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Abstract 

We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We 

use this approach to study whether U.S. Survey of Professional Forecasters density projections for output 

growth and inflation from 1982 to 2022 are consistent with the noisy rational expectations hypothesis. We 

find that, in contrast to theory, for horizons close to two years there is no relationship whatsoever between 

subjective uncertainty and forecast accuracy for output growth density projections, both across forecasters 

and over time, and only a mild relationship for inflation projections. As the horizon shortens, the 

relationship becomes one-to-one as theory predicts. 
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I Introduction

The pioneering work of Manski (2004) highlighted the benefits of probabilistic surveys com-

pared to surveys that only ask respondents for their point projections: probabilistic surveys

simply provide a wealth of information that is not included in point projections.1 As Potter

(2016) writes, “In a world characterized by pervasive uncertainty, density forecasts pro-

vide a comprehensive representation of respondents’ views about possible future outcomes

for the variables of interest.” Given the respondents’ density forecasts, the econometrician

can compute numerous objects of interest, such as the mean, median, variance, skewness,

interquantile range, et cetera.

However, survey respondents do not provide us with density forecasts. For most surveys

concerning continuous variables, they only provide the percent chance that the variable of

interest (e.g., inflation over the next year) would fall within different prespecified contiguous

ranges or bins. That is, the information we have consists in the integral of the forecast density

over these bins or, equivalently, in a few points of the cumulative density function (CDF).

In order to extract many quantities of interest, and in particular measures of uncertainty,

standard practice postulates a parametric form for the forecast distribution and computes its

parameters by minimizing the distance between the observed CDF points and those implied

by the assumed distribution, which is often either a step-wise uniform (Zarnowitz and Lam-

bros, 1987), a Gaussian (Giordani and Soderlind, 2003), or a generalized beta distribution

(Engelberg et al., 2009).2

In this paper, we propose a Bayesian nonparametric approach for estimating the survey

respondents’ forecast densities.3 The approach starts by making parametric assumptions

1Indeed, a number of recent surveys, including the Federal Reserve Bank of New York’s Survey of Con-

sumer Expectations and Survey of Primary Dealers and Market Participants, the Canadian Survey of Con-

sumer Expectations, the Atlanta Feds Survey of Business Uncertainty and Business Inflation Expectations,

the ECBs Survey of Professional Forecasters, and the the Bank of Englands Survey of External Forecasters,

elicit probabilistic questions.
2For a few quantities of interest, such as the median, one can compute nonparametric bounds as in

Engelberg et al. (2009). Computing nonparametric bounds is harder for measures of uncertainty, including

interquantile ranges, once one acknowledges the issue of noise/rounding. In any case, the parametric approach

described in the text is the one most commonly used in the literature, and by the surveys mentioned in

footnote 1, when reporting measures of uncertainty.
3In economics, the Bayesian nonparametric approach so far has applied to the analysis of treatment effects

(Chib and Hamilton, 2002), autoregressive panel data (Hirano, 2002; Gu and Koenker, 2017; Liu, 2023), time

series (Bassetti et al., 2014), stochastic production frontiers models (Griffin and Steel, 2004), unemployment
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on the mapping between the predictive distribution of forecasters and the bin probabilities

they report, where this mapping explicitly allows for the introduction of noise in the report-

ing (due to rounding toward zero, for example). We then relax this parametric model by

embedding it into the more general Bayesian nonparametric framework, thereby amending

the potential misspecification associated with the parametric assumptions. This is because,

loosely speaking, Bayesian nonparametrics replaces any parametric model with a potentially

infinite mixture of such models, attaining more flexibility while at the same time using the

information from the cross-section of forecasters to estimate the parameters of the mixture

components. Intuitively, each mixture component corresponds to a forecaster type (e.g.,

low/high mean, low/high variance, low/high noise, et cetera, and combinations thereof). As

long as the number of types grows more slowly than the number of forecasters, there is

enough information to estimate the parameters corresponding to each type.

Our approach differs from existing methods in a few important dimensions. First, in-

ference conducted using a specific parametric distribution can be naturally sensitive to the

choice of the distribution. The nonparametric nature of our approach provides some ro-

bustness to misspecification regarding these parametric assumptions. Second, our approach

conducts inference jointly across survey respondents, that is, using the entire cross-section

instead of being applied to each respondent separately. As mentioned above, this joint in-

ference allows for partial information-pooling across forecasters, thereby improving inference

precision and making it possible to obtain some consistency results when the number of

forecasters grows to infinity. Last, the approach allows for full-fledged inference regarding

the mapping between data and objects of interest, in the sense that it generates a posterior

probability for these objects. While current approaches provide point estimates for, say,

measures of the scale of the predictive densities like the variance, they do not supply any

assessment of the uncertainty surrounding these estimates, which is often large given the

limited information provided by survey responses.

We use this approach to address the question of whether U.S. Survey of Professional

Forecasters (SPF) density forecasts are consistent with the noisy rational expectations (RE)

hypothesis (see, for instance, Coibion and Gorodnichenko, 2012, 2015) using data from 1982

to 2022. According to this hypothesis, forecasters receive both public and private signals

about the state of the economy. The precision of forecasters’ signals, both public and private,

ought to be reflected in equal measure in their density forecasts and, under RE, in their ex-

duration (Burda et al., 2015), and finance (Griffin, 2011, and Jensen and Maheu, 2010). Griffin et al. (2011)

provide an intuitive description of the approach and a survey of this literature.
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post forecast accuracy, both in the cross-section and over time. For example, if the economy

becomes more uncertain, this should be reflected in both higher subjective uncertainty and

worse ex-post forecast errors. In fact, we find that for horizons close to two years there is

no relationship whatsoever between subjective uncertainty and ex-post forecast accuracy for

output growth density projections, and only a mild relationship for inflation projections. As

the horizon shortens, the relationship becomes close to one-to-one, in accordance with the

theory. These findings, which hold when controlling for both forecaster and time-fixed effects,

suggest that forecasters do not correctly anticipate periods of macroeconomic uncertainty,

except for very short horizons. We also find that forecasters tend to be overconfident for

long horizons, but underconfident for short horizons, although the RE benchmark is never

rejected for inflation.

The outline of the paper is as follows. Section II presents the inference problem, briefly

describes current approaches, and formally discusses our Bayesian nonparametric approach.

Section III first provides a few examples of how our approach differs from current practice

and then discusses the relationship between subjective uncertainty and forecast accuracy.

Section IV concludes, pointing out some of the limitations of the analysis and discussing

avenues for further research.

II Inference for Probabilistic Surveys

In this section we start by providing a short introduction to probabilistic survey data, focus-

ing on those features that are relevant for this analysis, and in the process describe the SPF

data used in our application. Then we briefly discuss the approaches used so far for trans-

lating the information provided by the respondents into subjective predictive distributions

and objects of interest, such as measures of uncertainty. The rest of the section is devoted

to the description of our approach.

II.A The inference problem and current approaches

Probabilistic forecasts such as those elicited by the Philadelphia Fed as part of the SPF take

the form of probabilities assigned to bins: the percent chance that the variable of interest,
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in the appendix displays the evolution of the bin ranges from 1982, the beginning of our

sample, until the end in 2022, for both output growth and inflation. The figure shows that

bins were changed in 1992, 2009, and 2020 for output growth surveys and in 1985, 1992,

and 2014 for inflation surveys. The SPF is conducted at a quarterly frequency (answers are

collected in the middle of each quarter, right after GDP figures for the previous quarter have

been released) and asks about probabilistic predictions for the current and the following

year’s year-over-year growth rates in real output (GDP) and the price level, as measured by

the GDP deflator. Stark (2013) describes in detail the features of the SPF survey, and the

Philadelphia Fed’s site provides a manual for interpreting the data.5

Figure 1 provides a few examples that illustrate a number of common features of the SPF

data. The top two panels show the probabilistic forecasts for output growth in 2020 made

in 2019Q2 by respondents 532 and 584, while the bottom two panels show the forecasts for

inflation in 2009 made in 2008Q4 by respondents 516 and 560 (respondents are anonymous).

The probabilities zi’s are displayed as histograms, while the black ticks on the horizontal

axis mark the boundaries of the bins.

A first feature that emerges from Figure 1 is that probabilistic forecasts are very het-

erogeneous. For each row the respondents are forecasting the same object, and yet their

probabilistic predictions are very different. A second feature is that forecasters often assign

zero probability to some if not most bins. Forecaster 532, for instance, places zero probability

on output growth being between -1 and 1 percent, but positive probability on output being

between -2 and -1 percent and between 1 and 3 percent. The econometrician could interpret

this information literally, or as an indication that this respondent has a bimodal forecast

distribution with some probability on a recession, a larger probability on an expansion, and

a very small likelihood of in-between outcomes. Other forecasters, such as respondent 584,

place positive mass on almost all bins. A third feature of the data is that almost all probabil-

ities in Figure 1 are round numbers, with responses for forecaster 584 being, again, the only

exception. A fourth feature is that forecasters do place mass on open bins and sometimes,

as is the case for the respondent who in 2008 was fearing deflation in 2009, most of the mass.

Figures A-6 and A-7 in the appendix show for each output growth and inflation survey the

5Figure A-4 in the appendix displays the number of respondents n for output growth surveys conducted

in Q1, Q2, Q3, and Q4 of each year (the numbers for inflation are essentially the same). n is about 35 in

the early 1980s and then drops steadily over time until 1992, when the Philadelphia Fed begins to manage

the survey; n hovers around 35 until the mid-2000s and then starts to increase, reaching a peak of about 50

during the Great Recession; it declines steadily thereafter and is about 30 in 2022. Figure A-5 shows survey

participation by respondent and provides a visual description of the panel’s composition.
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percentage of respondents placing positive probability on either one open bin or both. These

percentages are as high as 70 percent for output and 90 percent for inflation before 1992,

when the bins were changed, but are about 20 percent on average, with peaks of 40 percent

or higher, even after 1992. Finally, many of these predictive densities appear asymmetric.

These examples display a left skew for output and, at least for forecaster 560, a right skew

for inflation.

The econometricians problem is how to use the information given by the elements of the

survey probability vector zi of the i-th forecaster to address a number of questions of interest.

What is the mean prediction for forecaster i? How uncertain are they? Is there skewness

in their predictive densities? The approach predominantly used so far in the literature

concerning macroeconomic surveys has been to implicitly or explicitly assume that each

forecaster i assigns the bin probabilities zi using a given predictive probability distribution

Fi(y). The econometrician then needs to estimate Fi(y) from the data zi and use it to answer

the questions of interest. Most existing literature has accomplished this task by fitting a given

parametric distribution to the cumulative distribution function (CDF) implied by the bin

probabilities, respondent by respondent; that is, fitting Zij = zi1 + · · · + zij j = 1, . . . , J ,

i = 1, ..., n using a parametric family of distributions {F (y|θ) : θ ∈ Θ}. The type of

the parametric distribution varies across studies, from a mixture of uniforms/piece-wise

linear CDF (that is, assuming that the probability is uniformly distributed within each bin;

Zarnowitz and Lambros, 1987), to a Gaussian (Giordani and Soderlind, 2003), a generalized

beta (Engelberg et al., 2009), and a skew-t distribution (e.g., Ganics et al., 2020). The

generalized beta assumption is arguably the most popular approach. The parameters of each

distribution are usually estimated using nonlinear least squares, respondent by respondent;

that is, Fi(y) = F (y|θ̂i), where

θ̂i = argmin
θi

J∑
j=1

∣∣∣Zij − F (yj|θi)
∣∣∣2. (1)

These approaches arguably have some limitations that are well understood in the lit-

erature (see Clements et al., 2023). First, the assumed parametric distribution may be

misspecified—it may not fit the individual responses well. Moreover, since the width of the

bins can be large (as is obviously the case when the respondent places probability on open

bins), even if the distributions fit the Zij’s, the inference results on moments and quantiles

can be sensitive to the distributional assumption. Second, and related, existing approaches

ignore inference uncertainty, even that concerning θi for a given parametric assumption, let
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alone the uncertainty about the shape of Fi(·). This omission implies that confidence bands

and hypothesis testing procedures are usually not derived.6 Third, bounded distributions

such as the beta or the mixture of uniforms take literally the zij that are zero—they place

no probability mass on bins where the respondents place no mass. More broadly, the ap-

proach outlined in expression (1) does not directly address the issue of rounding: it solves

the minimization problem taking all the Zij’s literally even though the respondent may be

reporting approximate probabilities (Dominitz and Manski, 1996; D’Amico and Orphanides,

2008; Boero et al., 2008, 2014; Engelberg et al., 2009; Manski and Molinari, 2010; Manski,

2011; Giustinelli et al., 2020; Glas and Hartmann, 2022, among others, discuss the issue of

rounding; Binder, 2017, uses rounding to measure uncertainty).7

In the following two sections, we propose a Bayesian model that attempts to overcome

some of these limitations. We first introduce a parametric model for the data. This model

follows the literature in assuming that each forecaster uses a specific predictive distribution

F (·) to assign probabilities ν to the bins, but differs from the literature in that it states that

the data z are noisy versions of the ν’s, where again the noise follows a parametric distribu-

tion. We then relax this parametric model by embedding it into the more general Bayesian

nonparametric approach, thereby amending the potential misspecification associated with

the parametric assumptions.

II.B A parametric model

We assume that the probability vector zi reported by forecaster i is a noise-ridden measure-

ments of an unobserved vector of subjective probabilities over the J bins νi = (νi1, ..., νiJ),

with νij ≥ 0 and νi1 + ...+ νiJ = 1. These bin probabilities νij are computed using forecaster

6Researchers have of course understood the presence of an inference issue especially when the information

provided by the respondent is very limited. The proposed solutions generally amount to either choosing less

heavily parameterized distributions or discarding the respondent: Clements (2010), for instance, simply

discards respondents with fewer than three bins, while Engelberg et al. (2009) use a triangle distribution in

these cases. Liu and Sheng (2019) propose a maximum-likelihood estimation approach in order to account

for parameter uncertainty for given parametric assumptions.
7Manski and Molinari (2010) and Giustinelli et al. (2020) address the issue of rounding by considering

interval data and using a person’s response pattern across different questions to infer her or his rounding

practice. The inferential approach pursued by these researchers is very different from the one followed by

much of the literature and addresses different questions.
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i’s subjective probability distribution Fi(·):

νij = νj(θi) = F (yj|θi)− F (yj−1|θi), j = 1, . . . , J, (2)

where θi ∈ Θ is the vector of all estimated parameters which includes those describing the

CDF Fi(·) = F (·|θi). In our application, the subjective distribution F (·|θ) is a mixture of

two Gaussian distributions, that is

F (y|θ) = (1− ω)Φ(y|µ, σ2
1) + ωΦ(y|µ+ µδ, σ

2
2), (3)

but the approach accommodates any other choice for F (·|θ).

