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Abstract 

In March 2020, safe asset markets experienced surprising and unprecedented price crashes. We explain 

how strategic investor behavior can create such market fragility in a model with investors valuing safety, 

investors valuing liquidity, and constrained dealers. While safety investors and liquidity investors can 

interact symbiotically with offsetting trades in times of stress, liquidity investors’ strategic interaction 

harbors the potential for self-fulfilling fragility. When the market is fragile, standard flight-to-safety can 

have a destabilizing effect and trigger a “dash-for-cash” by liquidity investors. Well-designed policy 

interventions can reduce market fragility ex ante and restore orderly functioning ex post. 
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1 Introduction

In March 2020, U.S. Treasury securities experienced sudden and significant price drops as
investors flooded the market with sales in a dash-for-cash unprecedented and counter to
historical behavior. Safe asset markets are typically resilient, especially in times of stress
when flight-to-safety demand historically more than offsets supply from investors with
liquidity needs, and have not historically featured investors preemptively selling out of
fear. The March 2020 dash-for-cash was a novel phenomenon and requires a new model
that explains how safe asset markets markets can typically be stable and resilient with the
well established flight-to-safety but nevertheless harbor the fragility of a dash-for-cash.

We show in a model of regime shifts that a safe asset market functions as expected
as long as the market is sufficiently deep. However, under certain conditions the market
can break down, with investors rushing to sell and prices falling precipitously, if trade
imbalances have to be absorbed by dealers that are subject to balance sheet constraints.
Surprisingly, we find that an increase in the demand for safe assets from a standard flight-
to-safety can be destabilizing: When the market is relatively fragile, the flight-to-safety
among certain investors can trigger the dash-for-cash among other investors. Our model
helps understand the unprecedented events inMarch 2020 and highlights the risks of such
events repeating in the future in safe asset markets more broadly.

Our analysis is motivated by the following facts. First, the prices of Treasuries sud-
denly collapsed in mid-March 2020, in sharp contrast to previous crisis episodes (Panel A
of Figure 1). Until the beginning of March, Treasury prices did increase and the S&P 500
decreased with the gradual realization of the severity of the COVID-19 outbreak, consis-
tent with the usual negative correlation between safe and risky assets during a flight-to-
safety episode (Nagel, 2016; Adrian, Crump, and Vogt, 2019). However, starting the week
ofMarch 9, prices of Treasury notes and bonds rapidly declined together with stock prices
as investors moved into cash or ultra-short maturity Treasury bills (i.e. the equivalent of
cash). It is well-documented, that dealer balance sheet constraints played an important
role in the Treasury price declines (He, Nagel, and Song, 2022; Duffie et al., 2023). Panel B
of Figure 1 illustrates how dealer balance sheets were filling up with Treasuries through
both the run-up in Treasury prices and their crash, andhow the recovery of Treasury prices
after March 18 coincided with the receding of dealer balance sheet pressure as emergency
purchases by the Federal Reserve ramped up.

However, the existing literature takes as given the Treasury sales in March 2020 and
does not address why this episode featured sales so large that they reversed the typical
appreciation of safe assets during times of stress and required Fed intervention to “support
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the smooth functioning of markets” (FOMC statement on March 15).1 Panel C of Figure 1
illustrates the historically unprecedented scale of Treasury sales during the dash-for-cash:
Foreign investors and mutual funds, the main sellers of Treasuries in 2020q1, each sold
roughly $250 billion, an order of magnitude more than in any previous quarter. In the
post-2008 period these sales equal three standard deviations for foreign investors and five
standard deviations for mutual funds.2 Sales of such magnitude appear inconsistent with
a smooth response to continuously varying underlying fundamentals, suggesting the need
for a model of regime shifts.

Crucially, a significant part of these sales appear to have been preemptive, i.e. not due
to genuine, immediate liquidity needs. Foreign official agencies (a subset of foreign in-
vestors) sold $196 billion of Treasury bonds but reduced their total U.S. Dollar assets
by only $48 billion, suggesting that 76% of their sales were preemptive.3 Among mutual
funds, those in the CRSP dataset sold $157 billion of Treasuries but used only $103 billion
to satisfy outflows, suggesting that 34% of their sales were preemptive.4 Consistent with
this evidence, the Inter-Agency Working Group for Treasury Market Surveillance (2021)
reports that “some Treasury holders appeared to react to the decline in market liquidity
by selling securities for precautionary reasons lest conditions worsen further, and these
sales only added to the stress on the market.”

In sum, investors sold safe assets on an unprecedented scale for what appear to be pre-
emptive reasons. In the language of Haddad, Moreira, and Muir (2021), “selling became
viral,” with investors selling safe assets — whether Treasuries or investment grade corpo-
rate bonds — akin to depositors running on a bank, leading to more severe dislocations
for safer and more liquid assets in a reversal of the usual liquidity hierarchy.

In contrast to the existing literature showing how dealer constraints can lead to price
dislocations given exogenous sales from investors (e.g. He, Nagel, and Song, 2022), we
show how dealer constraints can endogenously induce certain investors to sell, and espe-
cially so when there is concurrent flight-to-safety demand from other investors. To do so,
we build on and generalize the model of Bernardo andWelch (2004) which is seminal for
showing that runs can occur in financial markets but is unable to describe the nuances of

1The statement by the Fed’s Federal OpenMarket Committee (FOMC) onMarch 15 is available at https:
//www.federalreserve.gov/newsevents/pressreleases/monetary20200315a.htm

2While hedge funds unwinding the cash-futures basis trade were also net sellers of Treasuries (Barth and
Kahn, 2021), panel C of Figure 1 shows that their sales (included in the “household” sector in the Financial
Accounts) were more in line with historical experience.

3From the international transactions data of the Bureau of Economic Analysis, Table 9.1, International
Financial Transactions for Liabilities to Foreign Official Agencies. Reported similarly in Panel B of Table 9 in
Vissing-Jørgensen (2021). See Weiss (2022) for additional detail on foreign sales of Treasuries in 2020.

4From Table 6 in Vissing-Jørgensen (2021).
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runs in safe assetmarkets.5 Ourmodel can generate strategic complementarities leading to
regime shifts in which continuous changes in fundamentals trigger discontinuous jumps
in investor behavior and, therefore, a sudden precipitous drop in equilibriumprices. Using
global game techniques, we uniquely link the market outcome to fundamentals including
the degree of liquidity risk, the strength of flight-to-safety demand, and the severity of
dealer constraints. In “good times,” safe asset markets are resilient, with no investors sell-
ing for preemptive reasons, but in “bad times,” investors that are usually happy to buy
and hold safe assets can flood the market with sales for unforced reasons.

Our model captures the two key characteristics of safe assets — safety and liquidity —
as well as the central role of constrained dealers to intermediate trade and absorb imbal-
ances. First, safe assets in practice are safe in the sense that they will pay par at maturity
with very high probability so investors hold them as a store of value, useful for diversifi-
cation and intertemporal smoothing (e.g. Caballero and Farhi, 2017). In our model, such
“safety investors” hold the safe asset in a portfolio together with a risky asset. In times
of stress, when fundamentals worsen for the risky asset, these investors rebalance their
portfolio to demand more of the safe asset (equivalently, markets reprice the value of safe
assets to reflect fundamentals, even in the absence of large trade volume). Such flight-to-
safety has been the focus of most existing analyses of safe assets in times of stress.

Second, safe assets in practice are liquid, meaning that, typically, they can be easily sold
when in need of cash and therefore trade at a convenience yield (e.g. Krishnamurthy and
Vissing-Jørgensen, 2012). In our model, there are “liquidity investors” who are subject to
liquidity shocks (i.e. immediate consumption needs) and therefore hold the safe asset as
liquidity insurance. When hit by the liquidity shock, these investors sell the safe asset in
order to consume. Importantly, even in times of stress, not all liquidity investors suffer liq-
uidity shocks. This leaves a group of liquidity investors without genuine liquidity needs
who act strategically when deciding whether to sell their assets in the current environ-
ment, or whether to hold on and face the risk of a liquidity shock in the near future. An
individual investor may sell preemptively if they expect worse market conditions in the
future and if their likelihood of having to sell in the future is sufficiently high.

In addition, our model features dealers who buy and sell the safe asset and whose
main role is to intermediate over time. Dealers are competitive but subject to balance sheet
constraints such as the Supplemental Leverage Ratio rule (SLR), and therefore provide an
elastic residual demand for the safe asset. Because dealers’ demand in the future is affected
by inventory they take on today, they generate an intertemporal link between prices in

5We note our generalizations of Bernardo and Welch (2004) and their implications throughout the text
and discuss the differences in detail in Appendix C.
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different periods. In particular, if dealers absorb a large net supply today then their bids
will necessarily be lower in case of additional net supply in the future.

With these ingredients, ourmodel yields twomain results. The first result is that the liq-
uidity insurance role of safe assets, together with dealer balance sheet constraints, implies
that a safe asset market can be fragile, featuring sudden regime changes. For low liquidity
risk (lowprobability of facing a liquidity shock), a strategic liquidity investor never finds it
optimal to sell preemptively, irrespective of what other investors are doing; the only equi-
librium in this case is for all strategic investors to hold on to the safe asset such that the
only investors selling are those with a genuine liquidity need. This regime captures the re-
siliency that economists typically associate with safe asset markets. For high liquidity risk,
the opposite is true: an individual investor finds it dominant to sell preemptively such that
the only equilibrium is for all liquidity investors to sell. In this case, the safe asset market
is flooded with sales, including by investors who do not actually have liquidity needs — a
“market run.” The stability of the market is represented by the global game threshold for
liquidity risk around which the equilibrium switches from “hold” to “run” with a higher
threshold representing a more stable or, equivalently, less fragile market. The severity of
dealer balance sheet costs has two effects on the market. First, higher balance sheet costs
increase market fragility such that a market run already occurs for lower liquidity risk.
Second, higher balance sheet costs increase the magnitude of the price crash conditional
on the run occurring.

Our second and key result is that the safety and liquidity roles of safe assets can interact
in such away that a flight-to-safety canworsen fragility,making a dash-for-cashmore likely.
In typical models of fire sales, the crucial friction is slow-moving capital (Duffie, 2010):
prices can be depressed because potential buyers cannot enter the market to purchase
distressed assets. Thus, in these situations, newbuyers entering themarketwouldmitigate
fire sales and stabilize asset prices. In contrast, we find that the entry of new capital to
purchase safe assets can actually amplify fire sales in a fragile safe asset market.

How can this occur? In principle, safety investors form a natural partnership with liq-
uidity investors as their trades offset during stress episodes. Demand from safety investors
absorbs sales from liquidity investors; all else equal, this leads to higher prices for safe as-
sets than would otherwise occur. However, the timing of safety investor demand is key, as
it affects the intertemporal tradeoff of strategic liquidity investors. Safety investor demand
early on in a stress episode has an ambiguous effect on fragility as it increases prices both
contemporaneously (which is destabilizing) and in the future by relaxing dealer balance
sheets (which is stabilizing). Additional demand from safety investors today can induce
liquidity investors to sell today, precisely because the market today has relatively high ca-
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pacity to absorb sales; but higher prices in the future imply that being forced to sell in the
future is less costly, and this is stabilizing.

Which effect dominates— and therefore whether a flight-to-safety prevents or triggers
a dash-for-cash — is ambiguous and depends on the inherent fragility of the market. In a
relatively stable market, strategic liquidity investors will sell preemptively only if liquid-
ity risk is very high (i.e. only if they are likely to be forced to sell in the future). In that
case, the stabilizing effect of the flight-to-safety dominates: the investors weightmore their
concern about being forced to sell in the future but the flight-to-safety has relaxed dealer
balance sheets and increased the price the investors would face in the future. In a relatively
fragile market, however, strategic liquidity investors sell preemptively even when liquid-
ity risk is low (i.e. even when they are unlikely to be forced to sell in the future). In this
case, the destabilizing effect of the flight-to-safety dominates: the investors put a greater
weight on the ability to sell assets at a higher price today even though the fire-sale price
tomorrow is also less severe. This means that safety investors have an amplification effect
on market fragility: When the market is already relatively stable, they stabilize it further
(flight-to-safety prevents a dash-for-cash); but if the market is already relatively fragile,
they destabilize it even more (flight-to-safety triggers a dash-for-cash). Whether flight-
to-safety will trigger a dash-for-cash is unclear unconditionally, but the answer is clear
conditional on the degree of market fragility.

It is useful to consider other historical episodes to flesh out two key differences that
distinguish the March 2020 events. First, there are standard flight-to-safety episodes, like
during the great financial crisis of 2007–2009 (GFC). In these episodes, safe asset prices
rally, as we would expect from standard models. Second, there are episodes in which safe
asset prices sell off sharply, like during the so-called Taper Tantrum for U.S. Treasuries in
2013 and the LDI crisis for UK gilts in 2022. But in these cases, the fundamentals justi-
fied a drop in government bond prices: in the case of the Taper Tantrum, Fed purchases
of Treasuries were expected to decline, and in the UK case, the government’s fiscal plan
pushed up expected long-term rates. In contrast to March 2020, the price declines in these
episodes did not occur at a time when one would expect a flight-to-safety. Instead, the
precipitous sales reflected more standard amplification mechanisms, such as forced sales
by leveraged investors.

Ourmodel helps to understand the differences between standardflight-to-safety episodes
like the GFC and the events ofMarch 2020 to understandwhy the two episodes led to such
dramatically different outcomes. First, our model highlights the central role of dealer bal-
ance sheet constraints, which are a potentially unintended result of post-GFC regulations,
such as the SLR.During theGFC, dealers’ activities in Treasurymarketswere relatively un-
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constrained and thus investors did not worry about dealers running out of balance sheet
space and Treasury prices collapsing. Second, the size of the liquidity shock during the
COVID-19 crisis appears to have been much larger than during the GFC. As our analysis
shows, very large increases in liquidity risk and flight-to-safety can tilt the system into a
region in which investors sell preemptively. Because the GFC did not feature dealers con-
strained by balance sheet costs, and because the shock to liquidity needs was arguably
smaller, the Treasury market remained in the relatively stable region in which flight-to-
safety prevents a dash-for-cash, which is why the market behaved as usual despite the
tremendous stress in the financial sector. In contrast, in March 2020, the liquidity shock
was larger and dealers were more constrained, so much so that the Treasury market suf-
fered a regime change, and flight-to-safety triggered a dash-for-cash. In sum, our analysis
suggests that these two episodes did not feature fundamentally different shocks or shocks
of different direction, but rather shocks that differed in degree within different regulatory
environments.

Our analysis allows us to consider the virtues and costs of various policy interven-
tions, in particular asset purchase facilities and dealer balance sheet regulation. Fragility
in our model hinges on the intertemporal considerations of strategic liquidity investors
who compare prices today to prices in the near future. In general, there is scope for policy
interventions that increase prices both in the present and in the future. However, due to
the intertemporal considerations and the coordination effects, the timing of policy inter-
ventions is important and announcements can have large effects well before the interven-
tions are executed. We show that an asset purchase facility can have a large effect upon
announcement, even if it does not become active until a future date, by shifting strategic
investors from the run equilibrium to the hold equilibrium, consistent with the evidence
of Haddad, Moreira, andMuir (2021). Similarly, policy interventions that relax dealer bal-
ance sheet constraints can be stabilizing. However, because the strategic incentive to sell
is caused by fear of low prices in the future, effective policy has to relax balance sheet
constraints in the future as well.

The growth of the Treasury market since the GFC has greatly outpaced the capacity of
dealers’ balance sheets, and that trend is expected to continue (Duffie, 2020). The strategic
mechanism in our model will therefore become increasingly relevant unless balance sheet
constraints are relaxed. Episodes like March 2020 are likely to become more frequent as
dash-for-cash motivations become more pronounced.

After discussing related literature, the rest of the paper proceeds as follows. In Sec-
tion 2,we present and analyze the baselinemodel of the strategic interaction among liquid-
ity investors. In Section 3, we consider the behavior of constrained dealers and derive equi-
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librium prices. In Section 4, we analyze different mechanisms that can generate strategic
complementarities among liquidity investors, including the elasticity of dealers’ marginal
balance sheet costs, investor risk aversion and decentralized trade execution. In Section 5,
we use global game techniques to determine the unique equilibrium, and we study how
market fragility depends on balance sheet costs, and how a constrained social planner can
improve welfare by discouraging preemptive sales. In Section 6, we add safety investors to
the model and derive the ambiguous effect of flight-to-safety on market fragility. In Sec-
tion 7, we discuss the March 2020 policy interventions in light of the theoretical results of
our model, and we conclude in Section 8. All proofs are in Appendix B.

