedasticity cannot be therefore
attributed to the fact that the scatter plot portrays the prepayment experience of wide
class of FNMA securities. Figure 1 also highlights the hazards of investing in MBSs. A
relatively small change in interest rates could produce a huge shift in prepayments and
generate a significant drop in the price of the security.

Why is the relationship between prepayment rates and coupon spreads heteroskedas-
tic? The conventional view among practitioners relates this characteristic to “path depen-
dency.” By construction, an MBS pool is made up of a number of mortgages. When a
mortgage is prepaid, the servicer returns the principal to investors and subsequent cash
flows of the.security are paid out of the remaining mortgages in the pool. Conceptually,
prepayment is equivalent to a process of sampling without replacement. This process in-
troduces path dependency because it changes the composition of the pool. Consider, for
example, a new mortgage pool that experiences two consecutive interest rate cycles. In the
first episode, rate-sensitive homeowners will rush to take advantage of favorable interest
rates exiting the pool, pushing prepayments higher. As mortgage rates decline for the sec-
ond time around, however, prepayment speeds will be slower because the pool now consists
of constrained mortgagors who are unable to take advantage of the favorable interest rate
environment.

In this paper we offer a somewhat different interpretation to the heteroskedastic traits
of prepayment. We will argue that the unusual dispersion in prepayments is not necessarily
caused by path dependency. Rather, we will show that this phenomenon is simply a
statistical artifact of aggregation. In fact, we will demonstrate that pool-level prepayment
rates continue to be heteroskedastic, even though a prepaying mortgage holder is replaced
in the pool by an exactly identical individual. To be sure, “burnout” is important. But its

role is more critical in shaping the average propensity to prepay, which accounts for the
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nonlinear S-shape of the prepayment function.
2.1 The Role of Prepayments in Pricing MBSs

To price a passthrough security, investors must determine the present value of the
expected cash-flows. This task is nontrivial because the cash flows of an MBS are altered
by prepayments. In addition, the va.lﬁa,tion procedure requires a number of arbitrary as-
sumptions about the dynamic structure of interest rates. Since a mortgage passthrough
is similar to a callable bond, several studies have advocated an option-pricing methodol-
ogy. Rational prepayment models assume that prices and prepayments are endogenously
determined by interest rates (Dunn and McConnell (1981) and Stanton (1997)). One im-
plication of this methodology is that borrowers are expected to exercise their option in
a homogeneous manner. We know, however, that homeowners often exercise their option
in an “irrational” manner. That is, they prepay, although they appear to be out of the
money; or fail to take advantage of favorable interest rate differentials.

Typically, mortgage market participants have employed empirical OAS methods to
price MBSs. In OAS analysis, prepayments and prices are determined separately. In the
first stage, an econometric model is used to derive prepayment forecasts. Subsequently,
these prepayment projections are used to determine the cash flows and value of the security.
Firms construct econometric models of prepayment for a wide variety of MBS cohorts.?
A typical prepayment models would control for a number of factors: the interest-rate
incentive to refinance, the age of the security (seasoning), seasonal variation in prepayment

rates, and burnout.?

3 Usually, prepayments forecasts are grouped according to issuer (GNMA, FNMA, and
FHLMC), maturity (30-year, 20-year, 10-year, and 7-year), and type of loan (single family,

balloon, mobile homes, etc).
4 Most firm models are propriety in nature. Richard and Roll (1988) provide an overview

of the Goldman Sachs Model. For a more extensive discussion of prepayment models, see
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3. A STATISTICAL MODEL FOR INDIVIDUAL PREPAYMENTS
3.1 Mortgage Mathematics

A traditional mortgage loan is an amortized contract that requires borrowers to pay
interest and repay the principal in equal installments. At the same time, the mortgagor is
given the right to prepay part or all of the principal before maturity without penalty. Like
any contract with standardized payment streams, a mortgage loan obeys a well-developed
mathematical framework (for more details, seec Hayre and Mohebbi (1992)). Assume that
the i-th homeowner takes out a conventional fixed-rate mortgage loan mortgage loan in
month (¢ = 0). The mortgage rate is r; and the loan is amortized over T periods (typically,
T equals 360 months). Let By; represent the remaining balance on the loan in month t
(thus, By; is the original balance). The remaining balance B; includes all partial (unsched-
uled) payments. When By; reaches zero, the loans is assumed to have been fully repaid in

month t. In the absence of any prepayment, the remaining balance of a mortgage is given

by

_ (l-l-?",')T—(l—?",')t
By; = By,
i O (1+T£)T—1

—_ Bo,ﬁa’ﬁ. (1)