The probability distribution h(·) captures the noise in the mapping between νi and zi,

where this noise can be due to approximations or rounding in reporting:

zi = (zi1, . . . , ziJ)
ind∼ h(zi|ν(θi),θi). (4)

In choosing h(·), one needs to account for the fact that the elements of zi are positive and

sum up to one (zi belongs to the simplex). A convenient choice for a distribution on the

simplex is the Dirichlet distribution (Shoja and Soofi, 2017, is another example of using the

Dirichlet distribution to model the noise). A drawback of this distribution is that it assigns

zero probability to zi’s that have some elements equal to zero, when, in fact, for the vast

majority of forecasters some zij’s are zero. To specify h(·), we then follow Zadora et al.

(2010) and use a distribution that allows for values of the random vector on the boundary

of the simplex.

In order to describe this distribution, it is useful to introduce the equivalent represen-

tation of zi given by the couple (zξi, ξi), where ξi = (ξi1, . . . , ξiJ) with ξij = 1 if and only

if zij = 0 and ξij = 0 otherwise, and zξi is the set of strictly positive zij’s. Using these

definitions we can write the h(·) distribution as

h(zi|ν(θi),θi) =
1

c(θi)

J∏
j=1

%j(θi)
ξij(1− %j(θi))1−ξijDir(zξi|ν(θi),θi), (5)

where %(θi) = (%1(θi), ..., %J(θi)) are the probabilities that a forecaster will report zero

probability on bin 1 through J , and c(θi) = 1 − (%1(θi) · . . . · %J(θi)) is a normalizing

constant. Dir(zξi|ν(θi),θi) is the standard Dirichlet distribution defined on the nonzero

elements of zi:

Dir(zξi|ν(θi),θi) =
Γ
(∑

j:zij>0 φiνj(θi))
)

∏
j:zij>0 Γ(φiνj(θi))

∏
j:zij>0

z
φiνj(θi)−1
ij , (6)
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where φiκi, κi =
∑
j:zij>0

νj(θi) is the rescaled precision and φi a parameter. The renormalized

weights νj(θi)/κi, j such that zij > 0 take into account the fact that if forecasters decide to

report zero probability for one or more bins, they need to adjust the probabilities associated

with the other bins so that they still sum up to one.8

The probability of reporting zero mass in the j-th bin is modeled as %j(θi) = %(νj(θi), εi),

where the parameter εi measures the sensitivity of %(ν, ε) to ν and the function %(ν, ε) is

decreasing in ν, such that %→ 1 for ν → 0 and %→ 0 for ν → 1. In our application we use

the function

%(ν, ε) =

∫ ε

0

b(x|ν, r)dx, (7)

where b(x|ν, r) is the PDF of a beta distribution with mean ν and precision r, which we fix

at 100. The vector of parameters of h(zi|ν(θi),θi)—which in the remainder of this section

we will refer to as h(zi|θi) for brevity—is therefore θi = (µi, µδ,i, σ1,i, σ2,i, ωi, φi, εi).

Some of the parametric assumptions outlined above are less palatable than others. For

instance, the assumption that the noise around the nonzero zij’s takes the form of a Dirichlet

distribution is at odds with the observation on the prevalence of rounding. Even when the

parametric assumption may be more palatable, it can still be incorrect. Embedding these

parametric assumptions into a (more flexible) nonparametric model arguably protects us, at

least to some extent, from misspecification. We describe this approach in the next section.

II.C A Bayesian nonparametric model

The Bayesian nonparametric hierarchical model works as follows. We assume that the pa-

rameter vector θi is sampled from a mixture of forecaster types (where the types are, for

example, low versus high uncertainty, low versus high mean, left versus right-skewed, low

versus high reporting noise, or combinations of all the above). For now, imagine that the

number of types K is finite. At the first stage of the hierarchy, θi is drawn from

θi
iid∼


θ∗1 with probabilityw1

...

θ∗K with probabilitywK

(8)

8Recall that in the Dirichlet distribution the means are E(zij |ξi) =
νj(θi)∑

j:zij>0 νj(θi)
, and the variances

V(zij |ξi) =
νj(θi)(κi − νj(θi))

κ2i (φi
∑

j:zij>0 νj(θi) + 1)
go to zero with φi →∞.
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where the wk’s represent probability weights, and θ∗k characterize the types, also referred

to as atoms. At the second stage a prior distribution is assumed for the weights, and the

types are sampled from a common distribution θ∗k
iid∼ G0, called a base measure, which can

be viewed as the probability distribution generating the types.

Now let the number of types K go to infinity. When this happens, expression (8) is

replaced by the discrete random measure

G(θ) =
∞∑
k=1

wkδ(θ − θ∗k), (9)

where δ(x) denotes a point mass distribution located at 0, the atoms θ∗k are drawn from G0 as

before, and the random weights wk are generated by the so-called stick-breaking construction

wk = vk

k−1∏
l=1

(1− vl), (10)

with the vl’s being i.i.d. random variables from a beta distribution Be(1, ψ0) (see Pitman,

2006). The random measure G is a Dirichlet process DP(ψ0, G0) (Ferguson, 1973) and our

hierarchical model is a Dirichlet process prior θi
iid∼ G, G ∼ DP(ψ0, G0). The precision

parameter ψ0 determines how uneven the weights are in the stick-breaking representation,

that is, how many different mixture components are used to fit the respondents: when ψ0 → 0

all forecasters are assumed to be of the same type (w1 → 1), whereas when ψ0 → +∞ the

inference is done forecaster by forecaster (using the same prior). Outside of this latter limiting

case, the Dirichlet process prior generates a priori dependence among the forecaster-specific

parameters θi’s via the formation of clusters of forecasters of the same type.9

Expression (9) implies that our model has the infinite mixture representation (Sethura-

man, 1994)

zi|G
iid∼
∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θ∗k). (11)

Each forecaster is therefore modeled a priori as a potentially infinite mixture of types,

identical across forecasters (whence the i.i.d.), each described by the parametric distribution

9As shown in Pitman (2006), the predictive distribution of θi+1 conditional on (θ1, . . . ,θi) can be repre-

sented as a Polya’s urn process θi+1|θ1, . . . ,θi ∼
ψ0

ψ0 + i
G0(θi+1)+

1

ψ0 + i

i∑
k=1

δ(θk−θi+1). With probability

ψ0

ψ0 + i
the new draw θi+1 is generated from the prior G0, but it is otherwise equal to one of the previous i

draws. When ψ0 →∞ we have the same parametric model for each forecaster: zi ∼ h(·|θi), where the θi’s

are drawn independently from G0.
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h(z|θ∗k). The Bayesian nonparametric model is therefore quite flexible. As such, it can

overcome the inherent misspecification implied by the use of specific parametric assumptions,

as shown below in section II.E. At the same time, the stick-breaking prior (10) on the mixture

weights wk imposes some degree of pooling, which mitigates overfitting—most forecasters

come from the same relatively few types, with the number of types growing as the number of

forecasters in the sample increases (a priori the expected number of clusters is approximately

ψ0 log((ψ0 + n)/ψ0)). A posteriori, the number of mixtures used depends on the degree

of heterogeneity in the sample, and both the unknown types θ∗k and the weights wk are

estimated, as described next.

II.D Posterior inference

In order to describe the posterior distribution, it is useful to rewrite the prior (11) using

auxiliary allocation variables d’s, which are equal to k if θi is sampled from the kth mixture

component:

zi|G
iid∼

∞∑
k=1

I{di = k}h(zi|θ∗k), P r{di = k} = wk. (12)

Thus, the posterior distribution of (θ1, ...,θn, G) given (z1, ..., zn) can be expressed in terms of

the posterior distribution Π(d1, ..., dn,θ
∗
1,θ

∗
2, ..., w1, w2, ...|z1, ..., zn). If the mixture (12) were

finite, Bayesian inference would be straightforward. The slice Gibbs sampler algorithm of

Walker (2007) and Kalli et al. (2011) surmounts the issue of infinity using data augmentation,

as explained in detail in Appendix B. The Markov Chain Monte Carlo samples

(d
(m)
1 , ..., d(m)

n ,θ
∗(m)
1 ,θ

∗(m)
2 , ..., w

(m)
1 , w

(m)
2 , ...)

over m = 1, ...,M iterations are used to approximate the posterior distribution for any

quantity of interest. For example, the set of posterior draws {F (y|θ(m)
i ) : y ∈ Y ,m =

1, ...,M}, with θ
(m)
i := θ∗(m)

d
(m)
i

approximates the posterior distribution of the subjective CDF

Fi(·) (see Figure 2 below). Analogously, the posterior mean of the standard deviation of the

predictive distribution of the i-th forecaster is approximated by

1

M

M∑
m=1

σ(θ
(m)
i ),

where σ(θ) is the standard deviation of F (·|θ). Finally, quantities involving the whole

population of forecasters can be approximated in a similar way. For example, the posterior
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mean of the cross-sectional standard deviation of the individual standard deviations is given

by

1

M

M∑
m=1

(
1

n

n∑
i=1

(
σ(θ

(m)
i )− 1

n

n∑
i=1

σ(θ
(m)
i )

)2
)1/2

.

II.E Posterior consistency

In this section we discuss asymptotic properties of the posterior distribution as the number

of forecasters goes to infinity. We only state the main result on consistency, leaving all the

details, proofs, and various additional results to Section C of the appendix.

We formalize asymptotic convergence using the notion of weak consistency of the pos-

terior distribution (Ghosh and Ramamoorthi, 2003), which provides a widely accepted min-

imal requirement for large sample behavior of Bayesian nonparametric models (e.g., Norets

and Pelenis, 2012; Pelenis, 2014; Norets and Pelenis, 2014; Bassetti et al., 2018). Roughly

speaking, posterior consistency means that in a frequentist experiment with a given data-

generating density, the posterior distribution concentrates around this density as the sample

size (number of forecasters) increases. More formally, let H be the set of all possible data-

generating densities (with respect to a dominating measure) on the simplex ∆J where the

data z lives. Given a prior Π on H, the posterior Π(·|z1, ..., zn) is said to be weakly con-

sistent at a true density h0 if for every i.i.d. sequence z1, ..., zn of random vectors with

common density h0 the posterior probability Π(U |z1, ..., zn) converges a.s. to 1 as n→ +∞
for every weak neighborhood U of h0. In our model, the prior is Π(U) = P{hG ∈ U},
where hG(z) =

∫
h(z|θ)G(dθ), see (11). In order to prove weak consistency we use the

Schwartz theorem (see, e.g., Chapter 4 in Ghosh and Ramamoorthi, 2003), which states

that weak consistency at a true density h0 holds if the prior assigns positive probabilities to

Kullback-Leibler neighborhoods of h0.

Before stating the main theorem, we need to clarify the definition of densities and

Kullback-Leibler divergence over a simplex ∆J with possible zero elements. Recall that

zξ is the collection of strictly positive elements of z and that ξ is a vector indexing these

positive zj’s. The Lebesgue measure on the sub-set of ∆J identified by ξ is denoted by Lξ

and a σ-finite measure on ∆J can be defined as λ(dz) =
∑
ξ

Lξ(dzξ). The set of all possible

data-generating densities H is the set of all the densities g(z) = g(zξ, ξ) absolutely contin-

uous with respect to λ. Given two densities h0 and g in H, the Kullback-Leibler divergence
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between h0 and g is then defined as

KL(h0, g) =

∫
∆J

h0(z) log
(h0(z)

g(z)

)
λ(dz). (13)

Call M∗ the set of finite (but arbitrarily large) mixtures of densities (5) that define the

parametric component of our model, and H∗0 the set of densities that can be approximated

in the Kullback-Leibler sense by densities in M∗, i.e.,

H∗0 = {h0 density w.r.t. λ: ∀ ε > 0 ∃ g ∈M∗ s.t. KL(h0, g) ≤ ε }.

Theorem 1. Assume that θ 7→ (%1(θ), ..., %J(θ), φν1(θ), ..., φνJ(θ)) is a continuous function

such that νj(θ) > 0 and 0 < %j(θ) < 1 for every j = 1, ..., J (recall that %j(θ) is the

probability of reporting a zero for bin j). If G0 has full support, then the posterior is weakly

consistent at any density h0 in H∗0 under suitable moment conditions.

The result of this theorem, which is stated more formally and proven in Appendix C,

guarantees that the posterior distribution concentrates around the true process generating

the histogram data z in the SPF cross-section as the number of forecasters grows to infinity.

In particular, it shows that the Bayesian nonparametric approach is robust to deviations

from the specific parametric assumptions, such as the particular choice of the F (·) predictive

CDF. Hence, even if the specific form of h(z|θ) is not correct, the true distribution h0 is

recovered in the limit as long as h0 belongs to the very broad class of models H∗0, which

includes all the models that are not “too far” from any finite mixture of h(z|θ). We claim

that this property is not shared by any of the current outstanding approaches for inference

on probabilistic surveys.10

A couple of observations are in order. First, as is always the case for Bayesian non-

parametrics, the consistency results do not apply to individual forecasters, but only to the

data-generating process for the entire distribution of forecasters. Concretely, this means

10How large is the set H∗
0 the true h0 must belong to in order for Theorem 1 to have bite? It is a known

result that a mixture of Dirichlet distributions can approximate any continuous distributions on the simplex.

Proposition 2 in Appendix C shows that, as long as the F (·|θ) distribution is flexible enough (e.g., is a large

enough mixture of Gaussians), this results carries over to our setting. In our applications, F (·|θ) consists

of a mixture of two normals, so we do impose some parametric restrictions that make H∗
0 less general. In

practice though, i) we think that a mixture of two normals is broad enough to cover most realistic cases,

and ii) we consider robustness to using three normals and show that this does not meaningfully change the

results. Proposition 2 considers the case without rounding toward zero. Adding distributions that place

discrete mass on zeros makes the class H∗
0 larger.
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that they apply to any object that involves a suitably large number of forecasters, such

as the consensus distribution. Second, it must be clear that the consistency holds for the

true distribution h0 on the available data z and not for the underlying predictive CDF F (·)
over the entire domain of y. This is due to the fact that the available data do not provide

enough information to fully recover the CDF of y since the number of bins J is taken as fixed

(and finite), even when n goes to infinity: loosely speaking, we can claim consistency for

the value of the predictive CDF F (·) at the bin edges y1, ..., yJ , but we do not have enough

information about the value of F (·) for y ∈ (yj, yj+1]. This identification issue is overcome

in the case where the number of bins J goes to infinity and the bin size goes to zero, as we

show in Appendix C. Specifically, we show that, under these conditions, when the number

of forecasters n also goes to infinity the consistency result discussed above applies also to

estimates of the predictive distribution F (·). Since these results are of limited interest for

our application where the number of bins is limited and non-negligible mass is often placed

on the open bins, they are relegated to the appendix.11

In practice, in our application both the number of bins and of forecasters n are not large

(e.g., n is around 30 in 2020 and the width of some of the bins is as large as 6 percent for

output growth). Still, an advantage of the Bayesian approach is that lack of information

is reflected in the posterior credible intervals. Section III.A below, for instance, shows that

when forecasters place a large amount of mass on the open bins, the estimates of their

predictive CDF F (·|θi) become more uncertain. Still, one needs to be aware that in these

situations the choice of the distribution family F (·), h(·), and the prior distribution can

impact the results. Therefore, a robustness check with respect to these choices should be

included in all applications of our method and we do so in this paper, as discussed below.