Related Literature. The market turmoil in the spring of 2020 has been documented in
detail by Vissing-Jørgensen (2021) and He, Nagel, and Song (2022) for Treasuries, and
by Haddad, Moreira, and Muir (2021) and Boyarchenko, Kovner, and Shachar (2022) for
corporate bonds.6 In particular, Duffie et al. (2023) show empirically that the typically
linear relation between yield volatility andTreasurymarket liquidity broke down inMarch
2020 and that the residuals are well explained by the shadow cost of dealer balance sheets.

In a literature that focuses on empirically studying the events, He, Nagel, and Song
(2022) stand out as also providing a formal theoretical analysis to understand the im-
plications. Using a model based on Greenwood and Vayanos (2014) but incorporating
frictions between dealers and hedge funds, they illustrate how large net sales can gener-
ate an “inconvenience yield” for Treasuries. Specifically, He, Nagel, and Song (2022) show
that, given large exogenous sales, the presence of regulatory constraints can lead to pricing
distortions measured as the spread between Treasuries and overnight-index swap rates,
as well as spreads between dealers’ reverse repo and repo rates. Importantly, He, Nagel,
and Song (2022) take net flows as given and consider in detail the equilibrium pricing
consequences. In contrast, our paper shows how, in a strategic environment, the same reg-
ulatory constraints can lead to run behavior, thus endogenizing the large net flows. Our
focus is on the determinants of large net sales of safe assets during a crisis — the unusual
behavior not typically observed — and on the policy implications that can be derived in
such a model of regime change.

In contrast to market runs, bank runs have received much greater attention because
of the common pool problem inherent with liquidity transformation (e.g., Diamond and

6See also D’Amico, Kurakula, and Lee (2020), Fleming et al. (2021), Nozawa and Qiu (2021), Aramonte,
Schrimpf, and Shin (2022), and Haughwout, Hyman, and Shachar (2022). For detailed analysis of market
liquidity conditions, see Fleming and Ruela (2020), Kargar et al. (2021), O’Hara and Zhou (2021). Ahmed
and Rebucci (2022) find sizable estimates of the price impact of foreign officials’ sales of Treasuries. The
role of mutual funds in particular as large sellers of safe assets has been studied by Falato, Goldstein, and
Hortaçsu (2021) andMa, Xiao, and Zeng (2022). On the role of hedge funds, see e.g. Barth and Kahn (2021).
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Dybvig, 1983 and Goldstein and Pauzner, 2005). In the case of a market run, there is no
common pool threatened by illiquidity. The seminal papers on market runs by Bernardo
and Welch (2004) and Morris and Shin (2004) highlight how market frictions can cre-
ate incentives to front-run other investors by selling assets preemptively. Bernardo and
Welch (2004) introduce the intertemporal tradeoff our model relies on, but their model
does not feature strategic complementarities and therefore cannot generate regime shifts.
Ourmodelwith strategic complementarities can generate regime shifts and allows for con-
tinuous comparative statics in the analysis of flight-to-safety demand and policy implica-
tions.Morris and Shin (2004) consider a static model inwhich strategic complementarities
arise because investors have “stop-loss rules” and will be forced to liquidate if prices fall
sufficiently low. The preponderance of sales in March 2020 were from investors subject
to liquidity shocks, suggesting that a stop-loss mechanism did not drive preemptive sales
during this episode.

There are a variety of other mechanisms in the finance literature generating strate-
gic complementarities. In a non-market setting, papers studying strategic complementar-
ities consider intra-temporal coordination of depositors (Goldstein and Pauzner, 2005),
or inter-temporal coordination of creditors with staggered maturity (He and Xiong, 2012)
or of mutual fund investors (Zeng, 2017). In a market setting, existing papers generate
strategic complementarities with limited resources in defense of a currency peg (Morris
and Shin, 1998) or with forced deleveraging due to loss limits (Morris and Shin, 2004).
These mechanisms, however, do not apply to the March 2020 event, in which sales were
primarily from unleveraged investors.

The literature on safe assets is large; see e.g. Gorton (2017) for an overview. Krishna-
murthy andVissing-Jørgensen (2012) show that Treasuries are valued both for their safety
and their liquidity by documenting yield spreads both with respect to assets similarly liq-
uid but not safe and assets similarly safe but not liquid (see also Duffee, 1998, Longstaff,
2004, and Greenwood and Vayanos, 2010, 2014). Our paper focuses on the correlation in
times of crisis ormarket turmoil inwhich the typical correlation (flight-to-safety) has been
otherwise clear (Nagel, 2016; Adrian et al., 2019).7

7Caballero and Farhi (2017) consider a model where the “specialness” of public debt is its safety dur-
ing bad aggregate states and where safe assets have “negative beta,” as they tend to appreciate in times
of aggregate market downturns, providing investors diversification against aggregate macroeconomic risks
(see also Maggiori, 2017, Adrian, Crump, and Vogt, 2019, and Brunnermeier, Merkel, and Sannikov, 2022).
Acharya and Laarits (2023) show that the convenience yield on Treasuries is high exactly when they provide
a good hedge. Safe assets valued for their safety appear in a model of limited participation and risk shar-
ing in Gomes and Michaelides (2007) and through special investors who need safe assets to match liability
cash flows in Greenwood and Vayanos (2010). More generally, Treasury bonds have had negative beta over
longer horizons in recent decades, rising in price when stock prices fall apart from market turmoil (Baele
et al., 2019; Campbell, Sunderam, and Viceira, 2017; Cieslak and Vissing-Jørgensen, 2020).
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Safe assets’ liquidity is intimately linked to their safety: when payoffs are (nearly) risk
free, assets are information-insensitive and thus easily traded “no questions asked” (Gor-
ton and Pennacchi, 1990, Holmström, 2015, Dang, Gorton, and Holmström, 2015). Holm-
ström and Tirole (1998) model the use of safe assets as a store of value and as insurance
against liquidity shocks. Safe assets valued for their liquidity appear in Vayanos and Vila
(1999) and Rocheteau (2011) as well as in the monetarist literature surveyed by Lagos,
Rocheteau, andWright (2017). The premium for moneyness has been studied empirically,
e.g. by Greenwood, Hanson, and Stein (2015), Carlson et al. (2016), and Cipriani and La
Spada (2021) (see also Nagel, 2016, and d’Avernas and Vandeweyer, 2021).8

The role of dealers and slow-moving capital more generally in short-term price dislo-
cations is introduced, e.g. in Duffie (2010). Fontaine and Garcia (2012) and Hu, Pan, and
Wang (2013) show the effects on liquidity in Treasurymarkets (see also Vayanos and Vila,
2021). Adrian, Boyarchenko, and Shachar (2017) specifically consider the effects of dealer
balance sheet constraints on bond market liquidity. Goldberg and Nozawa (2021) show
that dealer inventory capacity is a key driver of liquidity in corporate bond markets (see
also Bruche and Kuong, 2021).

2 Liquidity Investors and their Strategic Interaction

The model is set in two periods t = 0, 1 and has three types of agents and two types of
assets, a safe asset and a risky asset. The safe asset, which is the focus of the analysis,
has a fundamental value of 1 and is traded among the agents in both periods. Among the
agents, there are investors who hold portfolios of the safe asset and the risky asset (“safety
investors”), investors who hold the safe asset as protection against liquidity shocks (“liq-
uidity investors”), and dealers who participate in the safe asset market and are subject
to balance sheet costs. Safety investors are risk averse and dealers are risk neutral; for ex-
positional clarity, we assume that liquidity investors are risk neutral but we show that
assuming them to be risk averse would strengthen our results. All agents have a discount
rate of zero and act competitively, and there is a measure one of each type. All asset prices
are determined in equilibrium. We defer discussion of the safety investors until Section 6.

8Gorton and Ordoñez (2022) study the interaction of public and private provision of safe assets used
as store of value and as collateral (see also Holmström and Tirole, 2011, Stein, 2012, Gorton, Lewellen, and
Metrick, 2012, Sunderam, 2014 and Krishnamurthy and Vissing-Jørgensen, 2015). Caballero and Krishna-
murthy (2008) study flight to quality episodes triggered by uncertainty shocks. He, Krishnamurthy, and
Milbradt (2019) study the roles of strategic complementarities and substitutes among investors in deter-
mining which asset becomes the safe asset via coordination (see also Farhi and Maggiori, 2017). For recent
empirical analysis of safe assets, both current and historical, see Chen et al. (2022) and Choi, Kirpalani, and
Perez (2022).
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Ourmodel generalizes themodel of Bernardo andWelch (2004) along several dimensions
in order to appropriately capture safe asset markets; we point out the generalizations and
their implications in the following and discuss the differences in detail in Appendix C.

Liquidity investors start out holding one unit of the safe asset and are subject to i.i.d.
liquidity shocks, i.e. preference shocks in the style of Diamond andDybvig (1983), in both
periods. If a liquidity investor is hit by the shock, they need to consume immediately and
sell their entire holdings of the safe asset. The probability of a liquidity shock at date 0 is
s0 ∈ (0, 1) so, by the law of large numbers, a fraction s0 of liquidity investors are forced to
sell at date 0 at price p0. Among the remaining fraction 1 − s0, each investor has to decide
whether to also sell at date 0, receiving p0 for sure, or to hold on to the safe asset and face
liquidity risk at date 1, then with probability s1 ∈ (0, 1). Investors who hold on to the
safe asset at date 0 and then suffer a liquidity shock at date 1 are forced to sell at price
p1. Investors who don’t suffer a shock at either date receive a continuation value v > 1
akin to a “convenience yield” that reflects the benefit of the safe asset as a liquid store of
value for future investment opportunities (e.g., Holmström and Tirole, 1998, 2001).9 We
first analyze the general case with two separate values for liquidity risk, s0 and s1, and
later specialize to the case s0 = s1 for expositional clarity.

Examples of real-world liquidity investors we have in mind include foreign official
agencies that may face sudden liquidity needs to conduct foreign exchange interventions
or mutual funds that may face sudden liquidity needs due to investor withdrawals. Both
were among the largest sellers of Treasuries in 2020q1, and their sales were historically
unprecedented (Figure 1, Panel C). The consumption good in our model therefore stands
in for cash and cash-like instruments, such as bank deposits or short-maturity Treasury
bills. Due to its stylized nature, our model cannot not provide a theory of the exact ma-
turity cut-off between short-maturity bills, treated as cash, and longer-maturity notes and
bonds, which were not treated as cash during March 2020 and represent the safe asset
in our model. While we focus on the strategic interaction among liquidity investors, there
are potential additional layers of strategic interaction underlying the liquidity shocks, both
in the foreign exchange context (Morris and Shin, 1998) and in the mutual fund context
(Chen, Goldstein, and Jiang, 2010).

The only agents with a strategic decision to make are liquidity investors who do not
receive a liquidity shock at date 0 and can either voluntarily sell their safe asset at date 0
or hold on to it, risking a liquidity shock at date 1. Let p0 be the price an investor expects
to receive at date 0 and ps

1 be the price the investor expects to receive at date 1 conditional
9Joslin, Li, and Song (2021) use a conceptually similar model of liquidity investors and show that its

comparative statics match well the empirical features of the Treasury liquidity premium.
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on receiving a liquidity shock.10 Under risk-neutrality, the payoff to selling at date 0 is
simply p0 while the (expected) payoff to selling at date 1 is s1ps

1 + (1 − s1) v because, with
probability 1 − s1, the investor will make it through the stress episode without suffering a
liquidity shock. The investor will therefore sell preemptively at date 0 if and only if

p0 > s1ps
1 + (1 − s1) v. (1)

During normal times, i.e. when few if any investors suffer liquidity shocks, we expect
p0 ≈ ps

1 ≈ 1, such that liquidity investors will generally not sell preemptively because the
continuation value is greater than 1. This reflects the fact that safe asset markets function
well during normal times, when only investors with genuine liquidity needs sell and can
do so easily at prices close to fundamental. Investors without genuine liquidity needs do
not consider selling preemptively since they expect to be able to sell at prices close to
fundamental if they, in turn, face a liquidity shock at date 1. Condition (1) shows that two
things are required in order for investors to sell preemptively at date 0: First, the price at
date 1 conditional on a shock has to be considerably lower than the price at date 0. Second,
liquidity risk at date 1 has to be sufficiently high.

Formally, we denote by λ ∈ [0, 1] the fraction of strategic liquidity investorswho decide
to sell at date 0. Then the equilibria of the game among strategic investors are governed
by the payoff gain from preemptively selling at date 0 vs. holding on to date 1,

π(λ) = p0(λ)− s1ps
1(λ)− (1 − s1) v, (2)

where we explicitly account for the fact that prices at date 0 and date 1 depend on strategic
sales λ (we will derive the relevant expressions for p0(λ) and ps

1(λ) in Section 3). Under
complete information, there are three candidates for Bayesian Nash equilibria:

Hold equilibrium: If the incentive to sell is negativewhen no other strategic investors sell,
that is if π(0) < 0, then it is a pure-strategy equilibrium for no strategic investors to
sell (λ∗ = 0).

Run equilibrium: If the incentive to sell is positive when all other strategic investors sell,
that is if π(1) > 0, then it is a pure-strategy equilibrium for all strategic investors to
sell (λ∗ = 1).

10The price at date 1 is deterministic because we assume for simplicity that liquidity shocks at date 1 are
i.i.d. such that there is no aggregate risk. As we discuss in Section 3 and show in Appendix D, it is straight-
forward to add aggregate risk to the model such that liquidity shocks at date 1 are correlated, without ma-
terially affecting results. We maintain the superscript s to highlight that the relevant variable is conditional
on a shock.
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Mixed equilibrium: If the incentive to sell is zero when a fraction of strategic investors
sell, that is if π(λ∗) = 0 for λ∗ ∈ (0, 1), then it is a mixed-strategy equilibrium for all
strategic investors to sell with probability λ∗.

As noted above, safe asset markets typically function smoothly — they are considered the
most deep and liquid markets in the world. Thus, any empirically realistic model should
include the potential for hold equilibria, even as we seek out a candidate run equilibrium.
The hold equilibrium exists if

p0(0) < s1ps
1(0) + (1 − s1) v, (3)

which holds during normal times when not many investors have liquidity needs (low s1)
and expected prices are not very different between date 0 and date 1 (p0 ≈ ps

1). In the
hold equilibrium, the safe asset market features only those investors selling who have a
genuine need for liquidity which we consider the typical state for safe asset markets that
any desirable model should be able to match. As we show below, our assumption that liq-
uidity investors value the safe asset at a convenience yield v > 1 allows for the existence of
a pure-strategy hold equilibrium, in contrast to the model of Bernardo and Welch (2004),
where v = 1 such that a hold equilibrium never exists and, instead, a strictly positive frac-
tion of investors always sells preemptively (see Appendix C). The assumption v > 1 is
empirically plausible for safe asset markets because they typically function well during
normal times with no preemptive sales (i.e. a hold equilibrium normally prevails) and
because convenience yields on safe assets have been widely documented in the literature
started by Krishnamurthy and Vissing-Jørgensen (2012).

The run equilibrium, in turn, exists if

p0(1) > s1ps
1(1) + (1 − s1) v.

In this case, strategic investors prefer to sell early rather than risk having to sell at a worse
price in case they suffer a liquidity shock at date 1. Compared to condition (3) for the hold
equilibrium, more is needed for a run equilibrium to exist. As noted above, the expected
price at date 1 conditional on a shock has to be considerably lower than the price at date
0 and liquidity risk at date 1 has to be sufficiently high. The analysis of our paper shows
how frictions can lead prices at date 1 to be lower than at date 0 in times of stress such that
a run equilibrium can arise.

The identifying feature of a run equilibrium is the preemptive sales by investors who
do not face a genuine liquidity need and who therefore do not “consume” the proceeds
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of their sales. As noted in the introduction, the detailed analysis of Treasury markets
in March 2020 by Vissing-Jørgensen (2021) provides evidence of such preemptive sales:
Among the largest sellers, foreign official agencies sold $196 billion of Treasury bonds
but “consumed” only 24% of the proceeds in the form of a $48 billion reduction in their
total U.S. Dollar assets. This evidence, and the viral selling behavior noted by Haddad,
Moreira, and Muir (2021) with greater dislocations in the typically safer and more liquid
assets, point to a need for a model in which sales reflect strategic, self-fulling decisions.

Finally, there is the potential for both pure-strategy equilibria to exist if the incentive
to sell π(λ) is increasing in the fraction of strategic investors who sell. In such a situation
of strategic complementarities, the safe asset market can be truly fragile and break down
due to self-fulfilling beliefs. Each individual strategic investor sells early only because they
expect other strategic investors to sell early, and the run on the safe asset market could be
avoided if beliefs were coordinated instead on the hold equilibrium. As we show below,
strategic complementarities can arise (i) if dealers’ marginal balance sheet costs are suffi-
ciently elastic, such that inventory taken on at date 0 sufficiently impacts the price at date 1
if there are further sales, (ii) if liquidity investors are risk averse such that a potential price
drop between date 0 and date 1 is compounded by an increase in marginal utility, and/or
(iii) if trades are sequentially executed, such that an investor selling preemptively at date 0
can expect to front-run some of the other investors selling. These features are in contrast
to the model of Bernardo andWelch (2004), where price impact is due to dealer risk aver-
sion, investors are assumed to be risk-neutral throughout, and trades are pooled before
execution; therefore strategic complementarities do not arise in their model.