The term ay; is known as the amortization factor. It follows that the proportion of the

scheduled loan balance outstanding in any month is defined by

By;
;= =, 2
qt! Bn‘ ( )

Clearly, a mortgage loan that does not experience any curtailments will always have Gt
equal to 100 percent. The variable gy is useful for defining the standard measures of
prepayment. The fraction of the outstanding loan balance that is prepaid each month is
simply given by

Pri = — (3)

also Fabozzi (1992), Spahr and Sunderman (1994), and Schwartz and Torous (1989).
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In a monthly context, p:; is known as the single monthly mortality rate (SMM), represent-
ing the proportion of the outstanding balance of mortgage i prepaid in month t. Typically,
SMM or its annualized version conditional prepayment rate (CPR) are used to measure
pool-level prepayments. However, these prepayment measures are also pertinent for a

single mortgage, although at this micro level prepayment rates are not continuous.
3.2 A Simple Econometric Model for Mortgage Prepayment

Mortgage prepayments can occur because of three basic reasons: (1) refinancings, (2)
property sale, and (3) default. Refinancings represent prepayment by nonmover occupants.
The rational prepayment literature stipulates a mortgagor would refinance if the intrinsic
value of the loan, defined as the immediate benefit from reﬁnanéing measured in present
value terms, is greater than the benefit from waiting to refinance in a subsequent period (the
“time value” of the option plus transaction costs). The decision to terminate a mortgage
by moving or defaulting also depends on the moneyness of the mortgage option. However,
these choices are further influenced by personal characteristics (income, education) and
other idiosyncratic events (job loss, death, divorce).

Several recent papers have taken a more direct approach to modeling the cross sec-
tional heterogeneity in prepayment behavior. In these studies, the rational prepayment
model is replaced by an empirical specification (see Cunningham and Capone (1990),
Caplin et al. (1996), and Peristiani et al. (1997)). Using loan-level data on mortgage
terminations, these empirical studies find strong evidence that prepayments are driven by
two particular factors: post-origination home equity and homeowner creditworthiness.

The empirical methodology is also useful for defining a general stochastic model for

individual prepayments. The decision to prepay can be simply expressed as

P = Poi + zePri + €u, | (4.1)
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where

pri = 100 if Pt > 100; (4.2)
Pt = Py; if 0 < p}; < 100; (4.3)
pti =0 tf otherwise. (4.4)

As before, the variable py; represents a broad measure of actual prepayment (e.g., the SMM
rate or the annualized conditional prepayment rate). For simplicity, we assume that py; is
bounded above by 100 percent (full prepayment) and below by zero (no prepayment).® The
variable py; represents the unobservable notional desire to prepay. In contrast to actual
prepayment, the notional desire is a continuous variable that can be negative or exceed
100 percent. If the notional desire to prepay is positive but less than 100 percent, the
homeowner will partially prepay the loan.$

The willingness to prepay is influenced by a systematic factor z,, representing market
conditions. To make our analysis more intuitive, however, we let z; be a scalar meaéure
representing the spread between the coupon rate and the prevailing effective market in-
terest rate. The parameters f1; and Bp; capture homeowner or loan characteristics. On

average, credit- or collateral-constrained borrowers are expected to have small positive

2
5 For PSA prepayments, the appropriate bound is [l%o—mam{l, ﬁ}]

6 The contribution of partial prepayments (or curtailments) to overall prepayment is
generally quite small. For fixed-rate mortgages, partial prepayments contribute, on aver-
age, around 0.2 percent to conditional prepayment rates. As with partial prepayments,
dgfaults make up a small portion of total prepayment. Usually, the homeowner default
rate on fixed-rate mortgages is less than 0.5 percent per year. Since most passthroughs are
insured against credit risk, we do not consider this option in the censored regression model.
However, one can explicitly include this outcome by using a more generalized version of

the Tobit model.



slope coefficients §8); because they are less sensitive to economic conditions.”