II.F Priors

In this section we discuss the prior settings used in our application. Recall that θ =

(µ, µδ, σ1, σ2, ω, φ, ε). The first four parameters pertain to the F (·) function—the mixture of

two normals (A-26), which we repeat here for convenience: F (y|θ) = (1 − ω)Φ(y|µ, σ2
1) +

ωΦ(y|µ + µδ, σ
2
2). The parameters φ and ε are used to specify h(·) and %(·) in (6) and (7),

11Arguably, SPF surveys of output growth between the Great Recession and the Covid episode, which

displayed fairly narrow bins and little mass on the open bins, are the only ones for which these conditions

come close to applying.
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respectively. We should stress that we use the same priors for both output growth and

inflation, and for all years in our sample.

The location of the first mixture component is µ ∼ N (2, 52), where the standard devia-

tion of 5 implies that this is a very loose prior. The scales of the mixture components follow

σj ∼ IGa(aσ, bσ)I(0,10)(σ1), j = 1, 2, where aσ, bσ are chosen so that the standard deviation

has a mean E[σj] = 2 and a variance V[σj] = 4, and where we truncate the distribution

at 10 for numerical reasons. The parameter µδ captures the deviation of the mean of the

second mixture component relative to the first one. Its prior is centered at zero (implying

that the second mixture a priori mainly captures fat tails) and has a standard deviation of

1: µδ ∼ N (0, 12). The prior for ω, the weight on the second component of the mixture, is

ω ∼ Be(0.5, 3). Its mode is zero, implying that the prior favors models with one mixture

only. The prior places roughly 20 percent probability on {ω ≥ 0.25}.

For the precision parameter φ of the Dirichlet distribution (6)—recall that φ determines

the amount of noise around the underlying probabilities ν—we assume φ ∼ Ga(aφ, bφ)I(φ,∞)(φ),

where aφ and bφ are chosen so that at the prior mean, when the underlying probability ν

is 50 percent, the noise is 2.5 percent. φ is chosen so that the noise has an upper bound

of 5 percent. The left panel of Figure A-2 in the appendix shows the 50 and 90 percent

a-priori coverage intervals for the noise associated with three different values of ν: 0.1, 0.6,

and 0.3. The 50 and 90 percent intervals are about 5 and 10 percent wide, respectively.

Regarding the prior for the rounding-off-to-zero parameter ε, we assume a truncated gamma

distribution Ga(aε, bε)I(0,ε̄)(ε) and set aε, bε such that at the prior mean the probability of

reporting a zero, %, is 5 percent when the underlying ν is 2.5 percent. We choose ε̄ so that

% is at most 20 percent for ν equal to 2.5 percent. The right panel of Figure A-2 shows the

mean, the 50 percent, and the 90 percent coverage intervals of % as a function of ν. The

a-priori uncertainty is such that when ν is 2 percent, the 90 percent interval for % ranges

from 0 to 25 percent, with the coverage interval converging to zero for ν greater than 4

percent. Finally, for the concentration hyperparameter ψ0 of the Bayesian nonparametric

prior, which determines the prior number of clusters, we follow the standard choice and set

ψ0 = 1. This implies that the expected number of clusters for a cross-section with n = 30 is

roughly 4.
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III Results

In this section we first discuss the application of the Bayesian nonparametric approach to the

few selected examples mentioned at the beginning of Section II, in order to familiarize the

reader with how the approach works in practice. Next, we document the evolution from 1982

to 2022 of individual measures of uncertainty obtained using our approach. This analysis

sets the stage for the analysis in the following section, where we study the relationship be-

tween subjective uncertainty and ex-post forecast errors, and assess whether SPF predictive

densities conform with the noisy RE hypothesis.

III.A Examples

Figure 2 shows the inference results for the four SPF respondents shown in Figure 1. For each

forecaster we show posterior draws (thin gray lines) from the Bayesian nonparametric model

for the subjective CDF F (y|θi) (top) and PDF (bottom), and we compare the results with

those obtained under the generalized beta (black dash-and-dotted lines) and Gaussian (black

dotted lines) approaches. The CDF plots also show the observed cumulative probabilities Zij

(crosses), while the PDF plots show the step-wise uniform PDF (gray dashed lines) implied

by the histogram probabilities zij.

Figure 2 illustrates a few aspects of the Bayesian nonparametric approach. First, the

observed cumulative probabilities (the Zij’s; crosses) belong to the high-posterior-density

region for all these respondents, suggesting that the approach is flexible enough to capture

a variety of arguably challenging cases. In contrast, the beta and the normal approaches do

not fit the Zij’s well in most of these examples, and their CDFs and PDFs do not belong to

the high-posterior-density region obtained from the Bayesian nonparametric approach, with

the exception of respondent 584. As a consequence, there can be important differences in the

objects of interest, such as the measure of uncertainty, or quantiles, implied by the different

approaches.12 Figure 2 also shows that the Bayesian nonparametric approach delivers wider

posterior coverage intervals that reflect the higher degree of uncertainty whenever there is

less information from the respondent. The case of respondent 516, who placed 80 percent

probability on the left open bin (see Figure 1), is exemplary. The posterior coverage intervals

for both the Bayesian nonparametric CDF and PDF reflect the fact that we know very little

12Bassetti et al. (2023) show that inference using the Bayesian nonparametric approach differs from that

obtained using standard approaches for several other examples obtained during the recent Covid episode.
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about the left-tail behavior of this forecaster, as evidenced by the fact that the gray lines for

both the CDF and the PDF are far less concentrated for forecaster 576 in the left tail than

in other regions of the distribution or for other forecasters.

III.B Heterogeneity in subjective uncertainty

In this section we document the evolution of individual measures of uncertainty obtained

using our approach in the 1982-2022 sample. We do this for two reasons. First, we set the

stage for the analysis in the next section, where we study the relationship between subjective

uncertainty and ex-post forecast errors. In particular, we show that professional forecasters

differ significantly in terms of their assessment of uncertainty, and that these differences vary

over time.13 We also show that while these differences are persistent, forecasters do change

their minds from period to period about their subjective uncertainty—a variation that we

will exploit later. Second, we take advantage of our inference-based approach and test the

extent to which these differences are significant.

Figure 3 shows the evolution of subjective uncertainty by individual respondent for

output growth (top) and inflation (bottom). The left and right panels display uncertainty

for the current and the next-year projections, respectively, made in the second quarter of

each year (Figures A-8 through A-10 in the appendix show that results for other quarters are

similar in terms of the features discussed in this section). In each panel, the crosses indicate

the posterior mean of the standard deviation of the individual predictive distribution. We

use the standard deviation (as opposed to the variance) because its units are easily grasped

quantitatively and are comparable with alternative measures of uncertainty such as the

interquartile range. Thin gray lines connect the crosses across periods when the respondent is

the same, providing information as to whether respondents change their view on uncertainty

and whether the composition of the panel affects the cross-sectional average measure of

13Heterogeneity in macroeconomic probabilistic forecasts was noted long ago. While much of the early lit-

erature focused on disagreement in point projections or central tendencies (see Mankiw et al., 2003; Capistrán

and Timmermann, 2009; Patton and Timmermann, 2010, 2011; Andrade and Le Bihan, 2013; and other work

mentioned in the recent survey by Clements et al., 2023), more recent work documents the fact that fore-

casters disagree about uncertainty and that these differences are long-lasting (Lahiri and Liu, 2006; D’Amico

and Orphanides, 2008; Bruine De Bruin et al., 2011; Boero et al., 2014; Rich and Tracy, 2021, among oth-

ers). Kozeniauskas et al., 2018, discuss the conceptual differences between macroeconomic uncertainty and

disagreement using a model where forecasters have private information and update their beliefs using Bayes

law.
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uncertainty, which is shown by a black dashed line (Manski, 2018, stresses the extent to

which the literature has often ignored compositional changes when discussing the evolution of

consensus or average measures). Figure 4 provides a time series of the differences in individual

uncertainty, as measured by the cross-sectional standard deviation of the individual standard

deviations. The solid black line displays the posterior mean of this measure, while the shaded

areas represent the 90 percent posterior coverage.

Figure 3 shows that, on average, uncertainty for current-year output growth projections

declined from the 1980s to the early 1990s, likely reflecting a gradual learning about the

Great Moderation, and then remained fairly constant up to 2020, when the Covid pandemic

struck and average uncertainty grew threefold. Average uncertainty for next-year projections

tends to be higher than for current-year projections. It follows a similar pattern, except that

it displays a small but very steady upward shift in the aftermath of the Great Recession.

It appears unlikely that changes in survey design, and particularly in the bins, affect these

patterns: for output growth, these changes take place in 1992, 2009, and 2020. Except

for 2020, where much of the change in uncertainty is arguably attributed to Covid, there

are no evident breaks associated with the bin changes. Interestingly, we do not see any

upticks in average subjective uncertainty in the run-up to recessions, even for current-year

forecasts, with the exception of the Covid crisis. We obtain very similar results if we use

the interquantile range to measure uncertainty (Figure A-11). Using the generalized beta

approach to fit histograms (Figure A-12) also produces similar overall patterns, although

this approach leads to lower estimates of subjective uncertainty relative to our approach.

Cross-sectional differences in individual uncertainty are very large and quantitatively

trump any time variation in average uncertainty. The standard deviation of low-uncertainty

individuals remains below one throughout the sample, with the sole exception of the Covid

period, while that of high uncertainty individuals is often higher than two. More formally,

the cross-sectional standard deviation of individual standard deviations, shown in Figure 4,

hovers between 0.4 and 0.8 throughout the sample and then jumps during the Covid period.

The cross-sectional standard deviation is quite tightly estimated, indicating that differences

across individuals are significant. The level and the dispersion of uncertainty appear to be

linked, in that the cross-sectional standard deviation of uncertainty is high when the aver-

age uncertainty is high. From Figure 3, this result seems due to the fact that it is mostly

high-uncertainty respondents who change their minds about the confidence in their projec-

tions, thereby driving both the average and the cross-sectional standard deviations. While

differences in subjective uncertainty are persistent, forecasters do revise their assessment of
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For inflation, cross-sectional differences in individual uncertainty are also very large. The

cross-sectional standard deviation of individual standard deviations (Figure 4) follows the

same pattern of the average standard deviation: it starts around 0.6 percent in the 1980s,

drops to around 0.4 percent in the 1990s, and then drops a bit further in the 2010s. This

measure of cross-sectional heterogeneity in uncertainty is tightly estimated and its fluctua-

tions are statistically significant. As was the case for output, high-uncertainty respondents

becoming less uncertain are mostly driving both the average and the cross-sectional standard

deviations.

III.C Subjective uncertainty and forecast accuracy: Testing the

noisy rational expectations hypothesis for density forecasts

In this section we use our approach to assess whether SPF predictive densities conform with

the noisy RE hypothesis (see Coibion and Gorodnichenko, 2012, 2015, among many other

references). According to this hypothesis, forecasters receive both public and private signals

about the state of the economy, which they do not observe. Heterogeneity in the signals,

and in their precision, explains the heterogeneity in both mean predictions Et−q,i[yt] and in

their subjective uncertainty σ2
t|t−q,i = Et−q,i[(yt−Et−q,i[yt])2], where i denotes the forecaster,

q the horizon of the forecast, and Et−q,i[·] is the expectation operator under forecaster i’s

information set at time t−q. In the time series, changes in the precision of either the private

or public signals—the latter due, say, to changes in policy or the structure of the economy, a

recession approaching, or some other major event like Covid-19—will be reflected in σ2
t|t−q,i.

In the cross-section, if forecaster i has a more precise signal than forecaster j, then σ2
t|t−q,i

ought to be lower than σ2
t|t−q,j. We have seen in the previous section that σ2

t|t−q,i varies

substantially both over time and in the cross-section.

We assess the noisy RE hypothesis using three types of tests—the first two concerning

the scale of the forecasters’ predictive distribution, and the last concerning its location. The

first two tests are based on the idea that if expectations are rational there needs to be

a correspondence between the subjective uncertainty σt|t−q,i and the ex-post forecast error

|yt − Et−q,i[yt]|. Define

ηi,t|t−q = (yt − Et−q,i[yt])/σt|t−q,i, (14)

the standardized forecast error. Under RE (that is, if the predictive distribution is consistent

with the data-generating process for yt) it has to be the case that

E[η2
i,t|t−q] = 1. (15)
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We will test whether η2
i,t|t−q = (yt − Et−q,i[yt])2/σ2

t|t−q,i, is equal to 1 on average, and refer

to this test as a scale test. Next, taking logs of the absolute value of both sides of equation

(14) we obtain

ln |yt − Et−q,i[yt]| = lnσt|t−q,i + ln |ηi,t|t−q|. (16)

By regressing ln |yt − Et−q,i[yt]| on ln σt|t−q,i we will test whether absolute forecast error

changes proportionally to the subjective uncertainty both in the time series and in the cross-

section. We refer to this test as a variation test. While both tests hinge on RE, they are

different. The scale test tells us whether subjective distributions are properly scaled on

average, while the variation test inquires whether variations in subjective uncertainty map

into variations in forecast errors. Aside from testing the noisy RE hypothesis, this latter

test is interesting in itself, as it sheds light on the relationship between the ex-ante uncer-

tainty expressed by survey respondents and their ex-post ability to predict macroeconomic

outcomes, both in the time series and in the cross-section.

Finally, under RE it has to be the case that the mean projection Et−q,i[yt] leads to smaller

forecast errors on average than any other forecast. This is because the mean projection

minimizes the expected squared forecast error under Et−q,i[·] and therefore, under RE, under

the unconditional expectation E[·] as well:

E[(yt − Et−q,i[yt])2] ≤ E[(yt − yppt,t−q,i)2] for any yppt,t−q,i. (17)

We refer to this test as a location test, as it assesses whether the predictive densities’ mean

fulfills its properties under RE. A strand of literature has investigated whether point forecasts

coincide with means and, to the extent that they do not, whether this reflects a forecaster’s

loss function that is not quadratic (e.g., Engelberg et al., 2009; Clements, 2010; Elliott et

al., 2008; Patton and Timmermann, 2007). Our test is based on the notion that regardless

of the forecaster’s loss function, the mean better minimize the square loss if forecasters are

rational.14

III.C.1 A scale test: Do forecasters over or underestimate uncertainty?