3 Dealers and Equilibrium Safe Asset Prices

A necessary condition for a run equilibrium is ps
1 < p0 ≤ 1, which requires frictions such

that, in times of stress, the safe asset price can deviate from its fundamental value of 1
and can decline further if there are sustained net sales that continue from date 0 to date 1.
The key friction in our model is that dealers with balance sheet costs form the residual
demand during times of stress, analogous to dealers with risk aversion in Bernardo and
Welch (2004). We further assume that dealers bid competitively à la Bertrand such that
their demand is defined by a zero-profit condition, also analogous to Bernardo andWelch
(2004) and in the spirit of the literature on market making dealers and limits to arbitrage,
including Kyle (1985), Grossman and Miller (1988), and Shleifer and Vishny (1997).

In order to maintain tractability, Bernardo and Welch (2004) assume that dealers are
myopic, bidding competitively at date 0 without taking into account date 1; this avoids the

14



complications of a dynamic optimization problem for dealers without materially affecting
the strategic interaction of investors at the heart of the model. We show, as a conceptual
point, that this friction is not technically necessary and that dealers can be assumed to be
forward-looking because, as long as they are competitive and lack commitment, subgame
perfection implies that they behave as if they were myopic. The intuition is that competi-
tion at date 1 implies zero profits in every date 1 subgame, i.e. irrespective of the actions
at date 0.

Because we assume that liquidity shocks are i.i.d., there is no aggregate risk in our
model such that equilibrium prices are deterministic and the price decline from date 0 to
date 1 represents a pure arbitrage. While this may appear unappealing, even considering
a time of stress, we show in Appendix D that it is straightforward to add aggregate risk
to the model such that liquidity shocks at date 1 are correlated and the price conditional
on receiving a shock, ps

1 ≡ E0[p1|shock], is different from the price conditional on not
receiving a shock, pns

1 ≡ E0[p1|no shock]. These state-contingent prices satisfy ps
1 < p0 <

pns
1 such that the model no longer features a pure arbitrage. However, even in that more

general setting, the only date-1 price that is relevant for a strategic investor’s decision at
date 0 (and thus for the equilibria of our model) is ps

1 such that results do not change
materially. We therefore conduct the analysis in the simpler setting without aggregate
risk but maintain the superscript s to highlight that the relevant variable is conditional on
a shock.

Specifically, we assume that dealers consume at the end of date 1 and are forward
looking without commitment, competitive and risk neutral. They value the safe asset at
its fundamental value of 1 but face increasing and convex balance sheet costs for any in-
ventory q, given by C(q) with C(0) = 0 and C(1) < 1. Dealers start out with no inventory
at the beginning of date 0 and compete for sales à la Bertrand by quoting prices in each
period. We solve for the demand that results from the subgame perfect Nash equilibrium
among dealers.

What do our assumptions of competitiveness and of no commitment imply at date 1?
First, competition à la Bertrand implies that dealers make zero profit, i.e. that for given
inventory q0 taken on at price p0 and new supply qs

1, the price ps
1 has to satisfy

(1 − p0) q0 + (1 − ps
1) qs

1 − C(q0 + qs
1)︸ ︷︷ ︸

final payoff at date 1

= 0. (4)

Second, no commitment implies that dealers cannot end up worse from taking on new
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inventory qs
1 at date 1:

(1 − p0) q0 + (1 − ps
1) qs

1 − C(q0 + qs
1)︸ ︷︷ ︸

payoff after taking on qs
1 > 0

≥ (1 − p0) q0 − C(q0)︸ ︷︷ ︸
payoff with qs

1 = 0

(5)

Because the LHS of (5) is decreasing in ps
1, competitive bidding implies that the condition

holds with equality:

(1 − p0) q0 + (1 − ps
1) qs

1 − C(q0 + qs
1) = (1 − p0) q0 − C(q0) (6)

The two conditions (4) and (6) together yield equilibrium prices at date 0 and date 1
summarized in the following proposition. All proofs are in Appendix B.11

Proposition 1. If dealers are forward looking without commitment, competitive and risk neutral,
and face strictly convex balance sheet costs C(q) with C(0) = 0 and C(1) < 1, then equilibrium
safe asset prices satisfy ps

1 < p0 and are given by

p0(q0) = 1 − C(q0)

q0
and ps

1(q0, qs
1) = 1 −

C
(
q0 + qs

1
)
− C(q0)

qs
1

. (7)

The expressions for equilibriumprices in (7) highlight the effect of existing inventory q0

on the price at date 1 if there are additional sales qs
1: for the dealers to take on the additional

inventory in that state, the price must be lower compared to date 0, ps
1 < p0, in order to

compensate for the additional balance sheet costs C
(
q0 + qs

1
)
− C(q0) of the additional

inventory. The assumption that balance sheet costs are convex has additional implications
for the equilibrium prices p0(q0) and ps

1(q0, qs
1), as summarized in the following corollary.

Corollary 1. Equilibrium safe asset prices and are decreasing in investors’ asset sales as well as in
dealer inventory:

∂p0

∂q0
< 0,

∂ps
1

∂q0
< 0, and

∂ps
1

∂qs
1
< 0.

Furthermore, the inventory from date 0 has a greater effect on the price at date 1 then asset sales at
date 1:

∂ps
1

∂q0
<

∂ps
1

∂qs
1

.

11Note that our framework does not restrict dealer demand at date 1 to be positive. If there is additional
demand at date 1 such as from an asset purchase facility discussed in Section 7, we can have dealers sell part
of their date-0 inventory at date 1. If the balance sheet costs are symmetric around zero, we can also consider
negative dealer demand at date 0 (e.g. if they start with an initial endowment of inventory or if they are able
to go short the safe asset).
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The fact that the indirect effect of additional inventory q0 reduces the price at date 1 by
more than the direct effect of additional sales qs

1 is a crucial ingredient for our results as it
implies not only that ps

1 < p0 but also that the date 1 price ps
1 can be sufficiently decreasing

in date 0 sales q0 such that strategic complementarities arise.
Asset sales q0 and qs

1 are functions of the endogenous strategic sales λ as well as the
exogenous liquidity risk s0 and s1. Total sales of safe assets at date 0 are sales s0 by investors
with genuine liquidity needs and sales (1 − s0) λ of the remaining investors that choose
to sell preemptively:

q0 = s0 + (1 − s0) λ

At date 1, only the remaining investors who receive a liquidity shock sell, resulting in

qs
1 = s1 (1 − s0) (1 − λ) .

Equilibrium prices p0(λ, s0) and ps
1(λ, s0, s1) therefore ultimately depend on the model

primitives λ, s0 and s1, and the following corollary shows that we can unambiguously
sign all the comparative statics.

Corollary 2. Equilibrium safe asset prices are decreasing in the endogenous strategic sales and the
exogenous degree of liquidity risk:

∂p0

∂λ
< 0 and

∂p0

∂s0
< 0

as well as
∂ps

1
∂λ

< 0,
∂ps

1
∂s0

< 0 and
∂ps

1
∂s1

< 0.

The two key comparative statics in Corollary 2 are the effects of strategic and non-
strategic sales at date 0 (λ and s0) on the price at date 1 if there are more sales:

∂ps
1

∂λ
=

(
∂ps

1
∂q0

− s1
∂ps

1
∂qs

1

)
(1 − s0) < 0 and ∂ps

1
∂s0

=

(
∂ps

1
∂q0

− s1
∂ps

1
∂qs

1

)
(1 − λ) < 0

Both λ and s0 increase q0 (and therefore inventory at date 1) and decrease qs
1; the indi-

rect effect on ps
1 through inventory is negative while the direct effect on ps

1 through qs
1 is

positive, suggesting a potentially ambiguous effect. However, Corollary 2 shows that the
inventory effect dominates such that the overall effect is unambiguous: The price at date 1
is decreasing in the primitives λ and s0 even accounting for the fact that they reduce sales
at date 1.
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Discussion ofRegulatoryConstraints. Ourmodeling of balance sheet costs captures the
effects of the Supplementary Leverage Ratio (SLR), an unweighted capital requirement for
banks that was introduced as part of the Basel III reforms after the GFC as a backstop to
risk-weighted capital regulation and became effective in 2014. Since the largest dealers in
the U.S. are part of bank holding companies, the SLR constrains their activity, including
in the Treasury market, a potentially unintended consequence of the regulatory reform.
Importantly, both the direct holdings of Treasuries and reverse repo positions take up
dealers’ balance sheet space and are subject to the SLR (for more details, see, e.g. Duffie,
2016). Boyarchenko et al. (2020) show that the constraints pass through to unregulated
arbitrageurs who rely on the balance sheet of regulated dealers (see also Du, Hébert, and
Li, 2022 and Siriwardane, Sunderam, and Wallen, 2022). The balance sheet costs in our
model explicitly capture the regulatory costs of increasing balance sheet size for given
equity capital, but also implicitly capture the cost of issuing additional equity to alleviate
the regulatory constraints. If, for example, a bank’s capital requirement is binding, then
expanding assets requires issuing new equity. Equity issuance can be costly due to moral
hazard (Jensen andMeckling, 1976) or due to adverse selection (Myers andMajluf, 1984).
Convex issuance costs associated with equity issuance would therefore generate convex
costs of increasing balance sheet size.

The balance sheet costs matter in markets for safe assets such as Treasuries, as they
rely heavily on dealers for intermediating trades. Brain et al. (2019) document that Trea-
sury market trading volume is split roughly evenly between dealer-to-client trades and
inter-dealer trades; this suggests that, on average, a trade originating with one investor
and ending with another investor passes through two dealers. The effects of balance sheet
constraints are also quantitatively meaningful. For example, He, Nagel, and Song (2022)
show that Treasury and repo spreads are significantly wider in the post-SLR period. In
March 2020, the ability of dealers to provide liquidity in Treasuries was severely impaired
as market depth dropped by a factor of more than 10 in the inter-dealer market (Duffie,
2020) while trading volume roughly doubled, reaching historically unprecedented levels
(Fleming and Ruela, 2020). Duffie et al. (2023) show strong explanatory power of dealer
balance sheet utilization for Treasury market illiquidity after controlling for yield volatil-
ity. Furthermore, the SLR constraint was initially not alleviated by the Fed’s purchases of
Treasuries because they were exchanged for reserves which, though perfectly liquid and
safe, are treated the same under the SLR. Only on April 14 did the Fed temporarily ex-
empt both Treasuries and reserves from the SLR rule (announced on April 1). Infante,
Favara, and Rezende (2022) document the effect of the SLR and its temporary relaxation
on dealers’ Treasury market activity. We return to these issues in our discussion of policy
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implications in Section 7.
For tractability, we model balance sheet constraints as a convex function of net dealer

demand and abstract from bid-ask spreads. In reality, dealers can rarely net out offsetting
trades instantaneously, and so sales or purchases that are not perfectly synchronized at the
same dealer will increase balance sheet costs across the financial system, making the role
of balance sheet constraints more pronounced.While wemodel balance sheet costs as con-
vex, in reality the SLR may at times impose hard quantity constraints with effectively infi-
nite costs of expanding balance sheet further (Duffie, 2020). To the extent that regulatory
constraints at times become totally binding, our results would be further strengthened. In
sum, our modeling decisions bias the analysis toward less significant balance sheet costs.
Note that we abstract from the intended benefits of the SLR for the stability of the banking
system as these are outside the scope of our model.12

4 Strategic Complementarities in the Incentive to Sell

We now return to the liquidity investors’ strategic interaction from Section 2 and study
if and how strategic complementarities can arise in their incentive to sell preemptively.
Given the structure of equilibrium prices derived in Section 3, we start with the case of a
general convex balance sheet cost C(q) and show that strategic complementarities can rise
for sufficiently elastic marginal costs. We then specialize to a parametric form to sharpen
the results and show two features that can strengthen the incentive to sell and can there-
fore substitute for very elastic marginal balance sheet costs in generating strategic comple-
mentarities: (i) investor risk aversion, which is natural for investors demanding liquidity
insurance; and (ii) sequential execution of trades, which is appropriate when considering
over-the-counter markets.

4.1 General Convex Cost Function

Accounting for the dependence of equilibrium prices p0 and ps
1 on endogenous strategic

sales λ as well as the exogenous liquidity risk s0 and s1, the payoff gain π from equation
(2) becomes

π(λ, s0, s1) = p0(λ, s0)− s1ps
1(λ, s0, s1)− (1 − s1) v.

12The macro-finance literature shows how leverage regulation can have macroprudential benefits, de-
creasing the probability and severity of crises and fire sales (e.g. Phelan, 2016, Dávila and Korinek, 2017).
While the SLR is intended as a “non-risk based backstop measure” (Basel Committee on Banking Supervi-
sion, 2014), it’s potential to interfere with Treasury market functioning had been anticipated, e.g. by Duffie
(2016)
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Maintaining the general cost function,we derive the comparative statics for the incentive to
sell preemptively at date 0 and provide a sufficient condition for investors to face strategic
complementarities, i.e. for ∂π/∂λ > 0: Liquidity risk s1 has to be sufficiently high and
marginal balance sheet costs have to be sufficiently elastic. Denote the elasticity ofmarginal
costs

η ≡ dC′(q)
dq

q
C′(q)

=
qC′′(q)
C′(q)

.

Then we have the following result.

Proposition 2. For strictly convex balance sheet costs C(q) with C(0) = 0 and C(1) < 1, and
with non-negative higher order derivatives:

• Strategic complementarities arise for date-1 liquidity risk sufficiently high and/or marginal
balance sheet costs sufficiently elastic, i.e. ∂π/∂λ > 0 uniformly if s1 × η > 2.

• Higher date-1 liquidity risk uniformly increases the incentive to sell, i.e. ∂π/∂s1 > 0, while
date-0 liquidity risk increases the incentive to sell whenever there are strategic complemen-
tarities, i.e. ∂π/∂s0 > 0 if ∂π/∂λ > 0.

The intuition for the effect of s1 is straightforward as higher future liquidity risk s1

hast two effects: (i) increasing the likelihood of facing ps
1 instead of v and (ii) reducing ps

1

conditional on facing it. Both effects increase the incentive to sell preemptively at date 0
and are therefore destabilizing.

Strategic sales λ and date-0 liquidity risk s0 affect the payoff gain very similarly. In both
cases, the direct effect of lower p0 is stabilizing but the indirect effect of lower ps

1 through
inventory is destabilizing. The intuition is clear: when considering the effect of additional
sales at date 0, a strategic investor does not care if the sales originate with more genuine
liquidity needs (higher s0) or with more preemptive sales (higher λ).

The joint condition on s1 and η guaranteeing strategic complementarities shows that
liquidity risk and the elasticity of marginal costs interact. For a given elasticity of marginal
costs, future liquidity risk s1 has to be sufficiently large. In turn, the liquidity risk thresh-
old is lower if marginal balance sheet costs are more elastic. What is the intuition for the
sufficient condition for strategic complementarities? Our main object of interest is ∂π/∂λ

which we can rewrite as

∂π

∂λ
= (1 − s0)

(
∂p0

∂q0
+ s2

1
∂ps

1
∂qs

1
− s1

∂ps
1

∂q0

)
.
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For strategic complementarities to arise, we therefore need

s1
∂ps

1
∂q0︸ ︷︷ ︸
<0

<
∂p0

∂q0
+ s2

1
∂ps

1
∂qs

1︸ ︷︷ ︸
<0

, (8)

that is, we need the indirect inventory effect ∂ps
1/∂q0 to dominate (in absolute magni-

tude) the two direct effects ∂p0/∂q0 and ∂ps
1/∂qs

1, and we need s1 sufficiently large. In Ap-
pendix E, we provide graphical intuition for why sufficiently elastic marginal costs guar-
antee that the inventory effect is large relative to the direct effects. Specifically, the function
C(q) has to have weak curvature between 0 and q0 (for a small direct effect) and strong
curvature between q0 and q0 + qs

1 (for a large indirect effect). Marginal balance sheet costs
C′(q) therefore have to increase relatively slowly for low q and relatively quickly for large
q, which translates into sufficiently elastic marginal costs.

4.2 Parametric Cost Functions

We now add structure by considering parametric cost functions of the form C(q) = cqn

with c > 0 and n > 1 where the elasticity of marginal costs is given by η = n − 1. We first
show analytically that strategic complementarities are not possible for quadratic balance
sheet costs (n = 2) — which corresponds to the CARA utility in Bernardo and Welch
(2004) — but are possible for n = 3, as long as future liquidity risk s1 is sufficiently high.
We then show numerically that the same logic applies to n > 3, i.e. strategic complemen-
tarities arise for s1 above a threshold s̃. We can derive the threshold s̃ in closed form and
show that it is decreasing in n for n > 2 such that strategic complementarities are more
likely to arise as n increases and marginal balance sheet costs become more elastic.