The term ¢;; denotes the random error, which accounts for all unexplained variation
in the decision to prepay. The errors are independent (e, ere; = 0 for all ¢ # j)
and identically distributed normal variables with mean zero and variance o2. Together
equations (4.1)-(4.4) deﬁne_ a two-limit censored regression model (Maddala (1983)). In
contrast to the ordinary regression model, the distribution of monthly prepayment in the
two-limit Tobit model is determined by a mixture of censored (unobserved) and continuous

(observed) variables. The probabilities of the three distinct outcomes of prepayment are

given by
P(i — th homeowner prepays fully) =1 — ®(\%), (5.1)
P(i—th homeowner partially prepays) = ®(A}) — ®(—Ay;), (5.2)
P(i — th homeowner does not prepay) =1 — &(}\), (5.3)

where Ay = Mamt@ and AY; = % — Ati. The function ®()) is the standard normal
cumulative distribution integrated between A and co. By definition, all three probabilities
defined by (5.1)-(5.3) sum to one.

In the censored regression model, the likelihood of prepayment is still determined by
the homeowner’s characteristics and interest rate conditions. However, the censored nature

of individual prepayments complicates the error structure. We can show that

p(Ae) — o(Ah)
E(ey) = 0—

) = 73 08) — 200

100p(= %)
(M) — B(Au)

= ah(Boi, Bri, 1) = ch(Au), (6.1)

] = Uzv(ﬁﬁi;ﬁlia $t) = Uzv(/\ti). (62)

Var(ey) = o[l — (X)) +

T Caplin et al. (1997) and Peristiani et al. (1997) find evidence that strongly supports
this premise. Using a large sample of homeowners, these studies estimate a qualitative
model for the decision to refinance. Their empirical findings suggest that credit quality

and collateral value have a significant effect on the probability of refinancing.
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The error in the mortgage prepayment model has therefore a nonzero mean and its variance
is heteroskedastic (that is, Viar(e;) is a function of z;). The significance of these statistical
properties of individual prepayments would become more apparent in the next section.
Nonetheless, it is not difficult to understand why these unique characteristics of individual
prepayments are extremély important. An MBS comprises a finite number of borrowers.
If each borrower’s decision function is biased and heteroskedastic, then these properties

would also transfer to the MBS prepayment function.
4. THE MBS PREPAYMENT FUNCTION

Consider a typical ﬁlortgage passthrough security consisting of a number of conven-
tional mortgage loans. At origination (¢ = 0), the mortgage pool contains ny fixed-rate
mortgages with maturity T. Because of prepayment, after the MBS is issued the initial
number of mortgages in the pool may decline, (that is, ny4¢ < ny < ng). The over-
all size of the pool at origination equals By. Each loan in the pool contributes By;,
such that By = Y., Boi. Initially, the weighted average coupon (WAC) of the MBS is
Fo = Y io woiri, and the weighted average maturity (WAM) is T months. The scaling
factor wy; represents the relative weight of each mortgage loan at (¢ = 0) (more generally,
wii = %;l)

An MBS is thus assembled by combining the cash flows of ny mortgage loans. The
cash flows of the security are determined by the prepayment experience of the pool. To
complete the model, we assume that the individual prepayment process is defined by
equations (4.1)-(4.4). The prepayment experience of the pool at any given month is the
sum of all individual prepayments. Algebraically, we can express this aggregate pool

prepayment rate as

Py = Bot + Brexe + €4 : (7)

such that P, = Z:‘;l WPl Prt = E;‘;l weifir £ =0,1, and € = 2:’;1 wii€;. Note that
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Bo: and By are time-varying, meaning that the slope and intercept of the prepayment
function change over time. Since mortgagors are not replaced when they exit the pool,
the composition of the mortgage pool changes over time with prepayment. In our simple
framework, in which prepayment rates are determined by a single factor z; (the coupon
spread), the slope of the prepayment function is fairly flat at negative values of z;. In
this range, we anticipate small residual prepayments resulting from idiosyncratic events.
The slope of prepayment function would steepen for positive coupon differentials. Large
positive spreads trigger rapid refinancings as borrowers with a higher propensity to prepay
(those with high positive f;;) are now in the money. Eventually, the slope of prepayment
function flattens at .very high values of spread because the pool is “burned out,” meaning
that the pool now consists of mostly constrained borrowers (low-beta homeowners) who
are unable to refinance at any rate.®

Because individual prepayments are heteroskedastic with a nonzero mean, we expect

pool-level prepayments to also have a similar structure. In particular,

E(et) =0 i:wt,;h()\t,-), (8)

n

Var(e) = 0® ) wiv(Au). (9)
The error in pool prepayments is again het:;:)skedastic in the sense that the variance
depends on the level of coupon spread z;. Equations (8)-(9) can be simplified by linearizing
the functions h*(wy, Aui) = wuh(Ae) and v*(we, Ayi) = wyv(Ay). Using a multivariate

Taylor approximation rule, we can modify these functions to

E(e) = ofog + aq @y + age? + ...+ apzf] = oh(ay), (10)

® Another way to look at path-dependency in prepayments is by examining the stochas-
tic properties of n;, the number of mortgagors remaining in the pool at time ¢. Because
loans are not replaced in the pool, the conditional expectation of n, depends on n;_y. In

turn, this means that the conditional expectation of n; depends on lagged values of xy.
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Var(e) = o*[vo + Mz + vezf + ... + mat] = o2u(zy), (11)

where k represents the polynomial order of the Taylor expansion. The error structure of
the prepayment function can be approximated by an additive form of heteroskedasticity.