We can assess the hypothesis in (15) by testing whether αq = 1 in the panel regression

(yt − Et−q,i[yt])2/σ2
t|t−q,i = αq + εt,i,q, t = 1, ..., T, i = 1, ..., n, (18)

14Another strand of the literature (e.g., Ganics et al., 2023, and references therein) has used probabilis-

tic SPF predictions to guide model-based density forecasts, but this literature almost exclusively uses the

consensus SPF predictions.
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The benefit of running a panel regression as in (18) is twofold, compared to a forecaster-

by-forecaster analysis. First, we obtain quantitative estimates of the average degree of

over/underconfidence that are not marred by the small-sample problem affecting individ-

ual forecasters’ regressions. Second, different from previous work this regression provides an

explicit test of the RE hypothesis for SPF density forecasts, in line with the recent literature

testing RE for point forecasts (e.g., Bordalo et al., 2020).17 This test for instance reveals

that the view that forecasters are overconfident about inflation is questionable, even for long

horizons. Also, previous literature mostly used point forecasts, while of course under RE

equation (15) holds for the mean, but not necessarily for the point forecast if this differs from

the mean (Figure A-17 shows that the results for the point forecasts are not very different at

long horizons, but can be quite different at short horizons). Finally, Figure 6 shows that it

makes a big difference whether one uses the posterior mean of σ2
t|t−q,i from our approach or

that obtained from fitting a generalized beta distribution, especially at long horizons where

forecasters place more probability on the open bins.18

III.C.2 A variation test: Do differences in subjective uncertainty over time or

across forecasters map into differences in forecast accuracy?

Next, we explore a different implication of the noisy RE hypothesis: subjective uncertainty

and forecast accuracy should co-move, both across forecasters and over time (see equation

(16)). We examine this hypothesis by testing whether in the panel regression

ln |yt − Et−q,i[yt]| = β0,q + β1,q lnσt|t−q,i + εt,i,q, t = 1, ..., T, i = 1, ..., n, (19)

the coefficient β1,q is equal to one. As before, equation (19) is estimated via OLS where

Et−q,i[yt] and σt|t−q,i are measured using the posterior mean of the standard deviation esti-

mated using our approach, and Driscoll-Kraay standard errors are computed.

17The regressions in this section assume homogeneity in that they test for the average behavior of fore-

casters, again in line with the literature. An interesting research agenda, to which Clement’s work has

contributed, would be to test for, and uncover the sources of, heterogeneity among forecasters.
18Glas and Hartmann (2022) conduct Clement’s exercise by distinguishing between rounders (respondents

who round up to zero and/or to round numbers) and non-rounders. They find that rounders tend to

underestimate uncertainty, especially for long horizons, while non-rounders do not. Our approach takes

rounding explicitly into account. In fact, we find that the underestimation of uncertainty at long horizons is

about half that implied by the generalized beta approach.
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fact Figure A-20 shows that when we use the point predictions the correspondence between

subjective uncertainty and forecast error vanishes at short horizons.20

The purely cross-sectional comparison undertaken by Clements (2014) misses the time

dimension of our regression, where we investigate whether changes in subjective uncertainty

over time actually map into changes in forecasting performance. This aspect is particularly

important as it sheds light on whether forecasters correctly anticipate periods of macroeco-

nomic uncertainty. For long horizons, they clearly do not. But as the horizon gets shorter,

their assessment of uncertainty becomes more and more in line with the noisy RE model.

Last, one benefit of our approach is that we can measure inference uncertainty about

σt|t−q,i. We can therefore assess to what extent such uncertainty may be driving the results

in Figure 7. We do so by running a weighted OLS panel regression, where the weights

are inversely proportional to inference uncertainty as measured by the interquantile range

of the posterior distribution of σt|t−q,i. Figure 9 shows that the weighted OLS results are

nearly identical to the results in Figure 7, assuaging concerns of an attenuation bias driven

by inference uncertainty for long horizons. The appendix shows that the weighted results

are very similar to the unweighted ones also whenever we use fixed effects and/or different

samples.

III.C.3 A location test: The relative accuracy of mean and point predictions

Finally, we turn to the location test, where we use the point forecast as an alternative to the

mean projections in testing (17). The top panels of Figure 10 show OLS estimates of the

coefficient γq in the panel regression

ln
(yt − Et−q,i[yt])2

(yt − yppt,t−q,i)2
= γq + εt,i,q, t = 1, ..., T, i = 1, ..., n, (20)

where yppt,t−q,i is the point forecast for yt made by forecaster i in period t− q. Estimates of γq

significantly greater than zero indicate that, on average, mean projections fare worse than

point forecasts in terms of mean squared error. In fact, these estimates can be interpreted

as the percentage improvement/worsening in forecast accuracy for point forecasts relative to

mean projections.

20Figure A-21 shows that with time-fixed effects most coefficients are not significantly different from 0 for

point forecasts. Figure A-22 shows the results obtained using the generalized beta approach, which have the

same pattern as those shown in Figure 7 but are quantitatively different for short horizons.
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For horizons longer than one year, estimates of γq are not significantly different from zero

for output growth and only slightly positive for inflation. This result may partly reflect the

fact that, for these horizons, point and mean predictions are not very different (see Engelberg

et al., 2009). As the horizon gets shorter, the estimates tend to become much larger and

significantly positive for both output growth and inflation. The result that point forecasts

perform better than mean forecasts in terms of mean squared error for short horizons is not

new to the literature: Clements (2010) reports mean squared forecast errors for horizons

shorter than one year and finds that these are lower for point than for mean projections. As

in Clements (2010), we interpret these results explicitly as an indirect test of the rationality

of density projections: under RE, it better be that the mean of the predictive distribution

produces a lower mean squared error than any other point prediction regardless of the fore-

casters’ loss function. The fact that for short horizons this is clearly not the case casts some

doubt on explanations for the divergence between mean and point forecasts that rely on the

forecasters’ loss function (e.g., Patton and Timmermann, 2007; Elliott et al., 2008; Lahiri

and Liu, 2009).

As a further test of the rationality of mean projections, we also run the Fair and Shiller

(1990) regression

yt = δ0,q + δ1,qEt−q,i[yt] + δ2,qy
pp
t,t−q,i + εt,i,q, t = 1, ..., T, i = 1, ..., n. (21)

The rationality of density projections would imply δ0,q = 0, δ1,q = 1, and δ2,q = 0. If point

projections yppt,t−q,i coincide with mean forecasts, then the two regressors are collinear. The

middle panels of Figure 10 report estimates of δ1,q (black crosses) and δ2,q (gray diamonds) for

different horizons q, while the bottom panels report estimates for the constant δ0,q. Estimates

of δ1,q are significantly below 1 for all horizons, for both output and inflation. Estimates

for the constant are significantly different from zero for long horizons for inflation, but only

for q = 8 for output. As the horizon shortens, estimates for the constant become closer to

0 for both output and inflation, but estimates of δ2,q rise toward 1 while estimates of δ1,q

fall to zero, indicating that point predictions are much closer to actual outcomes than mean

forecasts.

III.C.4 Summing up: Are SPF density forecasts consistent with the noisy ra-

tional expectation hypothesis?

The body of evidence collected in this section suggests that the answer is no, in line with the

results of the literature using only point forecasts (e.g., Bordalo et al., 2020; Angeletos et al.,
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2021).21 The evidence from second moments indicates that deviations from rationality are

especially strong for longer horizon forecasts: 1) forecasters tend to be overconfident, and

2) there is little relationship between differences in subjective uncertainty across forecasters

and over time and differences in forecasting performance. If the first finding comes with the

caveat that the degree of overconfidence is very imprecisely estimated, especially for inflation,

the second finding is statistically significant for both output and inflation. For short horizons,

there is (almost) a one-to-one mapping between subjective and ex-post uncertainty, across

forecasters and over time and for both variables, in accordance with the noisy RE hypothesis.

Density forecasts are slightly underconfident for both output growth and inflation, however.

But while the second moments of the density projections broadly line up with theory at

short horizons, the first moments do not: mean projections deliver higher mean squared

errors than point projections.

Our evidence that deviations from rationality vary with the horizon echoes the findings

of some of the literature using point forecasts.22 Angeletos et al. (2021), for instance, argue

that forecasters overreact to shocks in the sense that they overestimate their persistence.

This overreaction over longer horizons is arguably consistent with the results in Figure 7: a

change in the perceived variance of shocks, over time and/or across forecasters, leads to a

correct assessment of the change in subjective uncertainty in the short run, but a spurious

change in subjective uncertainty as the horizon increases since forecasters tend to exaggerate

the effect of this change. This longer-run overreaction may seem at odds with our finding

that forecasters are overconfident for long horizons (Figure 5), however: if the forecasters’

perceived response of the economy to future shocks is stronger than the actual response, one

would expect them to overestimate uncertainty, which is the opposite of what we find. But

uncertainty is due not only to the effect of shocks but also to model/parameter uncertainty.

If forecasters use the incorrect model/parameter values but fail to recognize the impact of

model/parameter uncertainty, they ignore the effect of the bias induced by misspecification

on their forecast accuracy. The fact that this bias increases with the horizon, as shown in

Figure 10, can therefore reconcile our findings with the theory and the evidence in Angeletos

21Valchev and Gemmi (2023) contend that deviations from rationality for point forecasts are due to

strategic incentives rather than lack of rationality. Arguably the case for strategic incentives is harder to

make for density forecasts, since these are anonymous, are not part of any public competition (e.g., Blue

Chip), and are more difficult to rank.
22A small but interesting survey conducted by the Philadelphia Fed (Stark, 2013) indicates that SPF

respondents use a combination of models and judgment to produce forecasts, but rely more on the former

for short horizon projections and vice versa for longer horizon ones.
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et al. (2021).

Patton and Timmermann (2010) show that dispersion in point forecasts increases with

the horizon and argue that this result is consistent with a framework where forecasters

have not only different information sets but also different priors and these priors matter

more for longer horizons. Their evidence for point projections complements our finding that

differences in density forecasts across forecasters and over time cannot be explained only by

differences in the information set, especially for longer horizons.

III.C.5 Robustness

The consistency results of section II.E do not imply that our results are invariant to the

choice of priors and functional forms given that our sample is finite and these results do not

apply to some of the objects of interest. In the appendix we therefore reproduce all the figures

in the paper under three different robustness checks: 1) halving the a priori noise, including

the likelihood of reporting zeros (section E.A); 2) doubling the a priori noise, including the

likelihood of reporting zeros (section E.B); and 3) using a mixture of three normals as our

parametric choice for the F (·) function (section E.C), as opposed to a mixture of two as in

our baseline results. We find that the main results in the paper—and in particular those

pertaining to the degree on over- and underconfidence and the estimates for the variation

test—are broadly robust, even though the inference for specific forecasters changes relative

to our baseline assumptions (e.g., inference for the forecaster placing 80 percent mass on the

open bin in Figure 2). Finally, section E.D shows the results under outlier Winsorization

to make sure they are not driven by outliers. These results are virtually identical to those

reported in the main text.

IV Conclusions

In this paper we presented a novel approach for conducting inference on data from proba-

bilistic surveys and used it to investigate whether U.S. Survey of Professional Forecasters

density projections for output growth and inflation are consistent with the noisy rational

expectations hypothesis. We find that for horizons of close to two years there is no corre-

spondence between subjective uncertainty and forecast accuracy for output growth density

projections, both across forecasters and over time, and only a mild correspondence for infla-

tion projections, in contrast to what rational expectations would predict. As the horizons
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shorten, the relationship becomes one-to-one, in accordance with the theory. We also find

that forecasters tend to be overconfident for long horizons, but underconfident for short

horizons, although the RE benchmark is never rejected for inflation.

While the inference approach we propose arguably offers several benefits relative to

current practice, it is important to point out some of its limitations. We provided consistency

results that take advantage of the nonparametric nature of the approach, but these only apply

to the model as a data-generating process for the data that we observe—the bin probabilities.

Consistency results for the underlying continuous predictive densities are only available in

the unrealistic case that the number of bins goes to infinity and the bin width goes to zero.

When these conditions are not met, the results obtained with our approach may be sensitive

to the choice of the base function and of priors, even when the number of forecasters goes

to infinity. In addition, the approach proposed in this paper deals with one survey (one

cross-section) and one forecast variable at the time. It would be interesting to extend the

approach to a panel context, which would permit joint inference across surveys for any object

of interest. We leave this extension to future research. Our tests of rationality for density

forecasts also call for further work. Our findings speak to the average behavior of forecasters,

in the spirit of much of the literature using point forecasts, but are silent on many potentially

interesting sources of forecasters’ heterogeneity.
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in Rüdiger Bachmann, Giorgio Topa, and Wilbert van der Klaauw, eds., Handbook of

Economic Expectations, Academic Press, 2023, pp. 71–106.

Coibion, Olivier and Yuriy Gorodnichenko, “What can survey forecasts tell us about

information rigidities?,” Journal of Political Economy, 2012, 120 (1), 116–159.

and , “Information rigidity and the expectations formation process: A simple frame-

work and new facts,” American Economic Review, 2015, 105 (8), 2644–78.

D’Amico, Stefania and Athanasios Orphanides, “Uncertainty and disagreement in eco-

nomic forecasting,” Technical Report, Board of Governors of the Federal Reserve System

(US) 2008.

Daniel, Kent and David Hirshleifer, “Overconfident investors, predictable returns, and

excessive trading,” Journal of Economic Perspectives, 2015, 29 (4), 61–88.

Diebold, Francis X, Anthony S Tay, and Kenneth F Wallis, “Evaluating density

forecasts of inflation: the Survey of Professional Forecasters,” in R.F. Engle and H. White,

eds., Cointegration, Causality, and Forecasting: A Festschrift in Honour of Clive WJ

Granger, Oxford University Press, 1999.

Dominitz, Jeff and Charles F. Manski, “Eliciting student expectations of the returns

to schooling,” Journal of Human resources, 1996, pp. 1–26.

Driscoll, John C and Aart C Kraay, “Consistent covariance matrix estimation with

spatially dependent panel data,” Review of Economics and Statistics, 1998, 80 (4), 549–

560.

Elliott, Graham, Ivana Komunjer, and Allan Timmermann, “Biases in macroeco-

nomic forecasts: irrationality or asymmetric loss?,” Journal of the European Economic

Association, 2008, 6 (1), 122–157.



39

Engelberg, Joseph, Charles F. Manski, and Jared Williams, “Comparing the point

predictions and subjective probability distributions of professional forecasters,” Journal

of Business & Economic Statistics, 2009, 27 (1), 30–41.

Fair, Ray C and Robert J Shiller, “Comparing information in forecasts from econometric

models,” The American Economic Review, 1990, pp. 375–389.

Ferguson, T. S., “A Bayesian analysis of some nonparametric problems,” Annals of Statis-

tics, 1973, 1, 209–230.