Proposition 3. For quadratic balance sheet costs C(q) = cq2 with c ∈ (0, 1), strategic comple-
mentarities cannot arise, i.e. ∂π/∂λ ≤ 0 uniformly. For cubic balance sheet costs C(q) = cq3 with
c ∈ (0, 1), strategic complementarities arise for liquidity risk above a threshold s̃ = 1 −

√
1/3 ≈

0.42, i.e. ∂π/∂λ > 0 uniformly if s1 > s̃.

We cannot study strategic complementarities purely analytically for n > 3. However,
Figure 2 shows that the logic of Proposition 3 extends to n > 3 and that the critical value s̃
is decreasing in n such that the range where strategic complementarities arise is larger for
higher n. Specifically, Panel A of Figure 2 shows contour plots of ∂π(λ, s0, s1)

/
∂λ = 0, i.e.

combinations of s0 and s1 where ∂π/∂λ switches from negative (strategic substitutes) to
positive (strategic complements), for different values of λ as well as different exponents
n in the balance sheet cost function C(q) = cqn. The blue lines correspond to the case
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A: Contours of ∂π(λ, s0, s1)
/

∂λ = 0.
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B: Threshold for ∂π/∂λ > 0 as λ → 1.
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Figure 2: Transition from strategic substitutes to strategic complements. Panel A shows
contour plots of ∂π(λ, s0, s1)/∂λ = 0 for different values of λ as well as different exponents
n in the balance sheet cost function C(q) = cqn (with c = 0.25). Panel B shows the threshold
s̃ = 1 −

√
(n − 2)/n.

n = 3 that we derive analytically in Proposition 3 where s1 > s̃ is sufficient for strategic
complementarities because, in the limit λ → 1, the effect of s0 vanishes as the contour
becomes flat. The orange and green lines show that the same applies to the cases n = 4
and n = 5, where, again, the effect of s0 vanishes in the limit λ → 1 such that s1 above
a threshold s̃ is sufficient for ∂π/∂λ > 0 uniformly. Across the cases, we see that the
threshold s̃ is decreasing in n such that strategic complementarities are more likely to arise
as n increases.

In fact, we can analytically derive ∂π/∂λ in the limit λ → 1 and solve in closed form
for the threshold s̃ that is sufficient for strategic complementarities (illustrated in Panel B
of Figure 2).

Corollary 3. For general power balance sheet costs C(q) = cqn with c ∈ (0, 1), strategic comple-
mentarities arise for liquidity risk above a threshold s̃ = 1 −

√
(n − 2)/n which is decreasing in

n.

In the limit n → ∞, the balance sheet costs turn into a pure capacity constraint, forc-
ing q0 + qs

1 ≤ 1 and resulting in strategic complementarities irrespective of the level of
liquidity risk as s̃ → 0 (Corollary 3). This is consistent with the effects of occasionally
binding constraints documented by Duffie et al. (2023) and the bank executive who stated
in March 2020 “We can’t bid on anything that adds to the balance sheet right now” (as
quoted by Duffie, 2020).
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4.3 Investor Risk Aversion

Wenowconsider the casewhere liquidity investors are risk averse,whichwould be natural
for safe asset investors seeking liquidity insurance and in contrast to the risk neutral equity
investors in Bernardo andWelch (2004).We suppose in this section that liquidity investors
are risk averse with concave utility u(x) such that the payoff gain π from equation (2)
becomes

π = u(p0)− s1u(ps
1)− (1 − s1) v.

such that marginal utility now appears in the condition ∂π/∂λ > 0 for strategic comple-
mentarities:

∂π

∂λ
= u′(p0)

∂p0

∂λ
− s1u′(ps

1)
∂ps

1
∂λ

Risk aversion compounds the effect of a lower price conditional on a shock, ps
1 < p0, since

the investor has higher marginal utility if they are forced to sell at date 1 such that the
incentive to sell preemptively at date 0 strengthens.

With risk aversion, the sufficient condition for strategic complementarities in Proposi-
tion 2 gains an extra factor andbecomes s1η ×

(
1 + γ∆p

)
> 2, whereγ = −xu′′(p0)/u′(p0)

is the coefficient of relative risk aversion at p0 and ∆p = (p0 − ps
1)/p0 is the percent drop

in the asset price conditional on a shock. While this conditional price drop is an endoge-
nous object, the extra factor intuitively illustrates how a greater degree of risk aversion
and a greater conditional price drop increase the likelihood that strategic complementari-
ties arise. Next, we derive a sufficient condition for strategic complementarities that is not
stated in terms of endogenous objects.

For analytical tractability and to highlight the effect of risk aversion on its own, we now
use quadratic balance sheet costs C(q) = cq2 which, under risk neutrality, cannot gener-
ate strategic complementarities (Proposition 3). Quadratic costs result in simple linear
demands from the dealers as the equilibrium price functions of Proposition 1 become

p0(q0) = 1 − cq0 and ps
1(q0, qs

1) = 1 − 2cq0 − cqs
1. (9)

The linear structure highlights the result fromCorollary 1 for general convex balance sheet
costs, that the inventory effect ∂ps

1/∂q0 is larger than the direct price impact ∂ps
1/∂qs

1 — for
quadratic cost the inventory effect is twice as large. With CRRA utility and the the price
functions (9) linear in λ, we can derive a sufficient condition for strategic complementar-
ities in terms of exogenous parameters.

Proposition 4. For quadratic balance sheet costs C(q) = cq2 with c ∈ (0, 1) and constant relative
risk aversion u(x) = x1−γ/(1 − γ) with γ > 0, strategic complementarities arise for date-1
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liquidity risk and/or risk aversion sufficiently high, i.e. ∂π/∂λ > 0 uniformly if s1 (2 − s1) >

(1 − cs1)
γ which, for given γ, implies a lower bound for s1 and vice versa.

Proposition 4 shows that the effect of risk aversion in strengthening the incentive to sell
preemptively is sufficiently strong that strategic complementarities can arise evenwith less
elastic marginal balance sheet costs.

4.4 Sequential Trade Execution

We now consider the case where trades are executed sequentially, in contrast to the pooled
execution in Bernardo andWelch (2004) but similar toMorris and Shin (2004) and consis-
tent with the decentralized nature of safe asset markets including the Treasury dealer-to-
client market (Brain et al., 2019). For analytical tractability we again use quadratic balance
sheet costs C(q) = cq2 which, under pooled execution, cannot generate strategic comple-
mentarities (Proposition 3) and which result in simple linear equilibrium prices in (9).

We assume that each seller’s position in the queue of sequential execution is uniformly
distributed such that, for aggregate sales q, the expected position in the queue is q/2.
Investors therefore expect to sell at expected prices

E[p0(q0)] = 1 − 1
2

cq0 and E[ps
1(q0, qs

1)] = 1 − 2cq0 −
1
2

cqs
1.

The expected prices highlight that sequential execution further strengthens the inventory
effect of q0 on E

[
ps

1
] which is now four times as large as the direct price impact of qs

1. The
reason is that an investor selling at date 0 expects to front-run half of total date-0 sales on
average while they will have to bear the full inventory effect of date-0 sales once date 1
comes around.

Using these expressions, we can write the payoff gain π from equation (2) explicitly
as a function of the endogenous strategic sales λ as well as the exogenous liquidity risk s0

and s1:

π(λ, s0, s1) =

E[p0]︷ ︸︸ ︷
1 − c

2
(
s0 + (1 − s0) λ

)
− s1

(
1 − 2c

(
s0 + (1 − s0) λ

)
− c

2
s1 (1 − s0) (1 − λ)

)
︸ ︷︷ ︸

E[ps
1]

− (1 − s1) v. (10)

The payoff gain (10) is linear in λ and s0, and quadratic in s1, which allows us to derive
clear comparative statics.
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Proposition 5. For quadratic balance sheet costs C(q) = cq2 with c ∈ (0, 1) and sequential trade
execution:

• Strategic complementarities arise for date-1 liquidity risk s1 above a threshold s̃ = 2−
√

3 ≈
0.27, i.e. ∂π/∂λ > 0 uniformly if s1 > s̃.

• Higher date-1 liquidity risk uniformly increases the incentive to sell, i.e. ∂π/∂s1 > 0, while
date-0 liquidity risk increases the incentive to sell whenever there are strategic complemen-
tarities, i.e. ∂π/∂s0 > 0 if s1 > s̃.

• Greater dealer balance sheet costs increase the incentive to sell whenever there are strategic
complementarities, i.e. ∂π/∂c > 0 if s1 > s̃.

Analogous to the effect of risk aversion, Proposition 5 shows that the effect of sequen-
tial execution in strengthening the incentive to sell preemptively is sufficiently strong that
strategic complementarities can arise even with less elastic marginal balance sheet costs.

5 Equilibrium Analysis

Under complete information, there can be multiple equilibria in the strategic interaction
among liquidity investors— a hold equilibrium and a run equilibrium (and amixed equi-
librium), as discussed in Section 2. In this section, we first impose some simplifying as-
sumptions that maintain the key features of the strategic interaction analyzed in Section 4
but simplify the exposition. Then we introduce noise into investors’ payoffs to break the
common knowledge underpinning themultiplicity and use global game techniques to de-
rive a unique equilibrium.

5.1 Complete Information and Multiple Equilibria

We continue the analysis using the simple linear structure that results from quadratic bal-
ance sheet costs and sequential trade execution derived in Section 4.4. Propositions 2 and 5
further show that liquidity risk at the two dates, s0 and s1, have very similar effects on the
incentive to sell. We also think of the level of liquidity risk as varying at lower frequency
than the timing of the liquidity shocks across investors such that, in normal times, both
s0 and s1 are low while, in times of stress, both s0 and s1 are high. To further simplify the
expositionwe therefore specialize to the case of a single parameter capturing liquidity risk
at both dates, s0 = s1 = s, such that the payoff gain (10) simplifies to

π(λ, s) =
c
2

(
(4s − 1)

(
s + (1 − s) λ

)
+ s2 (1 − s) (1 − λ)

)
− (1 − s) (v − 1) , (11)
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which is linear in strategic sales λ and cubic in liquidity risk s.13 The following corollary
restates Proposition 5 for this case.14

Corollary 4. For quadratic balance sheet costs C(q) = cq2, sequential trade execution, and a
single level of liquidity risk s0 = s1 = s:

• Strategic complementarities arise for liquidity risk s above a threshold s̃ = 2 −
√

3 ≈ 0.27,
i.e. ∂π/∂λ > 0 uniformly if s > s̃.

• Higher liquidity risk uniformly increases the incentive to sell whenever there are strategic
complementarities, i.e. ∂π/∂s > 0 if s > s̃.

• Greater dealer balance sheet costs increase the incentive to sell whenever there are strategic
complementarities, i.e. ∂π/∂c > 0 if s > s̃.

With this structure, we can now revisit the possible equilibria under complete informa-
tion discussed in Section 2 and derive under which conditions each type of equilibrium
exists: the hold equilibrium for π(0, s) < 0, the run equilibrium for π(1, s) > 0 and a
mixed equilibrium if π(λ∗, s) = 0 for some λ∗ ∈ (0, 1).

The analysis of Section 4, as summarized in Corollary 4 shows that liquidity risk s is a
key driver of both the level of the payoff gain π(λ, s) as well as of its slope ∂π/∂λ, which
we illustrate in Figure 3. For low liquidity risk s, π(λ, s) is negative for all λ and decreasing
(strategic substitutes), and the unique equilibrium is the hold equilibrium (λ∗ = 0). In
fact, we have π(0, 0) = − (v − 1) so our assumption that liquidity investors value the
safe asset at a convenience yield v > 1 guarantees that the hold equilibrium exists for
sufficiently low liquidity risk, i.e. the existence of s ∈ (0, 1) such that π(0, s) < 0 for s < s.
As noted above, this is an important difference to themodel of Bernardo andWelch (2004),
where v = 1 such that a hold equilibrium never exists.

For sufficiently high s, π(λ, s) is positive for all λ and the unique equilibrium is for
everyone to sell (λ∗ = 1). We have π(1, 1) = 3c/2 so our assumption that dealers suffer
balance sheet costs from holding inventory (c > 0) guarantees that the run equilibrium
exists for sufficiently high liquidity risk, i.e. the existence of s ∈ (0, 1) such that π(1, s) > 0
for s > s.

13We could instead simplify by considering the case s0 = 0 and s1 > 0 (as in Bernardo and Welch, 2004).
However, we want to be able to distinguish between investors with genuine liquidity needs who are forced
to sell at date 0, captured by s0 > 0, and investors without genuine liquidity needs who strategically sell
at date 0 because they are worried about potential genuine liquidity needs at date 1. We view this as an
important distinction for safe asset markets in general and for understanding the events of March 2020 in
particular.

14We show in Appendix F that the global game analysis goes through with s0 ̸= s1 as long as s1 is the
fundamental that investors receive noisy signals about.
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Figure 3: Incentive to sell and equilibria. The figure shows the payoff gain π for different
values of liquidity risk s. Circles indicate equilibria of the game under complete information.
Parameters: c = 0.25, v = 1.2.

The only remaining question iswhetherπ(λ, s) is positive of negative at s = s̃ ≡ 2−
√

3
where the sign of the slope ∂π/∂λ changes. Figure 3 shows strategic complementarities
arising at a point where the payoff gain is negative, i.e. the dashed horizontal line is below
the horizontal axis which occurs for

π(λ, s̃) =
c
2

s̃2 − (1 − s̃) (v − 1) < 0. (12)

As s increases, the level and slope of π(λ, s) with respect to λ increase, until it first be-
comes flat at s = s̃ and then intersects the horizontal axis with positive slope (strategic
complements), at which point the game has multiple equilibria (hold, sell andmixed). As
noted above, sufficiently elastic marginal balance sheet costs and/or sequential trade ex-
ecution are key for strategic complementarities, in contrast to the model of Bernardo and
Welch (2004), where strategic complementarities do not arise.

In the following, we will focus on the case illustrated in Figure 3 by assuming c and v
such that condition (12) holds. What happens if this assumption is not satisfied? In that
case, the unique equilibrium is still to hold for sufficiently small s and to sell for suffi-
ciently large s. However, for an intermediate range of s, the unique equilibrium is in mixed
strategies since the payoff gain crosses the horizontal axis with negative slope. Since our
emphasis is on the potential for fragility, we focus the analysis on the case where multiple
pure-strategy equilibria arise in an intermediate range of s and we can have regime shifts.
This allows for the use of global game techniques and results in a unique equilibrium for
every s ∈ [0, 1] with the switch from the hold to the run equilibrium at an endogenous
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threshold. Since the threshold is a continuous function of other model parameters, com-
parative statics and policy analysis follow naturally.

5.2 Global Game and Unique Equilibrium

We now assume that the liquidity shock probability s is drawn at the beginning of date
0 from a distribution F on (0, 1) and that there is imperfect information about s. Specifi-
cally, each individual investor i observes an idiosyncratic signal ŝi = s + σεεi, where the
mean-zero signal noise εi is i.i.d. across all i with distribution Gε and σε > 0 but arbitrarily
small.15 As a result, a strategic investor faces fundamental uncertainty about the likeli-
hood of a liquidity shock, s, as well as strategic uncertainty about the fraction of other
strategic investors who sell preemptively, λ. Making use of standard global game results
(e.g. Morris and Shin, 2003), we can derive a unique Bayesian Nash equilibrium for the
game among strategic investors.

Proposition 6. For signal noise σε → 0, the unique Bayesian Nash equilibrium among strategic
investors is in switching strategies around a threshold s∗ defined by

∫ 1

0
π(λ, s∗) dλ = 0.

For liquidity risk below the threshold, s < s∗, all strategic investors hold on to their safe assets and
only investors with genuine liquidity needs sell. For liquidity risk above the threshold, s > s∗, all
strategic investors sell their safe assets and the market suffers a run.