Equations {10) and (11)-reveal two important properties of the prepayment function.
First, the expected value of the prepayment function error is nonzero. The bias in aggregate
prepayments is directly a function of the underlying exogenous factor z,. Typically, we
would expect the error bias to be bigger at wider interest rate spreads. Second, the
variance of the prepayment errors is inherently a function of the exogenous factor z,.
This heteroskedastic relationship suggests that the statistical inference from aggregate
prepayment models will be more uncertain at larger values of the coupon spread,

We can also apply the Taylor rule to approximate the theoretical structure of the

prepayment function. The aggregate prepayment rate can be expressed as
E(P,) = fo + przs + Baxi + ... + Bray. (12)

Assuming that z, is fully known, the nonlinear prepayment function can be efficiently
estimated by a simple polynomial regression model.

These findings can be easily generalized to the case where a borrower’s decision to pre-
pay is influenced by several variables represented by the row vector z;, = (Lzea,..., o).
In this multivariate case, we can show that prepayment errors would still be heteroskedas-

tic, albeit the functional form of additive heteroskedasticity would be more complicated.
4.1 Simulation Examples

Our theoretical analysis suggests that the observed dispersion and prepayments is
caused by statistical aggregation. An alternative way of illustrating the effects of ag-
gregation in prepayments is through simulation. The premise of the simulation examples

presented in this section is straightforward. We construct artificial pools of mortgages. The
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decision to prepay any mortgage in the pool is determined by a stochastic rule given by
equations (4.1)-(4.4). In each period, mortgage holders are exposed to a different interest
rate spread plus a random shock,

Before we delve into the general prepayment model, consider a special case. Assume
that all homeowners in a pool are identical (e.g., Bo; = By and By; = 54 ). One benefit of
this simplification is that we can now attain a closed-form solution for the expected value

of aggregate pool prepayment. In particular, we can show that
B(Pt) = 1002(—2}) + (Bo + :B1)[B(XY) — B(=A)] + o[d(—Ae) — $(A})],

where A, = ﬁg}%ﬂ; and A} = laﬂ ~ A¢. To better illustrate the features of this
deterministic prepayment function, the model is simulated for a given set of parameter
values. Figure 2 presents a graph of the expected prepayments for various levels of the
interest rate spread z;. As seen from the chart, pool prepayments have the characteristic
nonlinear S-shape. Although useful, this simulation example is based on the unrealistic
assumption that all individuals have identical prepayment decisions. In a way, this limits
the degree of burnout as the composition of borrowers in a pool is not altered.

The second simulation example asserts that mortgagors have different propensities to
prepay (that is, they have unique fp; and ;). For simplicity, we also assume that bor-
rowers do not curtail their loans. We perform two distinct simulation experiments. In the
first simulation experiment the mortgage holder exits the pool if the willingness to prepay
p}; is greater than zero; otherwise, the borrower does not prepay. The second simulation
experiment stipulates again that a borrower would prepay when pj; > 0; however, now the
prepaying individual is replaced in the pool by an exactly identical borrower. In this way,
the pool remains path-independent.®

The results of the two simulation examples are graphically presented in Figure 3.

® Borrowers are heterogeneous in the sense that By = Bei(1 4 pz;) £ = 0,1, where Fy;
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Essentially, we observe two distinct scatter plots in the figure. Observations marked by
an (x) represent the prepayment experience of pools that prepay with replacement. The
square symbol denotes pools that prepay without replacement. The curves in the figure
are again in-sample polynomial regression forecasts of prepayment speeds. Note that pre-
payments are heteroskedastic in both simulation experiments. This is an important finding
because it demonstrates that burnout (prepayment without replacement) is not the cause
of heteroskedasticity in prepayments. Even though individuals who prepay are replaced in
the pool, the pattern in prepayments is still heteroskedastic.1?