Ganics, Gergely, Barbara Rossi, and Tatevik Sekhposyan, “From Fixed-Event to

Fixed-Horizon Density Forecasts: Obtaining Measures of Multihorizon Uncertainty from

Survey Density Forecasts,” Journal of Money, Credit and Banking, 2020.

, Elmar Mertens, and Todd E Clark, “What Is the Predictive Value of SPF Point

and Density Forecasts?,” 2023.

Ghosh, J. K. and R. V. Ramamoorthi, Bayesian nonparametrics Springer Series in

Statistics, Springer-Verlag, New York, 2003.

Ghoshal, S., J. K. Gosh, and R. V. Ramamoorthi, “Consistent semiparametric

Bayesian inference about a location parameter,” Journal of Statistical Planning and In-

ference, 1999, 77 (2), 181–193.

Giordani, Paolo and Paul Soderlind, “Inflation forecast uncertainty,” European Eco-

nomic Review, 2003, 47, 1037–1059.

Giustinelli, Pamela, Charles F. Manski, and Francesca Molinari, “Tail and center

rounding of probabilistic expectations in the health and retirement study,” Journal of

Econometrics, 2020.

Glas, Alexander and Matthias Hartmann, “Uncertainty Measures from Partially

Rounded Probabilistic Forecast Surveys,” Quantitative Economics, 2022, 13, 979 – 1022.

Griffin, Jim E., “Inference in infinite superpositions of non-Gaussian Ornstein–Uhlenbeck

processes using Bayesian nonparametic methods,” Journal of Financial Econometrics,

2011, 9 (3), 519–549.

and Mark F.J. Steel, “Semiparametric Bayesian inference for stochastic frontier mod-

els,” Journal of Econometrics, 2004, 123 (1), 121–152.



40

, Fernando Quintana, and Mark F.J. Steel, “Flexible and Nonparametric Model-

ing,” in John Geweke, Gary Koop, and Herman K. van Dijk, eds., Handbook of Bayesian

Econometrics, Oxford University Press, 2011.

Gu, Jiaying and Roger Koenker, “Unobserved heterogeneity in income dynamics: An

empirical Bayes perspective,” Journal of Business & Economic Statistics, 2017, 35 (1),

1–16.

Hirano, Keisuke, “Semiparametric Bayesian Inference in Autoregressive Panel Data Mod-

els,” Econometrica, 2002, 70, 781–799.

Jensen, Mark J. and John M. Maheu, “Bayesian semiparametric stochastic volatility

modeling,” Journal of Econometrics, 2010, 157 (2), 306–316.

Kalli, Maria, Jim E. Griffin, and Stephen G. Walker, “Slice sampling mixture mod-

els,” Statistics and Computing, 2011, 21, 93–105.

Kozeniauskas, Nicholas, Anna Orlik, and Laura Veldkamp, “What are uncertainty

shocks?,” Journal of Monetary Economics, 2018, 100, 1–15.

Lahiri, Kajal and Fushang Liu, “Modelling multi-period inflation uncertainty using a

panel of density forecasts,” Journal of Applied Econometrics, 2006, 21 (8), 1199–1219.

and , “On the use of density forecasts to identify asymmetry in forecasters’ loss func-

tion,” Business avd Economic Statistics Section-JSM, 2009, pp. 2396–2408.

Liu, Laura, “Density forecasts in panel data models: A semiparametric Bayesian perspec-

tive,” Journal of Business & Economic Statistics, 2023, (41), 349–363.

Liu, Yang and Xuguang Simon Sheng, “The measurement and transmission of macroe-

conomic uncertainty: Evidence from the U.S. and BRIC countries,” International Journal

of Forecasting, 2019, 35 (3), 967–979.

Malmendier, Ulrike and Timothy Taylor, “On the verges of overconfidence,” Journal

of Economic Perspectives, 2015, 29 (4), 3–8.

Mankiw, N Gregory, Ricardo Reis, and Justin Wolfers, “Disagreement about infla-

tion expectations,” NBER macroeconomics annual, 2003, 18, 209–248.

Manski, Charles F., “Measuring expectations,” Econometrica, 2004, 72 (5), 1329–1376.



41

, “Interpreting and combining heterogeneous survey forecasts,” in Michael P. Clements and

D. F. Hendry, eds., Oxford Handbook of Economic Forecasting, Vol. 85, Oxford University

Press, 2011, pp. 457–472.

, “Survey measurement of probabilistic macroeconomic expectations: progress and

promise,” NBER Macroeconomics Annual, 2018, 32 (1), 411–471.

and Francesca Molinari, “Rounding probabilistic expectations in surveys,” Journal of

Business & Economic Statistics, 2010, 28 (2), 219–231.

Norets, Andriy and Justinas Pelenis, “Bayesian modeling of joint and conditional dis-

tributions,” Journal of Econometrics, 2012, 168 (332-346).

and , “Posterior consistency in conditional density estimation by covariate dependent

mixtures.,” Econometric Theory, 2014, 30 (3), 606–646.

Patton, Andrew J and Allan Timmermann, “Properties of optimal forecasts under

asymmetric loss and nonlinearity,” Journal of Econometrics, 2007, 140 (2), 884–918.

and , “Why do forecasters disagree? Lessons from the term structure of cross-sectional

dispersion,” Journal of Monetary Economics, 2010, 57 (7), 803–820.

and , “Predictability of output growth and inflation: A multi-horizon survey approach,”

Journal of Business & Economic Statistics, 2011, 29 (3), 397–410.

Pelenis, Justinas, “Bayesian regression with heteroscedastic error density and parametric

mean function,” Journal of Econometrics, 2014, 178, 624–638.

Pitman, Jim, Combinatorial Stochastic Processes, Vol. 1875, Springer-Verlag, 2006.

Potter, Simon, “The advantages of probabilistic survey questions: remarks at the IT Forum

and RCEA Bayesian Workshop, keynote address, Rimini, Italy, May 2016,” Technical

Report, Federal Reserve Bank of New York 2016.

Rich, Robert and Joseph Tracy, “A closer look at the behavior of uncertainty and

disagreement: Micro evidence from the euro area,” Journal of Money, Credit and Banking,

2021, 53 (1), 233–253.

Rossi, Barbara and Tatevik Sekhposyan, “Macroeconomic Uncertainty Indices Based

on Nowcast and Forecast Error Distributions,” American Economic Review, May 2015,

105 (5), 650–55.



42

and , “Alternative tests for correct specification of conditional predictive densities,”

Journal of Econometrics, 2019, 208 (2), 638–657.

Sethuraman, Jayaram, “A constructive definition of Dirichlet priors,” Statistica Sinica,

1994, 4, 639–650.

Shoja, Mehdi and Ehsan S Soofi, “Uncertainty, information, and disagreement of eco-

nomic forecasters,” Econometric Reviews, 2017, 36 (6-9), 796–817.

Stark, Tom, “SPF panelists forecasting methods: A note on the aggregate results of a

November 2009 special survey,” Federal Reserve Bank of Philadelphia, 2013.

Valchev, Rosen and Luca Gemmi, “Biased Surveys,” Technical Report, National Bureau

of Economic Research 2023.

Walker, Stephen G., “Sampling the Dirichlet mixture model with slices,” Communications

in Statistics – Simulation and Computation, 2007, 36, 45–54.

Wu, Yuefeng and Subhashis Ghosal, “Correction to: “Kullback Leibler property of

kernel mixture priors in Bayesian density estimation”,” Electron. J. Stat., 2009, 3, 316–

317.

and , “Kullback Leibler property of kernel mixture priors in Bayesian density estima-

tion,” Electron. J. Stat., 2009, 2, 298–331.

Zadora, G., T. Neocleous, and Aitken C., “A Two-Level Model for Evidence Evaluation

in the Presence of Zeros,” Journal of Forensic Sciences, 2010, 55 (2), 371–384.

Zarnowitz, Victor and Louis A. Lambros, “Consensus and Uncertainty in Economic

Prediction,” Journal of Political Economy, 1987, (95), 591 – 621.



Online Appendix A-1

Appendix

A Data description

We focus on the Survey of Professional Forecasters, managed since 1992 by the Federal

Reserve Bank of Philadelphia, and previously by the American Statistical Association and

the National Bureau of Economic Research. The panel of forecasters include university

professors and private-sector macroeconomic researchers, and the composition of the panel

changes gradually over time. The survey, which is performed quarterly, is mailed to panel

members the day after the government release of quarterly data on the national income and

product accounts. We restrict our attention to the two variables for which the SPF has

probabilistic questions for a long enough time span, namely year-over-year GDP growth and

GDP deflator inflation for the current and the following year over the sample 1982Q1-2022Q4.

B The Gibbs Sampler

The infinite mixture model is

hG(z) =

∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θ∗k). (A-1)

Our Gibbs sampler applied to the cross section of zi, i = 1, . . . , n uses the convenient

approach proposed by Walker (2007) and Kalli et al. (2011). For each forecaster i, conditional

on the sequence of weights wk’s (w1:∞) and the sequence of atoms θ∗k’s (θ1:∞), expression

(A-1) can be written as the marginal distribution of

h(zi, ui|w1:∞,θ
∗
1:∞) =

∞∑
k=1

I(ui < wk)h(zi|θ∗k) (A-2)

with respect to ui, where ui is uniformly distributed over the interval [0, 1], and independent

across i, and I(·) is an indicator function. This implies that the conditional distribution of

zi given ui, the weights and the atoms, is

h(zi|ui, w1:∞,θ
∗
1:∞) =

1

h(ui|w1:∞)

∑
k∈A(ui|w1:∞)

h(zi|θ∗k), (A-3)
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where the set A(ui|w1:∞) includes all the atoms with a weight wk larger than ui (A(ui|w1:∞) =

{k : ui < wk}), and the marginal h(ui|w1:∞) =
+∞∑
k=1

I(ui < wk) since each h(·|θ∗k) integrates

to one. Unlike expression (A-1), expression (A-3) is a finite mixture where each component

has probability
1

h(ui|w1:∞)
, which is straightforward to draw from using standard methods.

Specifically, we will use the auxiliary indicators di’s, which are equal to k if we draw from

the kth mixture component (note that, given ui, the kth component will only be drawn if it

belongs to the set A(ui|w1:∞)). The resulting complete-data likelihood function is

L(z1:n|u1:n, d1:n, v1:∞,θ1:∞) =
n∏
i=1

I{ui<wdi
}h(zi|θ∗di) (A-4)

with di ∈ {k : ui < wk}, where v1:∞ is the infinite dimensional sequence containing the

stick-breaking components which map into the weights via expression (10).

Let Dk = {i : di = k} denote the set of indexes of the observations allocated to the

k-th component of the mixture. Let D = {k : Dk 6= ∅} denote the set of indexes of the

non-empty mixture components (in the sense that at least one i is using the kth component)

and d̄ = maxD the overall number of stick-breaking components used. The Gibbs sampler

works as follows:

1. v1:∞, u1:n|d1:n,θ
∗
1:∞, ψ, z1:n.

Call v1:d̄ the stick-breaking elements associated with the mixture components that are

being used (conditional on d1:n). Following Kalli et al. (2011), drawing from the joint

posterior of v1:d̄, vd̄+1:∞, and u1:n, conditional on all other parameters, is accomplished

by sampling sequentially from: (a) the marginal distribution of v1:d̄, (b) the conditional

distribution of u1:n given v1:d̄, and (c) from the conditional distribution of vd̄+1:∞ given

u1:n and v1:d̄.

(a) v1:d̄|d1:n,θ
∗
1:∞, ψ, z1:n.

After integrating out the ui’s, the posterior of v1:∞ is proportional to

p(v1:∞|d1:n,θ
∗
1:∞, ψ, z1:n) ∝

(
n∏
i=1

wdih(zi|θ∗di)

)(
∞∏
l=1

(1− vl)ψ−1

)

∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi|θ∗di)

)(
∞∏
l=1

(1− vl)ψ−1

)
.
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Now note that since vd̄+1:∞ do not enter the likelihood (A-4) – that is, the term

within the first parenthesis – they can be easily integrated out resulting in

p(v1:d̄|d1:n,θ
∗
1:∞, ψ, z1:n) ∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi|θ∗di)

)(
d̄∏
l=1

(1− vl)ψ−1

)
.

Therefore samples for v1:d̄ are obtained by drawing each vk independently from

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ+bk−1vakk (A-5)

where ak =
n∑
i=1

I(di = k) and bk =
n∑
i=1

I(di > k), that is, vk is drawn from a

Beta(ak + 1, bk + ψ).

(b) u1:n|v1:d̄, d1:n,θ
∗
1:∞, ψ, z1:n.

The likelihood (A-4), seen as a function of each ui, i = 1, . . . , n, is simply a

uniform distribution over [0, wdi ]. Hence

π(ui| . . . ) ∝
1

wdi
I(ui < wdi). (A-6)

(c) vd̄+1:∞|u1:n, v1:d̄, d1:n,θ
∗
1:∞, ψ, z1:n.

Again, vd̄+1:∞ do not enter the likelihood (A-4), so samples from those vk with

k > d̄ are simply obtained by drawing from the prior Beta(1, ψ):

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ−1. (A-7)

Of course, even if it is straightforward to execute, we do not want to generate an

infinite number of draws. Fortunately we do not need to, as explained in Walker

(2007). Inspection of (A-4) reveals that those mixtures for which wk < ui will

never be used, at least given the draw for ui. Let n̄i the smallest integer such that
n̄i∑
k=1

wk ≥ 1−ui. Since by construction
∞∑
k=1

wk = 1, it must be that
∞∑
n̄i+1

wk < ui and

therefore, a fortiori, wk < ui for k > n̄i. Now define n̄ = max{n̄i, i = 1, . . . , n}.
Conditional on u1:n, at most we will use n̄ mixture components in the estimation.

Hence we only need to draw vd̄+1:n̄.

2. θ∗1:∞|v1:∞, u1:n, d1:n, ψ, z1:n.

For the same argument given above, we actually do not have to draw an infinite number

of atoms, but only as many as they may possibly be used (at least given the current

draw of u1:n) – that is, at most n̄. Note also that given the way the ui’s are drawn

(from a uniform distribution over [0, wdi ]), if k ∈ D then k ≤ n̄.
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(a) For k ∈ D draws of θ∗k are obtained from

π(θ∗k| . . . ) ∝

(∏
i∈Dk

h(zi|θ∗k)

)
G0(θ∗k). (A-8)

Since the joint distribution is not tractable, samples have been generated by

Adaptive Metropolis Hastings (AMH) proposed in Andrieu and Thoms (2008).