While Appendix B contains the full proof, we provide the following outline for in-
tuition. An investor who receives a signal exactly equal to the switching point has to be
indifferent between holding and selling,

E
[
π(λ, s)

∣∣ ŝi = s∗
]
= 0, (13)

where the expectation is with respect to both λ and s. Note from equation (10) that π(λ, s)
is linear in λ and cubic in s. We have E[s | ŝi = s∗] = s∗, and, in the limit σε → 0, we have
E
[
s2 | ŝi = s∗

]
→ (s∗)2 and E

[
s3 | ŝi = s∗

]
→ (s∗)3, so fundamental uncertainty vanishes,

and strategic uncertainty in the form of the distribution of λ becomes uniform on [0, 1].
We therefore have

lim
σε→0

E
[
π(λ, s)

∣∣ ŝi = s∗
]
=
∫ 1

0
π(λ, s∗) dλ,

15Because we focus on the limit of vanishing signal noise, σε → 0, we can treat s as non-random in the
exposition except when deriving the global game equilibrium.
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Figure 4: Effect of balance sheet costs on market stability and equilibrium price. Panel A
shows market stability measured by the equilibrium threshold s∗ as a function of the dealer
balance sheet cost c. Panel B shows the equilibrium price at date 0 p∗0 as a function of liquidity
risk s for different values of dealer balance sheet cost c. Parameters: v = 1.2.

where
∫ 1

0 π(λ, s) dλ is a cubic polynomial in s. We show in the proof of Proposition 6 that
∂
∂s

∫ 1
0 π(λ, s) dλ > 0 with

∫ 1
0 π(λ, 0) dλ < 0 and

∫ 1
0 π(λ, 1) dλ > 0 so there is a unique

threshold s∗ that satisfies the indifference condition
∫ 1

0 π(λ, s∗) dλ = 0.
The equilibrium switches from hold to sell when liquidity risk s crosses the threshold

s∗ and a higher threshold implies a larger range of liquidity risk [0, s∗] where the market
remains in the hold equilibrium. Given the distribution F of liquidity risk s, the ex-ante
probability of the hold equilibrium is therefore Pr[s ≤ s∗] = F(s∗) and the ex-ante proba-
bility that the market suffers a run is Pr[s > s∗] = 1− F(s∗). The threshold s∗ is therefore a
well-defined measure of market stability, or 1 − s∗ a measure of fragility, and we can refer
to a market with higher s∗ as more stable or, equivalently, less fragile.

Corollary 5. Market stability s∗ is decreasing in dealer balance sheet costs, ∂s∗/∂c < 0 and
increasing in liquidity investors’ continuation value, ∂s∗/∂v > 0.

Market stability naturally inherits the properties of the incentive to sell listed in Corol-
lary 4. Consider the effect of dealer balance sheet costs c on market stability s∗ illustrated
in Figure 4A. If dealers faced no balance sheet costs (c = 0), the market would be perfectly
stable (s∗ = 1) and strategic investors would never sell preemptively, even for very high
liquidity risk s. However, as balance sheet costs c increase from zero, market stability s∗

decreases rapidly and then levels off at higher values of c.
The threshold equilibrium implies that the behavior of strategic liquidity investors and
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therefore the equilibrium price drops precipitously around the threshold s∗. In particular,
total supply at date 0 increases from s to 1 as s crosses the thresholds∗, so the equilibrium
price from equation (9) becomes16

p∗0(s) =

1 − cs for s < s∗,

1 − c for s > s∗.
(14)

Figure 4B illustrates the equilibrium price p∗0 . When liquidity risk is very low, all strate-
gic investors hold on to their safe assets and only investors who receive a liquidity shock
sell — the equilibrium price is therefore steadily decreasing in s, representing the sales of
non-strategic investors. However, once liquidity risk crosses the threshold s∗, all strategic
investors preemptively sell their safe assets — the market is flooded and the equilibrium
price drops precipitously. Figure 4B further illustrates the equilibrium price for two dif-
ferent levels of dealer balance sheet costs c. As balance sheet costs increase, the threshold
s∗ and therefore market stability decreases (Corollary 5). In addition, the drop in mar-
ket prices at the discontinuity is much larger for higher balance sheet costs. This is due
to the fact that the drop in equation (14) is given by c (1 − s∗), where c and s∗ interact
multiplicatively.

5.3 Welfare and Policy Implications

We now consider the welfare properties of the model and what policies can address the
inefficiency. Selling the asset without a genuine liquidity need is generally inefficient be-
cause liquidity investors value the safe asset at v > 1 when held to maturity. As a result,
any runs in our model are inefficient and liquidity investors would be better off if they
could coordinate to hold instead. We conduct the welfare analysis including only liquid-
ity investors and dealers because this allows us to focus on the key source of inefficiency in
the model. Once we add risk averse safety investors to the model in Section 6, additional
distributional effects arise which are not related to the key inefficiency (and do not arise
with risk neutral liquidity investors and dealers).

Social welfare is the sum of the payoffs to liquidity investors plus the payoffs to the
dealers. The payoff to liquidity investors is

q0p0 + q1p1 + (1 − q0 − q1) v.

16The expression in (14) represents the zero-noise limit case (σε → 0) where the price drops discon-
tinuously at s∗. For small but positive σε, the price drop would be continuous but very steep in a small
neighborhood around s∗.
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while the payoff to dealers is

q0 (1 − p0) + q1 (1 − p1)− C(q0 + q1) .

Adding the two, we can write ex-post social welfare W as

W = v − (q0 + q1) (v − 1)− C(q0 + q1) .

Social welfare is strictly decreasing in total sales because investors value the safe asset at
v > 1 while dealers value it only at 1 and face balance sheet costs from taking on inven-
tory (the prices paid simply constitute a transfer between investors and dealers). We can
decompose total sales into sales that are ex-post necessary and unnecessary, where neces-
sary sales reflect genuine liquidity needs of investors based on liquidity shocks at date 0
and date 1:

q0 + q1 =

q0︷ ︸︸ ︷
s + (1 − s) λ+

q1︷ ︸︸ ︷
s (1 − s) (1 − λ)

= 2s − s2︸ ︷︷ ︸
genuine liquidity needs

+ (1 − s)2 λ︸ ︷︷ ︸
ex-post unnecessary sales

.

While date-0 and date-1 liquidity risk both create necessary sales, preemptive sales by
investors who do not receive a shock at date 0 and would not have received a shock at
date 1 are inefficient. Fixing exogenous liquidity risk s, a higher endogenous λ strictly
decreases welfare, dW/dλ < 0, and welfare is maximized when the only sales are due to
genuine liquidity needs, i.e. when λ = 0.

The threshold equilibrium implies that q0 + q1 = 2s − s2 for s < s∗ and q0 + q1 = 1 for
s > s∗. Ex ante social welfare is therefore given by

E[W] = v −
∫ s∗

0

[(
2s − s2) (v − 1) + C

(
2s − s2)] dF(s)

−
(
1 − F(s∗)

) (
v − 1 + C(1)

)
.

Analogous to ex-postwelfare, a lower incidence of runs, i.e. a higher equilibrium threshold
s∗, strictly increases ex-antewelfare, dE[W]/ds∗ > 0, andwelfare ismaximizedwhen there
are no runs, i.e. when the market is perfectly stable with s∗ = 1.

We consider a policy maker who is constrained to using taxes and transfers that cannot
be contingent on an investor’s type or on the aggregate state of the world. Specifically, we
consider a Pigouvian tax τ ∈ (0, 1) on sales of the safe asset that is rebated, at the end of
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each period, to all investors who held the asset at the beginning of the period. Under this
policy, investors who sell at date t receive (1 − τ) pt and all investors receive τptqt at the
end of date t. Because the rebates do not depend on the investor’s decision whether to sell
or not, it cancels out of the payoff gain π which becomes

π = (1 − τ) p0 − s (1 − τ) ps
1 − (1 − s) v.

With equilibrium prices ps
1 < p0 (Proposition 1), the incentive to sell preemptively is

decreasing in the tax rate τ, ∂π/∂τ = −p0 + sps
1 < 0. Furthermore, a sufficiently high tax

rate can eliminate runs entirely because π(τ = 1) = − (1 − s) v < 0.

Proposition 7. Consider a Pigouvian tax τ on sales that is rebated to all investors. Market stability
s∗ and therefore ex-ante welfare E[W] is increasing in τ. For sufficiently high τ, the market is
perfectly stable (s∗ = 1) and ex-ante welfare is maximized.

While the Pigouvian tax of Proposition 7 can completely eliminate runs, the tax rate
may have to be very high and the policy results in a transfer from investors who receive
a liquidity shock and are forced to sell to investors who do not receive a liquidity shock.
This transfer does not affect social welfare only because we assume that investors are risk
neutral. However, we can reduce the size of this transfer if we allow the social planner
to make the tax state contingent. One particularly attractive option would be a tax that
only becomes active if total sales are above some threshold, akin to swing pricing in the
context of mutual funds (e.g. Jin et al., 2021). Specifically, consider a policy with a tax rate
τ such that runs are not completely eliminated (s∗ < 1) and that only becomes active if
sales exceed the threshold s∗.17 Because equilibrium sales are q0 = s for s < s∗ and fully
represent genuine liquidity needs, while preemptive sales only occur for s > s∗, such a
state-contingent policy would only result in a transfer from investors facing a liquidity
shock to investors not facing a shock if s > s∗, i.e. in states of the world where the policy
has to counter an inefficient run.

In Section 7, we discuss additional policy options such as asset purchases and tem-
porary relaxation of dealer constraints which were implemented during the March 2020
episode and which involve trade-offs outside the scope of our model.

17Note that the threshold s∗ would still be a function of the tax τ with ∂s∗/∂τ > 0 although the mapping
would be different from the one without state contingency in Proposition 7.
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6 Model with Safety Investors

Safe asset markets typically rally in times of stress with investors flocking toward Trea-
suries in a standard flight-to-safety, instead of selling Treasuries in a dash-for-cash as in
March 2020.Accordingly,wewant to understand howamarket that typically experiences a
flight-to-safety without a dash-for-cash could suddenly experience a dash-for-cash during
a flight-to-safety episode andwhether there is an interaction between the two phenomena.

We now introduce a second type of investors who are risk averse and hold a portfo-
lio of the safe asset and the risky asset. In bad states of the world with negative shocks
to the expected payoff of the risky asset, these “safety investors” increase their demand
for the safe asset in a standard flight-to-safety, offsetting the flow of sales from liquidity
investors or leading to repricing even in the absence of large trade volumes. Examples of
real-world safety investors we have in mind include pension funds who face a traditional
risk–return tradeoff and were among the largest net buyers of Treasuries in 2020q1 (Fi-
nancial Accounts Table FU.210).

Safety investors could be active both at date 0 and at date 1. Additional safe asset de-
mand at date 1 directly increases the price at date 1, which reduces the incentive of liq-
uidity investors to sell preemptively at date 0 and therefore has a natural stabilizing effect
on the strategic interaction at date 0. In contrast, additional demand at date 0 increases
both the price at date 0 as well as the price at date 1 — by reducing dealer inventory —
with an ambiguous overall effect on market stability at date 0. To focus attention on this
ambiguous effect in the interaction between liquidity investors and safety investors, we re-
strict attention to the case in which safety investors are active only at date 0. Appendix G
discusses the general case.

What if, instead, we modeled flight-to-safety simply as an increase in the marginal
investor’s valuation? Then a flight-to-safety would be unambiguously destabilizing, as we
show in Appendix H. But that is not the typical behavior in safe asset markets where
a flight-to-safety typically stabilizes and supports the market. We show that a flight-to-
safety that works through dealer inventory can instead produce this stabilizing effect, but
can also destabilize the market and trigger a dash-for-cash when markets are fragile.

6.1 Safety Investors’ Asset Demand

Safety investors’ utility is linear in consumption at date 0 and quadratic in future wealth,

u(c0, w) = c0 + w − 1
2

κw2,
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where the curvature parameter κ > 0 commingles risk aversion and intertemporal substi-
tution andwe assume w < 1/κ. In addition to the safe asset with future payoff 1, there is a
risky asset with future payoff z distributed according to Hz, where we denote the expected
payoff as µz =

∫
z dHz(z) and the variance as σ2

z =
∫

z2 dHz(z)− µ2
z.

Given initial wealth w0, safety investors choose consumption c0, and a portfolio with
holdings qS

0 of the safe asset and qz of the risky asset, subject to the budget constraint c0 +

p0qS
0 + pzqz ≤ w0, to maximize E[u(c0, w)], where future wealth is given by w = qS

0 + zqz.
After substituting in for c0 using the budget constraint, we have first-order conditions for
qS

0 and qz given by

0 = E
[
1 − κ

(
qS

0 + zqz

)]
− p0 = 1 − κ

(
qS

0 + zqz

)
− p0,

and
0 = E

[
z − κ

(
qS

0 + zqz

)
z
]
− pz = µz − κ

(
µzqS

0 +
(

µ2
z + σ2

z

)
qz

)
− pz,

which are both linear in qS
0 and qz. Solving, we arrive at safety investors’ demand for the

safe asset and the risky asset given by

qS
0 =

1
κσ2

z

(
σ2

z + µz pz −
(

µ2
z + σ2

z

)
p0

)
and qz =

1
κσ2

z
(µz p0 − pz) ,

while their consumption at date 0 is given as the residual c0 = w0 −
(

pzqz + p0qS
0
).

To close the model and impose general equilibrium, we assume that safety investors
hold the entire supply Z > 0 of the risky asset, i.e. qz = Z. In this case, the risky asset
price is pz = µz p0 − κσ2

z Z and drops after a negative shock to the risky asset’s expected
payoff µz (as the S&P 500 did in March 2020). Substituting in the equilibrium pz, safety
investors’ demand for the safe asset simplifies to

qS
0 = a − bp0, (15)

with a = 1/κ − µzZ and b = 1/κ, which is linear in p0 and has a similar structure to
dealers’ demand in equation (9). We are interested in shocks to the risky asset’s expected
payoff µz, which enters safety investors’ safe asset demand only through the intercept a.
A decrease in µz is therefore equivalent to an increase in a and implies a flight-to-safety as
a level shift in safety investors’ demand for the safe asset.18

18Weuse a shock to the expected payoff as a tractable way to generate an increase in demand for safe assets
within this simple setting. Fluctuations of asset prices are often captured, instead, by variations in required
risk premia which would suggest a shock to κ. However, the parameter κ commingles investors’ attitudes
toward risk and toward intertemporal substitution. A shock only to required risk premia could be captured
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6.2 Interaction of Safety Investors and Liquidity Investors

We continue the analysis using the simple linear structure that results from quadratic bal-
ance sheet costs and sequential trade execution derived in Section 4.4. Combining the de-
mand from dealers implied by (9), qD

0 = 1
c (1 − p0), with the demand from safety in-

vestors, qS
0 = a − bp0, yields total demand qD

0 + qS
0 for safe assets at date 0, which can be

rewritten as the equilibrium price at date 0:

p0(q0) =
1 + ac
1 + bc

− c
1 + bc

q0 (16)

An increase in the additional demand from safety investors (higher a) therefore uniformly
increases the price at date 0.

At date 1, only dealers buy the safe asset so demand is unchanged from equation (9).
However, dealer inventory is no longer the entire date-0 supply q0 as some of these sales
have been absorbed by safety investors. Specifically, at the price p0(q0) in (16), dealer in-
ventory is given by qD

0 = 1
c
(
1 − p0(q0)

)
= (q0 + b − a)

/
(1 + bc) such that the equilib-

rium price at date 1 becomes

ps
1(q0, qs

1) = 1 − 2c
q0 + b − a

1 + bc︸ ︷︷ ︸
date-0 inventory

− cqs
1.

An increase in the additional demand from safety investors at date 0 (higher a) there-
fore uniformly increases the price at date 1 by decreasing the inventory on dealer balance
sheets.

Substituting in the supply q0 = s + (1 − s) λ and qs
1 = s (1 − s) (1 − λ) and account-

ing for the factor 1/2 due to sequential execution, the payoff gain with safety investors
becomes

π(λ, s) =

E[p0(λ)]︷ ︸︸ ︷
1 + ac
1 + bc

− 1
2

c
1 + bc

(
s + (1 − s) λ

)
− s
(

1 − 2c
s + (1 − s) λ + b − a

1 + bc
− c

2
s (1 − s) (1 − λ)

)
︸ ︷︷ ︸

E[ps
1(λ)]

− (1 − s) v.

As anticipated, a flight-to-safety in the form of an increase in safety investor demand
in a model with preferences that separate risk aversion from intertemporal decision (e.g. Epstein and Zin,
1989).
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(higher a) has an ambiguous effect on the incentive to sell π. The question is if (or when)
flight-to-safety demand is stabilizing (decreases π) or destabilizing (increases π).

Proposition 8. Flight-to-safety demand increases the incentive to sell preemptively if and only if
liquidity risk is low, ∂π/∂a > 0 ⇔ s < 1/2. The effect of additional demand is monotonic in
liquidity risk, ∂2π

/
(∂s∂a) < 0.

Where does the ambiguous effect of a on π originate? Similar to strategic sales by liq-
uidity investors, purchases from safety investors have a direct effect and an indirect effect
on the payoff gain π. The direct effect of an increase in demand a is an increase in the date-
0 price p0 and therefore an increase in the payoff gain π with a coefficient of c/(1 + bc).
This effect is destabilizing since a higher price at date 0 incentivizes strategic investors to
sell preemptively.