What clearly distinguishes the two simulation examples is the shape of the average
prepayment function. Pool prepayment rates are, on average, much larger when prepaying
borrowers are replaced in the pool. This outcome is not surprising because in this case
the composition of the pool is unchanged. At negative spreads, only a small fraction of
these individuals wish to prepay. But as spreads become positive and widen, an increasing
number of mortgage holders are willing to prepay because the pool does not burn out.
In contrast, when borrowers are not replaced in the pool, aggregate prepayments tend to
level off after a point, giving rise to the distinct S-shape. In summary, our simulation
findings suggest that pool burnout does not necessarily account for the phenomenon of
heteroskedasticity in MBS prepayment rates. However, burnout is solely responsible for

the nonlinear S-shape structure found in most prepayment functions.
5. IMPLICATIONS

Our analysis provides a compelling theoretical argument that the MBS prepayment

function is inherently biased and heteroskedastic. As shown above, prepayments are more

are predetermined values for the intercept and slope, p is a small constant (usually, 0.05)

and z; is a random shock generated from a standard normal distribution.
10 A simple F-test shows that the error sum of squares for the two experiments are not

statistically significantly different from each other.
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likely to be scattered at large positive coupon spreads. The unusual nature of prepayments
raises a number of interesting questions. What is the most effective way of modeling
nonlinearity in prepayments? Does the heteroskedastic error structure of prepayments

distort valuation?
5.1 Model Specification

At one level, our analysis suggests a simple approach to modeling the prepayment
function. Suppose that all factors influencing a mortgage holder’s decision to prepay are
exogenous and fully represented by the vector z.,. We have proved that the aggregate
prepayment function can be efficiently approximated by a polynomial functional form
(defined by equation (12)). The usefulness of polynomial regression is best illustrated by
the second simulation experiment seen in Figure 3. In this case, prepayments depend solely
on s = (1,2} and white noise. Not surprising, the polynomial regression model yields
an excellent fit of the average prepayment function. The polynomial model, however, may
not be always reliable because in practice z;, is misspecified. Another option would be to
estimate the nonlinearity in prepayments using a curve-fitting technique. A recent study by
Maxam (1996) proposes a multivariate density estimation approach. Kernel estimation is
an appealing alternative because it captures the intricate nonlinear S-shape in prepayments

in a fairly parsimonious way.
5.2 The Effect on Pricing

The prepayment function is an indispensable ﬁart of any MBS pricing methodology.
Prepayment assumptions allow investors to figure out cash flows and determine the price
of 'the security. In theory, the value of an MBS is influenced by interest rate dynamics and
prepayment behavior. We can formally define the price of a mortgage security (j) at time
(t) as

Vij = Viw;, Ry, Pi(B;, T1e, €1)}, (13)

16



PSA
2,000

1,500

1,000

500

Figure 4. Dealer Prepayment Forecasts for FNMA 8s (as of 12-22-97).

-300 -200 -100 -50 0 50 100 200 300
Interest Rate Shift (basis points)

FBC DLJ PW BS PRU ML LB SAL Median

Source: Bloomberg.

Note: FBC = First Boston Corporation, DLJ = Donalson Lufkin Jeanerette,

PW = Paine Webber, BS = Bear Stearns, PRU = Prudential, ML. = Merril Lynch
LB = Lehman Brothers, SAL = Salomon.



where R; represents the interest rate process at time (t) and w; is a vector of security-
specific attributes. Prepayments P, are influenced by the exogenous vector z,,, the indi-
vidual’s characteristics 8}, and a stochastic component ¢,. Note that prepayment errors are
not identically distributed, rather, as we have shown above, they are heteroskedastic (e.g.,
Var(e;) = c?v(z4.)). The large dispersion in prepayment errors introduces the potential
for greater disparity in MBS prices. Thus, two MBSs may end up having very different
price realizations, although ex ante they were fundamentally similar.

The importance of heteroskedasticity is quite evident in the wide discrepancy of pub-
lished forecasts available from Bloomberg. Figure 4 reports the prepayment forecasts made
by 8 firms for new FNMA 8s 30-year conventional passthroughs. The figure clearly shows
that forecast uncertainty (here measured by the range of the PSA forecasts) is significantly
higher for large interest rate shifts. To illustrate the sensitivity of prices to prepayment
assumptions, assume that the interest rate jumps by 50 basis. For this shift, prepayment
forecasts range from a low of 434 PSA (made by First Boston) to a high of 867 PSA (made
by Salomon}. Using a Bloomberg pricing algorithm, we can compute the OAS cost of
a January-1998 TBA comparable passthrough under the different prepayment scenarios.
The median OAS costs for the FNMA 8 percent passthrough is 75 basis points. In light
of the large variation in prepayment forecasts, however, OAS values can range from 23
basis points to 112 basis points. Thus, a mere 50 basis points shift in interest rates has
produced a huge disparity in prices.