More specifically, at the j-th iteration of the AMH for a parameter θ∗ of dimension

p the proposal distribution is

θnew ∼ N (θ(j−1)∗ ,Υ(j)) (A-9)

with covariance matrix Υ(j) = exp{ξ(j)}Ip where ξ(j) is adapted over the iterations

as follows

ξ(j) = ξ(j−1) + γ(j)(α̂(j−1) − ᾱ), (A-10)

where ᾱ = 0.3 represents the desired level of acceptance probability, and α̂(j−1) is

the previous iteration estimate of the acceptance probability (i.e. the acceptance

rate). The diminishing adaptation condition is satisfied by choosing γ(j) = j(−a).

In the application we set a = 0.7.

(b) For k /∈ D, k ≤ n̄ draws of θ∗k are obtained via independent sampling from the

base measure G0.

We therefore obtained a sequence of draws θ∗1:n̄, which we will use in the next Gibbs

sampler step.

3. d1:n|v1:∞, u1:n,θ
∗
1:∞, ψ, z1:n

Draws for each di, i = 1, . . . , n, are obtained by sampling from a multinomial with

weights proportional to

π(di| . . . ) ∝ I(ui < wdi)h(zi|θ∗di) (A-11)

with di ∈ {1, . . . , n̄i}. Note that in this draw we consider all possible mixture compo-

nents from 1 to n̄i, not only those used so far (that is, those in D). They will be drawn

proportionally to their ability to fit of the data, as measured by h(zi|θ∗k).
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C Theoretical results

In this Section we discuss various theoretical properties of our model. Subsection C.A devel-

ops in details the study of posterior consistency briefly discussed in Section II.E of the main

text. Among other results, it contains a full derivation of Theorem 1 given in the main text,

restated below as Theorem A.1 for the readers’ convenience. Subsection C.B considers the

behaviour of the model as the number of bins goes to infinity. Subsection C.C deals with

the posterior consistency of the consensus distribution. Finally, Subsection C.D contains all

the proofs.

In the main text, the vector θ = (µ, µδ, σ1, σ2, ω, φ, ε) represents the collection of the

model parameters. The sub-vector (µ, µδ, σ1, σ2, ω) is used to parametrize F (·|θ), φ controls

the Dirichlet noise in (6) and ε drives the zero-bin probability, %j(θ) = %(νj(θ), ε) for j =

1, . . . , J . In what follows, we do not necessarily assume that F (·|θ) is a mixture of two

Gaussian distributions nor we assume that %(θ) has the specific form given in (7). In the

subsequent sections of the appendix, we address a more general scenario where θ ∈ Θ ⊂
Rm, and both F (·|θ) and %j(θ) represent general continuous functions with respect to the

parameter θ. We also allow φ(θ) to be a continuous function of θ, writing φ(θ). To revert

to the case discussed in the main text, it suffices to incorporate φ(θ) in θ and set φ(θ) = φ.

Let us recall that we consider the non parametric prior given by the random density on

z defined by

hG(z) :=

∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θ∗k) (A-12)

where G ∼ DP(ψ0, G0).

C.A Posterior consistency

Before stating some results on posterior consistency, let us recall the setting outlined in

Section II.E of the main text. Given a prior Π on H, the set of all possible data generat-

ing densities, the posterior Π(·|z1, ..., zn) is said to be weakly consistent at h0 if for every

i.i.d. sequence z1, ..., zn of random vectors with common density h0 the posterior probability

Π(U |z1, ..., zn) converges a.s. to 1 as n→ +∞ for every weak neighborhood U of h0. In our

model, the prior is Π(U) = P{hG ∈ U}, where hG is defined (A-12).

We now describe the class of densities H. Recall that zξ is the collection of strictly

positive elements of z and that ξ is a vector indexing these positive zj’s. The Lebesgue
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measure on the sub-set of ∆J identified by ξ is denoted by Lξ and a σ-finite measure on ∆J

can be defined as λ(dz) =
∑
ξ

Lξ(dzξ). The set of all possible data generating densities H is

the set of all the densities g(z) = g(zξ, ξ) absolutely continuous with respect to λ. Given two

densities h0 and g in H the Kullback-Leibler divergence between h0 and g is then defined as

KL(h0, g) =

∫
∆J

h0(z) log
(h0(z)

g(z)

)
λ(dz). (A-13)

Call M∗ the set of finite (but arbitrarily large) mixtures of densities (5) that define the

parametric component of our model, and H∗0 the set of densities that can be approximated

in the Kullback-Leibler sense by densities in M∗, i.e.

H∗0 = {h0 density w.r.t. λ: ∀ ε > 0 ∃ g ∈M∗ s.t. KL(h0, g) ≤ ε }.

We now state our main results, which contains Theorem 1 reported in the main text.

Theorem A.1. Assume that Θ is open subset of Rm for some m and that

θ 7→ (%1(θ), ..., %J(θ), φ(θ)ν1(θ), ..., φ(θ)νJ(θ))

is a continuous function such that φ(θ)νj(θ) > 0 and 0 < %j(θ) < 1 for every j = 1, ..., J .

If G0 has full support, then the posterior is weakly consistent at any density h0 in H∗0 such

that ∫
∆J

∣∣∣∣∣∣log

 ∏
j:zj>0

zj

∣∣∣∣∣∣h0(z)λ(dz) < +∞. (A-14)

Remark A.1. In order to obtain Theorem 1 of the main text, it suffices to take %j(θ) =

%(νj(θ), ε) for j = 1, . . . , J , %(θ) given by (7), incorporate φ(θ) in θ and set φ(θ) = φ.

If %j(θ) = 0 for j = 1, . . . , J , i.e. forecasters give non-zero probability to each bin, H
is the set densities (absolutely continuous respect to the Lebesgue measure) on ∆J , that is

with probability one zj > 0 for all j. In this case, Kullback-Leibler divergence between two

distribution h0, g on ∆J is easily defined as

KL(h0, g) :=

∫
Z
h0(z) log

(h0(z)

g(z)

)
dz.

As a variant of the main theorem, we get a simpler result for the case in which %j(θ) = 0

for all j = 1, . . . , J . In this case M∗ is replaced by the set M of finite mixtures of

h(z|θ) =

∏J
j=1 Γ(φ(θ)νj(θ))

Γ
(∑J

j=1 φ(θ)νj(θ)
) J−1∏

j=1

z
φ(θ)νj(θ)−1
j

(
1−

J−1∑
j=1

zj

)φ(θ)νJ (θ)−1

.
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and H∗0 by the set H0 of densities on ∆J that can be approximated in the Kullback-Leibler

sense by densities in M, i.e.

H0 = {h0 density on ∆J : ∀ ε > 0 ∃ g ∈M s.t. KL(h0, g) ≤ ε }.

Theorem A.2. Let Θ be an open subset of Rm for some m and %j(θ) = 0 for all j = 1, . . . , J .

Assume that θ 7→ (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ)) is a continuous function on RJ
+ such that

φ(θ)νj(θ) > 0 for every j = 1, . . . , J . If G0 has full support, then the posterior is weakly

consistent at any density h0 in H0 such that∫
∆J

∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz < +∞. (A-15)

Remark A.2. If %j(θ) = 0 for all j = 1, . . . , J , φ(θ) = φ, and a mixture of normal

distributions is assumed for the subjective distribution, that is

F (y|θ) =
M∑
i=1

ωiΦ(y|µi, σ2
i ) (A-16)

then the parameter vector is θ = (µ1, . . . , µM , σ
2
1, . . . , σ

2
M , ω1, . . . , ωM , φ). If G0 has full

support, then the posterior is weakly consistent at any h0 in H0 satisfying (A-15). Indeed,

in this case (φν1(θ), . . . , φνJ(θ)) is a continuous function on RJ
+ and φνj(θ) > 0 for every

j = 1, . . . , J .

The next Proposition gives some conditions ensuring that any continuous density func-

tion belongs to H0.

Proposition A.1. Assume %j(θ) = 0 for all j = 1, . . . , J and that θ 7→ (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ))

is a continuous function on RJ
+ such that φ(θ)νj(θ) > 0 for every j = 1, . . . , J . If for every

a = (a1, . . . , aJ) ∈ [1,+∞)J and δ > 0, there is θδ in Θ such that ‖a − aδ‖∞ ≤ δ with

aδ = φ(θδ)(ν1(θδ), . . . , νJ(θδ)), then any continuous density function on ∆J belongs to H0.

Remark A.3. Note that combining Theorem A.2 and Proposition A.1 one gets that, under

the assumptions of Proposition A.1, if G0 has full support, then the posterior is weakly

consistent at any h0 which is continuous on ∆J and satisfies (A-15). An example in which

all the conditions of Proposition A.1 are met is the fully nonparametric case

F (y|θ) =
J∑
j=1

ϕjIAj
(y) (A-17)

where Aj = [yj,+∞), j = 1, . . . , J − 1, AJ = [y+,+∞] and νj(θ) = ϕj, j = 1, . . . , J .

Conditions in Proposition A.1 are satisfied also in the Gaussian mixture case of (A-16) with

M = J − 1.
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C.B Model properties

In this section, we present some properties which illustrate the flexibility of our nonpara-

metric random histogram model. The behaviour of the model as the number of bins goes to

infinity shows that our framework is theoretically sound since it can be used to approximate

any subjective distribution when (2) holds.

Let zi, i = 1, . . . , n be i.i.d. samples from hG(z) and assume the forecasters never re-

port zero probabilities (that is %j(θ) = 0 ∀j), then in expectation zij coincides with νj(θ):

E[zij|θ] = νj(θ). Expression (A-1) then implies that the distribution of each zijwill be cen-

tered at the infinite mixture of the bin probabilities νj’s implied by each mixture component

F (·|θk):

E [zij|G] =
∞∑
k=1

wkνj(θk) =
∞∑
k=1

wk(F (yj|θk)− F (yj−1|θk)). (A-18)

We show that our random histogram (prior) model converges to an infinite dimensional

(prior) model approximating any subjective distribution in the topology of weak convergence.

This flexibility implies that the nonparametric prior alleviates possible misspecification is-

sues.

Introduce a latent Dirichlet process Zi,∞(·)|θi ∼ DP(φ(θi), F (·|θi)) with parameters

φ(θi) and F (·|θi), given θi fromG. This process defines a random measure on the observation

space Y of the variable of interest (inflation), that is the support set of the subjective

distribution F (·|θ), and admits the equivalent stick breaking representation

Zi∞(y) =
∞∑
j=1

wijI{yij ≤ y} (A-19)

where yij j = 1, 2, . . . are i.i.d. random variables with common distribution F (·|θi) and wij

j = 1, 2, . . . are obtained by using a sequence of i.i.d. Be(1, φ(θi)) random variables.

Proposition A.2. If %j(θ) = 0 for j = 1, . . . , J , the Bayesian model

zi|G
ind∼ hG(z), i = 1, . . . , n

G ∼ DP(ψ,G0)

where zi = (zi1, . . . , ziJ) admits the following stochastic representation:

(zi1, . . . , ziJ) := (Zi,∞(y1), Zi,∞(y2)− Zi,∞(y1), . . . , 1− Zi,∞(yJ−1)), i = 1, . . . , n

Zi,∞
ind∼ DP(φ(θi), F (·|θi)), i = 1, . . . , n

θi
i.i.d.∼ G i = 1, . . . , n

G ∼ DP(ψ,G0).
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The previous Proposition suggests the following interpretation: given the true subjective

probability distribution F (·|θi) of the i-th forecaster and its level of noise φ(θi), the forecaster

reports the weights (zi1, . . . , ziJ) corresponding to the increments of a “noisy” version Zi,∞ of

F (·|θi). This “noisy” version is the CDF obtained by a Dirichlet process with base measure

F (·|θi) and concentration parameter φ(θi).

By (A-19), the latent Dirichlet process Zi,∞ is a random discrete CDF with infinite

number of discontinuity points. To exemplify we depict Zi,∞ by the red stepwise line in

Figure A-1. Despite of its discreteness, the process Zi,∞ ensures that our prior model gives

positive probability to any weak neighbourhood of any distribution defined on the support set

of F (·|θi). A combination of Proposition A.2 and Theorem 3.2.4 of Ghosh and Ramamoorthi

(2003) gives the following result.

Corollary A.1. Assume that Y ⊂ R is the support set of F (·|θ) for any θ. Let F (·) be

a distribution function with support subset of Y , then P ({Zi,∞ ∈ UF}) > 0 for any weak

neighbourhood UF of F (·).

The random process Zi∞ can be seen as the limit of the histograms zi when the number of

bins goes to infinity. To show this formally, we associate the random histogram zi to a random

CDF ZiJ . For any J we consider the partition PJ = {yJ0 = −∞ < yJ1 < . . . < yJJ = +∞}
and define the following one-to-one mapping between zi and the CDF ZiJ . Without loss

of generality, we assign to the middle point of each interval the bin probability mass, and

account for the two open bins (first and last) by introducing two auxiliary points yJ−, y
J
+,

such that −∞ < yJ− < y1 < yJ−1 < yJ+ < +∞. With this position we define the process

Zi,J(y) (black line in Figure A-1):

ZiJ(y) =



0 if y < yJ−

zi1 if yJ− ≤ y < (yJ1 + yJ2 )/2

zi1 + · · ·+ zij if y ∈ [(yJj−1 + yJj )/2, (yJj + yJj+1)/2) for 2 < j ≤ J − 2

zi1 + · · ·+ zi J−1 if y ∈ [(yJJ−2 + yJJ−1)/2, yJ+)

1 if y ≥ yJ+

The next theorem shows that ZiJ converges to Zi,∞ with probability one in the topology

of the weak convergence. Moreover, under continuity assumptions, the asymptotic mean of

ZiJ , conditionally on θi, coincides with the true subjective distribution. Note that, condition-

ally on θi, the mean of Zi,∞ is the true subjective distribution, i.e. E[Zi,∞(·)|θi] = F (·|θi).
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Proposition A.3. The distributions F̄ and Fn are related by

Fn+1(y) =
n

n+ ψ0

F̂n(y) +
ψ0

n+ ψ0

∫
F (y|θ)G0(dθ),

where F̂n(y) = E(F̄ (y)|z1...zn)

Using the previous relation one obtain a useful asymptotic properties of the consensus

distribution.

Proposition A.4. Under the same assumptions of Theorem A.2,

lim
n→+∞

(
Fn+1(yi)− Fn+1(yi−1)

)
= lim

n→+∞

(
F̂n(yi)− F̂n(yi−1)

)
=

∫
zih0(z)dz a.s.

for i = 1, . . . , J . Hence, if there exists F ∗ such that

∫
zih0(z) = F ∗(yi)− F ∗(yi−1), then

lim
n→+∞

Fn+1(yi) = lim
n→+∞

F̂n(yi) = F ∗(yi) a.s..

As in Subsection C.B, we consider set of nested partitions PJ = {yJ0 = −∞ < yJ1 <

. . . < yJJ = +∞} in such a way PJ+1 is a refinement of PJ . We assume that observations

zJ1 , . . . , z
J
n are available with a “true” distribution h0 = hJ0 inM, i.e. h0(z) =

M∑
i=1

wi,0h(z|θi,0)

for suitable integer M , positive weights (w1,0, . . . , wM,0) and parameters θ1,0, . . . ,θM,0 in Θ.