The indirect effect works through relaxing dealer balance sheet constraints, which in-
creases the date-1 price ps

1 and therefore reduces the payoff gain π with a coefficient (in
absolute value) of 2s × c/(1 + bc), similar to the direct effect except for the factor 2s. The
factor 2 arises because of the larger effect of existing date-0 inventory on dealer demand
than of new date-1 inventory (Corollary 1). However, the effect on ps

1 is discounted by
the liquidity shock probability s because it is only relevant if the investor actually suffers
a liquidity shock at date 1.

Overall, the destabilizing effect of a higher date-0 price dominates the stabilizing ef-
fect of a higher date-1 price for low liquidity risk, s < 1/2, when the investor is unlikely
to face the higher date-1 price. In this case, flight-to-safety increases the incentive to sell
preemptively. Vice versa for high liquidity risk, s > 1/2, the stabilizing effect dominates
such that flight-to-safety decreases the incentive to sell.

The payoff gain with safety investor demand retains the standard global game con-
ditions of Morris and Shin (2003) so, for vanishing signal noise, the unique equilibrium
remains in switching strategies around a threshold s∗ defined by the indifference condition∫ 1

0 π(λ, s∗) dλ = 0 as in Proposition 6. In particular, recall that π is increasing in s so an
exogenous decrease in π leads to a higher threshold s∗, capturing higher market stability.
The ambiguous effect of safety investor demand on the payoff gain π from Proposition 8
therefore directly translates into an analogous effect on market stability.

Corollary 6. Flight-to-safety demand is stabilizing if the market is relatively stable and destabiliz-
ing if the market is relatively fragile, ds∗/da > 0 ⇔ s∗ > 1/2.

Figure 5 illustrates the ambiguous effect of flight-to-safety demand on market stability
by comparing two markets with different levels of dealer balance sheet cost c. When bal-
ance sheet costs are low, the market is relatively stable: the threshold s∗ where the price
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Fragile market (high c):
s∗(aL)

s
0 1

s∗(aH)0 1
Stable market (low c): s

s∗(aH)

s∗(aL)

destabilizing

stabilizing

1
2

1
2

Figure 5: Effect of flight-to-safety on equilibrium market stability. The figure shows the
effect of an increase in safety investor demand from aL to aH onmarket stability s∗ for different
levels of dealer balance sheet cost c.

drops precipitously is above 1/2. In this case, liquidity investors sell preemptively at date 0
only if liquidity risk s is very high (i.e. only if they are very likely to be forced to sell at
date 1). In this environment of high liquidity risk, the stabilizing effect of flight-to-safety
demand increasing the price at date 1 dominates and the run threshold s∗ is increasing in
a, so that runs become less likely as safety demand increases from aL to aH.

When balance sheet costs are high, in contrast, the market is relatively fragile with the
threshold s∗ below 1/2. In this case, liquidity investors already sell preemptively when
liquidity risk s is still low (i.e. when they are unlikely to be forced to sell at date 1). In
this environment of low liquidity risk, the destabilizing effect of flight-to-safety demand
increasing the price at date 0 dominates and the run threshold s∗ is decreasing in a so
higher safety demand is destabilizing. In fact, for a given level of liquidity risk that is
close to but below the run threshold, an increase in safety investor demand can reduce the
threshold sufficiently to tilt the market into the run equilibrium such that flight-to-safety
triggers a dash-for-cash.

The interaction of liquidity investors and safety investors therefore results in a feedback
effect in market stability. If the market is resilient to begin with (as before the GFC when
dealer balance sheet costs were low), then liquidity investors and safety investors interact
symbiotically: In times of stress, the additional demand for safe assets from safety investors
has a stabilizing effect on the strategic interaction of liquidity investors and attenuates
the risk of market breakdown. However, if the market is relatively fragile (as in the post-
GFC environment of high dealer balance sheet costs), the relationship reverses: Additional
demand from safety investors in times of stress further destabilizes the strategic interaction
of liquidity investors, increasing their incentive to sell preemptively and thereby increasing
the risk of market breakdown.
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6.3 Correlated Liquidity and Safety Shocks

Now suppose the risks faced by liquidity investors and safety investors are correlated. In
times of stress, liquidity investors face a higher risk of suffering a liquidity shock (i.e. s is
high), and safety investors face a low payoff of the risky asset (i.e. µz is low and therefore
a is high). To understand the net effect of increases in s and a on the safe asset market, we
can derive the equilibrium price at date 0 as a function of s and a.

As before, total supply in the global game equilibrium is s for s < s∗ (all strategic in-
vestors hold) and 1 for s > s∗ (all strategic investors sell). Substituting into equation (16),
the equilibrium price becomes

p∗0(s, a) =

 1
1+bc

(
1 − c (s − a)

) for s < s∗(a),
1

1+bc
(
1 − c (1 − a)

) for s > s∗(a).
(17)

Figure 6 illustrates the equilibrium price for combinations of s and a with a contour
plot. The figure shows a case in which the market is relatively fragile: The threshold s∗

is always below 1/2, so the cliff where the price drops as the equilibrium switches from
hold to run is decreasing in (s, a)-space: for liquidity risk s close to s∗, an increase in safety
investor demand a can push the market over the cliff and trigger a price crash. In the hold
equilibrium (i.e. for s < s∗), the expression in equation (17) shows that equal-sized in-
creases in s and a exactly offset each other and leave the price unchanged so the contour
lines in Figure 6 have a slope of 1. This implies that whenever safety demand a increases
more than 1:1 with liquidity risk s and liquidity risk remains below the threshold s∗, we
observe a classic flight-to-safety with p∗0 increasing (i.e. safe assets appreciating). This
corresponds to the period frommid-February to early March 2020, where stock prices de-
creased and Treasury prices increased (Figure 1, Panel A). However, if the balance shifts
and the increase in liquidity risk s outweighs the increase in safety demand a, the price p∗0
can decrease and suddenly drop, as s crosses the threshold s∗ and the equilibrium shifts to
a dash-for-cash. This corresponds to the period in mid-March 2020 when Treasury prices
reversed their increase and dropped together with stock prices.

7 Policy Interventions in March 2020

The events of March 2020 triggered an immediate, short-term policy response and have
sparked a lively debate about longer-term policy implications. In this section, we study the
actual policy interventions through the lens of our model. We highlight the implications
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A: Facility size and market stability.
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B: Announcement and equilibrium price.
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Figure 8: Effects of date-1 purchase facility announced at date 0. Panel A shows the effect
of the facility size qF

1 on date-0 market stability as measured by the equilibrium threshold s∗.
Panel B shows the effect of the announcement of a facility with qF

1 = 0.5 on the equilibrium
price at date 0. Parameters: v = 1.2, c = 0.5.

p∗0 . Upon announcement, the equilibrium threshold s∗ increases from the value without
a facility, s∗pre, to the value with a facility, s∗post > s∗pre. For intermediate levels of liquidity
risk, s ∈

[
s∗pre, s∗post

], the announcement leads to a switch from the run equilibrium to the
hold equilibrium and therefore a discrete jump in the date-0 price.

Our theoretical results suggest that what matters for stabilizing a fragile market is the
announcement more than the purchases directly. However, this result should be inter-
preted with some care especially when there is little time between the announcement and
execution of purchases as was the case for the Treasury market in March 2020 (Vissing-
Jørgensen, 2021). In this case, the purchases can be interpreted as falling into period 0
or into period 1 with potentially opposite effects as official sector purchases in period 0
can be destabilizing and trigger strategic sales in the same way that purchases from safety
investors can (Section 6).

The corporate bond market provides a clean illustration of the announcement effects
implied by our model. While corporate bonds are not considered as safe (or liquid) as
Treasuries, highly rated ones are on a spectrum of relative safety slightly below agency
MBS (He and Song, 2022) and also feature flight-to-safety (Baele et al., 2019). Haddad,
Moreira, and Muir (2021) document that, in March 2020, prices of corporate bonds suf-
fered a crash similar to that in Treasuries. Surprisingly, the dislocations were worse for
bonds considered safer, which is consistent with safe asset fragility as shown in ourmodel.
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2020).22 Figure 9 shows that the recovery in Treasury prices in mid-March coincided with
a switch by the Fed — from lending against Treasuries to purchasing them outright —
and that the Fed was able to scale back purchases once Treasury holdings were exempted
from the SLR on April 14 (announced on April 1).

How can we understand the effects of these policies? Dealer balance sheet costs play a
crucial role in the strategic interaction of liquidity investors, since dealer inventory is the
key link between the price at date 0 and the price at date 1. When considering only the
interaction of liquidity investors, higher dealer balance sheet costs result in a more fragile
safe asset market (i.e. a market that is more prone to runs and sudden price crashes; Fig-
ure 4B). Also taking into account the effect of additional demand from safety investors, an
increase in dealer balance sheet costs can tip the market from a relatively stable region in
which flight-to-safety has a stabilizing effect to a relatively fragile region in which flight-
to-safety has a destabilizing effect (Figure 5). However, a policy that aims to relax dealer
balance sheet constraints in times of stress has to be designed with care due to the sub-
tleties of the strategic interaction. For example, if the policy relaxes dealer constraints only
at date 0 (or relatively more at date 0), then it can increase the incentive to sell preemp-
tively at date 0. If the market is in a run equilibrium, such a policy will appear to not have
an effect, and if it is in the hold equilibrium then a short-run relaxation of constraints can
precipitate a run. In addition, policy has to target the constraint that is actually binding.

If the SLR had been relaxed earlier, including for Treasury repos, the switch from the
hold to the run equilibrium and the resulting market collapse could potentially have been
avoided. Of course, the SLR and other post-GFC regulatory constraints were introduced
for good reason. However, the fact that these constraints interfered with intermediation
in safe assets during times of stress seems like an unintended consequence. For future
stress episodes, a temporary relaxation of the SLRwould therefore improve market stabil-
ity in our model. Indeed, relaxing the SLR in times of stress would be a way to mitigate
the fragility emphasized in our paper while maintaining the stabilizing macroprudential
consequences for which the regulation was designed.

8 Conclusion

We focus on three key features of safe asset markets: investors who value the assets’ safety,
investors who value the assets’ liquidity, and dealers who face balance sheet constraints.
Combining these features, we show that safe asset markets, which are typically resilient,

22See Infante, Favara, and Rezende (2022) for a detailed study of the effect of the SLR on dealer’s activity
in the Treasury market.
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can be fragile in that they are susceptible to sudden price crashes due to coordination
effects among investors valuing liquidity that are amplified by investors valuing safety.

Our model helps us understand the unprecedented events in the U.S. Treasury market
at the onset of the COVID-19 pandemic inMarch 2020 as a “perfect storm” of the three fea-
tures: First, financial regulation in the wake of the GFC had significantly tightened dealer
balance sheet constraints, increasing the inherent fragility of the market. Second, the pan-
demic threatened a global economic slowdown, leading to a powerful flight-to-safety de-
mand, further destabilizing themarket. Third, lockdowns created unprecedented liquidity
needs among consumers and official agencies. The result, according to our model, was a
market run in a market that is typically deep and resilient, featuring indiscriminate sales
by liquidity investors, including those without genuine liquidity needs who feared having
to sell at even worse conditions in the future.

The issues of dealer balance sheet constraints is almost surely only going to get worse
over time as the federal deficit grows and Treasury supply increases. So long as dealers’
balance sheet capacity grows more slowly than the stock of Treasuries, the market rely-
ing on dealer balance sheet capacity will have insufficient ability to intermediate trades
(Duffie, 2020). Ourmodel implies that thiswill exacerbate preemptive selling and increase
the frequency of dash-for-cash episodes.
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Appendices

A Data

Treasury yield: Themarket yield on U.S. Treasury securities at 10-year constant maturity,
daily frequency, from the Federal Reserve’s H.15 via FRED series DGS10.

S&P 500: The S&P 500 index, daily frequency, from Standard & Poors via FRED series
SP500.

Fed holdings of Treasuries: Federal Reserve outright holdings of Treasury notes andbonds
(both nominal and TIPS), weekly frequency as of Wednesday, from the Federal Re-
serve’s H.4.1 via FRED series WSHONBNL and WSHONBIIL.

Dealer net positions of Treasuries: PrimaryDealers’ net position in Treasuries (both nom-
inal and TIPS) from the New York Fed’s Primary Dealer statistics available at https:
//www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.

Dealer reverse repo against Treasuries: PrimaryDealers’ gross reverse repurchase agree-
ments against Treasuries (both nominal andTIPS), including other financing activity
and securities borrowed, from theNewYork Fed’s PrimaryDealer statistics available
at https://www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.

Net purchases of Treasuries: Net purchases of Treasuries (all types), quarterly frequency
(not seasonally adjusted), from the Federal Reserve’s FinancialAccounts Table FU.210
available in the CSV files at https://www.federalreserve.gov/releases/z1. The
label “foreign investors” refers to the sector “rest of the world” in the original table.

Fed Treasury Purchases: Federal Reserve Treasury purchases (all types), daily frequency,
from the New York Fed’s Treasury securities operations, available at https://www.
newyorkfed.org/markets/desk-operations/treasury-securities.

Foreign Official Treasury Purchases: Net Treasury purchases inferred from changes in
Treasury securities held in custody for foreign officials and international accounts,
weekly frequency as ofWednesday, from the Federal Reserve’s H.4.1 via FRED series
WMTSECL1.

Fed Treasury Repos: Federal Reserve Treasury repurchase agreements (overnight and
term) in temporary open market operations, daily frequency, from the New York
Fed via FRED series RPTSYD.
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B Proofs

Proof of Proposition 1. Solving condition (6) for ps
1 implies an equilibrium price at date

1 given by
ps

1(q0, qs
1) = 1 −

C
(
q0 + qs

1
)
− C(q0)

qs
1

.

In turn, combining conditions (4) and (6) implies an equilibrium price at date 0 given by

p0(q0) = 1 − C(q0)

q0
.

We have ps
1 < p0 if and only if

C
(
q0 + qs

1
)
− C(q0)

qs
1

>
C(q0)

q0
,

which can be rearranged as
C
(
q0 + qs

1
)

q0 + qs
1

>
C(q0)

q0
,

which holds if C is strictly convex.
Given our focus on an equilibriumwith ps

1 < p0, let us explicitly consider why ps
1 = p0

cannot be an equilibrium under our assumptions of competition and no commitment.
In an equilibrium with ps

1 = p0 ≡ p, the zero-profit condition at date 1 (4) becomes
(1 − p)

(
q0 + qs

1
)
= C

(
q0 + qs

1
), so that the total profit from buying assets at a discount to

fundamental value exactly equals the total balance sheet costs. In this proposed equilib-
rium, convexity of balance sheet costs C(q) requires

(1 − p) q0 > C(q0) and (1 − p) qs
1 < C(q0 + qs

1)− C(q0). (18)

The first inequality in (18) implies that dealers would earn positive profits on the date-0
inventory q0 and then give away those profits on the additional date-1 inventory. But an
optimizing dealer would never take on the additional inventory qs

1 at the same price as
before if it reduces profits so ps

1 = p0 cannot be an equilibrium. □

Proof of Corollary 1. Convexity of C(q) and C(0) = 0 imply that C′′(q) > 0 and that
C′(q) > C(q)

/
q for q > 0. The fact that both prices are decreasing in both quantities
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follows:

∂p0

∂q0
=

1
q0

(
C(q0)

q0
− C′(q0)

)
< 0

∂ps
1

∂q0
= −

C′(q0 + qs
1
)
− C′(q0)

qs
1

< 0

∂ps
1

∂qs
1
=

1
qs

1

(
C
(
q0 + qs

1
)
− C(q0)

qs
1

− C′(q0 + qs
1)

)
< 0

To show that the inventory effect through q0 is greater than the direct effect through qs
1,

i.e. ∂ps
1/∂q0 < ∂ps

1/∂qs
1, we need

−
C′(q0 + qs

1
)
− C′(q0)

qs
1

< −
C′(q0 + qs

1
)

qs
1

+
C
(
q0 + qs

1
)
− C(q0)(

qs
1

)2

⇔ C′(q0) <
C
(
q0 + qs

1
)
− C(q0)

qs
1

,

which holds because the properties of C imply

C′(q0) <
C
(
q0 + qs

1
)
− C(q0)

qs
1

< C′(q0 + qs
1) .

□

Proof of Corollary 2. The comparative statics are given by

∂p0

∂λ
=

∂p0

∂q0
(1 − s0) < 0

∂p0

∂s0
=

∂p0

∂q0
(1 − λ) < 0

∂ps
1

∂λ
=

(
∂ps

1
∂q0

− s1
∂ps

1
∂qs

1

)
(1 − s0) < 0

∂ps
1

∂s0
=

(
∂ps

1
∂q0

− s1
∂ps

1
∂qs

1

)
(1 − λ) < 0

∂ps
1

∂s1
=

∂ps
1

∂qs
1
(1 − s0) (1 − λ) < 0

and the signs of the first, second and last follow directly from Corollary 1.
The only non-obvious comparative statics are the effects of λ and s0 on ps

1. Note that
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∂ps
1/∂qs

1 < 0 implies
∂ps

1
∂qs

1
< s1

∂ps
1

∂qs
1

,

and we also have
∂ps

1
∂q0

<
∂ps

1
∂qs

1
.