The preceding example makes the rather”simplistic assumption that prepayments
remain unchanged over the life of the security. In real life, however, the prepayment process
is quite dynamic. The prepayment path would depend on the underlying characteristics of
the passthrough security, the initial interest rate assumption, and the eventual interest rate
realizations. To examine this issue more carefully, we construct a simple OAS simulation

experiment for FHLMC 30-year passthroughs with coupons ranging from 6 to 12 percent.
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TABLE 1. OAS CONFIDENCE BOUNDS

(number in parentheses represent the average CPR)

Interest Rate Upper Midpoeint of Lower
Environment Bound of Prepayment Bound of

Prepayment Prepayment
Rising 264 206 161

(26.2) (14.1) (4.0)
Flat 162 156 151

(23.9) (12.8) (4.0)
Declining 59 103 144

(28.6) (15.4) (2.4)

NOTES: OAS simulations are based on the prepayment experience of FHLMC passthrough
securities (see Figure 5). The upper and lower bound OAS estimates assume a two-standard
deviation shift in prepayments. The average CPR measure is computed over the life of the
security.



The prepayment experience of these securities is shown in Figure 5. The broken curves in
the scatter plot map a two-standard deviation bound for the average prepayment rate (the
solid curve). Because of the heteroskedastic nature of the errors, the confidence interval is
wider at positive spreads.

Our simple OAS exercise looks at three distinct interest rate path scenarios: rates
are assumed to rise, remain flat, or decline over the life the security. Admittedly, this a
simplified veréion of OAS analysis. Nevertheless, this exercise is very useful in illustrating
that the adverse effect of heteroskedastic prepayment errors is also path-dependent.!?
Table 1 shows that the OAS confidence bounds are fairly wide when interest rates rise
or decline over the life of the security, By contrast, the difference between the midpoint
price and its upper or lower bounds is negligible if interest rates remain flat. Note that
the underlying conditional prepayment rates are similar in all three interest rate scenarios,
Yet, despite the similarity in prepayment rates over the life of the security, the potential
for price distortions s much smaller in an economic environment in which interest rates
are fairly static.

In a recent paper, Boudoukh et al. (1997) utilize multivariate density estimation to
pricc GNMA passthroughs. When a single factor is used in the kernel estimation (the
level of interest rates), they discover a high degree of persistence in the pricing errors.
Prepayment errors are found to be related to the long rate (10-year rate) and term structure
spread (10-year rate minus 3-month treasury rate). This persistence in pricing errors

dissipates when a second factor is introduced in the kernel function (the slope of the term

' The pricing algorithm employs all the prescribed steps of OAS analysis. First, we
construct a model for Treasury rates that is consistent with historical behavior. From this
model, we generate 2,000 interest rate paths using Monte Carlo simulation. The interest
rate realizations are then used to find the appropriate confidence bounds for prepayments

(see Figure ), derive cash flows, and eventually compute present values.
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structure), although it never goes away. Qur analysis offers another explanation for these
puzzling properties of the pricing errors. Essentially, the observed persistence and large
cross-correlation in the pricing errors may be the fallout of the unstable nature of mortgage

prepayments.
6. CONCLUSION

This study has demonstrated that mortgage prepayments are extremely unstable if
the spread between the weighted average coupon and the effective mortgage rate prevail-
ing in the market is large and positive. The customary view attributes this trait to path

dependency or burnout. According to this premise, prepayments are heteroskedastic be-

cause often after a few bouts of refinancing the pool will be made up of mostly constrained
mortgagors. In this paper, we provide aﬁ alternative interpretation. For one, we find
that burnout is an important determinant of prepayment. But its effect is more evident
in the nonlinear shape of the prepayment function. Further, we illustrate that the large
dispersion in prepayments is not necessarily related to burnout, but is caused instead by
statistical aggregation.

The findings of this study underscore the riskiness of investing in MBSs. Since the
volatility in prepayments is inherently related to interest rate changes, the task of pricing
MBSs becomes more arduous in an economic environment marred by unanticipated interest
rate movernents. Our analysis shows that even a moderate shift in interest rates is capable

of creating large mispricing errors in the value of the mortgage security.
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