Note that with these hypotheses zJ1 , . . . , z
J
n are consistent in J , that is if J ′ > J then

zJi =
∑
j∈I(i)

zJ
′

j if the i-th bin in PJ correspond the the union of the bins j ∈ I(i) in PJ ′ . This

allows to consider limit jointly in the number of observations (n→ +∞) and in the number

of bins (J → +∞). Note also that for every J and every bin (yi−1, yi] in PJ∫
zih

J
0 (z) = F ∗(yi)− F ∗(yi−1),

for

F ∗(y) :=
M∑
i=1

wi,0F (y|θi,0).

Proposition A.5. In the setting described above, under the same assumptions of Theorem

A.3 on PJ , then

lim
J→+∞,n→+∞

Fn+1(y) = lim
J→+∞,n→+∞

F̂n(y) = F ∗(y) a.s.

for every y point of continuity of F ∗.
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C.D Proofs

C.D.1 Proofs of Theorem A.1 and Theorem A.2

The proof of Theorem A.1 and Theorem A.2 are based on an application of Theorem 1

and Lemma 3 in Wu and Ghosal (2009b,a). In order to prove our theorems we need a slight

generalization of these results. For the shake of clarity we state and prove this generalization.

In what follows, we denote with supp(µ) the weak support of a probability measure µ.

We assume that X0 is a subset the finte set X = {ξ ∈ {0, 1}J : |ξ| < J}. Let Z be the

sample space, i.e. the set of all the pairs (ξ, zξ) where ξ = (ξ1, . . . , ξJ), ξi = I{zi = 0} and

zξ are the non-null elements of z. In what follows we assume that zξ takes values in an open

subset Zξ of RJ−|ξ|−1. In our application Zξ = ∆J−|ξ|. On the sample space Z, one defines

the σ-finte measure λ(dz) = c(dξ) ⊗ Lξ(dzξ) where c is the counting measure on X and,

given ξ, Lξ is the Lebesgue measure on Zξ ⊂ RJ−|ξ|−1. Let H be the set of all the densities

with respect to λ and note that the densities g factorize as g(z) = g(ξ)g(zξ|ξ). We also

assume that the kernel h(z|θ) factorizes in the same way, i.e.

h(z|θ) = h(ξ|θ)h(zξ|ξ,θ).

Given a probability measure G on Θ, recall that

hG(z) =

∫
Θ

h(z|θ)G(dθ). (A-20)

Finally, assume that Π is the prior on H induced by the map (A-20) when G has prior Π̂.

In our application, h(zξ|ξ,θ) is the pdf of a Dirichlet distribution, i.e. Dir(zξ|ν(θ),θ),

hG(z) is given by (5) and Π̂ is the Dirichlet process prior DP(ψ,G0).

Given two densities h0 and g in H the Kullback-Leibler divergence between h0 and g is

defined as

KL(h0, g) =

∫
Z
h0(z) log

(h0(z)

g(z)

)
λ(dz).

Hence, writing h0(z) = h0(ξ)h0(zξ|ξ) by Fubini Theorem one can re-arrange the previous

expression as∑
ξ∈X

h0(ξ)

∫
Zξ

h0(zξ|ξ) log
(h0(zξ|ξ)h0(ξ)

g(zξ|ξ)g(ξ)

)
dzξ

=
∑
ξ∈X

h0(ξ)
(

log
(h0(ξ)

g(ξ)

)
+

∫
Zξ

h0(zξ|ξ) log
(h0(zξ|ξ)

g(zξ|ξ)

)
dzξ

)
,

where for simplicity we write Lξ(dzξ) simply as dzξ
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Theorem A.4. Let Θ be a Polish space and h0 a density in H. If for any ε > 0 there is a

probability measure Gε ∈ supp(Π̂) and a closed set Dε in Θ such that

(H1) KL(h0, hGε) =
∑
ξ∈X

h0(ξ)

∫
Zξ

log
( h0(zξ|ξ)h0(ξ)

hGε(zξ|ξ)hGε(ξ)

)
h0(zξ|ξ, )dzξ < ε;

(H2) Dε contains supp(Gε) in its interior and for every ξ∫
Zξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ < +∞;

(H3) inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 for every ξ and every compact set Cξ in Zξ;

(H4) {θ 7→ h(ξ|θ)h(zξ|ξ,θ) : zξ ∈ Cξ} is uniformly equicontinuous on Dε, for every ξ and

every compact set Cξ in Zξ;

then Π{KL(h0, hG) ≥ ε} > 0 for every ε > 0 and hence Π is weakly consistent at h0.

Assumption (H1) corresponds to (A1) in Theorem 1 of Wu and Ghosal (2009b). As-

sumptions (H2)-(H3) correspond to assumptions (A7)-(A8) of Lemma 3 of Wu and Ghosal

(2009b), while (H4) is slightly different from the original assumption (A9), see Wu and Ghosal

(2009a). The theorem reduces to Theorem 1 and Lemma 3 of Wu and Ghosal (2009b) when

X0 is the single point ξ = (0, . . . , 0).

Proof of Theorem A.4. One has

KL(h0, hG) = KL(h0, hGε) +
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ

≤ ε+
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ =: ε+ Aε(G).

If we show that there is an open neighbourhood V of Gε such that for every G in V one has

Aε(G) ≤ ε, then Π{KL(h0, hG) ≥ 2ε} > 0 for every ε > 0. To prove the claim, for every ξ

by (H2) we find a compact set Cξ such that∫
Cc

ξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ ≤

ε

4

and ∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

4 log(2)
.
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Let V0 := {G : G(Dε) > 1/2}. Since Gε(Dε) = 1, by Portmanteau Theorem V0 is an open

neighbourhood of Gε. Now

hG(ξ, zξ) =

∫
Dε

h(ξ, zξ|θ)G(dθ) ≥ inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ)G(Dε),

hence, for every G in V0,∫
Cc

ξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(ξ, zξ)dzξ

≤
∫
Cc

ξ

log
( hGε(ξ, zξ)

infθ∈Dε h(ξ|θ)h(zξ|ξ,θ)

)
h0(zξ|ξ)dzξ + log(2)

∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

2
.

(A-21)

By condition (H4), for every ξ there are z
(i)
ξ ∈ Cξ i = 1, . . . ,m, such that for every zξ ∈ Cξ

there is i for which

sup
θ∈Dε

|h(ξ|θ)h(zξ|ξ,θ)− h(ξ, z
(i)
ξ |θ)| ≤ cε

12

where c := inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 by (H3). Since Gε(∂Dε) = 0, the set

Vξ := {G :
∣∣∣ ∫

Dε

h(ξ, z
(i)
ξ |θ)Gε(dθ)−

∫
Dε

h(ξ, z
(i)
ξ |θ)G(dθ)

∣∣∣ < cε

12
; i = 1, . . . ,m}

is a weak neighbourhood of Gε. Hence, for G in Vξ∣∣∣ ∫
Dε

h(ξ, zξ|θ)Gε(dθ)−
∫
Dε

h(ξ, zξ|θ)G(dθ)
∣∣∣ ≤ cε

4
(A-22)

Since supp(Gε) ⊂ Dε,∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

∫
Cξ

log
(∫

Dε
h(ξ, zξ|θ)Gε(dθ)∫

Dε
h(ξ, zξ|θ)G(dθ)

)
h0(zξ|ξ)dzξ.

Hence, using log(x+ 1) ≤ x and (A-22), for G in V0 ∩ Vξ one obtains∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

ε

2
. (A-23)

At this stage, combining (A-21) and (A-23), one obtains that Aε(G) ≤ ε for every G in

V = V0 ∩ (∩ξVξ).

We can now prove both Theorem A.1 and Theorem A.2.
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Proof of Theorems A.1 and A.2. We start with the proof of Theorem A.2 because it is sim-

pler from a notational point of view. We apply Theorem A.4 for X0 = {(0, . . . , 0)}. Let

ν̃(θ) := (ν̃1(θ), . . . , ν̃J(θ)) = (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ)) (A-24)

and

Zθ =

∏J
j=1 Γ(ν̃j(θ))

Γ
(∑J

j=1 ν̃j(θ)
) .

Verification of (H1) of Theorem A.4. By hypothesis, for every ε > 0 there is gε(z) =
Mε∑
i=1

wi,εh(z|θi,ε) in M such that KL(h0, gε) ≤ ε. To see that (H1) is satisfied, write gε(z) =∫
h(z|θ)Gε(dθ) = hGε(z) for Gε(dθ) =

Mε∑
i=1

wi,εδθi,ε
(dθ). Now supp(Gε) = ∪Mε

i=1{θi,ε}. To

conclude recall that if Π̂ is DP(ψ,G0) and supp(Gε) ⊂ supp(G0), then Gε ∈ supp(Π̂); see,

for instance, Theorem 3.2.4 of Ghosh and Ramamoorthi (2003).

Verification of (H2) of Theorem A.4. Given Gε as above, one can find a compact set Dε

in Θ such that Dε contains ∪Mε
i=1{θi,ε} = supp(Gε) in its interior.

Now

Iε(z) := inf
θ∈Dε

h(z|θ)

= inf
θ∈Dε

1

Zθ

J−1∏
j=1

z
ν̃j(θ)−1
j

(
1−

J−1∑
j=1

zj

)ν̃j(θ)−1

≥ C1,ε

J−1∏
j=1

z
µj,ε−1
j

(
1−

J−1∑
j=1

zj

)µJ,ε−1

=: I∗ε (z),

where C1,ε = inf
θ∈Dε

Z−1
θ , µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Now one has that C1,ε > 0 and µj,ε > 0,

since Dε is compact and the νj(θ)s are continuous and strictly positive.

On the one hand hGε(z) ≥ Iε(z) and hence log(hGε(z)/Iε(z)) ≥ 0, on the other hand∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤

∫
log
(hGε(z)

I∗ε (z)

)
h0(z)dz

≤
∫ ∣∣∣∣∣∣∣log

 gε(z)∏J−1
j=1 z

µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣h0(z)dz + | log(C1,ε)|.

Since

C2,ε

J−1∏
j=1

z
Aj,ε−1
j

(
1−

J−1∑
j=1

zj

)AJ,ε−1

≤ gε(z) ≤ C3,ε

J−1∏
j=1

z
Bj,ε−1
j

(
1−

J−1∑
j=1

zj

)BJ,ε−1
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for suitable constants C2,ε, C3,ε, A1,ε, . . . , B1,ε, . . . , BJ,ε, it follows that∣∣∣∣∣∣∣log

 gε(z)∏J−1
j=1 z

µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣ ≤ C4,ε

[
1 +

J−1∑
j=1

| log(zj)|+ | log(1−
J−1∑
j=1

zj)|

]

= C4,ε

[
1 +

∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣
]
.

Combining all the estimates, one gets∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤ C5,ε

[
1 +

∫ ∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz

]
< +∞

by assumption (A-15). Hence

0 <

∫
log
( hGε(z)

infθ∈Dε h(z|θ)

)
h0(z)dz < +∞.

Verification of (H3) of Theorem A.4. It follows immediately that, for every compact set

C in the open simplex ∆J ,

inf
z∈C

inf
θ∈Dε

h(z|θ) ≥ inf
z∈C

I∗ε (z)

and the right hand side is strictly positive.

Verification of (H4) of Theorem A.4. Under the hypotheses, the function (θ, z) 7→ h(z|θ)

is continuous and hence uniformly continuous on the compact set C × Dε. It follows that

the family {θ 7→ h(z|θ) : z ∈ C} is uniformly equicontinuous on Dε.

The proof of Theorem A.1 is analogous, it consists in an application of Theorem A.4 for

X0 = X . In the present case, everything has an extra dependence on the fixed ξ in X . In

place of Iε(z) one has

Iε(zξ|ξ) := inf
θ∈Dε

1

c(θ)

J∏
j=1

%j(θ)ξj(1− %j(θ))1−ξj 1

Zθ(ξ)

∏
j∈J ∗

z
ν̃j(θ)−1
j ,

where J ∗ = {j = 1, . . . , J : ξj = 0} and

Zθ(ξ) =

∏
j∈J ∗ Γ(ν̃j(θ))

Γ
(∑

j∈J ∗ ν̃j(θ)
) .
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Moreover,

Iε(zξ|ξ) ≥ C1,ε(ξ)
∏
j∈J ∗

z
µj,ε−1
j =: I∗ε (zξ|ξ),

where

C1,ε(ξ) = inf
θ∈Dε

1

c(θ)

J∏
j=1

%j(θ)ξj(1− %j(θ))1−ξjZ−1
θ (ξ),

and µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Also in this case, C1,ε(ξ) > 0 and µj,ε > 0, since Dε is

compact, νj(θ) and %j(θ) are continuous, 0 < %j(θ) < 1 and νj(θ) > 0, j = 1, . . . , J . Finally,

C2,ε(ξ)
∏
j∈J ∗

z
Aj,ε−1
j ≤ hGε(ξ, z) ≤ C3,ε(ξ)

∏
j∈J ∗

z
Bj,ε−1
j

for suitable constants C2,ε(ξ), C3,ε(ξ), A1,ε, . . . , B1,ε, . . . , BJ,ε. With this minor modifications,

the verification of (H1) and (H2) is exactly as in the proof of Theorem A.2. Assumption

(H3) is true since

inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|θ) ≥ inf
z∈Cξ

I∗ε (z|ξ)

and the right hand side is strictly positive by the assumptions on the νj(θ)s and %j(θ)s.

Analogously,

(θ, zξ) 7→ h(ξ|θ)h(zξ|θ)

is uniformly continuous on the compact set Cξ ×Dε and hence (H4) follows.

C.D.2 Proof of Proposition A.1

The proof of Proposition A.1 is divided in various Lemmata. For the sake of notational

simplicity set

Dir(z|a1, . . . , aJ) =
Γ
(∑J

j=1 aj

)
∏J

j=1 Γ(aj)

J−1∏
j=1

z
aj−1
j

(
1−

J−1∑
j=1

zj

)aj−1

.

Note that

h(z|θ) = Dir(z|ν̃(θ))

where ν̃(θ) is defined in (A-24).

Lemma A.1. [Barrientos et al. (2015)] Let g0 be a continuous density on ∆J . Then, for

every ε > 0 there is a density gε(z) =
Mε∑
i=1

qi,εDir(z|ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1 for every

i and j, such that

‖g0 − gε‖∞ ≤ ε.
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Lemma A.2. Let a = (a1, . . . , aJ) ∈ [1,+∞)J . If for any δ > 0 there is θδ ∈ Θ such that

‖a− ν̃(θδ)‖∞ ≤ δ then for any ε > 0 there is θε ∈ Θ such that

‖Dir(·|a1, . . . , aJ)−Dir(·|ν̃1(θε), . . . , ν̃J(θε))‖∞ ≤ ε.