Combining the two implies
∂ps

1
∂q0

< s1
∂ps

1
∂qs

1

and therefore ∂ps
1/∂λ < 0 and ∂ps

1/∂s0 < 0. □

Proof of Proposition 2. We want to determine when ∂π/∂λ > 0, i.e. when ∂p0/∂λ >

s1∂ps
1/∂λ. In words, the initial price impact of more sellers, ∂p0/∂λ, is negative, but we

want to show that the future price impact of more sellers, weighted by liquidity risk,
s1∂ps

1/∂λ, is even more negative. Substituting in the expressions from the proofs above,
using C

(
q0 + qs

1
)
− C(q0) =

∫ qs
1

0 C′(q0 + x) dx as well as qs
1 = (1 − q0) s1, and rearranging,

the condition becomes

C′(q0 + qs
1)− C′(q0)− s1

(
C′(q0 + qs

1)−
1
qs

1

∫ qs
1

0
C′(q0 + x) dx

)
>

1 − q0

q0

(
C′(q0)−

C(q0)

q0

)
. (19)

We provide a sufficient condition for (19) by deriving a lower bound on the LHS and
an upper bound on the RHS:

• The upper bound on the RHS is simply

1 − q0

q0

(
C′(q0)−

C(q0)

q0

)
<

1 − q0

q0
C′(q0) (20)

• For the the lower bound on the LHS of (19), we proceed in two steps. First, convexity
implies

C′(q0 + qs
1)−

1
qs

1

∫ qs
1

0
C′(q0 + x) dx > 0
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and therefore s1 < 1 implies

C′(q0 + qs
1)− C′(q0)− s1

(
C′(q0 + qs

1)−
1
qs

1

∫ qs
1

0
C′(q0 + x) dx

)
> C′(q0 + qs

1)− C′(q0)−
(

C′(q0 + qs
1)−

1
qs

1

∫ qs
1

0
C′(q0 + x) dx

)
=

1
qs

1

∫ qs
1

0
C′(q0 + x) dx − C′(q0).

Second, since C has non-negative higher order derivatives, a Taylor expansion im-
plies C′(q0 + x) ≥ C′(q0) + xC′′(q0) and therefore

1
qs

1

∫ qs
1

0
C′(q0 + x) dx − C′(q0) ≥

1
qs

1

∫ qs
1

0

(
C′(q0) + xC′′(q0)

)
dx − C′(q0)

=
1
2

qs
1C′′(q0). (21)

Using the two bounds (20) and (21), a sufficient condition for (19) is therefore

1
2

qs
1C′′(q0) >

1 − q0

q0
C′(q0),

which we can rewrite, using qs
1 = (1 − q0) s1, as

1
2

s1C′′(q0) >
1
q0

C′(q0).

For a general cost functionC, a sufficient condition for strategic complementarities is there-
fore

s1 ×
qC′′(q)
C′(q)

> 2 for all q

Turning to the comparative statics for s0 and s1, note that future liquidity risk s1 enters
the payoff gain π directly and indirectly:

∂π

∂s1
= (v − ps

1)− s1
∂ps

1
∂s1

> 0

The effect is unambiguously positive as v > ps
1 and ∂ps

1/∂s1 < 0 fromCorollary 2. Current
liquidity risk s0 affects π analogous to strategic sales λ:

∂π

∂s0
=

∂p0

∂s0
− s1

∂ps
1

∂s0
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Substituting in for the partial derivatives of p0 and ps
1 (see the expressions in the proof of

Corollary 2), we therefore have ∂π/∂s0 > 0 if ∂π/∂λ > 0. □

Proof of Proposition 3. Quadratic balance sheet costs C(q) = cq2 imply that the equilib-
rium prices from Proposition 1 are given by

p0 = 1 − cq0 and ps
1 = 1 − 2cq0 − cqs

1.

Substituting into the payoff gain and differentiating, we have

∂π

∂λ
= c (1 − s0) (s1 (2 − s1)− 1) ,

which is positive if and only if s1 (2 − s1) > 1 but that cannot happen since s1 (2 − s1) has
a maximum of 1 at s1 = 1.

Cubic balance sheet costs C(q) = cq3 imply that the equilibrium prices from Proposi-
tion 1 are given by

p0 = 1 − cq2
0 and ps

1 = 1 − c
(

3q2
0 + 3q0qs

1 + (qs
1)

2
)

Substituting into the payoff gain and differentiating, we have

∂π

∂λ
= c (1 − s0)

(
(3 − 2s1) s2

1 − 2 (s0 + (1 − s0) λ) (1 − s1)
3
)

,

the sign of which still depends on s0 and λ. Note, however, that the second derivative is

∂2π

∂λ2 = c (1 − s0)
2
((

2s2
1 − 6s1 + 6

)
s1 − 2

)
,

which is negative for s1 ∈ [0, 1]. Therefore ∂π/∂λ > 0 at λ = 1 is sufficient for ∂π/∂λ > 0
uniformly. We have

∂π

∂λ

∣∣∣∣
λ=1

= c (1 − s0)
(
−3s2

1 + 6s1 − 2
)

,

which is positive for s1 > 1 −
√

3
/

3 ≈ 0.42. □

Proof of Corollary 3. General power balance sheet costs C(q) = cqn imply that the equi-
librium prices from Proposition 1 are given by

p0 = 1 − cqn−1
0 and ps

1 = 1 − c
(
q0 + qs

1
)n − qn

0
qs

1
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Substituting into the payoff gain and differentiating, we have

∂π

∂λ
= c (1 − s0)

(
− (n − 1) qn−2

0 − s1

(
n
(1 − s1)

(
q0 + qs

1
)n−1 − qn−1

0
qs

1
+ s1

(
q0 + qs

1
)n − qn

0(
qs

1

)2

))
,

with a limit given by

lim
λ→1

∂π

∂λ
= c (1 − s0) (n − 1)

(n
2
(2 − s1) s1 − 1

)
.

Solving limλ→1 ∂π/∂λ = 0 for s1 yields the threshold s̃ = 1 −
√
(n − 2)/n. □

Proof of Proposition 4. With the linear price impacts ∂p0/∂λ = −c (1 − s0) and ∂ps
1/∂λ =

−2c (1 − s0) + cs1 (1 − s0), the derivative of the payoff gain can be written as

∂π

∂λ
= c (1 − s0)

(
s1 (2 − s1) u′(ps

1)− u′(p0)
)

,

such that ∂π/∂λ > 0 if and only if

s1 (2 − s1) >
u′(p0)

u′(ps
1)

.

With constant relative risk aversion u(x) = x1−γ/(1 − γ), the condition simplifies to

s1 (2 − s1) >

(
ps

1
p0

)γ

. (22)

The linear price functions (9) imply that the ratio ps
1/p0 is decreasing in λ and s0 such

that condition (22) is hardest to satisfy for λ = 0 and s0 = 0 where ps
1/p0 = 1 − cs1. A

sufficient condition for ∂π/∂λ > 0 uniformly is therefore

s1 (2 − s1) > (1 − cs1)
γ . (23)

Note that c, s1 ∈ (0, 1) imply 1 − cs1 < 1 and therefore

d
ds1

(
s1 (2 − s1)− (1 − cs1)

γ) = 2 (1 − s1) + cγ (1 − cs1)
γ−1 > 0,

and
d

dγ

(
s1 (2 − s1)− (1 − cs1)

γ) = − (1 − cs1)
γ ln (1 − cs1) > 0,
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such that condition (23) requires a sufficiently high s1 and/or γ. □

Proof of Proposition 5. Differentiating the payoff gain π in (10) with respect to λ yields

∂π

∂λ
=

c
2
(1 − s0) (s1 (4 − s1)− 1) , (24)

with c > 0, s0, s1 ∈ (0, 1), v > 1, and λ ∈ [0, 1], which imply the following comparative
statics:

• We have ∂π/∂λ > 0 if and only if s1 (4 − s1)− 1 > 0 which has one root in the unit
interval given by s̃ = 2 −

√
3.

• Differentiating π with respect to s1, we have

∂π

∂s1
= (v − ps

1) + s1
c
2
(1 − s0) (1 − λ) ,

which is positive.

• Differentiating π with respect to s0, we have

∂π

∂s0
=

c
2
(1 − λ) (s1 (4 − s1)− 1) ,

which is analogous to ∂π/∂λ above and therefore positive for s1 > s̃.

• Differentiating π with respect to c, we have

∂π

∂c
=

1
2

(
s2

1 (1 − s0) (1 − λ) + (4s1 − 1) (s0 + (1 − s0) λ)
)

which is positive for s1 sufficiently large. The threshold is lower than s̃ as

∂π

∂c

∣∣∣∣
s1=s̃

=
1
2

(
7 − 4

√
3
)
≈ 0.036,

so ∂π/∂c is positive for s1 > s̃. □

Proof of Corollary 4. The proof is analogous to the proof of Proposition 5 after setting
s0 = s1 = s in the payoff gain (10). Differentiating π with respect to λ yields

∂π

∂λ
=

c
2
(1 − s) (s (4 − s)− 1) ,
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with c > 0, s ∈ (0, 1), v > 1, and λ ∈ [0, 1], which imply the following comparative statics:

• We have ∂π/∂λ > 0 if and only if s (4 − s)− 1 > 0 which has one root in the unit
interval given by s̃ ≡ 2 −

√
3.

• Differentiating π with respect to s, we have

∂π

∂s
=

c
2
((10 − 3s) (1 − λ) s + (5λ − 1)) + v − 1,

which is positive unless λ is small. For s > 1
3

(
5 −

√
22
)
≈ 0.103, it is positive for all

λ and therefore also for s > s̃.

• Differentiating π with respect to c, we have

∂π

∂c
=

1
2

s2 +
1
2
(s (4 − s)− 1) (s + (1 − s) λ) ,

which is positive for s > s̃. □

Proof of Proposition 6. In order to apply the standard global game result that there
is a unique equilibrium and that it is in switching strategies, we have to show that the
payoff gain π(λ, s) satisfies certain properties (Morris and Shin, 2003). Corollary 4 estab-
lishes State Monotonicity and Action Monotonicity, that is π(λ, s) is increasing in s and
increasing in λ for s > s̃, which is satisfied if there are multiple equilibria of the complete-
information game. The payoff gain satisfies Strict Laplacian State Monotonicity since we
have∫ 1

0
π(λ, s) dλ =

c
2

(
s2 + s (s (4 − s)− 1) +

1
2
(1 − s) (s (4 − s)− 1)

)
− (1 − s) (v − 1) ,

(25)
which satisfies ∫ 1

0
π(λ, 0) dλ = − (v − 1)− c

4
< 0,

and ∫ 1

0
π(λ, 1) dλ =

3c
2

> 0,

as well as

∂

∂s

∫ 1

0
π(λ, s) dλ =

c
2

(
2s +

1
2
((s (4 − s)− 1) + (1 + s) (4 − 2s))

)
+ (v − 1) > 0,
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for s > s̃ and therefore a unique s∗ ∈ (s̃, 1) solves
∫ 1

0 π(λ, s∗) dλ = 0. Finally, π(λ, s)
satisfies Uniform Limit Dominance since we have

π(λ, 0) = − (v − 1)− c
2

λ < 0,

and
π(λ, 1) =

3c
2

> 0.

Under these properties, Morris and Shin (2003) show that, in the limit σε → 0, the global
game has a unique equilibrium and that the equilibrium is in switching strategies around
a threshold s∗ defined by the indifference condition

∫ 1
0 π(λ, s∗) dλ = 0 where the distri-

bution of λ conditional on signal ŝi = s∗ is uniform on [0, 1]. □

Proof of Corollary 5. From the equilibrium condition
∫ 1

0 π(λ, s∗) dλ = 0, implicit differ-
entiation using (25) yields

ds∗

dc
= −

1
2

(
(s∗)2 + s∗ (s∗ (4 − s∗)− 1) + 1

2 (1 − s∗) (s∗ (4 − s∗)− 1)
)

c
2

(
2s∗ + 1

2 ((s
∗ (4 − s∗)− 1) + (1 + s∗) (4 − 2s∗))

)
+ (v − 1)

< 0

and
ds∗

dv
=

1 − s∗

c
2

(
2s∗ + 1

2 ((s
∗ (4 − s∗)− 1) + (1 + s∗) (4 − 2s∗))

)
+ (v − 1)

> 0

as stated in the corollary. □

Proof of Proposition 7. The payoff gain under the Pigouvian tax is given by

π(λ, s) = (1 − τ)
( c

2

(
(4s − 1) (s + (1 − s) λ) + s2 (1 − s) (1 − λ)

))
− (1 − s) (v − (1 − τ))

and the other properties of π relevant to the global game are unaffected. Analogous to the
proof of Corollary 5, implicit differentiation of the equilibrium condition

∫ 1
0 π(λ, s∗) dλ =

0 where∫ 1

0
π(λ, s) dλ = (1 − τ)

c
2

(
s2 + s (s (4 − s)− 1) +

1
2
(1 − s) (s (4 − s)− 1)

)
− (1 − s) (v − (1 − τ))
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yields

ds∗

dτ
= −

− c
2

(
s2 + s (s (4 − s)− 1) + 1

2 (1 − s) (s (4 − s)− 1)
)
− (1 − s)

c
2

(
2s∗ + 1

2 ((s
∗ (4 − s∗)− 1) + (1 + s∗) (4 − 2s∗))

)
+ (v − (1 − τ))

> 0,

such that market stability s∗ and therefore ex-ante welfare E[W] is increasing in τ. Further-
more, for τ = 1, we have

∫ 1

0
π(λ, s) dλ = − (1 − s) v < 0

such that a sufficiently high tax rate can eliminate runs entirely. □

Proof of Proposition 8. We can rewrite the payoff gain with additional demand as

π(λ, s) =
c
2

s2 +
c (a − b)
1 + bc

(1 − 2s)− (1 − s) (v − 1)

+
c
2

(
1

1 + bc
(4s − 1)− s2

)
(s + (1 − s) λ) ,

and differentiate with respect to a to obtain

∂π

∂a
=

c
1 + bc

(1 − 2s) ,

and
∂2π

∂s∂a
= − 2c

1 + bc
.

We therefore have ∂π/∂a > 0 if and only if s < 1/2 as well as ∂2π
/
(∂s∂a) < 0. □

Proof of Corollary 6. The global game threshold is defined by
∫ 1

0 π(λ, s∗) dλ = 0 and
implicit differentiation yields

ds∗

da
= −

∫ 1
0

∂
∂a π(λ, s∗) dλ∫ 1

0
∂

∂s∗ π(λ, s∗) dλ
,

and therefore ds∗/da > 0 if and only if s∗ > 1/2. □
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C Comparison to Bernardo and Welch (2004)

Our model deviates from Bernardo and Welch (2004), hereafter BW, in a few important
details which allow us to apply global game methods in a model of regime shifts and to
derive a state-contingent interaction between flight-to-safety and dash-for-cash.

The first key difference between the two models is as follows: BW is intended as a
model of stock price crashes and has only one (risky) asset which dealers and investors
both value at its expected value µ. In our model, dealers value the (safe) asset at its par
value of 1 while liquidity investors value the asset at a convenience yield v > 1. Such a
difference in valuations is natural when thinking of a safe asset that conveys specific ben-
efits to certain investors. We have π(λ = 0, s = 0) = − (v − 1) so v > 1 guarantees that
the hold equilibrium λ∗ = 0 exists for sufficiently low liquidity risk, i.e. the existence of
s ∈ (0, 1) such that π(0, s) < 0 for s < s. In contrast, BW do not have a hold equilibrium,
only a mixed or a run equilibrium. The possibility of a hold equilibrium is both empiri-
cally plausible and technically important: Empirically plausible because we do not think
that investors routinely sell assets preemptively during normal times as the BWmodel im-
plies; technically important because it provides the second pure-strategy equilibrium that
is necessary for a true model of regime shifts.

The second key difference is that our model allows for strategic complementarities
which are another necessary ingredient for a model of regime shifts as it allows for mul-
tiplicity of equilibria under complete information. We show that strategic complementar-
ities can arise (i) if dealers’ marginal balance sheet costs are sufficiently elastic, such that
inventory taken on at date 0 sufficiently impacts the price at date 1 if there are further sales,
(ii) if liquidity investors are risk averse such that a potential price drop between date 0 and
date 1 is compounded by an increase in marginal utility, and/or (iii) if trades are sequen-
tially executed, such that an investor selling preemptively at date 0 can expect to front-run
some of the other investors selling. These features are in contrast to the model of Bernardo
andWelch (2004), where price impact is due to dealer risk aversion, investors are assumed
to be risk-neutral throughout, and trades are pooled before execution; therefore strategic
complementarities do not arise in their model.