Proof. The Proof is left to the reader.

Lemma A.3. Assume that, for every a = (a1, . . . , aj) ∈ [1,+∞)J and every δ > 0 there is

θδ ∈ Θ such that ‖a − ν̃(θδ)‖∞ ≤ δ. Then, for every continuous density g0 on ∆J and for

every ε > 0, there is a density g̃ε(z) =
Mε∑
i=1

qi,εDir(z|ν̃(θi,ε)) in M such that

‖g0 − g̃ε‖∞ ≤ ε.

Proof. By Lemma A.1, there is a density gε(z) =
Mε∑
i=1

qi,εDir(z|ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1

for every i and j, such that ‖g0 − gε‖∞ ≤ ε/2. Now, by Lemma A.2, there are θi,ε such

that ‖Dir(·|ai,1,ε, . . . , ai,J,ε) − Dir(·|ν̃1(θi,ε), . . . , ν̃J(θi,ε))‖∞ ≤ ε/2. Hence, setting g̃ε(z) :=
Mε∑
i=1

qi,εDir(z|ν̃1(θi,ε), . . . , ν̃J(θi,ε)), one gets

‖g0 − g̃ε‖∞ ≤‖g0 − gε‖∞

+
M∑
i=1

qi‖Dir(·|ai,1,ε, . . . , ai,J,ε)−Dir(·|ν̃1(θi,ε), . . . , ν̃J(θi,ε))‖∞ ≤ ε.

Lemma A.4. For every densities g1 and g2 in ∆J

KL(g1, g2) ≤ supz |g1(z)− g2(z)|2

infz g2(z)

Proof. By Jensen inequality

KL(g1, g2) ≤ log

(∫
g2

1

g2

)
.

Now, since log(1 + x) ≤ x for every x > 0

log

(∫
g2

1

g2

)
= log

(∫ ((g1 − g2)2

g2

+ 1
))
≤
∫

(g1 − g2)2

g2

≤ supz |g1(z)− g2(z)|2

infz g2(z)
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Proof of Proposition A.1. We need to prove that, if h0 is a continuous density on ∆J , then,

for every η > 0, there is a density gη in M such that

KL(h0, gη) ≤ η.

Let hε(z) = max(ε, h0(z))C−1
ε where Cε :=

∫
max(ε, h0(z))dz ≤ 1+ε. Clearly hε > ε/(1+ε)

and h0 ≤ Cεhε. Hence, by Lemma 5.1. in Ghoshal et al. (1999), for any density g

KL(h0, g) ≤ (2 + ε) log(1 + ε) + (1 + ε)[KL(hε, g) +
√
KL(hε, g)]. (A-25)

By Lemma A.3 there is a density g̃ε in M such that ‖hε − g̃ε‖∞ ≤ ε/2. From the previous

inequality it follows that g̃ε ≥ hε − ε/2 ≥ ε/(2(1 + ε)). Hence, by Lemma A.4

KL(hε, g̃ε) ≤ ε

for ε < 1. The thesis follows by taking η = (2+ε) log(1+ε)+(1+ε)(ε+
√
ε) and gη = g̃ε.

C.D.3 Proofs of Proposition A.2 and Theorem A.3

Proof of Proposition A.2. Recall that since Zi,∞(dy) is a Dirichlet process with concentra-

tion parameter φ(θi) and base measure F (dy|θi), then for any finite partition B1, . . . , BJ

of R it follows that (Zi,∞(B1), . . . , Zi,∞(BJ)) has a Dirichlet distribution on ∆J of param-

eters (φ(θi)F (B1|θi), . . . , φ(θi)F (BJ |θi). Hence, the random vector zi = (zi1, . . . , ziJ) :=

(Zi,∞(y1)−Zi,∞(y0), . . . , Zi,∞(yJ)−Zi,∞(yJ−1)) has the Dirichlet distribution on the simplex

∆J of parameters (φ(θi)ν1(θi), . . . , φ(θi)νJ(θi)). When %j = 0 for j = 1, . . . , J , our Bayesian

model is

(zi1, . . . , ziJ) ∼ Dir(φ(θi)ν1(θi), . . . , φ(θi)νJ(θi))

θi
i.i.d.∼ G

G ∼ DP(ψ,G0),

and the thesis follows.

Proof of Theorem A.3. The thesis is easily deduced from Proposition A.2.
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C.D.4 Proofs of Propositions A.3 and A.4

Proof of Proposition A.3. Note that

Fn+1(y) = E[F (y|θ∗dn+1
)|zi, i = 1, . . . , n]

which yields

E[F (y|θ∗dn+1
)|zi, i = 1, . . . , n] = E[E[F (y|θ∗dn+1

)|θ∗di , zi, i = 1 . . . , n]|zi, i = 1, . . . , n]

= E[E[F (y|θ∗dn+1
)|θ∗di , i = 1, . . . , n]|zi, i = 1, . . . , n]

By Proposition A.2, θi := θ∗di are drawn form a DP(ψ,G0), hence the predictive distribution

of θ∗dn+1
given θ∗di , i = 1, . . . , n is

Gn+1(·) =
n

n+ ψ

n∑
i=1

δθ∗di
(dθ) +

ψ

n+ ψ
G0(·).

Hence by the law of iterated expectations

E[F (y|θ)|θ∗di , i = 1 . . . , n] =

∫
F (y|θ)Gn+1(dθ)

=
n

n+ ψ

1

n

n∑
i=1

F (y|θ∗di) +
ψ

n+ ψ

∫
F (y|θ)G0(dθ).

Since F (y|θ∗di) = Fi(y), one has

E
[ 1

n

n∑
i=1

F (y|θ∗di)|zi, i = 1, . . . , n
]

= F̂n(y)

and

Fn+1(y) := P{Yn+1 ≤ y|zi, i = 1 . . . , n} =
n

n+ ψ
F̄ (y) +

ψ

n+ ψ

∫
F (y|θ)G0(dθ).

Proof of Proposition A.4. Recall that posterior consistency yields predictive consistency, see

e.g. Theorem 4.2.1 in Ghosh and Ramamoorthi (2003) since z 7→ zi is a bounded and

continuous function on the simplex the thesis follows.
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Figure A-5: SPF survey participation by respondent

Note: The light gray crosses indicate when respondents participate in a survey, and are connected by a thin dotted gray line
whenever the respondent appears in consecutive surveys. Respondents are indexed by a number increasing in the year they
joined the survey (y axis).
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Table A-2: Statistics underlying Figure 6

quarters ahead: 8 7 6 5 4 3 2 1

Period: 1982- 2022

Output growth

Baseline

Coef.: 3.436 2.952 2.919 2.446 2.755 0.545 0.498 0.724

SE: 0.972 0.857 0.913 0.744 1.156 0.086 0.101 0.212

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

Beta

Coef.: 6.577 5.591 6.102 5.014 5.043 1.170 1.110 2.098

SE: 1.947 1.706 1.967 1.606 1.879 0.189 0.228 0.655

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

Inflation

Baseline

Coef.: 3.255 2.833 2.351 1.919 1.450 0.905 0.646 0.616

SE: 1.617 1.258 1.027 0.806 0.495 0.280 0.193 0.156

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

Beta

Coef.: 7.652 7.711 6.206 5.675 4.590 3.629 3.460 4.366

SE: 4.102 3.817 3.146 2.795 2.261 2.008 2.108 2.885

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41
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A variation test: additional results

Table A-3: Statistics underlying Figures 7 and 8

quarters ahead: 8 7 6 5 4 3 2 1

Period: 1982- 2022

Output growth

No Fixed Effects

Coef.: 0.068 0.136 0.242 0.250 0.449 0.605 0.783 0.935

SE: 0.136 0.175 0.172 0.165 0.150 0.220 0.189 0.198

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.000 0.000 0.010 0.010 0.020 0.050 0.070 0.100

Time Fixed Effects

Coef.: 0.039 0.004 0.115 0.277 0.247 0.212 0.582 0.562

SE: 0.087 0.088 0.082 0.100 0.073 0.108 0.126 0.141

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.540 0.520 0.500 0.500 0.450 0.320 0.340 0.440

Forecaster Fixed Effects

Coef.: 0.175 0.210 0.261 0.165 0.265 0.926 0.893 1.148

SE: 0.224 0.282 0.275 0.221 0.193 0.244 0.362 0.165

nobs: 718 736 717 822 817 847 771 867

no fcters: 45 45 45 51 50 51 48 54

no years: 40 40 40 40 41 41 41 41

R2: 0.050 0.050 0.040 0.070 0.060 0.130 0.150 0.220

Time and Forecaster Fixed Effects

Coef.: 0.384 -0.075 -0.058 0.193 0.095 0.362 0.517 0.872

SE: 0.173 0.148 0.170 0.129 0.136 0.162 0.191 0.163

nobs: 718 736 717 822 817 847 771 867

no fcters: 45 45 45 51 50 51 48 54

no years: 40 40 40 40 41 41 41 41

R2: 0.610 0.580 0.540 0.550 0.490 0.380 0.420 0.470
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Table A-4: Table A-3 continued —Statistics underlying Figure 7

quarters ahead: 8 7 6 5 4 3 2 1

Period: 1982- 2022

Inflation

No Fixed Effects

Coef.: 0.350 0.470 0.435 0.244 0.565 0.773 0.850 1.251

SE: 0.211 0.197 0.180 0.171 0.207 0.149 0.185 0.256

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.020 0.030 0.020 0.010 0.040 0.070 0.070 0.150

Time Fixed Effects

Coef.: 0.244 0.302 0.264 0.194 0.416 0.505 0.715 0.957

SE: 0.086 0.103 0.103 0.107 0.140 0.130 0.165 0.133

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.430 0.480 0.400 0.390 0.320 0.290 0.250 0.340

Forecaster Fixed Effects

Coef.: -0.013 0.194 0.096 0.035 0.369 0.684 0.973 1.254

SE: 0.324 0.286 0.289 0.166 0.199 0.240 0.283 0.347

nobs: 705 715 662 777 804 821 746 826

no fcters: 45 44 41 48 50 50 47 51

no years: 40 40 40 40 41 41 41 41

R2: 0.050 0.080 0.080 0.070 0.090 0.140 0.160 0.200

Time and Forecaster Fixed Effects

Coef.: 0.224 0.229 0.008 0.024 0.298 0.332 0.831 0.930

SE: 0.139 0.136 0.160 0.168 0.220 0.172 0.233 0.168

nobs: 705 715 662 777 804 821 746 826

no fcters: 45 44 41 48 50 50 47 51

no years: 40 40 40 40 41 41 41 41

R2: 0.470 0.500 0.480 0.450 0.340 0.360 0.340 0.410
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Table A-5: Statistics underlying Figure 9

quarters ahead: 8 7 6 5 4 3 2 1

Period: 1982- 2022

Output growth

Baseline

Coef.: 0.068 0.136 0.242 0.250 0.449 0.605 0.783 0.935

SE: 0.136 0.175 0.172 0.165 0.150 0.220 0.189 0.198

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.000 0.000 0.010 0.010 0.020 0.050 0.070 0.100

Weighted

Coef.: 0.007 0.164 0.096 0.153 0.341 0.600 0.643 0.856

SE: 0.178 0.177 0.253 0.182 0.172 0.194 0.177 0.219

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.000 0.000 0.000 0.000 0.010 0.030 0.040 0.070

Inflation

Baseline

Coef.: 0.350 0.470 0.435 0.244 0.565 0.773 0.850 1.251

SE: 0.211 0.197 0.180 0.171 0.207 0.149 0.185 0.256

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.020 0.030 0.020 0.010 0.040 0.070 0.070 0.150

Weighted

Coef.: 0.144 0.474 0.333 0.149 0.317 0.724 0.921 1.270

SE: 0.353 0.324 0.269 0.207 0.183 0.192 0.266 0.260

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.000 0.030 0.010 0.000 0.010 0.060 0.070 0.150
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A location test: additional results
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Table A-6: Statistics underlying Figure 10

quarters ahead: 8 7 6 5 4 3 2 1

Period: 1982- 2022

Output growth

Log Ratio of Mean Forecast Errors

Coef.: -0.031 -0.057 -0.061 0.009 0.013 0.219 0.096 0.624

SE: 0.041 0.048 0.042 0.033 0.053 0.056 0.073 0.127

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

Fair Shiller Regressions

Constant.: 1.823 1.167 0.579 -0.370 0.004 0.324 0.284 0.013

SE: 0.731 0.830 0.886 0.643 0.346 0.233 0.162 0.033

Coef mean: 0.141 0.257 0.404 0.209 0.211 0.061 0.208 0.025

SE: 0.156 0.111 0.170 0.102 0.041 0.058 0.088 0.012

Coef. pp: 0.110 0.254 0.331 0.889 0.764 0.801 0.699 0.973

SE: 0.072 0.187 0.182 0.178 0.075 0.083 0.062 0.018

nobs: 1169 1271 1237 1294 1287 1371 1280 1329

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.020 0.060 0.120 0.400 0.530 0.880 0.930 0.980

Inflation

Log Ratio of Mean Forecast Errors

Coef.: 0.075 0.160 0.087 0.132 0.193 0.416 0.569 1.219

SE: 0.048 0.067 0.057 0.055 0.084 0.070 0.098 0.126

nobs: 1133 1235 1196 1254 1240 1316 1243 1288

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

Fair Shiller Regressions

Constant.: 1.411 1.275 1.016 0.738 0.855 0.198 0.167 0.091

SE: 0.366 0.365 0.276 0.211 0.318 0.104 0.073 0.073

Coef mean: 0.227 0.254 0.336 0.275 0.237 0.143 0.014 0.088

SE: 0.065 0.104 0.063 0.088 0.130 0.060 0.036 0.061

Coef. pp: 0.127 0.142 0.157 0.364 0.442 0.753 0.904 0.868

SE: 0.054 0.073 0.061 0.095 0.133 0.087 0.061 0.084

nobs: 1133 1235 1196 1254 1240 1316 1243 1289

no fcters: 588 588 588 589 588 591 595 592

no years: 40 40 40 40 41 41 41 41

R2: 0.150 0.190 0.260 0.350 0.510 0.830 0.940 0.950
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E.C Mixture of Three Normals F (·)

Under this robustness check the subjective distribution F (·|θ) is a mixture of three Gaussian

distributions, as opposed to two as in (A-26):

F (y|θ) = (1− ω)Φ(y|µ, σ2
1) + ω(1− ω1)Φ(y|µ+ µδ, σ

2
2) + ωω1Φ(y|µ+ µδ3, σ

2
3). (A-26)

The priors for ω1, µδ3, and σ3 are the same as the priors on ω, µδ, and σ2 described in section

II.F.
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