A third difference is that BW only consider liquidity risk at date 1, i.e. assume s0 = 0
and s1 = s and therefore cannot distinguish between sales due to genuine liquidity needs
and preemptive sales for strategic reasons. As a result of these differences, the unique equi-
librium in the BWmodel features preemptive sales λ∗(s) that are continuously increasing
in the degree of liquidity risk s from λ∗(0) = 0 to λ∗(s) = 1 at some s ≤ 1. Whenever there
is positive liquidity risk s > 0, the BW model predicts that some investors sell preemp-
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tively and that the date 0 price is continuously decreasing in s until s (and then constant).
In contrast, the unique global game equilibrium in our model features a discrete regime
shift. As long as liquidity risk is sufficiently low, only investors with genuine liquidity
needs sell and no investors sell preemptively; once liquidity risk exceeds the global game
threshold, liquidity investors that do not have current liquidity needs suddenly sell pre-
emptively. In our model, preemptive sales therefore jump discontinuously from λ∗(s) = 0
for s below the switching point s∗ to λ∗(s) = 1 for s above s∗ and the date 0 price drops
precipitously as s crosses the threshold.

Finally, ourmodel features safety investorswhose demand for the asset has an ambigu-
ous effect on liquidity investors’ strategic sales. In the BW model, market depth at date 0
is destabilizing and market depth at date 1 is stabilizing but the net effect of more market
depth at both dates does not vary with the degree of liquidity risk— it is either uniformly
positive or uniformly negative. In contrast, our modeling of safety investors — who in-
crease market depth both at date 0 and at date 1— combined with our regime shift model
of liquidity investors generates one of our key results: more market depth at both dates
is stabilizing if the market is relatively stable (high s∗) but destabilizing if the market is
relatively unstable (low s∗).

D Model with Aggregate Risk

Suppose, that investors only face liquidity risk at date 1 if the aggregate environment is
stressed (or continues to be stressed) which happens with probability α. With probabil-
ity 1 − α, the aggregate environment is “back to normal” at date 1, such that investors
are not at risk of liquidity shocks anymore. With this simple binomial aggregate state,
liquidity shocks at date 1 are correlated and the price conditional on receiving a shock,
ps

1 ≡ E0[p1|shock], is different from the price conditional on not receiving a shock, pns
1 ≡

E0[p1|no shock].
Specifically, sales at date 0 are unchanged as q0 = s0 + (1 − s0) λ while sales at date 1

now depend on the aggregate state with qs
1 = s1 (1 − s0) (1 − λ), as in the main text, and

qns
1 = 0. The equilibrium prices at date 0 is similarly unchanged from Proposition 1 as

p0(q0) = 1 − C(q0)/q0 but the price at date 1 depends on the aggregate state. In the bad
state, the price is ps

1
(
q0, qs

1
)
= 1 −

(
C
(
q0 + qs

1
)
− C(q0)

)/
qs

1, as derived in the main text.
As we show below, all the properties derived for the date-1 price in the main text are
really only required for ps

1 and therefore do not imply any restrictions on pns
1 , the price

conditional on not receiving a liquidity shock; in the good state,where dealers don’t have to
take on additional inventory since qns

1 = 0, we can therefore assume, e.g. that no-arbitrage
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holds such that the price equals fundamentals as pns
1 = 1. Then the state-contingent prices

satisfy ps
1 < p0 < pns

1 such that the model no longer features a pure arbitrage. Because
the prices p0 and ps

1 are unchanged from the main text such that Proposition 1 and its
Corollaries 1 and 2 continue to hold.

Turning to the strategic interaction among liquidity investors, the payoff gain becomes

π = p0 − αs1ps
1 − (1 − αs1) v.

Crucially, the only date-1 price that is relevant for a strategic investor’s decision at date 0
is ps

1 and the payoff gain with aggregate risk is almost identical to the one in the main text
in (2), except for replacing s1 by αs1. In principle, we could therefore redefine ŝ1 ≡ αs1.

However, note that s1 also enters π indirectly through the effect of qs
1 on ps

1 and that α

does not appear in qs
1 (because it is conditional on the bad state). For the sufficient condi-

tion in Proposition 2, this does not matter such that we can follow the same steps as in the
proof in Appendix B and arrive at the sufficient condition αs1 × η > 2 which simply re-
places s1 by αs1. For the tighter sufficient conditions in Propositions 3 to 5, s1 appears in the
relevant expressions on its own and as αs1 but the monotonicity of the expressions with
respect to s1 remains unchanged such that any threshold for the redefined ŝ1 is similar to
the corresponding threshold for s1 in the model without aggregate risk. As a result, the
analysis remains essentially unchanged except for replacing statements of the form “for
sufficiently high date-1 liquidity risk s1” by statements of the form “for sufficiently high
risk α of a stressed environment at date 1 and sufficiently high liquidity risk s1 conditional
on the stressed environment.”

To verify this and gauge the quantitative effect, consider the threshold for strategic
complementarities in Proposition 5 which yields Corollary 4 and is therefore the basis of
our global game analysis. With aggregate risk, the payoff gain (10) becomes

π(λ, s0, s1) = 1 − c
2
(s0 + (1 − s0) λ)− αs1

(
1 − 2c (s0 + (1 − s0) λ)− c

2
s1 (1 − s0) (1 − λ)

)
− (1 − αs1) v

=
c
2

(
(4αs1 − 1) (s0 + (1 − s0) λ) + αs2

1 (1 − s0) (1 − λ)
)
− (1 − αs1) (v − 1)

Differentiating this payoff gain with respect to λ yields

∂π

∂λ
=

c
2
(1 − s0) (αs1 (4 − s1)− 1) .

Compared to the analogous expression (24) for the case without aggregate risk, one of
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A: Low elasticity of marginal costs.
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B: High elasticity of marginal costs.
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Figure 10: Elasticity of marginal costs and strategic complementarities. The figure shows
the balance sheet costC(q) (gray curve) and averagemarginal costsC(q)/q between different
points (colored lines) for balance sheet cost function C(q) = cqn. Panel A shows low elasticity
of marginal costs for n = 3. Panel B shows high elasticity of marginal costs for n = 5. Other
parameters: c = 0.25, q0 = 0.5, qs

1 = 0.4 and δ = 0.1.

the two occurrences of s1 is replaced by αs1. With aggregate risk, we have strategic com-
plementarities, ∂π/∂λ > 0, if and only if αs1 (4 − s1)− 1 > 0 which implies a threshold
2α −

√
α (4α − 1) for the redefined ŝ1. This threshold is greater than the corresponding

threshold 2 −
√

3 for s1 in the case without aggregate risk but the difference is decreasing
in α and small even for intermediate levels of α. For example, with equal probability of the
environment remaining stressed or returning back to normal (α = 0.5), the threshold is
2α −

√
α (4α − 1) ≈ 0.29 compared to 2 −

√
3 ≈ 0.27.

E Graphical Intuition for Elasticity of Marginal Costs

Considering the price functions in Proposition 1, we see that the direct effects in condi-
tion (8) correspond to changes in the average slope of the cost function C. For example,
increasing q0 by δ reduces p0 by

C(q0 + δ)

q0 + δ
− C(q0)

q0
,

which is the change in the average slope C(q)/q when extending the interval from [0, q0] to
[0, q0 + δ]. This is illustrated in Figure 10 by going from the slope of the blue line between
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points A and B, which equals C(q0)/q0, to the slope of the orange line between points A
and C, which equals C(q0 + δ)/(q0 + δ). The direct effect ∂ps

1/∂qs
1 works the sameway but

with the origin shifted from (0, 0) to
(
q0, C(q0)

). Increasing qs
1 by δ reduces ps

1 by

C(q0 + qs
1 + δ)

qs
1 + δ

−
C(q0 + qs

1)

qs
1

,

which is the change in the average slope when extending the interval from [
q0, q0 + qs

1
]

to [q0, q0 + qs
1 + δ

]. This is illustrated in Figure 10 by going from the slope of the blue line
between points B and D to the slope of the orange line between points B and E.

In contrast, while the indirect inventory effect ∂ps
1/∂q0 also startswith the average slope

on [q0, q0 + qs
1
], an increase of q0 by δ shifts both the beginning and the end of the interval

and results in the average slope on [q0 + δ, q0 + qs
1 + δ

], i.e. it reduces ps
1 by

C(q0 + qs
1 + δ)− C(q0 + δ)

qs
1

−
C(q0 + qs

1)− C(q0)

qs
1

.

This is illustrated in Figure 10 by going from the slope of the blue line between points B
and D to the slope of the green line between points C and E. By convexity, this effect is
bigger than the direct effect ∂ps

1/∂qs
1 (as used in the proof of Corollary 1).

Condition (8) therefore requires two things: First, the difference between the indirect
effect ∂ps

1/∂q0 and the direct effect ∂ps
1/∂qs

1 (in absolute magnitude) has to be sufficiently
large; in Figure 10 this means that the slope of the line from C to E has to be sufficiently
greater than the slope of the line from B to E, i.e. the function C(q) has to have strong
curvature between q0 and q0 + qs

1. Second, the direct effect ∂p0/∂q0 has to be sufficiently
small; in Figure 10 this means that the slope of the line from A to C has to be not much
greater than the slope of the line from A to B, i.e. the function C(q) has to have weak
curvature between 0 and q0.

Taken together, these two requirement translate into sufficiently elastic marginal bal-
ance sheet costs, i.e. marginal costs C′(q) have to increase relatively slowly for low q and
relatively quickly for large q. The two panels of Figure 10 illustrate this using the paramet-
ric cost function C(q) = cqn that we will analyze further in the following section and that
have elasticity of marginal costs given by η = n − 1. Panel A shows the case of n = 3 such
that marginal balance sheet costs have relatively low elasticity η = 2; here the indirect
inventory effect (green line) is not much stronger than the direct effects (orange lines).
Panel B shows the case of n = 5 such that marginal balance sheet costs are more elastic
with η = 4 and the indirect inventory effect becomes stronger.
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F Global Game Analysis with s0 ̸= s1

The payoff gain (10) with s0 ̸= s1 is

π(λ, s0, s1) =
c
2

(
s2

1 (1 − s0) (1 − λ) + (4s1 − 1)
(
s0 + (1 − s0) λ

))
− (1 − s1) (v − 1)

A sell equilibrium π(1, s0, s1) ≥ 0 exists for sufficiently high s1:

π(1, s0, s1) =
c
2
(4s1 − 1)− (1 − s1) (v − 1) > 0

⇔ s1 >
c
2 + (v − 1)

2c + (v − 1)

The condition for a hold equilibrium π(0, s0, s1) ≤ 0 depends on s0:

π(0, s0, s1) =
c
2

(
s2

1 (1 − s0) + (4s1 − 1) s0

)
− (1 − s1) (v − 1) < 0

However, a hold equilibrium exists for sufficiently low s1 because, for s1 = 0, we have a
hold equilibrium irrespective of s0:

π(0, s0, 0) = − c
2

s0 − (v − 1) < 0

Together with the properties derived in Proposition 5, the payoff gain π(λ, s0, s1)with
s1 as the fundamental state variable therefore satisfies the global game properties of Mor-
ris and Shin (2003). Specifically, Proposition 5 establishes State Monotonicity and Action
Monotonicity, i.e. π(λ, s0, s1) is increasing in s1 and increasing in λ for s1 > s̃, which is sat-
isfied if there are multiple equilibria of the complete-information game. The payoff gain
satisfies Strict Laplacian State Monotonicity since we have

∫ 1

0
π(λ, s0, s1) dλ =

c
4

(
s2

1 (1 − s0) + (4s1 − 1) (1 + s0)
)
− (1 − s1) (v − 1) ,

which satisfies ∫ 1

0
π(λ, s0, 0) dλ = − c

4
(1 + s0)− (v − 1) < 0,

and ∫ 1

0
π(λ, s0, 1) dλ =

c
2
(2 + s0) > 0,

as well as

∂

∂s1

∫ 1

0
π(λ, s0, s1) dλ =

c
4
(2s1 (1 − s0) + 4 (1 + s0)) + (v − 1) > 0,
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and therefore a unique s∗1 ∈ (s̃, 1) solves
∫ 1

0 π(λ, s0, s∗1) dλ = 0. Finally, π(λ, s0, s1) satisfies
Uniform Limit Dominance since we have

π(λ, s0, 0) = − (v − 1)− c
2
(
s0 + (1 − s0) λ

)
< 0,

and
π(λ, s0, 1) =

c
2
(
(1 − s0) (1 − λ) + 3

(
s0 + (1 − s0) λ

))
> 0.

Under these properties, Morris and Shin (2003) show that, in the limit σε → 0, the global
game has a unique equilibrium and that the equilibrium is in switching strategies around
a threshold s∗1 defined by the indifference condition

∫ 1
0 π(λ, s0, s∗1) dλ = 0 where the dis-

tribution of λ conditional on signal ŝ1i = s∗1 is uniform on [0, 1]. This establishes that the
analog of Proposition 6 holds for the case s0 ̸= s1.

The indifference condition
∫ 1

0 π(λ, s0, s∗1) dλ = 0which defines the threshold s∗1 is given
by

c
4

(
(s∗1)

2 (1 − s0) + (4s∗1 − 1) (1 + s0)
)
− (1 − s∗1) (v − 1) = 0.

Implicit differentiation shows same comparative statics as in Corollary 5:

ds∗1
dc

= −
1
4

(
(s∗1)

2 (1 − s0) + (4s∗1 − 1) (1 + s0)
)

c
4

(
2s∗1 (1 − s0) + 4 (1 + s0)

)
+ (v − 1)

< 0 for s > s̃

and
ds∗1
dv

= −
− (1 − s∗1)

c
4

(
2s∗1 (1 − s0) + 4 (1 + s0)

)
+ (v − 1)

> 0

G Model with Safety Investors Active at Both Dates

Suppose we have additional demand qS
0 = a0 − b0p0 at date 0 and qS

1 = a1 − b1p1 at date 1.
Things are unchanged at date 0 with expected price

E[p0(λ)] =
1 + a0c
1 + b0c

− 1
2

c
1 + b0c

(s + (1 − s) λ) .

At date 1, dealers demand qD
1 = 1

c (1 − p1)− 2qD
0 with inventory qD

0 as in themain text.
With additional demand qS

1 , total demand at date 1 can be written as

ps
1(q

s
1) =

1 + a1c − 2cqD
0

1 + b1c
− c

1 + b1c
qs

1.
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With total supply qs
1 = s (1 − s) (1 − λ) and substituting in dealer inventory

qD
0 =

s + (1 − s) λ + b0 − a0

1 + b0c
,

we have an expected price

E[ps
1(λ)] =

1 + a1c − 2c
(

s+(1−s)λ
1+b0c − a0−b0

1+b0c

)
1 + b1c

− 1
2

c
1 + b1c

s (1 − s) (1 − λ) .

Collecting terms, we have expected prices given by

E[p0(λ)] =
1 +

(
a0 − 1

2 s
)

c

1 + b0c
− 1

2
c

1 + b0c
(1 − s) λ,

E[ps
1(λ)] =

1 +
(

a1 − 1
2 s (1 − s)

)
c

1 + b1c
+

2c (a0 − b0 − s)
(1 + b1c) (1 + b0c)

− 1
1 + b1c

(
2c

1 + b0c
− c

2
s
)
(1 − s) λ

As before, a0 has twice the effect on ps
1 as on p0 but ps

1 is discounted by s, so for a0 to be
stabilizing, we need s > 1/2. In contrast, a1 only affects ps

1, so it is always stabilizing.

H Flight-to-Safety as Increase in Dealer Valuation

Suppose that dealers value the safe asset at vD ∈ [1, v). In this case, the equilibrium prices
from Proposition 1 would be

p0 = vD − C(q0)

q0
and ps

1 = vD −
C
(
q0 + qs

1
)
− C(q0)

qs
1

.

We can consider an increase in vD as a temporary shock to dealers’ fundamental valua-
tion of safe assets, perhaps reflecting decreases in funding costs or relaxation of collateral
constraints.

Let π1 denote the payoff gain when vD = 1 and let πD denote the payoff gain for a
given vD > 1. Then we have a simple relation between πD and π1 given by

πD = π1 + (1 − s) (vD − 1) ,

which directly implies that the payoff gain is increasing in the dealers’ valuation vD.
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In other words, a positive shock to dealers’ valuation strictly increases the incentive
for liquidity investors to sell preemptively. The intuition is straightforward. The increase
in dealers’ valuation increases the price in both periods by the same amount, and since
liquidity investors only weight the future price by the liquidity risk s, an equal increase in
both prices strictly increases the incentive to sell.
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